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Abstract

Reinforcement Learning enables agents to learn optimal behaviors through in-
teractions with environments. However, real-world environments are typically
non-stationary, requiring agents to continuously adapt to new tasks and changing
conditions. Although Continual Reinforcement Learning facilitates learning across
multiple tasks, existing methods often suffer from catastrophic forgetting and inef-
ficient knowledge utilization. To address these challenges, we propose Continual
Knowledge Adaptation for Reinforcement Learning (CKA-RL), which enables
the accumulation and effective utilization of historical knowledge. Specifically, we
introduce a Continual Knowledge Adaptation strategy, which involves maintaining
a task-specific knowledge vector pool and dynamically using historical knowledge
to adapt the agent to new tasks. This process mitigates catastrophic forgetting and
enables efficient knowledge transfer across tasks by preserving and adapting critical
model parameters. Additionally, we propose an Adaptive Knowledge Merging
mechanism that combines similar knowledge vectors to address scalability chal-
lenges, reducing memory requirements while ensuring the retention of essential
knowledge. Experiments on three benchmarks demonstrate that the proposed CKA-
RL outperforms state-of-the-art methods, achieving an improvement of 4.20% in
overall performance and 8.02% in forward transfer. The source code is available at
https://github.com/Fhujinwu/CKA-RL.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful paradigm in machine learning, enabling
agents to learn optimal behaviors through interactions with dynamic environments [25, 11, 45]. RL
has achieved significant success in fields such as robotic control [24, 36], embodied intelligence
[8, 16], and natural language processing [18, 15, 19]. However, traditional RL usually assumes a static
environment where tasks and data distributions remain fixed, intending to solve a single, well-defined
problem [33]. In contrast, real-world environments are typically non-stationary, requiring agents to
continuously adapt to new tasks and evolving conditions. In light of this, Continual Reinforcement
Learning (CRL) [26] has been introduced to enable agents to adapt and maintain performance across
multiple tasks, facilitating more robust decision-making in dynamic environments [14, 2, 50].

Unfortunately, CRL still faces several challenges, which are as follows. 1) Cross-task conflict: In
continual learning, tasks may share certain structures or knowledge while also having incompatible
goals or constraints. This interplay complicates the direct reuse of previously learned information [28].
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2) Catastrophic forgetting: When learning new tasks, the agent may overwrite or distort previously
acquired knowledge, leading to a loss of performance on earlier tasks [33, 50].

Recently, several attempts have been proposed to enable agents to continuously learn across multiple
tasks while maintaining or enhancing their performance on previously acquired tasks [60, 20]. The
existing methods can be broadly categorized into four main groups [50]. The regularization-based
methods [21, 38] introduce regularization terms into the learning objective that penalize large updates
to important parameters for previously learned tasks. The rehearsal-based methods [10, 58, 57]
mitigate forgetting by storing previous experiences in memory and periodically replaying them
during the learning of new tasks. By leveraging past experiences, these methods help reduce short-
term biases and improve task performance across the sequence. The architecture-based methods
[49, 33, 5, 40] focus on learning a shared structure, such as modularity or composition, to facilitate
continual learning. They reuse parts of previous solutions by forming abstract concepts or skills. The
meta-learning based methods [41, 12, 31, 9] improve the learning efficiency of agents by utilizing
past successes and failures to refine their optimization processes. This creates an inductive bias that
enhances sample efficiency and adaptability in acquiring new behaviors.

Although there has been significant progress in existing methods, they still face several limitations
as follows. Firstly, existing methods, such as PackNet [34], often fail to effectively address task
dependencies and conflicts, which makes it challenging to transfer knowledge across tasks with-
out interference or degradation in performance. Secondly, most methods still exhibit substantial
performance degradation on previously learned tasks upon acquisition of new ones. This issue is
particularly pronounced in methods that rely on regularization, as they may struggle to efficiently
retain knowledge from earlier tasks as the task sequence lengthens. Lastly, many methods face
scalability issues, especially as the number of tasks grows significantly, leading to increased memory
and computational costs, such as CompoNet [33].

To address these limitations, we propose Continual Knowledge Adaptation for Reinforcement
Learning (CKA-RL), which enables the accumulation and effective utilization of historical knowl-
edge, thereby accelerating learning in new tasks and explicitly reducing performance degradation
on previous tasks. Specifically, we assume that the agent acquires a unique knowledge vector for
each task during continual learning. Based on this, we propose a Continual Knowledge Adaptation
strategy, which involves maintaining a task-specific knowledge vector pool and dynamically using
historical knowledge to adapt the agent to a new task. This method mitigates catastrophic forgetting
and facilitates the efficient transfer of knowledge across tasks by preserving and adapting crucial
model parameters. Furthermore, we introduce an Adaptive Knowledge Merging mechanism that
clusters and consolidates similar knowledge vectors to address scalability issues, reducing memory
requirements while ensuring the retention of essential information.

Main novelty and contributions. 1) We propose a novel continual reinforcement learning method,
called CKA-RL. It enables agents to reuse knowledge from previously learned tasks, mitigating
catastrophic forgetting, and leveraging this historical knowledge to enhance the learning efficiency.
2) We propose Continual Knowledge Adaptation strategy, which dynamically adapts historical
knowledge to a new task. To reduce storage requirements, we introduce an Adaptive Knowledge
Merging mechanism that combines similar knowledge vectors, addressing scalability issues. 3)
Experiments demonstrate that the proposed method outperforms state-of-the-art methods on three
benchmarks, achieving an improvement of 4.20% in performance and 8.02% in forward transfer.

2 Related Work

Continual Reinforcement Learning (CRL) aims to enable agents to continuously learn and optimize
strategies in dynamic environments, improving their ability to adapt to environmental changes and
achieve goals more efficiently. The existing methods can be broadly categorized into four main
types [50]: regularization-based methods, rehearsal-based methods, architecture-based methods, and
meta-learning-based methods, each of which is detailed as:

Regularization-based Methods. These methods [21, 38] add regularization terms to the training
process to balance learning new and old tasks without storing models of old tasks. ITER [21]
periodically distills the current policy and value function into a newly initialized network during
training and imitates the teacher network using a linear combination of loss terms to enhance model
generalization. TRAC [38] adaptively adjusts the regularization strength based on online convex
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optimization theory to prevent excessive weight drift, thereby reducing plasticity loss and enabling
rapid adaptation to new distribution changes. Anand et al. [3] propose a method that decomposes the
value function into permanent and transient components to address the stability-plasticity dilemma in
continual reinforcement learning, enabling efficient adaptation and control in dynamic environments.

Rehearsal-based Methods. These methods [10, 58, 57, 13] utilize experience replay, generation
replay, parameter replay, etc., to store past experiences and prevent catastrophic forgetting in agents.
RECALL [57] focuses on improving plasticity and stability in continuous reinforcement learning
through multi-head neural network training, coupled with adaptive normalization and policy distilla-
tion techniques. IQ [58] employs a context partitioning strategy based on online clustering, combined
with multi-head networks and knowledge distillation technology, to reduce interference between
different state distributions. DRAGO [13] leverages synthetic experience replay and exploration-
based memory recovery to retain knowledge across tasks, mitigating catastrophic forgetting without
requiring the storage of past task data.

Architecture-based Methods. These methods [49, 33, 5, 40, 35] concentrate on learning a policy
with a set of shared parameters to handle all incremental tasks, including parameter allocation, model
reorganization, and modular networks. For example, MaskNet [5] employs a learnable modulation
mask to isolate the parameters of different tasks on a fixed neural network and accelerates learning new
tasks by linearly combining masks from previous tasks. CompoNet [33] uses a modular architecture
with self-composing policies to enable efficient knowledge transfer and scalable learning in continual
reinforcement learning. COMP [35] decomposes complex tasks into multiple subtasks corresponding
to different neural modules. These modules can be combined to form a complete policy. REWIRE
[46] redefines the connection methods of the neural network and reorders the neurons in each layer to
achieve additional plasticity in unstable environments.

Meta-Learning based Methods. These methods [41, 12, 31, 9] assist agents in rapidly adapting to
new tasks by simulating the reasoning phase during training. MB-MPO [9] is a model-based method
that meta-learns policies robust to ensemble dynamics, reducing reliance on accurate models. MAML
[12] is a model-agnostic meta-learning algorithm that explicitly trains models to achieve strong
generalization from a small number of gradient updates. ESCP [31] enhances the robustness and
responsiveness of context encoding, significantly accelerating adaptation in reinforcement learning
involving sudden environmental changes.

3 Problem Formulation

The standard Reinforcement Learning (RL) problem [47] is modeled as a Markov Decision
Process (MDP), with tuple M = ⟨S,A, p, r, γ⟩, where S is state space, A is action space, p :
S ×A×S → [0, 1] is the state transition probability function, r : S ×A → R is the reward function,
and γ ∈ [0, 1] is the discount factor. At each time step t ∈ N, the agent observes the current state
st ∈ S and takes an action at ∼ π(·|st), where π : S × A → [0, 1] is the policy. The environment
transitions to a new state st+1 ∼ p(·|st, at), and the agent receives a reward r(st, at). The goal of
RL is to find an optimal policy π∗ that maximizes the expected discounted return as follows:

max
π

Eπ,p[

∞∑
t=0

γtr(st, at)], (1)

where the expectation is over trajectories generated by policy π and state transitions p. The discount
factor γ controls the trade-off between immediate and future rewards.

Given N tasks, the agent is expected to maximize the RL objective for each task in T =
{τ1, τ2, . . . , τN}. Each task τi is associated with a distinct MDP Mi = ⟨Si,Ai, pi, ri, γi⟩. An
RL problem is considered an instance of Continual Reinforcement Learning (CRL) if agents
are required to continuously learn. Following the definition presented by Abel et al. [2], we have
the following concept: an RL problem defined by a tuple (e, ν,Λ), where e is the environment,
ν is the performance function, and Λ is the set of all agents, the problem is a CRL problem if
∀λ∗∈Λ∗λ∗ ̸ e⇝ (never reaches) ΛB , where ΛB ⊂ Λ is a basis such that ΛB ⊢e (generates) Λ (in e) and
Λ∗ = argmaxλ∈Λ ν(λ, e). In other words, the best agents continue to search indefinitely over the
basis ΛB and do not converge to a fixed policy. According to our CKA-RL, whenever the number
of tasks |T | increases, particularly when τN+1 is added, a new knowledge vector vN+1 will be
introduced. Therefore, the new task will ensure that λ ̸ e⇝ ΛB , and thus continues to learn.
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(a) Continual Knowledge Adaptation (b) Adaptive Knowledge Merging
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Figure 1: An illustration of the CKA-RL. When learning a new task τk, the agent πk adapts by using
historical knowledge vectors V = {v1, . . . ,vk−1} with |V| ≤ Kmax, and learning a new task-specific
knowledge vector vk, while the base parameter θbase remains fixed. After training, the new knowledge
vector vk is added to a knowledge vector pool V . To maintain memory efficiency, we merge the
most similar pairs of knowledge vectors (vm,vn) in V into vmerge when |V| > Kmax, thus ensuring
essential knowledge is retained while supporting scalable continual learning across sequential tasks.

4 Continual Knowledge Adaptation for Reinforcement Learning

In this paper, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL),
which enables the accumulation and effective utilization of historical knowledge, thereby accelerating
learning in new tasks while mitigating catastrophic forgetting. As shown in Figure 1, our proposed
CKA-RL is composed of three key components: 1) Knowledge Vectors: These vectors capture
task-specific knowledge that is used to adapt the model to new tasks, as detailed in Sec. 4.1. 2)
Continual Knowledge Adaptation: This component dynamically uses historical knowledge to adapt
the agent to a new task, enabling efficient transfer and retention of knowledge (see in Sec. 4.2).
3) Adaptive Knowledge Merging: This component merges similar knowledge vectors to address
scalability issues, reducing memory requirements while ensuring the retention of essential knowledge
(see in Sec. 4.3). The pseudo-code of CKA-RL is summarized in Algorithm 1.

4.1 Knowledge Vectors

In continual reinforcement learning, leveraging knowledge from previous tasks in dynamic envi-
ronments is crucial to enhance agent performance in subsequent tasks and mitigate catastrophic
forgetting. Therefore, we introduce the concept of knowledge vectors to facilitate continual learning,
inspired by model editing techniques [22]. Specifically, the knowledge vector, denoted as vk ∈ Rd,
represents the learned parameters that adapt the pre-trained model to a specific task τk, where d
denotes the dimensionality of the model parameter. These vectors can be combined linearly with
historical knowledge vectors to enable cross-task knowledge transfer.

Formally, given the pre-trained model weights θbase ∈ Rd, the knowledge vector vk is optimized
during task-specific training to capture incremental adaptations. The final task-specific parameter
θk is generated through a combination of the base parameter θbase, historical knowledge matrix
Vk−1 = [v1,v2, . . . ,vk−1], and the current task vector vk, which is as follows:

θk = θbase +

k−1∑
i=1

vi + vk, (2)

A linear combination of multiple knowledge vectors enables the model to reuse knowledge from
previous tasks [27, 6]. This highlights the potential of knowledge vectors to facilitate continual
knowledge adaptation, effectively tackling key challenges in continual learning.

4.2 Continual Knowledge Adaptation

The knowledge vector stores task-specific knowledge, and the knowledge from historical tasks
facilitates the transfer of policies to new tasks. Under the Continual RL setting, assuming that the
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policy π shares a consistent observation space O and action space A, the policy can be represented
using a unified architecture parameterized by θ. To achieve cross-task knowledge transfer, we propose
Continual Knowledge Adaptation strategy. Specifically, it is first necessary to construct shared
base model parameter θbase. The policy parameter is initialized as θ1 and trained on the initial
task τ1, with the optimization objective being to maximize the expected discounted return. The
optimized parameter θ1 is then used as the base parameter θbase, which encompasses general feature
representations and serves as the foundation for subsequent knowledge adaptation.

The knowledge from previous tasks is stored as knowledge vectors in a knowledge vector pool
V = {v1, . . . ,vk−1}, where each vi represents the knowledge vector for task τi. For flexibility, we
define the null knowledge as v1 = θ1 − θbase = 0 and include it in V . When learning a new task τk,
the model parameter is generated by adapting the historical knowledge vectors in V with the new
task-specific knowledge vk, which is as follows:

θk = θbase +

k−1∑
j=1

αk
jvj + vk, where

k−1∑
j=1

αk
j = 1. (3)

The αk = [αk
1 , . . . , α

k
k−1] represents the normalized adaptation factors for task τk, where∑k−1

j=1 α
k
j = 1. These factors are derived from learnable parameter βk = [βk

1 , . . . , β
k
k−1] through the

softmax function:

αk
j =

expβk
j∑k−1

i=1 exp(βk
i )

. (4)

Here, βk controls the contribution of each historical knowledge vector vj to the new task τk, and vk

is the optimizable knowledge vector for the current task. Notably, we initialize vk to 0 to allow the
model to gradually learn the task-specific knowledge vector. This prevents large initial adjustments,
ensuring stable learning without disrupting previously learned tasks. By setting α1 = 1, the model
can disregard previously learned knowledge when it is not beneficial for learning new tasks. This
design enables continual adaptation of historical knowledge while preserving task-specific knowledge.
During the task training, the base parameter θbase is fixed to maintain the foundation for knowledge
adaptation, and only the adaptation factors αk (derived from βk) and the current task knowledge
vector vk are optimized. Upon the completion of the training process, the obtained knowledge vector
vk is added to the knowledge vector pool V , thereby facilitating efficient knowledge transfer within
dynamic environments.

4.3 Adaptive Knowledge Merging

Although the proposed Continual Knowledge Adaptation strategy can accelerate the agent learning
process and mitigate catastrophic forgetting by utilizing knowledge vectors from previous tasks,
maintaining all vectors becomes impractical as the number of stored knowledge vectors increases.
Therefore, we propose Adaptive Knowledge Merging to address scalability issues while preserving
essential knowledge. Specifically, we merge similar knowledge vectors into compact representations,
ensuring that the memory footprint remains manageable. The pairwise similarity between knowledge
vectors is measured using normalized cosine similarity as follows:

Sij =
vi · vj

∥vi∥∥vj∥
, (5)

where Sij ∈ [−1, 1] measures the directional alignment between vectors vi and vj . A value of
Sij = −1 indicates that the two knowledge vectors are in direct conflict. Conversely, a value closer
to 1 signifies strong alignment, suggesting consistency in the knowledge they encode. This similarity
metric effectively captures the functional similarities in how vectors modify the base policy. When
the number of knowledge vectors exceeds the maximum capacity Kmax, which serves as a hyper-
parameter for controlling memory usage, we compute the pairwise similarity matrix S across all
stored knowledge vectors. Then, we identify the most similar pair (vm,vn) by finding the pair with
the highest similarity score, which is as follows:

(vm,vn) = argmaxi,jSi,j . (6)

These vectors vm and vn are merged by averaging:

vmerge =
1

2
(vm + vn), (7)
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Algorithm 1 The Pipeline of the Proposed CKA-RL

Input: Task sequence T ={τ1, . . . , τN}, Initial model parameters θ1, Knowledge pool V={0}
1: Base Policy Learning: θbase ← argmax

θ
Eπθ

[∑∞
t=0 γ

tr1(st, at)
]

2: for k ← 2, . . . , N do
3: Task Initialization: vk ← 0, βk ∼ N (0, 1), αk ← softmax(βk)

4: Policy Construction: θ′ ← θbase +
∑k−1

j=1 αk
jvj + vk

5: Policy Optimization: argmax
vk,βk

Eπθ′

[∑∞
t=0 γ

trk(st, at)
]

6: Knowledge Preservation: θk ← θ′, V ← V ∪ {vk}
7: if |V| > Kmax then
8: Compute similarity matrix S using Eq.(5)
9: (vm,vn)← argmaxi,jSi,j

10: Merge vm and vn into vmerge using Eq.(7)
11: Update V: V ← (V \ {vm,vn}) ∪ {vmerge}
Output: Learned policies {πθ1 , . . . , πθN }

where vmerge is added to the knowledge vector pool V . The merged vector vmerge replaces vm and vn,
reducing memory requirement while maintaining the knowledge from both vectors. It ensures that
the knowledge vector pool remains compact and efficient while preserving knowledge from previous
tasks. Through iterative merging, this strategy dynamically maintains a balance between memory
efficiency and knowledge retention, addressing scalability issues in dynamic environments.

Remark: For a detailed mathematical analysis supporting the performance and stability of the
proposed method, please refer to Appendix A.

5 Experiments

5.1 Experimental Settings

Benchmarks. We follow the experimental settings established in prior work [33] and compare
CKA-RL with SOTA CRL methods across three distinct dynamic task sequences, including 1)
Meta-World [56], 2) Freeway [32], and 3) SpaceInvaders [32]. These sequences are designed to
evaluate the robustness and generalization capabilities of different methods under varying levels of
task complexity and action space characteristics. More details can be seen in Appendix C.

Metrics. Following standard evaluation metrics in CRL [55], we report key metrics, including
average performance and forward transfer. The average performance at step t, denoted as P (t):

P (t) =
1

N

N∑
i=1

pi(t). (8)

where pi(t) ∈ [0, 1] is the success rate on task i at step t, and each of the N tasks is trained for ∆
steps, where N is the number of tasks, so the total number of steps is T = N ·∆. Its final value
P (T ), serving as a conventional evaluation metric in CRL [33, 53], effectively captures the model’s
stable performance across dynamic environments. The forward transfer measures the extent to
which a CRL method is able to transfer knowledge across tasks. It is computed as the normalized
area between the training curve of the measured run and the training curve of a reference model
trained from scratch. Let pbi ∈ [0, 1] denote the reference performance. The forward transfer on task
i, denoted as FTi, is defined as follows:

FTi =
AUCi −AUCb

i

1−AUCb
i

, AUCi =
1

∆

∫ i·∆

(i−1)·∆
pi(t) dt,AUCb

i =
1

∆

∫ ∆

0

pbi (t) dt. (9)

The average forward transfer for all tasks FT is defined as:

FT =
1

N

N∑
i=1

FTi. (10)
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Table 1: Experimental results comparing the proposed method with nine SOTA methods across Meta-
World, SpaceInvaders, and Freeway environments. We report the results for average performance
(PERF.) and forward transfer (FWT.), with the best results highlighted in bold. The proposed
CKA-RL achieves superior performance and forward transfer in all three sequences.

Method Meta-World SpaceInvaders Freeway Average
PERF. FWT. PERF. FWT. PERF. FWT. PERF. FWT.

Baseline 0.4191±0.49 0.0000±0.00 0.6314±0.27 0.0000±0.00 0.1247±0.24 0.0000±0.00 0.3917±0.35 0.0000±0.00

FT-1 0.0313±0.09 -0.2142±0.38 0.4412±0.50 0.6864±0.25 0.1512±0.36 0.6935±0.09 0.2079±0.36 0.3886±0.27

FT-N 0.3774±0.48 -0.2142±0.38 0.9785±0.04 0.6864±0.32 0.7532±0.16 0.6935±0.15 0.7030±0.29 0.3886±0.30

ProgNet 0.4157±0.49 -0.0379±0.13 0.3757±0.27 -0.0075±0.22 0.3125±0.27 0.1938±0.31 0.3680±0.36 0.0495±0.23

PackNet 0.2523±0.40 -0.6721±1.40 0.2299±0.30 -0.0750±0.13 0.2767±0.36 0.1970±0.32 0.2530±0.36 -0.1834±0.83

MaskNet 0.3263±0.47 -0.3695±0.45 0.0000±0.00 -0.3866±0.53 0.0644±0.17 -0.0503±0.12 0.1302±0.29 -0.2688±0.41

CReLUs 0.3789±0.47 -0.0089±0.24 0.8873±0.10 0.5308±0.29 0.7835±0.13 0.7303±0.12 0.6832±0.29 0.4174±0.23

CompoNet 0.4131±0.50 -0.0055±0.20 0.9828±0.02 0.6963±0.32 0.7629±0.12 0.7115±0.10 0.7196±0.30 0.4674±0.23

CbpNet 0.4368±0.50 -0.0826±0.22 0.8392±0.11 0.4844±0.28 0.7678±0.10 0.7201±0.07 0.6813±0.30 0.3740±0.21

CKA-RL 0.4642±0.50 -0.0032±0.21 0.9928±0.01 0.7749±0.20 0.7923±0.10 0.7429±0.07 0.7498±0.29 0.5049±0.17

Methods. We compare the CKA-RL with nine SOTA methods. 1) Baseline. 2) FT-1 (Fine-Tuning
Single Model) [53]. 3) FT-N (Fine-Tuning with Model Preservation) [53]. 4) ProgNet [40]. 5)
PackNet [34]. 6) MaskNet [5]. 7) CReLUs [1]. 8) CompoNet [33]. 9) CbpNet [11].

Implementation Details. We follow the prior work [33], employing SAC [17] for Meta-World and
PPO [43] for Freeway and SpaceInvaders. For high-dimensional Atari inputs (210×160 RGB), a
CNN encoder maps images to compact latent features. All tasks are trained for ∆ = 1M steps. We
use Adam (momentum 0.9, second moment 0.999), with batch sizes 1024/128 and learning rates
2.5× 10−4/1× 10−3 for PPO/SAC. The discount factor is γ = 0.99. For SAC, the action standard
deviation is constrained to [e−20, e2], with target smoothing coefficient 5× 10−3, auto-tuned entropy
coefficient 0.2, and action noise clipped to 0.5. Learning starts after 5× 103 steps using 104 random
actions for exploration. Policy and target networks are updated every 2 and 1 steps, respectively,
using 3-layer MLPs with 256 hidden units. For PPO, we apply GAE with λ = 0.95 across 8 parallel
environments, gradient clipping at 0.5, PPO clip of 0.2, entropy coefficient 0.01, and 128 rollout steps.
The agent uses a 2-layer MLP with 512 units, and advantage normalization is employed. Following
[54, 33, 55], CRL is applied only to the actor, while the critic is reinitialized at each task. We conduct
experiments using 10 different random seeds to ensure the robustness and reliability of the results.

5.2 Comparison Experiments
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Figure 2: Comparison of SOTA methods with
the proposed CKA-RL in terms of average
forward transfer and average performance.

We compare the proposed CKA-RL with SOTA meth-
ods to demonstrate its superior performance and
knowledge transfer capability. Experiments are con-
ducted on three distinct task sequences, including
Meta-World, Freeway, and SpaceInvaders, as summa-
rized in Table 1 and Figure 2.

Consistent superiority of CKA-RL across diverse
environments. The comparative results across three
environments, as shown in Table 1, demonstrate the
exceptional performance of CKA-RL. Notably, the
CKA-RL consistently surpasses SOTA CRL meth-
ods in all environments. Specifically, when averaged
across three environments, the proposed CKA-RL
achieves an improvement of at least 4.20% in per-
formance (0.7196 → 0.7498) and 8.02% in forward
transfer (0.4674 → 0.5049) compared to CompoNet,
demonstrating its superior capability in handling diverse task sequences.

Robust performance in dynamic environments. As shown in Table 1, our CKA-RL maintains
consistent superiority over existing CRL methods across various dynamic environments. In Meta-
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World sequence, CKA-RL achieves a significant performance improvement of 6.27% compared
to CbpNet (0.4368 → 0.4642). Similarly, it achieves a performance improvement of 1.02% over
CompoNet (0.9828 → 0.9928) in SpaceInvaders sequence and a performance improvement of 1.12%
over CReLUs (0.7835 → 0.7923) in Freeway sequence. These consistent improvements across
different environments highlight the robustness and stability of our method in dynamic environments.

Superior knowledge transfer capability. From Table 1, our CKA-RL consistently achieves superior
forward transfer performance across all three environments, demonstrating its exceptional knowledge
transfer ability. In Meta-World sequence, CKA-RL shows an improvement of 41.82% compared to
CompoNet. Similarly, it outperforms CompoNet (0.6963 → 0.7749) by 11.29% in SpaceInvaders
sequence and surpasses CReLUs by 1.73% in Freeway sequence. These results substantiate that our
method enables more efficient knowledge transfer compared to existing CRL methods.

Superior model plasticity. As shown in Table 1, our method outperforms SOTA plasticity enhance-
ment techniques [11, 1], across all evaluation metrics, including CbpNet and CReLUs. Notably,
in SpaceInvaders sequence, our method achieves a significant improvement of 18.30% in average
performance (0.8392 → 0.9928) and an 59.97% increase in forward transfer (0.4844 → 0.7749)
compared to CbpNet. These comprehensive experimental results demonstrate that our approach
surpasses existing plasticity enhancement methods, by effectively leveraging historical knowledge
for adaptation. This highlights the potential of adaptive processing to improve model plasticity.

5.3 Ablation Studies

Table 2: Effectiveness of components in CKA-RL in
Freeway task sequence. ‘Avg’ is averaging knowledge
vectors, ‘Adapt’ is the Continual Knowledge Adaptation,
and ‘Merge’ is the Adaptive Knowledge Merging.

Method Extra Memory PERF. FWT.

Base 0 0.7532 0.6935
Base + Avg N 0.7437 0.7127
Base + Adapt N 0.7821 0.7321
Base + Adapt + Merge 5 0.7923 0.7429

Effectiveness of Components in CKA-
RL. Our CKA-RL enhances the learn-
ing process by effectively using historical
knowledge vectors and merging redundant
vectors. We ablate both components in Ta-
ble 2. Compared with the base method
(FT-N), simply averaging knowledge vec-
tors without adaptive weighting actually
performs worse than the baseline (0.7437),
indicating that naive merging without adap-
tation harms performance. In contrast, in-
troducing the Continual Knowledge Adap-
tation strategy achieves higher performance
and forward transfer (e.g., 0.7532 (0.6935) vs. 0.7821 (0.7321) on Freeway). This confirms the
effectiveness of utilizing historical knowledge vectors for enhancing knowledge transfer across
dynamic environments. When further merging redundant knowledge vectors that are similar, our
method achieves comparable performance (e.g., 0.7821 → 0.7923 on Freeway), improves the forward
transfer (e.g., 0.7321 → 0.7429), and reduces memory requirements (e.g., N → 5), demonstrat-
ing the effectiveness of Adaptive Knowledge Merging strategy in addressing scalability issues and
maintaining the stable performance on dynamic environments.
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(b) Inference latency across an increasing number of
sequential tasks in SpaceInvaders environment.

Figure 5: Analysis of Total Parameter Memory Consumption and Inference Latency: (a) demonstrates
that CKA-RL maintains nearly constant parameter and activation size through vector merging, while
others grow linearly; (b) shows that CKA-RL maintains nearly constant inference latency, while
others suffer from increasing computational overhead. More details can be found in Appendix E.

Effects of Pool Size in Adaptive Knowledge Merging. The size of the knowledge vector pool plays
a crucial role in controlling the preservation of historical knowledge. We conduct experiments with
Kmax values set to {3, 4, 5, 6, 7}. From Figure 3, our CKA-RL achieves excellent performance when
Kmax equals 5. Either a smaller or larger Kmax hampers the performance. The reasons are as follows.
When Kmax is small, CKA-RL removes too many knowledge vectors during adaptive knowledge
merging, thus being unable to utilize enough knowledge. When Kmax is too large, redundant or even
conflicting knowledge may slow down the knowledge adaptation process, resulting in performance
degradation. Since a larger Kmax leads to higher memory requirements, we set Kmax to 5 for Freeway
and SpaceInvaders experiments, and to 8 for Meta-World, which has a larger number of tasks.

5.4 More Discussions

Superior Initial Performance and Faster Convergence. One of the key advantages of our proposed
CKA-RL is its superior initial performance and rapid convergence, as shown in Figure 4. The reward
curve of our CKA-RL demonstrates a higher starting point compared to existing CRL methods,
indicating that our method effectively utilizes the historical knowledge vectors. Furthermore, the
curve exhibits a steeper ascent, reaching convergence much faster than the competing methods. This
not only highlights the efficiency of our CKA-RL but also underscores its effectiveness in utilizing
historical knowledge vectors.

Table 3: Cross-task performance comparison evaluated
with the final policy πθN .

Method Pub.’Year Average Performance

Baseline – 0.2833
FT-N [53] – 0.3733
ProgNet [40] – 0.2966
PackNet [34] CVPR’2018 0.1900
MaskNet [5] TMLR’2023 0.2266
CReLUs [1] CoLLAs’2023 0.3666
CompoNet [33] ICML’2024 0.3900
CbpNet [11] Nature’2024 0.3933
CKA-RL (Ours) – 0.3966

Cross-task Performance of CKA-RL. To
assess how well the final policy consoli-
dates information acquired throughout the
learning process, we freeze the model af-
ter the last task and evaluate its perfor-
mance on all previously seen tasks, re-
porting the average performance across
three environments in Table 3. CKA-RL
achieves the highest average performance
(0.3966), slightly surpassing the closest
competitor CbpNet (0.3933) and clearly
outperforming FT-N (0.3733) and CReLUs
(0.3666). These results indicate that CKA-
RL, which combines knowledge adaptation
with adaptive merging, results in a more
effective final policy that performs better
across multiple tasks.

Memory Efficiency of CKA-RL. We evaluate the memory efficiency of CKA-RL by comparing
the growth of model parameters across tasks from SpaceInvaders. As shown in Figure 5a, the total
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parameter memory of CKA-RL remains nearly constant beyond the fifth task due to our use of the
adaptive knowledge merging, which maintains a bounded knowledge vector pool. This ensures that
model complexity does not scale linearly with the number of tasks.

Inference Efficiency of CKA-RL. From Figure 5b, CKA-RL achieves the highest performance
and forward transfer with an average inference time of only 0.0012s per input. Notably, CKA-RL
latency remains essentially constant regardless of the number of tasks, since it consolidates historical
knowledge into a fixed-size policy parameter during the parameter construction phase, eliminating
the need for complex runtime composition. In contrast, existing architectures such as CompoNet and
ProgNet exhibit significant increases in inference cost as the number of tasks grows.

Table 4: Forgetting analysis on Freeway. We report overall
performance (PERF.), forward transfer (FWT.), and forget-
ting, computed as pre–post performance on each prior task
after learning a new task (lower is better).

Method Pub.’Year PERF. FWT. Forgetting

ProgNet [40] – 0.3125 01938 0.36
PackNet [34] CVPR’2018 0.2767 0.1970 0.04
MaskNet [5] TMLR’2023 0.0644-0.0503 0.04
CReLUs [1] CoLLAs’20230.7835 0.7303 0.52
CompoNet [33] ICML’2024 0.7629 0.7115 0.49
CbpNet [11] Nature’2024 0.7678 0.7201 0.46
CKA-RL (Ours) – 0.7923 0.7429 0.45

Effectiveness of CKA-RL in Miti-
gating Catastrophic Forgetting. We
use the standard forgetting metric
[57], which evaluates performance
degradation after training on new
tasks. As shown in Table 4, CKA-
RL achieves a relatively low forget-
ting rate (0.45), demonstrating its ef-
fective retention of previously learned
knowledge while continuing to adapt
to new tasks. In contrast, PackNet,
which shows the lowest forgetting rate
(0.04), sacrifices significant overall per-
formance (0.2767). In contrast, CKA-
RL achieves the highest performance
(0.7923) and forward transfer (0.7429)
across all methods, with a balanced forgetting rate, highlighting its robustness in preventing catas-
trophic forgetting while maintaining strong performance.

6 Conclusion

In this paper, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL),
which enables the accumulation and effective utilization of historical knowledge, thereby accelerating
learning in new tasks and explicitly reducing performance degradation on previous tasks. Specifically,
we assume that the agent acquires a unique knowledge vector for each task during continual learning.
Based on this, we develop a Continual Knowledge Adaptation strategy that enhances knowledge
transfer from previously learned tasks. Furthermore, we introduce an Adaptive Knowledge Merging
mechanism that combines similar knowledge vectors to address scalability challenges. The CKA-RL
outperforms SOTA methods, with a 4.20% overall gain and an 8.02% boost in forward transfer.
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A Mathematical Analysis

We provide some theoretical analysis to support the improved performance of our proposed method.
The analysis includes several key lemmas and corollaries, which demonstrate the stability and
performance of the knowledge merging mechanism in the context of continual reinforcement learning.

Preliminaries. We parameterize the policy for task τk as:

θk = θbase +

k−1∑
j=1

αk
j vj + vk, with

k−1∑
j=1

αk
j = 1, (11)

where the normalized adaptation factors αk are produced by a softmax over learnable βk (Eq. (3)–(4)).
When the pool size exceeds Kmax, we merge the most similar knowledge vectors by averaging (Eq.
(5)–(7)).

Lemma 1 (Drift bound under convex reuse). Let ∆k := θk − θbase =
∑

j<k α
k
j vj + vk. Since αk

are nonnegative and sum to 1, we have:

∥∆k∥ ≤
∥∥∥∑

j<k

αk
j vj

∥∥∥+ ∥vk∥ ≤
∑
j<k

αk
j ∥vj∥+ ∥vk∥ ≤ max

j<k
∥vj∥+ ∥vk∥. (12)

Thus, the deviation from the base is controlled by the magnitudes of (a small subset of) vectors
actually reused and the current task vector. This uses the normalization of αk given by Eq. (3)–(4).

Corollary 1 (Lipschitz Performance Stability). If the task-k return Jk(θ) is L-Lipschitz in parame-
ters, then:

|Jk(θk)− Jk(θbase + vk)| ≤ L
∥∥∑

j<k

αk
j vj

∥∥ ≤ L
∑
j<k

αk
j ∥vj∥. (13)

Thus, reusing historical vectors cannot hurt beyond a tunable, data-dependent bound, and the bound
tightens as αk concentrates on small-norm or well-aligned vectors (see Eq. (3)–(4)).

Lemma 2 (Interference Reduces with Near-Orthogonality). Let Sij =
v⊤
i vj

∥vi∥∥vj∥ be the cosine
similarity. If |Sij | ≤ ε ≪ 1 for i ̸= j, then:∥∥∥∑

j<k

αk
j vj

∥∥∥2 =
∑
j<k

(αk
j )

2∥vj∥2+
∑
i̸=j

αk
i α

k
j ∥vi∥ ∥vj∥Sij ≤

∑
j<k

(αk
j )

2∥vj∥2+ε
∑
i̸=j

αk
i α

k
j ∥vi∥ ∥vj∥.

(14)
Hence, the “cross-task” term is O(ε). Our empirical cosine analysis shows knowledge vectors are
nearly orthogonal, with off-diagonal values in [−0.24, 0.12], while full fine-tuned parameters have
strong correlations (0.93 ∼ 0.95). This matches the design goal of reducing interference.

Corollary 2 (Combining Lemma 1 and Lemma 2). Combining Lemma 1 and Lemma 2, both the
drift and the cross-terms that cause interference are controlled—explaining the improved retention
seen in the final-policy evaluation (Table 3).

Lemma 3 (Bounded Error of Adaptive Merging). Suppose we must replace (vm, vn) by vmerge =
1
2 (vm + vn) when |V | > Kmax. For any convex coefficients λ, µ ≥ 0, λ+ µ = 1, we have:∥∥λvm + µvn − vmerge

∥∥ ≤ 1
2∥vm − vn∥. (15)

If their cosine similarity Smn ≥ 1− δ with δ ∈ [0, 2], then:

∥vm − vn∥ ≤
√
2(1− Smn) max(∥vm∥, ∥vn∥) ≤

√
2δ max(∥vm∥, ∥vn∥). (16)

Thus, the parameter perturbation induced by merging is O(
√
δ).

Corollary 3 (Performance Stability under Merging). With L-Lipschitz Jk, we have:

|Jk(θafter-merge)− Jk(θ
before-merge)| ≤ L

2 ∥vm − vn∥ ≤ L
2

√
2(1− Smn) max(∥vm∥, ∥vn∥). (17)

Hence, merging similar vectors (large Smn) has a small, explicitly bounded effect, justifying our
“merge-the-most-similar” rule in Eq. (6)–(7).
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B More Related Work

Reinforcement Learning (RL) [25, 30] constitutes a paradigm within machine learning wherein an
agent learns to optimize its decision-making process through interaction with an environment. This
interaction involves performing actions and receiving consequent feedback, typically in the form of
rewards or penalties. The principal learning objective in RL is the maximization of a cumulative
reward signal. In contrast to supervised learning, which relies on datasets comprising pre-defined
input-output pairs for model training, RL entails an agent acquiring knowledge from the repercussions
of its actions, mediated by this reward-penalty mechanism. This iterative, trial-and-error learning
process, coupled with its emphasis on sequential decision-making under uncertainty, distinguishes
RL from supervised learning methodologies that depend on labeled datasets. Existing reinforcement
learning algorithms can be broadly categorized based on whether an explicit model of the environment
is learned or utilized, leading to two principal classes: Model-free RL and Model-based RL.

Model-free RL. Model-free RL algorithms enable the agent to learn optimal policies directly from
trajectory samples accrued through interaction with the environment, without explicitly construct-
ing an environmental model. Within model-free RL, algorithms are further distinguished by the
components they learn, leading to three primary sub-categories: actor-only, critic-only, and actor-
critic algorithms. Actor-only algorithms directly learn a policy network, denoted as πθ(a|s), which
maps states to actions. This network takes the current state st as input and outputs the action at.
Prominent examples of such algorithms include Reinforce [52] and various policy gradient methods
[48]. Critic-only algorithms, in contrast, focus solely on learning a value function (e.g., state-value
or action-value function). Given a state st, the learned value model is used to evaluate all possible
actions a′ ∈ A, and the action at yielding the maximum estimated value is selected. This category
encompasses methods such as Q-learning [51]. Actor-critic algorithms combine these two approaches
by concurrently maintaining and learning both a policy network (the actor) for action selection and a
value function model (the critic) for evaluating actions or states. This category includes algorithms
such as Deep Deterministic Policy Gradient (DDPG) [29], Trust Region Policy Optimization (TRPO)
[42], Proximal Policy Optimization (PPO) [43], and Asynchronous Advantage Actor-Critic (A3C)
[37]. Notably, PPO has gained considerable traction for training large language models. Recent
advancements in this area include GRPO [59], which employs group-based advantage estimates
within a KL-regularized loss function to reduce computational overhead and enhance update stability,
and DAPO [7], which utilizes distinct clipping mechanisms and adaptive sampling techniques to
improve efficiency and reproducibility during the fine-tuning of large-scale models.

Model-based RL. Model-based RL algorithms endeavor to learn an explicit model of the environment,
thereby addressing challenges related to sample efficiency. This is because the agent can leverage
the learned model for planning and decision-making, reducing the necessity for extensive direct
environmental interaction. The learned representation of the environment is commonly termed a
‘world model’. This world model typically predicts the subsequent state st+1 and the immediate
reward rt based on the current state st and the action at taken. Exemplary model-based RL algorithms
include Dyna-Q [39], Model-Based Policy Optimization (MBPO) [23], and Adaptation Augmented
Model-based Policy Optimization (AMPO) [44].

C Environments and Tasks

Our continual learning experiments evaluate agents across three complementary task domains de-
signed to test different capabilities: robotic manipulation with continuous control (Meta-World) [56],
and two vision-based Atari environments [32, 4] emphasizing dynamic decision-making (SpaceIn-
vaders) and sparse-reward navigation (Freeway). This combination spans key RL challenges including
high-dimensional state spaces, delayed rewards, procedural variations, and partial observability.

The Meta-World tasks evaluate precise motor control and tool manipulation, while the Atari envi-
ronments provide contrasting challenges. SpaceInvaders tests rapid visual processing and threat
response under varying enemy behaviors, and Freeway examines strategic planning in sparse-reward
conditions with evolving obstacle patterns. Collectively, these environments form a comprehensive
benchmark for evaluating continual learning.
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Figure 6: Example frames from each of the 10 Meta-World tasks used in the continual learning
benchmark. Tasks are repeated twice to evaluate sequential skill acquisition.

C.1 Meta-World

The robotic manipulation sequence utilizes the Meta-World benchmark [56], featuring 39-dimensional
state observations (encoding arm/object positions) and 4-dimensional continuous actions (arm dis-
placement and gripper torque in [−1, 1]). To evaluate continual learning capabilities, we adopt a
20-task sequence consisting of 10 distinct manipulation tasks repeated twice, following the Continual
World (CW20) benchmark [53]. This selection covers diverse manipulation skills while maintaining
consistent evaluation protocols with prior work. The following lines describe the selected tasks:

hammer-v2. Hammer a screw into a wall with randomized initial positions.

push-wall-v2. Navigate a puck around obstacles to reach a target location.

faucet-close-v2. Rotate a faucet handle clockwise from variable starting positions.

push-back-v2. Position a mug beneath a coffee machine with spatial randomization.

stick-pull-v2. Retrieve a box using a stick as a tool.

handle-press-side-v2. Apply lateral force to press down a handle.

push-v2. Basic puck pushing to variable target locations.

shelf-place-v2. Precisely place a puck onto a shelf.

window-close-v2. Slide a window closed from randomized openings.

peg-unplug-side-v2. Remove a laterally mounted peg.

Each episode features randomized object and goal positions, testing robustness to environmental
variations. The task sequence progresses from basic manipulations (pushing) to complex tool-
use scenarios (hammering, stick-pulling), providing a comprehensive benchmark for evaluating
generalization across skills.

C.2 SpaceInvaders

This arcade-style challenge utilizes the ALE/SpaceInvaders-v5 3 environment from the Arcade
Learning Environment. In this classic game, the agent controls a laser cannon to defend Earth against
descending alien invaders. Observations are provided as RGB frames (210×160×3), with the action
space comprising six discrete actions: NOOP (no operation), FIRE, RIGHT, LEFT, RIGHTFIRE
(combined movement and firing), and LEFTFIRE. The agent has three lives, and the game terminates
when either all lives are lost or invaders reach the ground. Rewards are granted for destroying
invaders, with higher-value targets located in back rows.

3Additional details are available at https://ale.farama.org/environments/space_invaders/.
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Figure 7: Example gameplay frames from the SpaceInvaders environment.

To systematically evaluate the agent’s capability in dynamic threat scenarios, we examine ten
strategically selected game modes that modify enemy behavior and environmental dynamics:

Mode 0 (Baseline). Standard configuration with static shields and predictable bomb trajectories.

Mode 1 (Mobile Shields). Shields oscillate horizontally, eliminating reliable cover positions.

Mode 2 (Zigzag Bombs). Invader bombs follow non-linear trajectories, increasing evasion difficulty.

Mode 3 (Composite Challenge). Combines mobile shields (Mode 1) with zigzag bombs (Mode 2).

Mode 4 (High-Speed Bombs). Baseline configuration with accelerated bomb descent rates.

Mode 5 (Mobile Shields + Fast Bombs). Integrates Mode 1’s dynamic shields with Mode 4’s bomb
velocity.

Mode 6 (Zigzag + Fast Bombs). Combines Mode 2’s erratic bomb paths with increased speed.

Mode 7 (Full Complexity). Merges all modifiers: mobile shields, zigzag bombs, and high velocity.

Mode 8 (Intermittent Visibility). Invaders periodically become invisible, testing memory and
prediction.

Mode 9 (Dynamic Visibility). Mobile shields (Mode 1) coupled with intermittent invader visibility.

C.3 Freeway

The Freeway experiments are conducted using the ALE/Freeway-v5 4 environment from the Arcade
Learning Environment. In this environment, the agent controls a chicken attempting to cross a
multi-lane highway with moving vehicles. Observations are provided as RGB frames (210×160×3),
with action space consists of three discrete actions: NOOP (no operation), UP (move forward),
and DOWN (move backward). Rewards are exceptionally sparse, the agent only receives +1 upon
successfully reaching the top of the screen after crossing all traffic lanes.

Figure 8: Example gameplay frames from the Freeway environment.

To evaluate the agent’s adaptability across varying difficulty levels, we select eight distinct game
modes from the available configurations, each modifying traffic patterns and vehicle behaviors:

Mode 0 (Default). Default configuration with standard traffic density and vehicle speeds.

4Additional details are available at https://ale.farama.org/environments/freeway/.
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Mode 1 (Increased Traffic & Trucks). Increased traffic density with faster vehicles. Introduces
trucks in the upper lane closest to the center - these longer vehicles require more strategic avoidance.

Mode 2 (High-Speed Trucks). Enhanced difficulty from Mode 1 with trucks moving at higher
speeds and further increased traffic density.

Mode 3 (All-Lane Trucks). Maximum truck presence with trucks appearing in all lanes, maintaining
the high speeds established in Mode 2.

Mode 4 (Randomized Speeds). Dynamic speed variation where vehicle velocities change randomly
during episodes, while maintaining similar traffic density to previous modes without trucks.

Mode 5 (Clustered Vehicles & Speed Variability). Combines characteristics of Mode 1 with
additional stochastic elements: vehicle speeds vary dynamically and some vehicles appear in tightly-
spaced clusters (2-3 vehicles).

Mode 6 (Heaviest Traffic with Clusters). Builds upon Mode 5 with the most dense traffic configura-
tion, creating the most challenging navigation scenario.

Mode 7 (All-Lane Trucks with Random Speeds). All lanes are filled with trucks, and their speeds
vary randomly during the episode.

D Implementation Details

To ensure fairness and reproducibility, we build upon the official implementations released by
CompoNet [33], which provide well-tested baselines for standard reinforcement learning algorithms.
Our modifications to the original SAC and PPO codebases are kept minimal: we only substitute the
agent definition with our proposed architecture and introduce the corresponding learning mechanisms.

Both Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) follow the standard actor-
critic paradigm, where the actor samples actions from a parameterized policy distribution and the
critic estimates state values. In all continual reinforcement learning (CRL) methods, the continual
adaptation mechanisms are applied only to the actor network, while the critic is reinitialized at the
beginning of each task, following common practice in the literature.

Table 5: Hyperparameters shared by all methods in the Meta-World task sequence under the SAC
algorithm.

Description Value

Common

Optimizer Adam
Adam’s β1 and β2 (0.9, 0.999)
Discount rate (γ) 0.99
Max Std. e2

Min Std. e−20

Activation Function ReLU
Hidden Dimension (dmodel) 256

SAC Specific

Batch size 128
Buffer size 106

Target Smoothing Coef. (τ ) 0.005
Entropy Regularization Coef. (α) 0.2
Auto. Tuning of α Yes
Policy Update Freq. 2
Target Net. Update Freq. 1
Noise Clip 0.5
Number of Random Actions 104

Timestep to Start Learning 5× 103

Networks

Target Net. Layers 3
Critic Net. Layers 3
Actor’s Learning Rate 10−3

Q Networks’ Learning Rate 10−3
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For Meta-World tasks, we adopt SAC as the underlying optimization algorithm. Both the actor
and critic networks are implemented as two-layer multilayer perceptrons (MLPs), each followed by
separate linear output heads predicting the mean and log standard deviation of the Gaussian policy.

For Atari-based tasks including SpaceInvaders and Freeway, PPO is used for training. All methods
employ a shared encoder network to extract compact feature representations from image observations.
Two single-layer output heads are used to produce the categorical policy logits (actor) and the scalar
value estimates (critic). Unless otherwise noted, all hyperparameters are kept identical across different
methods and are consistent with those in the reference implementations.

Table 6: Hyperparameters shared by all methods in the SpaceInvaders and Freeway task sequences
under the PPO algorithm.

Description Value

Common

Optimizer Adam
AdamW’s β1 and β2 (0.9, 0.999)
Max. Gradient Norm 0.5
Discount Rate (γ) 0.99
Activation Function ReLU
Hidden Dimension (dmodel) 512
Learning Rate 2.5 · 10−4

PPO Specific

PPO Value Function Coef. 0.5
GAE λ 0.95
Num. Parallel Environments 8
Batch Size 1024
Mini - Batch Size 256
Num. Mini - Batches 4
Update Epochs 4
PPO Clipping Coefficient 0.2
PPO Entropy Coefficient 0.01
Learn. Rate Annealing Yes
Clip Value Loss Yes
Normalize Advantage Yes
Num. Steps Per Rollout 128

Methods. We compare the CKA-RL with nine SOTA methods. 1) Baseline involves training a
randomly initialized neural network for each task, providing a fundamental and essential reference
point for comparison. 2) FT-1 (Fine-Tuning Single Model) [53] continuously fine-tunes a single
neural network model across all relevant tasks. 3) FT-N (Fine-Tuning with Model Preservation)
[53] follows a similar fine-tuning approach but maintains separate model instances for each task to
mitigate forgetting. 4) ProgNet [40] instantiates a new neural network whenever the task changes,
freezing the parameters of the previous modules and adding lateral connections between their hidden
layers. 5) PackNet [34] stores the parameters to solve every task of the sequence in the same network
by building masks to avoid overwriting the ones used to solve previous tasks. 6) MaskNet [5]
leverages previous score parameters across tasks to learn task-specific score parameters, which are
then used to generate masks for the neural network, dynamically adapting the model to new tasks.
7) CReLUs [1] enhances the agent capability in CRL by concatenating ReLUs, which reduces the
incidence of zero activations and addresses the plasticity loss issue in neural networks. 8) CompoNet
[33] introduces a scalable neural network architecture that dynamically composes action outputs from
previously learned policy modules, rather than relying on shared hidden layer representations across
tasks. 9) CbpNet [11] uses a variation of back-propagation, continually and randomly reinitializing a
small fraction of underutilized units to maintain the plasticity of neural networks.
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Figure 9: Memory cost comparison. CKA-RL maintains nearly constant parameter and activation
size through vector merging, while baselines show linear or even quadratic memory growth.

E Efficiency of CKA-RL

E.1 Performance vs. Memory Cost Analysis

We evaluate the memory efficiency of CKA-RL by comparing the growth of model parameters
and activation-related memory across tasks from SpaceInvaders. As shown in Figure 9a, the total
parameter memory of CKA-RL remains nearly constant beyond the fifth task due to our use of the
adaptive knowledge merging, which maintains a bounded knowledge vector pool. This ensures that
model complexity does not scale linearly with the number of tasks. In contrast, both ProgNet and
CompoNet show linearly increasing memory usage, reaching 64.95 MB and 108.21 MB at the tenth
task, respectively.

As shown in Figure 9b, the activation-related memory usage in CKA-RL stays nearly constant
throughout training. After merging, the knowledge vectors and base parameter construct a fixed-size
policy parameter, which drastically reduces the activation memory overhead. Notably, the memory
usage in ProgNet exhibits a quadratic growth trend, whereas CKA-RL remains constant. This suggests
severe scalability limitations in ProgNet. This memory overhead in ProgNet primarily stems from
its architectural design: during training and inference, it relies on the hidden representations of all
previously learned policies. As more tasks are added, the number of such dependencies increases,
leading to substantial growth in activation memory consumption.

Table 7: Performance and Forward Transfer Comparison. CKA-RL outperforms existing methods
across three benchmarks while using significantly less memory.

Method Pub.’Year Meta-World SpaceInvaders Freeway Average
PERF. FWT. PERF. FWT. PERF. FWT. PERF. FWT.

ProgNet [40] – 0.4157 -0.0379 0.3757 -0.0075 0.3125 0.1938 0.3680 0.0495
CompoNet [33] ICML’2024 0.4131 -0.0055 0.9828 0.6963 0.7629 0.7115 0.7196 0.4674
CKA-RL (Ours) – 0.4642 -0.0032 0.9928 0.7749 0.7923 0.7429 0.7498 0.5049

CKA-RL achieves a forward transfer of 0.7749 with only 11.49MB of memory overhead, highlighting
its superior efficiency. Unlike methods that accumulate task-specific modules, our approach leverages
compact knowledge vectors to consolidate transferable knowledge. This design allows CKA-RL to
outperform CompoNet and ProgNet with a significantly smaller memory footprint.

As shown in Table 7, CKA-RL not only achieves the best average performance and forward transfer
across diverse tasks (Meta-World, SpaceInvaders, Freeway), but also maintains high efficiency in
historical knowledge utilization. These results underscore the practicality of CKA-RL in continual
learning scenarios with constrained memory budgets.
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E.2 Performance vs. Inference Cost Analysis
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Figure 10: Inference time vs. number of tasks
on SpaceInvaders. CKA-RL maintains nearly
constant inference latency due to adaptive knowl-
edge merging, while CompoNet and ProgNet suf-
fer from increasing computational overhead.

We further compare the inference efficiency of
different methods on the SpaceInvaders bench-
mark. As shown in Figure 10, CKA-RL achieves
the highest performance and forward transfer
with an average inference time of only 0.0012s
per input. Importantly, its inference latency re-
mains almost constant regardless of the number
of tasks. This is because CKA-RL consolidates
historical knowledge into a fixed-size policy pa-
rameter during the parameter construction phase,
eliminating the need for complex runtime com-
position.

In contrast, existing architectures such as Com-
poNet and ProgNet exhibit significant increases
in inference cost as the number of tasks grows.
CompoNet shows a linear growth trend in in-
ference time, since its action selection relies on
aggregating outputs from all previously learned policies. ProgNet, on the other hand, demonstrates
a quadratic growth pattern due to its dependence on all intermediate hidden layers for knowledge
integration during inference.

These results underscore the scalability advantage of CKA-RL. By offloading the knowledge fusion
process to the model-building stage, it minimizes computational overhead at test time, making it
well-suited for continual learning in resource-constrained or real-time environments.

F Further Experimental Results
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Figure 11: Cosine similarity of task representations: (a) Knowledge vectors from CKA-RL exhibit
near-orthogonal structure across tasks, with off-diagonal values ranging from −0.24 to 0.12; the
zero vector for the first task reflects the base model initialization. (b) In contrast, full parameters
from standard fine-tuning show strong off-diagonal correlations (0.93 ∼ 0.95), indicating significant
parameter overlap and interference across tasks.

Our CKA-RL decomposes policy parameters into stable base weights θbase and task-specific knowl-
edge vectors {vi}. To validate this decomposition, we compute pairwise cosine similarities between
all parameters of models fine-tuned on different tasks (Figure 11b). The strong off-diagonal correla-
tions (0.93 ∼ 0.95) reveal that standard sequential fine-tuning causes substantial parameter overlap.
Then we analyze the cosine similarities between our learned knowledge vectors vi (Figure 11a). The
near-zero off-diagonal values (−0.24 ∼ 0.12) demonstrate that knowledge vectors occupy nearly

23



orthogonal directions in parameter space. The first task’s zero-valued vector reflects the initial base
model training phase.

This decomposition brings two key advantages: (1) stability, by preserving the base parameters θbase
across tasks, and (2) plasticity, through task-specific knowledge vectors that remain nearly orthogonal.
The orthogonality ensures minimal interference between tasks while enabling effective adaptation.
As a result, CKA-RL achieves a forward transfer of 0.7749 and an average performance of 0.9928
across tasks in continual learning settings, outperforming standard fine-tuning (0.6864 and 0.9785,
respectively).

G Discussions and Future Works

G.1 Limitations and Future Works

In this paper, we propose Continual Knowledge Adaptation for Reinforcement Learning (CKA-RL),
which enables the accumulation and effective utilization of historical knowledge. However, we
believe that there are potential studies worth exploring in the future to further capitalize on the
advantages of CKA-RL:

• Complex-Environment Evaluation: Our current experiments focus on standard continual
reinforcement learning benchmarks, and the scalability and robustness of CKA-RL in complex,
real-world settings (e.g., high-dimensional visual perception or long-horizon robotic control)
remain unverified. In future work, we will extend our evaluation to domains with richer dynamics
and observation modalities (e.g., outdoor vision-language navigation tasks) to rigorously assess
the generality and practical utility of CKA-RL.

• Large-Scale Architecture Generalization: CKA-RL has been validated only on small-scale
neural networks, and its applicability to deeper or novel architectures remains untested. In future
work, we will evaluate CKA-RL within large-scale models, such as during the RLHF phase of
LLMs training, to assess its scalability and effectiveness in deeper networks.

G.2 Broader Impacts

Positive Societal Impacts. The continual knowledge adaptation mechanism introduced by CKA-RL
can substantially improve the data- and compute-efficiency of autonomous systems that must operate
in non-stationary environments. By enabling robots, intelligent assistants, and other agents to
rapidly integrate new skills without repeatedly retraining from scratch, our method can reduce energy
consumption and carbon footprint associated with large-scale model updates.

Negative Societal Impacts. As with any advanced continual learning technique, there is a risk that
CKA-RL could be exploited to develop adaptive adversarial agents that continuously learn to evade
detection or defenses.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose Continual Knowledge Adaptation for Reinforcement Learning
(CKA-RL), which enables the accumulation and effective utilization of historical knowl-
edge.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The details can be seen in the Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details can be seen in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The source code is available at https://github.com/Fhujinwu/CKA-RL.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details can be seen in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Table 1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details can be seen in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper meets the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The details can be seen in Appenidx G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We strictly follow the license of the assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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