Under review as a conference paper at ICLR 2026

ALPHADRIVE: UNLEASHING THE POWER OF VLMS IN
AUTONOMOUS DRIVING VIA RL AND REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

OpenAl ol and DeepSeek R1 achieve or even surpass human expert-level per-
formance in complex domains like mathematics and science, with reinforcement
learning (RL) and reasoning playing a crucial role. In autonomous driving, recent
data-driven end-to-end models have greatly improved planning performance but
still struggle with long-tailed problems due to the inherent data imbalance. Some
studies integrate vision-language models (VLMs) into autonomous driving, but
they typically rely on pre-trained models with simple supervised fine-tuning (SFT)
on driving data, without further exploration of training strategies or optimizations
specifically tailored for planning. In this paper, we propose AlphaDrive, a RL and
reasoning framework for VLMs in autonomous driving. AlphaDrive introduces
four planning-oriented RL rewards based on Group Relative Policy Optimization
(GRPO) and employs a two-stage planning reasoning training strategy that com-
bines SFT with RL. As a result, AlphaDrive significantly improves both planning
performance and training efficiency compared to using only SFT or without rea-
soning. Moreover, we are also excited to discover that, following RL training,
AlphaDrive exhibits some emergent multimodal planning capabilities, which is
critical for improving driving safety and efficiency. To the best of our knowledge,
AlphaDrive is the first to integrate GRPO-based RL with VLMs in the context of
autonomous driving. Code will be released to facilitate future research.

1 INTRODUCTION

Autonomous driving has witnessed rapid advances in recent years, with end-to-end autonomous
driving emerging as one of the most representative models (Hu et al., 2023 Jiang et al., 2023; Chen
et al., 2024a}; |Prakash et al., [2021; [Liao et al., 2024). They take sensor data as input and leverage
learnable neural networks to plan the vehicle’s future trajectory. Benefiting from large-scale driving
demonstrations, end-to-end models continuously improving their planning capabilities by expanding
training data and increasing model parameters.

However, due to their black-box nature and lack of common sense, end-to-end models still face
significant challenges when handling complex and long-tail driving scenarios. For instance, consider
a situation where the vehicle ahead is carrying traffic cones while driving. An end-to-end model may
fail to comprehend the relationship between the leading vehicle and the traffic cones, mistakenly
assuming that the road ahead is under construction and thus impassable, leading to an incorrect
decision to brake. Therefore, relying solely on end-to-end models to achieve high-level autonomous
driving remains challenging.

With the success of GPT (Brown et al., 2020), large language models (LLMs) show remarkable
comprehension and reasoning abilities (Touvron et al. 2023} |Yang et al.| 2024). Furthermore,
their capabilities have evolved from unimodal text understanding to multimodal vision-language
processing. (Liu et al., [2024; (Chen et al., 2024c; Bai et al., 2023). The pre-trained knowledge and
reasoning abilities of VLMs hold great potential to mitigate the limitations of end-to-end models.

Recently, OpenAI’s ol and 03 (OpenAll 2024), which incorporate reasoning techniques, achieve
performance comparable to or even surpassing that of human experts in fields such as programming.
Additionally, DeepSeek R1 (Guo et al., 2025)), which leverages reinforcement learning, not only
demonstrates “emergent capabilities” and achieves top-tier performance but also requires significantly
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planning may result in suboptimal performance and even pose safety risks.

Some studies leverage VLMs for high-level planning by formulating the ego vehicle’s future actions
in natural language, such as “slow down and turn right” (Jiang et al.|, 2024). Although this approach
circumvents the aforementioned drawbacks, existing works still lack further exploration of training
methodologies. Most of them primarily rely on SFT, overlooking the impact of different training
strategies on planning performance and the associated training costs.

In this paper, we explore the following question: How can RL and reasoning techniques of VLMs,
which have achieved remarkable success in general domains, be applied to autonomous driving to
improve planning performance while reducing training costs?

Through preliminary experiments, we find that directly applying existing RL and reasoning techniques
to planning results in suboptimal performance. We attribute this to three main factors. First, the
reward design in RL for general tasks is not well-suited for planning. For example, in visual object
counting, the reward can be simply determined based on whether the model predicts the correct
answer. However, in autonomous driving, while high-level planning can be formulated as a multi-class
classification problem, the varying significance of different driving behaviors makes it inappropriate
to assign equal weights to all actions.

Second, unlike mathematical or counting, the solution of planning are usually not unique. For
instance, on an open, straight road, one may choose to maintain a constant speed or accelerate, both of
which are valid decisions. Therefore, rigidly assessing whether the model’s planning output exactly
matches the ground truth in the training data may not be the optimal approach.

Finally, while domains such as mathematics have abundant reasoning data, such as textbooks and
solution manuals, autonomous driving lacks readily available datasets that capture the reasoning
process. Collecting such data is highly costly and requires extensive manual annotation. As a result,
directly applying existing reasoning techniques to planning remains challenging.

To address the aforementioned challenges, this paper introduces AlphaDrive, a VLM-based rein-
forcement learning and reasoning framework specifically designed for autonomous driving planning.
In particular, AlphaDrive employs a RL strategy based on Group Relative Policy Optimization
(GRPO) (Shao et al.l[2024). Compared to Proximal Policy Optimization (PPO) (Schulman et al.|
2017) and Direct Preference Optimization (DPO) (Rafailov et al.,[2023), GRPO exhibits better train-
ing stability and performance. Furthermore, the group relative optimization strategy is well-suited for
planning, as planning often involves multiple valid solutions, making relative optimization across
multiple solutions a natural fit. Our experiments show that AlphaDrive exhibits some emergent
multimodal planning capabilities, which we think can be attributed to the use of GRPO.
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AlphaDrive introduces four GRPO rewards tailored for planning. The first is the planning accuracy
reward, which evaluates the consistency between the model’s planning actions and the ground truth
actions. The second is the action-weighted reward, which assigns different weights to various actions
based on their importance to safety. For instance, actions such as braking and steering are critical for
safety, so weighting them accordingly helps the model achieve better performance in planning key
actions. The third is the planning diversity reward, which encourages the model to generate multiple
diverse solutions. This prevents mode collapse and enhances overall planning performance. The last
one is the planning format reward, where we define a specific output format and encourage the model
to follow it. This ensures more structured outputs and contributes to more stable training.

In addition to RL, we propose a planning reasoning technique which employs a two-stage training
strategy based on knowledge distillation, integrating SFT and RL. In the first stage, we leverage a
large cloud-based VLM to generate a small yet high-quality dataset, containing planning reasoning
processes derived from real driving actions. This dataset is then used to fine-tune our model via
SFT, effectively distilling knowledge from the large model. In the second stage, we further refine
the model using RL. Introducing SFT as a warm-up stage effectively mitigates hallucinations and
instability commonly observed in the early stages of RL, while also enhancing planning performance.

Our contributions are summarized as follows:

* We propose AlphaDrive, a VLM tailored for high-level planning in autonomous driving. To the
best of our knowledge, AlphaDrive is the first to integrate GRPO-based RL with VLMs in the
context of autonomous driving, significantly boosting both performance and training efficiency.

* AlphaDrive introduces four planning-oriented GRPO rewards: planning accuracy reward, action-
weighted reward, planning diversity reward, and planning format reward. These optimized rewards
make GRPO more suitable for autonomous driving.

* We propose a two-stage reasoning training strategy based on knowledge distillation, integrating
SFT and RL. Our approach achieves better planning performance compared to training with RL
alone or without reasoning.

Extensive experiments and ablations on two datasets validate the superiority of AlphaDrive.
Compared to the SFT-trained model, AlphaDrive significantly improves the planning accuracy by
25.52% and, with only 20% of the training data, outperforms the SFT-trained model by 35.31%.
We are also excited to discover that, following RL training, AlphaDrive exhibits some emergent
multimodal planning capabilities, which is promising for improving driving safety and efficiency.

2 RELATED WORK

Vision Language Models. The capabilities of large models have greatly expanded from single
modality to multi-modalities recently (Brown et al. [2020). Large VLMs (Achiam et al.| 2023}
Chen et al.| |2024b) now demonstrate superior abilities in visual understanding and reasoning.
Early works (Alayrac et al., [2022; |Li et al., 2022; |2023)) attempt to integrate visual models with
large language models (LLMs) through attention mechanism and cross-modal contrastive learning.
LLaVA (Liu et al., 2024)) proposes using vanilla MLP as the connector between. the visual encoder
and LLMs, which achieves impressive visual understanding capabilities with relatively limited data.
The QwenVL series (Bai et al.,[2023; |Wang et al.,[2024al) continuously improve the visual module,
offering better support for high-resolution and dynamic resolution images, while also demonstrate
excellent performance in multilingual tasks and spatial perception.

Reinforcement Learning and Reasoning. Besides auto-regressive pretraining (Radford et al., 2018)),
RL and reasoning techniques further enhance the capabilities of large models (Schulman et al.,[2017}
Wei et al., [2022)). For instance, GPT (Achiam et al., 2023) employs RL with Human Feedback
(RLHF) (Ouyang et al.l 2022), incorporating human preferences into training. By integrating human
behavioral preferences, RLHF enables LLMs to generate outputs that align more closely with human
preferences. Direct Preference Optimization (DPO) (Rafailov et al. [2023)) enhances the model’s
performance by directly optimizing preference feedback. Building on this, Group Relative Policy
Optimization (GRPO) (Shao et al.l 2024) introduces group relative optimization, which considers the
relative advantages between multiple outputs, further improving training stability and effectiveness.
The recent DeepSeek R1 (Guo et al., 2025) experiences an “Aha Moment”during training based on
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GRPO, where, without any explicit guidance, the model autonomously allocates more thinking to
the problem and re-evaluates its initial approach. This highlights the potential of RL in enabling
large models to evolve from mere imitation to emergent intelligence. In our experiments, we are also
excited to discover that, after GRPO-based RL training, AlphaDrive demonstrates some emergent
multimodal planning capabilities, enabling it to generate multiple reasonable driving plans. We
believe it has great potential to improve driving safety and efficiency.

In terms of reasoning, Chain-of-thought (Wei et al., [2022)) has demonstrated great performance in
solving complex problems by breaking them down and reasoning step by step. OpenAl ol (OpenAl,
2024)), which is based on Chain-of-thought, introduces inference-time scaling. By increasing the
computational cost during inference and combining search strategies such as Monte Carlo Tree Search
(MCTYS) (Swiechowski et al.,|2023) and Beam Search (Xie et al.,|2023)), significant improvements
have been achieved in areas such as science and programming that require complex reasoning. This
also shows that, beyond scaling model parameters and training data, scaling the inference-time
computation is also a promising direction for exploration.

Autonomous Driving Planning. Planning is the ultimate task of autonomous driving. The earliest
planning algorithms are rule-based (Paden et al., 2016} [Thrun et al., 2006), which have significant
limitations in terms of generalizability and efficiency. Recently, end-to-end models (Hu et al., 2023}
Jiang et al.| 2023} [Chen et al.| 20244} |Prakash et al.| 2021} [Liao et al.l 2024} (Gao et al., [2025) has
gained popularity, where a unified neural network is used to directly output planning trajectories
or control signals from sensor data. By leveraging large-scale driving demonstrations, end-to-end
models are trained in a data-driven manner, achieving impressive planning performance. However,
since end-to-end models are black-box models that lack common-sense and reasoning capabilities,
they still struggle to address the long-tailed problems in autonomous driving.

VLMs and Autonomous Driving. The common-sense and reasoning capabilities of large models can
effectively compensate the limitations of end-to-end models. DriveGPT4 (Xu et al.||2023) employs a
VLM that takes front-view videos as input and directly predicts control signals. ELM (Zhou et al.}
2024) trains on large-scale, cross-domain video data, showing that diverse data sources can improve
VLM performance on driving tasks. OmniDrive (Wang et al.||2024b)) introduces sparse 3D tokens to
represent driving scenes, which are then input into VLMs for scene understanding and planning.

In addition to the above works that directly apply VLMs for driving, DriveVLM (Tian et al.,2024)
combines VLMs with end-to-end models, where VLMs predict low-frequency waypoints and end-to-
end models generate high-frequency trajectories. Senna (Jiang et al., [2024) proposes to use VLMs for
high-level planning and end-to-end models for low-level trajectory prediction. Several datasets and
benchmarks (Sima et al., 2023} |Qian et al.| 2024} have also been introduced to advance VLM use in
autonomous driving. However, most existing work relies on pre-trained models followed by SFT on
driving data, lacking exploration of training strategies tailored to planning. Further effort is needed to
adapt the impressive RL and reasoning techniques from general tasks to autonomous driving.

3 ALPHADRIVE

AlphaDrive is a VLM designed for autonomous driving planning. Unlike previous approaches that
rely solely on SFT, we explore the incorporation of RL and reasoning techniques to better align
with the unique characteristics of driving planning: (1) the varying importance of different driving
behaviors; (2) the existence of multiple feasible solutions; and (3) the scarcity of readily available
reasoning data for planning decisions.

We propose four GRPO-based RL rewards tailored for planning, along with a two-stage training
strategy that integrates SFT with RL. Our experiments demonstrate that, compared to using SFT
alone or training without reasoning, AlphaDrive achieves significant improvements in both planning
performance and training efficiency. In the following, we will detail the design of each component.

3.1 PLANNING-ORIENTED REINFORCEMENT LEARNING

Current commonly used RL algorithms include PPO (Schulman et al., 2017), DPO (Rafailov et al.|
2023)), and GRPO (Shao et al.,[2024). We ultimately choose GRPO for two key reasons: DeepSeek
R1 (Guo et al., 2025) has demonstrated the effectiveness of GRPO in general domains. Compared to
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Figure 2: Overall framework of AlphaDrive. AlphaDrive is trained using GRPO-based RL, and we
design four planning rewards to help the model understand and learn planning. Besides, we propose
a two-stage training paradigm, the first stage uses SFT to distill the planning reasoning process from
a large model and serves as a warm-up, while the second stage employs RL to explore planning.

other algorithms, GRPO provides higher training stability and efficiency. Moreover, the group relative
optimization strategy introduced by GRPO is particularly well-suited for planning, as planning often
involves multiple valid solutions, making relative optimization across multiple solutions is a natural
fit. Experimental results further confirm that models trained with GRPO exhibit strong planning
capabilities.

Given a query ¢, GRPO samples a group of outputs {01, 02, - - , 0g} from the old policy my,,, and
optimizes the new policy 7y by maximizing:
1 &
jGRPO(g) = Eq,{oi}wﬂgold 5 Z »Cz - ﬁ]D)KL(ﬂ—OHﬂ-Tef) P (1)
i=1
L; = min (w; A;, clip(w;, 1 — e, 1+ €)4;), 2)

7o (0ilq)
. Too1a (0:19)°
normalized reward within the group.

where w; = € and 3 are hyper-parameters, and the advantage A; is computed using the

3.1.1 PLANNING REWARD MODELING

Planning Accuracy Reward. In fields such as mathematics or programming, the reward in GRPO
can be intuitively determined based on whether the final answer is correct. However, planning is more
complex, as it involves both lateral (direction) and longitudinal (speed) components. Furthermore,
the set of possible actions is constrained. As a result, we use the F1-Score to evaluate the accuracy of
both lateral and longitudinal decisions separately, and assign rewards accordingly.

Initially, we evaluate accuracy by checking whether the model’s prediction exactly matches the ground
truth. However, due to imperfect format in the model’s early training phase, such as discrepancies in
case sensitivity or the presence of extraneous outputs, this approach results in poor stability during
the early stages of training. We then attempt to extract all the words from the prediction and check
whether the ground truth is included among the words. This introduces a new issue where the model
sometimes learns shortcut solutions, such as outputting all possible actions, which causes mode
collapse. Ultimately, we adopt the F1-score for evaluation, as it not only prevents the model from
learning shortcut solutions (where outputting all decisions could result in high recall but low accuracy)
but also improves the stability during the early training phase.

Action-Weighted Reward. As mentioned above, the importance of different behaviors in planning
varies. For instance, decelerating and stopping are more critical for safety than maintaining speed.
Therefore, we assign different importance weights to various actions, incorporating them as weighted
components in the final reward.
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Algorithm 1: Planning Reward Modeling.

Input: Planning answers .4, Ground Truth action e, Action Weights W, Planning Diversity Weight 6
Output: Planning Reward R

Initialization: Planning Reward R < (), Speed Action Set S, Path Action Set 7P, Answer Format F
# Pytorch-like Code
speed_cnt, path_cnt = Counter(), Counter()
for ans in A do
action_ans = re.search(rF”, ans).group(1).strip()
speed_ans, path_ans = extract_ans(action_ans, S), extract_ans(action_ans, P)
speed_cnt.update(speed_ans), path_cnt.update(path_cnt)
# Calculate Planning Accuracy Reward
speed_acc_R, path_acc_R = cal_f1_score(speed_ans, e), cal_f1_score(path_ans, e)
# Calculate Action-Weighted Reward
speed_weighted_R, path_weighted_R = W[speed_ans], WW[path_ans]
# Calculate Planning Diversity Reward
speed_div_R, path_div_R = 0 if speed_cnt[speed_ans] == 1 else -6, 0 if path_cnt[path_ans] == 1 else -0
# Calculate Planning Format Reward
format_R = check_format(ans, F)
# Final Planning Quality Reward
speed_R = speed_acc_R * speed_weighted_R + speed_div_R
path_R = path_acc_R * path_weighted_R + path_div_R
R.append([speed_R, path_R, format_R])
end
Return: R

extrat_ans will extract substrings that match the specified pattern from the given string. cal_f1_score will
calculate F1 score given the predictions and ground truth. check_format will check whether the given string
matches the provided pattern based on regular expression matching.

Planning Diversity Reward. Since planning is inherently multimodal, during GRPO-based RL
training, the model generates multiple solutions for group relative optimization. In the later stages of
training, we observe that the model’s outputs tend to converge to the same solution. Our goal is to
encourage the model to generate a variety of feasible solutions, rather than merely aligning with the
ground truth actions in the training data. To achieve this, we propose the Planning Diversity Reward.
When the model’s outputs differ, we assign a higher reward; otherwise, we reduce the reward.

Planning Format Reward. The last reward is used to regularize the output, making it easier to extract
both the reasoning process and the final answer. This approach is inspired by R1. The reasoning
process is encapsulated within the <think></think> tags, while the planning result is enclosed
within the <answer></answer> tags. If the final output does not conform to this format, the
format reward will be set to 0.

The Planning Accuracy Reward, the Action-Weighted Reward, and the Planning Diversity Reward
are combined to compute the Planning Quality Reward. We calculate the Planning Quality Reward
separately for speed planning and direction planning. Finally, the Planning Quality Reward and the
Planning Format Reward are used to calculate the GRPO loss and update the model parameters. For
details about Planning Reward Modeling, please refer to Alg. [I]

3.2 REASONING: DISTILLATION FROM LARGE MODELS

Unlike fields such as mathematics or science, which have abundant high-quality reasoning data
available for training, the planning process in autonomous driving is difficult to record, and the
cost of manual annotation is high. As a result, there is currently no large-scale, readily available
planning reasoning dataset. We initially attempt to incorporate reasoning steps directly into the RL
training process, but the final results are suboptimal, mainly due to the following shortcomings: (1)
insufficient perception of key elements, such as traffic lights; (2) disorganized reasoning process with
weak causal relationships; (3) reasoning outputs that are overly lengthy and ineffective.

Therefore, we adopt a more capable cloud-based large model Qwen2VL-72B, to generate high-quality
planning reasoning data from a small set of driving clips. Specifically, we provide the model with
prompts that include the real driving actions in a given scenario, along with the vehicle’s current state
and navigation information, prompting the model to generate a concise decision-making process. We
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Table 1: High-level planning and reasoning results on the MetaAD validation set. Except for
AlphaDrive, which utilizes our proposed training strategy, all other models (Chen et al.l 2024b; Wang
et al.,[2024a; Dubey et al.,[2024])) are fine-tuned with SFT on the MetaAD training set.

Train. o Path (F1) Speed (F1)
Method Strategy Acc. (%) straight  left  right keep  acc. dec. stop BLEU-4  CIDEr  METEOR
InternVL2-2B SFT 51.07 76.13  85.16 64.60 7477 21.88 47.66 7581 27.89 19.73 28.26
Qwen2VL-2B SFT 55.84 82.68 80.31 70.04 7597 3492 5555 7264 2446 23.14 34.26
Llama3.2-V-11B SFT 58.21 85.58 84.64 79.12 7479 3556 5899 7620  32.05 21.25 37.70
Qwen2VL-7B SFT 61.44 86.45 85.84 87.75 84.53 43.81 56.30 73.80 41.09 30.65 47.47

AlphaDrive-2B Ours 77.12 96.62 89.83 93.25 86.80 56.33 7140 86.63 43.54 38.97 55.23

Table 2: End-to-end planning results on the NAVSIM navtest split with closed-loop metrics. *
denotes incorporating (Liao et al.,[2024) as the end-to-end trajectory planning module.

Method Reference NC1 DACtT TTCt Comff{ EP{ PDMST

UniAD (Hu et al..[2023) CVPR 23 978 91.9 92.9 100 78.8 83.4
PARA-Drive (Weng et al.|[2024) CVPR24 979 92.4 93.0 99.8 79.3 84.0
Transfuser (Prakash et al.[[2021) PAMI 23 97.7 92.8 92.8 100 79.2 84.0

DRAMA (Yuan et al.||2024) arXiv23  98.0 93.1 94.8 100 80.1 85.5
VADV2 (Chen et al.||2024a) arXiv24 972 89.1 91.6 100 76.0 80.9
Hydra-MDP (Li et al..[2024) arXiv24  98.3 96.0 94.6 100 78.7 86.5
DiffusionDrive (Liao et al.[[2024) CVPR25 98.2 96.2 94.7 100 82.2 88.1
AlphaDrive-SFT* Baseline  98.1 96.4 95.0 100 82.4 88.3
AlphaDrive* Ours 98.3 97.6 95.4 100 83.1 89.5

find that the quality of the generated reasoning process is overall satisfactory. After conducting a
manual quality check and filtering out samples with obvious errors, we obtain a batch of high-quality
planning reasoning data. Subsequently, our model can improve its planning reasoning ability through
knowledge distillation based on this data.

3.3 TRAINING: SFT WARM-UP, RL EXPLORATION

RL relies on sparse reward signals, whereas SFT is based on dense supervision, making it more
suitable for knowledge distillation. Additionally, we find that relying solely on RL can lead to
instability in the early stages of training. Therefore, we use a small amount of data for a warm-up
phase based on SFT, followed by RL training with the full dataset. We discover that this approach
improves stability in the early stages of training and enhances the model’s planning reasoning
performance, ultimately leading to better overall planning capabilities.

4 EXPERIMENTS

Dataset. We adopt two datasets, MetaAD and NAVSIM (Dauner et al., 2024). MetaAD is a large-
scale real-world driving dataset which consists of 120k driving clips, each lasting three seconds.
It supports multi-sensor data and perception annotations, as well as maintaining a well-balanced
distribution across various driving scenarios and planning actions. The dataset is divided into 110k
clips for training and 10k clips for validation. As for reasoning, we sample 30k data from the training
dataset to generate the planning reasoning data. We conduct ablations on the MetaAD dataset by
default.

NAVSIM (Dauner et al., |2024)) is a widely used planning benchmark that includes surround-view
images from eight cameras, LiDAR point clouds, high-definition maps, and object detection annota-
tions. The dataset supports non-reactive simulations and provides closed-loop evaluation metrics,
allowing for comprehensive evaluation of autonomous planning methods. More information about
the dataset and ablations can be found in Appendix [A]due to page limit.

Training Details. We use Qwen2VL-2B (Wang et al., 2024a) as the base model. Qwen2VL is
currently one of the best-performing open-source models, and it offers a smaller 2B version that better
meets the latency requirements for autonomous driving. The model’s inputs include a front-view
image and a planning prompt, which contains the vehicle’s current speed and navigation information.
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Table 3: Ablations on the effectiveness of our proposed planning GRPO rewards.

o Base Plan.  Action Plan. Plan. Acc. (%) Path (F1) Speed (F1)

Acc.  Acc. Weighted Diversity Format SNV straight left right  keep  acc. dec. stop
1 v 42.36 69.40 6442 59.02 62.18 2372 4748 62.70
2 4 v 55.71 83.19 7734 7165 6737 34.07 59.87 76.56
3 4 4 67.91 91.95 82.65 88.01 77.74 49.79 61.38 85.75
4 4 4 4 72.20 9593 8539 88.80 8254 52.64 67.60 86.76
5 4 4 4 69.38 92.10 80.48 85.59 84.53 49.40 64.07 8334
6 v v v v 77.12 96.62 89.83 9325 86.80 5633 7140 86.63

Table 4: Ablations on different reasoning training strategies.

With Train. o Path (F1) Speed (F1) 1
Reason.  Strategy Acc. (%) straight  left  right keep  acc. dec. stop BLEU-4 ~ CIDEr  METEOR
X SFT 56.97 7776  63.69 65.07 7622 37.11 5199 75.72 - - -
X RL 62.16 8232 7239 7124 7503 41.13 61.08 79.15 - - -
X SFT+RL 70.73 88.04 75775 7879 78.60 4500 6592 83.52 - - -
v SFT 65.40 92.52 7128 68.65 8191 3648 5931 7155 37.21 34.30 47.54
v RL 72.41 93.16 84.24 89.32 87.58 51.19 64.70 84.07 25.14 24.58 38.10
v SFT+RL 77.12 96.62 89.83 9325 86.80 56.33 7140 86.63 43.54 38.97 55.23

The navigation data, consistent with real-world driving, is obtained from sparse navigation points via
AMap (similar to Google Maps) and is converted into text form for inclusion in the prompt, such as
“Go straight for 100m, then turn right”. The training settings follows Qwen2VL, and all experiments
are conducted using 16 NVIDIA A800 GPUs.

Evaluation. For high-level planning, the evaluation metrics consist of two aspects. First, the accuracy
of meta-action planning is measured by calculating the F1-Score for all categories of lateral and
longitudinal meta-actions, followed by the overall planning accuracy. Additionally, for planning
reasoning, we compute the similarity between the generated planning reasoning process and the
annotated reasoning process in the dataset using BLEU-4 (Papineni et al.,|2002), CIDEr (Vedantam
et al.}2015)), and METEOR (Banerjee & Lavie), [2005) scores. In terms of end-to-end planning, we
adopt the closed-loop metrics such as PDMS proposed in NAVSIM for evaluation.

LLM Usage. We used existing LLMs/VLMs in two ways. As described in Sec. Qwen2VL-72B
was employed to generate planning-reasoning text for the SFT training data. Additionally, GPT-5
was used for language polishing. The authors take full responsibility for all generated content.

4.1 MAIN RESULTS

High-level Planning. Tab.|l|presents the performance of AlphaDrive in high-level planning. As
shown, AlphaDrive significantly outperforms the other models. Compared to Qwen2VL-7B, the
second-best performing model after AlphaDrive, the planning accuracy significantly improves
by 25.5%. There is a noticeable enhancement in key decisions such as steering and accelera-
tion/deceleration. Additionally, the quality of planning reasoning is the best among all models,
demonstrating the effectiveness of our proposed two-stage RL training and reasoning strategies.

End-to-end Trajectory Planning. Besides high-level planning, we further integrate AlphaDrive
with an existing end-to-end model to evaluate its contribution to trajectory planning. Specifically,
AlphaDrive is first trained on NAVSIM using the same pipeline as the MetaAD dataset. Its high-
level decisions are then mapped to high-dimensional features via learnable embeddings and fed as
conditional inputs to the DiffusionDrive decoder to generate the final trajectory. As shown in Table[2]
the SFT-trained baseline achieves only a marginal improvement, while AlphaDrive, trained with our
proposed strategy, achieves the best planning performance, with a PDMS score of §89.5.

4.2 ABLATION STUDY

Planning Rewards. In Tab. |3} we validate the effectiveness of the proposed planning GRPO rewards.
Base Accuracy Reward directly determines the reward based on whether the response exactly matches
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SFT-Trained Model

SFT-Trained Model

<answer> stop, straight </answer> <answer> stop, straight </answer>

w/o Reasoning w/o Reasoning
Answerl: Answerl:
<think> | need to stop behind the car. <think> | should stop for pedestrians to pass.
“m‘) </think> <answer> stop, straight </answer> “@) </think> <answer> stop, straight </answer>
Answer2: Answer2:
AlphaDrive <think>Ican slow down and change lanes AlphaDrive  <think> I plan to turn left slowly and watch
left to overtake a slow vehicle. </think> out for pedestrians. </think>
<answer> decelerate, left_turn </answer> <answer> keep, left_turn </answer>

Figure 3: Qualitative results of AlphaDirve. After RL training, AlphaDrive exhibits some emergent
multimodal planning capabilities, which has great potential for improving planning performance.

the ground truth, a common approach in general domains. As shown, the model using the Base
Accuracy reward lags significantly behind across all metrics (ID 1). The combination with the
Planning Format Reward yields a slight improvement. (ID 2). A significant improvement is seen
with the adoption of our proposed Planning Accuracy Reward (ID 3). Further enhancement in
acceleration/deceleration is achieved by incorporating the Action-Weighted Reward (ID 4). Finally,
by combining the Planning Diversity Reward, the best planning performance is achieved (ID 5-6).

Reasoning Training Strategies. The ablations of the reasoning training strategies is shown in
Tab. ] Introducing planning reasoning under various training strategies effectively enhances model
performance, particularly for complex actions like acceleration and deceleration. This highlights
reasoning’s impact on decision-making in challenging scenarios. Notably, the RL-trained-only model
underperforms in reasoning compared to the SFT-trained one, which we attribute to the limited model
size that constrains its perception and reasoning capabilities. Incorporating SFT as a warm-up and
using knowledge distillation to learn the reasoning process from a larger model helps mitigate this.
Combining SFT and RL yields the best planning reasoning capabilities.

4.3 EMERGENCE OF MULTIMODAL PLANNING CAPABILITY

Fig. Billustrates the multimodal planning capability of AlphaDrive after RL training. In complex
scenarios, it can effectively generate multiple feasible solutions. Although SFT-trained model can
also generate multiple answers through sampling, its multimodal planning capability remains limited,
as shown in our ablation study (Tab.[6). AlphaDrive can be integrated with a downstream action
model to dynamically select the optimal solution from multiple options.

5 CONCLUSIONS AND LIMITATIONS

In this work, we propose AlphaDrive, a VLM for high-level planning in autonomous driving.
Compared to previous models that solely employed the SFT, we explore the integration of advanced
RL and reasoning in planning. Specifically, AlphaDrive introduces a planning-oriented RL strategy
based on GRPO and further designs a two-stage planning reasoning training paradigm. To the best of
our knowledge, AlphaDrive is the first to integrate GRPO-based RL with VLMs in the context of
autonomous driving, significantly boosting both performance and training efficiency.

Currently, due to a lack of rich data annotation, AlphaDrive is still unable to output more complex
driving behaviors such as lane changes or nudges. Additionally, the current planning reasoning data
come from pseudo-labels generated by large models based on ground-truth driving actions, which still
suffer from inaccurate perception and a failure to capture key factors. Therefore, further systematic
validation is required to improve data quality and verify the performance upper bound.
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Table 5: High-level planning results on the NAVSIM dataset.  denotes that the model is initialized
with weights pre-trained on the MetaAD dataset.

Path (F1) 1 Speed (F1) 1
straight  left  right keep acc. dec. stop

Qwen2VL (Wang et al.|[2024a) 84.68 9723 70.02 74.14 92.83 22.78 20.99 91.12
AlphaDrive 87.54 97.76  76.51 79.52 94.76 28.46 2539 92.05
AlphaDrive} 92.44 98.67 83.53 82.21 95.12 4527 5394 9531

Method Acc. (%)

Table 6: Abalation on different planning models and multimodal planning results on MetaAD dataset.

Path (F1) 1 Speed (F1) 1

Method #Samples  Acc. (%) straight  left  right keep acc. dec.  stop

VIiT-L/14" (Dosovitskiy et al.|2020) 1 36.77 78.19 5248 5727 7226 2541 4350 74.15

VIiT-L/14" (Dosovitskiy et al.|2020) 2 43.12 8283 5692 60.01 7696 29.56 4835 77.10

Qwen2VL (Wang et al.[[2024a) 1 55.84 82.68 80.31 70.04 7597 3492 5555 72.64

Qwen2VL (Wang et al.|[2024a) 2 58.80 87.00 8433 7320 77.61 3895 59.82 76.63

AlphaDrive 1 77.12 96.62 89.83 93.25 86.80 56.33 7140 86.63
2

AlphaDrive 85.39 9744 92.19 9594 92.74 71.58 83.75 90.72

A APPENDIX

A.1 HIGH-LEVEL PLANNING RESULTS ON THE NAVSIM DATASET

We further evaluated the planning performance of AlphaDrive on the publicly available NAVSIM
dataset (Dauner et al., 2024)), as summarized in Tab. E} The NAVSIM dataset was reformatted into
visual question-answering data compatible with AlphaDrive. We compared the performance of three
variants: (1) the original Qwen2VL-2B model trained via supervised fine-tuning (SFT) (first row),
(2) the model trained using our proposed strategy (second row), and (3) the model first pretrained
on the MetaAD dataset and subsequently fine-tuned on NAVSIM using our RL approach (third
row). As shown, our training strategy leads to a substantial improvement in planning performance.
Furthermore, pretraining on a larger-scale dataset enables the model to generalize effectively across
diverse scenarios.

A.2 MULTIMODAL PLANNING CAPABILITY

We conducted an ablation study with multiple planning generation samples to assess the advantage of
AlphaDrive over the SFT-trained model in terms of multimodal planning capabilities. A prediction is
deemed correct if at least one of the generated actions matches the ground truth. As illustrated in
Tab.[6] when sampling two candidates, AlphaDrive significantly outperforms Qwen2VL-2B trained
with SFT, highlighting the effectiveness of our reinforcement learning strategy in improving the
model’s ability to produce diverse and accurate planning actions.

A.3 COMPARISON WITH A SUPERVISED PLANNING CLASSIFIER

Since high-level planning can be formulated as a classification task over a finite set of actions,
we further evaluated the performance of a simple vision classifier to emphasize the rationale and
advantages of employing VLMs for planning. Specifically, we employ ViT-L/14 from CLIP (Radford
et al., 2021) as the visual encoder, followed by two MLP classification heads to predict path and
speed actions. To ensure consistency with AlphaDrive, we also provide state information such as
navigation commands and ego speed to the classification heads. The classifier is trained using a
weighted cross-entropy loss, which integrates action-specific weighting into the supervision signal
similar to AlphaDrive’s GRPO reward design.

As shown in the first two rows of Tab.[6} this vision classifier exhibits poor planning performance, even
underperforming the baseline Qwen2VL. These results highlight that, compared to pure vision models,
VLMs equipped with commonsense knowledge and reasoning capabilities can more effectively
improve high-level planning performance.
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Table 7: End-to-end trajectory planning results on the MetaAD dataset.

Planning L2 (m) |

Method Type 055 Is 155 25 255 3
VADV2 (Chen et al.| 2024a) E2E 035 056 073 1.69 240 3.15
Qwen2VL (Wang et al.|[2024a) VLM 073 1.14 170 285 3.67 4.54
AlphaDrive-SFT VLM+E2E 032 050 063 143 2.15 2.68
AlphaDrive VLM+E2E 028 044 053 127 186 2.39

Table 8: Ablations on the training dataset size.

Train.  Train. Path (F1) Speed (F1) 1

Data  Strategy Acc. (%) straight  left  right keep acc. dec.  stop BLEU-4  CIDEr  METEOR
20k SFT 41.12 56.15 3672 3559 40.63 17.14 16.74 19.19 27.18 15.42 31.17
20k RL 45.46 69.28 59.42 5191 5693 30.82 37.71 30.94 2033 11.01 23.09
20k  SFT+RL 55.64 68.25 64.06 56.87 58.61 4519 53.68 44.09 32.84 17.02 35.93
50k SFT 53.02 7374 6245 6543 70.07 33.83 3894 5396 34.48 26.83 42.85
50k RL 59.33 77.69 6855 73.82 77.05 40.72 4520 57.06 2237 16.81 25.81
50k  SFT+RL 70.83 8230 78.05 82.17 84.80 47.27 5829 64.67 3230 30.38 46.38
110k SFT 65.40 8252 7128 68.65 8191 3648 5931 7155 3721 34.30 49.54
110k RL 72.41 93.16 84.24 89.32 8258 51.19 64.70 82.02 25.14 24.58 38.10

110k SFT+RL 77.12 96.62 89.83 93.25 86.80 56.33 7140 86.63 43.54 38.97 55.23

A.4 END-TO-END PLANNING RESULTS ON THE METAAD DATESET

We also evaluate the effectiveness of AlphaDrive for end-to-end trajectory planning on the MetaAD
dataset, as summarized in Tab. |/} The comparison models include the end-to-end model VADv2, the
vision-language model Qwen2VL, and an SFT-trained baseline that shares the same architecture as
AlphaDrive. We employ Qwen2VL as the VLM and VADV?2 as the end-to-end module to ensure a
fair comparison.

The results indicate that directly using Qwen2VL for trajectory planning yields poor performance.
Compared to the standalone end-to-end model, the SFT-trained baseline achieves moderate im-
provement by combining the VLM and end-to-end modules. Notably, AlphaDrive achieves the
best planning performance among all evaluated methods, which demonstrates the effectiveness of
AlphaDrive’s training strategy for driving planning.

A.5 ABLATION STUDY ON TRAINING DATASET SIZE

Fig. [I)illustrates the impact of different training data size and strategies on overall planning accuracy,
while Tab. [§]provides a more detailed analysis. As observed, when the training data size decreases,
SFT is more affected. With only 20k samples, the model trained with RL reaches a planning accuracy
of 46.08%, which is significantly higher than that of the SFT-trained model. When using nearly
half of the data, with 50k samples, AlphaDrive already achieves a planning accuracy of 70.83%,
demonstrating the efficiency of our training strategy.

A.6 MORE DATASET DETAILS

The MetaAD dataset was collected by expert human drivers using a sensor suite that includes six
surround-view cameras, one fisheye camera, and a LiDAR unit, while also recording navigation
information and the ego odometry at each time step. The acquisition frequency is 2 Hz. After the
raw data are collected, object bounding boxes and other annotations are generated using an offline,
cloud-based labeling system.

The final collection encompasses a range of weather conditions, including sunny, cloudy, and rainy
days. It was captured in diverse environments such as urban areas, rural regions, and elevated
highways, and provides a balanced distribution of various decision-making scenarios.
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