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ABSTRACT

We investigate the design of visual backbones with a focus on optimizing both
efficiency and robustness. While recent advancements in hybrid Vision Trans-
formers (ViTs) have significantly enhanced efficiency, achieving state-of-the-art
performance with fewer parameters, their robustness against domain-shifted and
corrupted inputs remains a critical challenge. This trade-off is particularly difficult
to balance in lightweight models, where robustness often relies on wider channels
to capture diverse spatial features. In this paper, we present SCFormer, a novel hy-
brid ViT architecture designed to address these limitations. SCFormer introduces
Spatial Coordination Attention (SCA), a mechanism that coordinates cross-spatial
pixel interactions by deconstructing and reassembling spatial conditions with di-
verse connectivity patterns. This approach broadens the representation bound-
ary, allowing SCFormer to efficiently capture more diverse spatial dependencies
even with fewer channels, thereby improving robustness without sacrificing effi-
ciency. Additionally, we incorporate an Inceptional Local Representation (ILR)
block to flexibly enrich local token representations before self-attention, enhanc-
ing both locality and feature diversity. Through extensive experiments, SCFormer
demonstrates superior performance across multiple benchmarks. On ImageNet-
1K, SCFormer-XS achieves 2.5% higher top-1 accuracy and 10% faster GPU in-
ference speed compared to FastViT-T8. On ImageNet-A, SCFormer-L (30.1M)
surpasses RVT-B (91.8M) in robustness accuracy by 5.6% while using 3× fewer
parameters. These results underscore the effectiveness of our design in achieving
a new state-of-the-art balance between efficiency and robustness.

1 INTRODUCTION

Recent progress in computer vision has led to a paradigm shift from convolutional neural networks
(ConvNets) (Liu et al., 2022; He et al., 2016; Szegedy et al., 2016) to Vision Transformers (ViTs)
(Dosovitskiy et al., 2020) and their hybrid variants (Wu et al., 2022; Liu et al., 2021; Li et al., 2022;
Pan et al., 2022). Unlike ConvNets, which primarily focus on local pixel processing using fixed-
sized filters, ViTs utilize self-attention (SA) mechanisms that enable dynamic interactions across
both short- and long-range spatial dependencies. This has allowed ViTs to excel in capturing com-
plex, non-local relationships in images, granting them superior performance on a wide range of
computer vision tasks. However, the high-dimensionality of image data, coupled with the ViT’s
reliance on global pixel relationships, poses significant computational and efficiency challenges,
especially during the initial self-attention calculations. This has made ViTs computationally inten-
sive and parameter-heavy, limiting their broader deployment in real-world applications such as edge
computing or autonomous systems, where both efficiency and robustness are crucial.

To address these challenges, research has shifted towards optimizing SA for more efficient visual
learning. Recent strategies involve reducing SA’s internal dimensions via pooling or convolution-
based downsampling (Wu et al., 2022; Li et al., 2022), integrating convolution layers within SA
computations (Vasu et al., 2023a; Wang et al., 2021), or refining SA to enhance local token interac-
tions (Shaker et al., 2023; Pan et al., 2022). These methods have led to the development of hybrid
ViTs that fuse the inductive biases of ConvNets with the flexibility of SA, achieving impressive re-
sults in terms of accuracy and parameter efficiency. However, despite these advances, a significant
gap remains in the robustness of lightweight ViT and other efficient vision models, particularly in
challenging test scenarios involving domain shifts, adversarial attacks, or noisy data.
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Figure 1: Depiction and corresponding kernel visualization of two existing efficient SA schemes:
spatial division (a) (Liu et al., 2021), spatial compression (b) (Wang et al., 2022), and the proposed
spatial coordination SA (c). In (a) and (b), pixel dependencies are restricted to individual spatial
maps with fixed connectivity. In contrast, our approach explores cross-spatial pixel coordination
with dynamic connectivity. The visualization shows that the proposed SA scheme captures richer
frequency-level information (Fourier spectrum) with reduced channel-level information redundancy
(mutual information), leading to a broader representation boundary in the embedding space (kernel
distribution). We offer detailed implementations and more visualizations in appendix A.1-A.3.

For instance, while FastViT-SA24 (Vasu et al., 2023a) achieves higher accuracy than ConvNeXt-S
(Liu et al., 2022) on the ImageNet-1K dataset with fewer parameters (20M vs. 49M), its performance
on robustness benchmarks such as ImageNet-R and ImageNet-SK lags behind. This robustness-
efficiency tradeoff presents a critical challenge, especially for lightweight architectures that need
to generalize well across diverse tasks without expanding their parameter budgets. As modern ap-
plications such as autonomous driving, medical imaging, and mobile vision increasingly rely on
high-efficiency models, addressing this gap is more important than ever.

We identify two primary paradoxes in existing ViT designs that contribute to this robustness gap: (1)
robustness in lightweight architectures is closely tied to channel width, with wider channels offering
greater capacity to capture diverse spatial features, such as textures and frequency patterns, which
are crucial for handling domain shifts (Liu et al., 2023; Mao et al., 2022); and (2) existing efficient
self-attention (SA) designs, which leverage locality priors, often restrict the spatial representation
capacity of the model. Specifically, spatially divided (Liu et al., 2021) and spatially reduced SA
schemes (Yu et al., 2022; Shaker et al., 2023) (Fig. 1 (a) and (b)) enforce fixed local pixel connec-
tions that can lead to a loss of cross-channel information and prevent the model from fully utilizing
the global context. These limitations hinder the ability of lightweight ViTs to generalize well across
diverse and corrupted input data.

In this work, we propose a new architecture, the Spatial Coordination Transformer (SCFormer),
which aims to address these robustness challenges by rethinking how locality priors and spatial di-
versity are incorporated into ViTs. Our key innovations are twofold: First, we decouple locality en-
richment from the attention block by introducing an Inceptional Local Representation (ILR) block.
Unlike traditional convolution layers, which impose fixed spatial dependencies, the ILR block flex-
ibly captures a wide range of local frequency information via inception-like convolution operations
before each attention block. This flexible locality induction enriches the token representations with
diverse high-level features, preparing them for more effective attention processing. The inception
mechanism allows the model to dynamically adjust to varying spatial scales, leading to improved
robustness and feature diversity across different spatial patterns. Second, we introduce Spatial Co-
ordination Attention (SCA), a novel approach that breaks the conventional depth-wise processing
of SA. Rather than focusing exclusively on individual spatial maps, SCA dynamically coordinates
pixel interactions across different spatial maps with varying connectivity patterns. By leveraging
multiple pooling descriptors, we deconstruct spatial conditions and reassemble them as substrates
for global coordination through SA. This process enables the model to maintain a more diverse set
of spatial interactions, enhancing its ability to generalize across tasks with limited channel budgets.
After spatial coordination, a pixel gating operation reconstructs the original spatial maps, efficiently
propagating cross-spatial coordination scores while preserving the semantic integrity of the output.

In Fig. 1, we show how SCA outperforms mainstream efficient SAs (division (Liu et al., 2021)
and compression (Wang et al., 2022)) on principle metrics, such as the spatial Fourier spectrum
and channel mutual information. SCA achieves a richer representation of frequency information
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Figure 2: Performance comparison on ImageNet-1K, -SK, -A, and -R. The proposed SCFormer
achieves superior trade-off among standard accuracy, latency, and robustness over existing models.

and greater channel feature diversity, resulting in a broader representation boundary. These key
properties, in practice, enable SCFormer to greatly outperform existing leading backbones in both
robustness and clean accuracy (Fig. 2). In summary, our contributions are: (1) We introduce SC-
Former, a novel hybrid ViT architecture designed for robust and efficient visual learning. (2) We
propose Spatial Coordination Attention (SCA), which facilitates cross-spatial pixel coordination to
broaden the representation boundary and improve robustness with fewer channels. (3) We introduce
the Inceptional Local Representation (ILR) block, which flexibly enriches local token representa-
tions before self-attention, enhancing both locality and feature diversity. (4) Extensive experiments
on image classification, dense prediction, and cross-domain tasks demonstrate that SCFormer con-
sistently sets new benchmarks, achieving a superior trade-off between efficiency and robustness.

2 RELATED WORK

Efficient CNNs. They are tailored for practical applications. Operators such as Depthwise Separable
Convolution (DWConv) (Chollet, 2017) and Group Convolution (Ioannou et al., 2017) have been
pivotal in developing streamlined architectures, leading to the creation of lightweight and rapid
models like MobileNets (Howard et al., 2017; Sandler et al., 2018), ShuffleNets (Zhang et al., 2018;
Ma et al., 2018), GhostNet (Han et al., 2020), and TVConv (Chen et al., 2022). These models, by
capitalizing on filter redundancy within visual patterns, have carved out a niche of efficient models
extensively applied in edge computing scenarios. Subsequent endeavors have harnessed architecture
search to build a network like EfficientNets (Tan & Le, 2019; 2021). Simultaneously, research
on pruning and compression has aimed to streamline large CNNs, optimizing both the number of
parameters and computational load. Recently, the focus has shifted to efficient ViTs, noted for
surpassing CNNs through superior long-range pixel dependency learning. Nonetheless, some design
principles of efficient CNNs, including DWConv, remain integral to cutting-edge ViTs. In this
work, we harness multi-view insights from InceptionNets (Szegedy et al., 2016) to enhance the
local representation (Conv) blocks within our hybrid ViT architecture.

Efficient ViTs. Most existing efficient ViTs (Vasu et al., 2023a; Li et al., 2022; Pan et al., 2022;
Shaker et al., 2023) employ hybrid architectures. Previous works (Liu et al., 2021; Wang et al.,
2021) introduce Convs to perform patch merging and spatial downsampling, reforming the isotropic
architecture of ViT in a pyramidal style. To further pursue efficiency, recent work focuses on com-
bining Conv operators (Li et al., 2022; Shaker et al., 2023; Pan et al., 2022) within SA mechanisms
to reduce complexity and running latency. The key is to use local operators, such as DWConv, to
foster information overlap between individual tokens/patches prior to SA computation. This ap-
proach can reduce the inner dimension of SA to reduce the complexity and also introduce visual
inductive biases (e.g., locality) into SA for efficient visual modeling. The MetaFormer (Yu et al.,
2022) summarized modern SA designs as the token mixer and used a pooling alternative to vali-
date its viewpoint. Unlike existing token-mixing attentions, this paper presents a novel SCA that
peeks at local spatial features from multiple cross-channel views to promote local information co-
ordinates across different filters. It enriches spatial condition representation to efficiently promote
discriminative and robust visual representation learning.

Robustness Designs. Some prior research investigated the robustness of vision backbones (Mao
et al., 2022; Liu et al., 2023; Hendrycks et al., 2021b; Wang et al., 2019). RVT (Mao et al., 2022)
studies the relationship between robustness and architecture designs in ViT frameworks. By simply
combining robustness designs, it proposes a robust vision transformer that achieves favorable per-
formance on various robust benchmarks. Afterward, ConvNeXt (Liu et al., 2022) has also implicitly
improved the robustness of the vision backbone by using fewer operators and a shallower depth to
trade for greater channel widths. There is also a comprehensive study (Liu et al., 2023) on robust-
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Figure 3: Overview of SCFormer architecture. Each set of two successive SCFormer blocks is
configured with the ILR in the first block and the SCA in the second block.

ness that reveals a trade-off between natural robustness and general precision. Most of the existing
backbones (Mao et al., 2022; Liu et al., 2022; Vasu et al., 2023a) are essentially making trade-offs
in operator and architecture designs, making it hard to obtain robustness of parameter efficiency and
consistency of performance in both robust and general tasks. In this paper, we propose the SCA that
explores the coordination of local spatial conditions to see more robustness-related patterns from
fewer channels, thereby overriding the tradeoff issue.

3 METHODOLOGY

The overall architecture of SCFormer is presented in Fig. 3. In the following, we first introduce the
SCA in §3.1. Then, ILR, SFFN, and the overall configurations of SCFormer are discussed in §3.2.

3.1 SPATIAL COORDINATION ATTENTION

This subsection introduces the SCA (Fig. 4 (d)) as a fundamental technique for spatial modeling.
In modern ViTs (Shaker et al., 2023; Wang et al., 2021; Liu et al., 2021), the input feature zin ∈
Rc×h×w undergoes token mixing, using operators such as DWconv or SA for depth-wise modeling.
These focus on intra-spatial information exchange but limit channel-wise interactions, which helps
to emphasize key spatial patterns. However, this also restricts cross-channel expression, which is
vital for maintaining recognition robustness when test data deviates from training. To overcome this,
current token mixers require significantly wider channels, increasing parameter demands.

To improve the robustness-efficiency trade-off, we propose a novel SCA. It enhances spatial diversity
by coordinating pairwise relationships among diverse local conditions across channels, enriching
the conditions’ representation. Then, SCA applies a pixel gating mechanism for token mixing with
spatial reconstruction, utilizing coordinated features for robust visual representation. Specifically,
we first deconstruct spatial conditions, as shown in Fig. 4 (c), where the input 2D features are
summarized by three pooling descriptors (d) covering distinct local regions.

zw = Flatten(dw(zin))Ww, zh = Flatten(dh(zin))Wh, zs = Flatten(ds(zin))Ws,

zrc = LayerNorm(Concat({zw, zh, zs})).
(1)

In Eq. (1), we first repeatedly describe the regional spatial condition of zin in local width (dw),
height (dh), and square (ds) regions. Three linear projections (Ww, Wh, Ws) are used subsequently
to enhance their representation, respectively. Afterward, we concatenate these outputs along chan-
nels as the regional condition map zrc ∈ Rnd×csub . It reveals the diversified spatial conditions of
zin, which are implicitly encoded in the different pixel relationships present in the original feature.
The zrc also benefits from a reduced length compared to zin, allowing faster SA computation.

The process in Eq. (1) deconstructs different regional spatial conditions from the input feature. As
shown in Fig. 4 (a)-left, by processing the same feature with different pooling descriptors dw, dh,
and ds, spatial conditions vary in 2D representations. We further visualize discrete distributions
of these described results zw, zh, and zs in 3D space by t-SNE in Fig. 4 (a)-right. They have non-
overlapped boundaries indicative of representing varied spatial conditions. This observation inspired
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Figure 4: (a) We show that spatial conditions vary in 2D representation and have distinct boundaries
in the embedding space (Van der Maaten & Hinton, 2008) when processed by different pooling de-
scriptors. (b) The pixel gating for mixing tokens with structure-prior knowledge. (c) The procedure
of spatial condition deconstruction before attention calculation. (d) The architecture of SCA.

us to treat zw, zh, and zs as a group of substrates (integrated into zrc) and leverage SA to formulate
pairwise synthetic relations among each of their embedding features, thereby efficiently generating
richer spatial conditions beyond the original representation.

Based on the regional condition map zrc and input zin, we then introduce the spatial coordination
attention. To enable the coordination between regional conditions captured from different spatial
maps (channels), we compute the Q, K from zrc and V from zin, respectively.

Q,K = Split(zrcWqk), V = zinWv, (2)

here we use a linear layer (Wqk) to expand the embedding (channel) dimension of zrc from csub to
2c and Split it half-and-half as Q and K. Then, unlike existing token mixers that perform attention
on tokens, we compute the attention map along the embedding dimension similar to (Ali et al., 2021).
This is for building pairwise correspondence between local regional conditions across channels. We
then act the attention on transposed V for activating different combinations of spatial conditions. In
the following, we omit the concept of multi-head (Dosovitskiy et al., 2020) for simplicity.

xatt = SoftMax(
QT ·K

t
) · V T , (3)

where t is a learnable temperature to scale the inner products before softmax. In Eq. (3), we compute
the attention along the channel to build a pairwise correspondence between the spatial conditions
and reweight each token. After the above information exchange and coordination across channels,
we then use the pixel gating operation with residual branch to reconstruct the spatial information:

xspg = xatt + xatt ∗DWconv(V ), xout = PWconv(xspg). (4)

In Eq. (4) we omit the dimension reshape for simplicity; “∗” indicates the element-wise multiply
operation for pixel-to-pixel gating; xout is the output of SCA. Instead of directly applying a local
Conv on xatt for mixing tokens, we extract the pixel positional information from the structure pre-
served V using a 3×3 DWconv and then perform pixel-wise gating on xatt for spatial reconstruction
with structure priors. Afterward, we use a residual add branch to preserve the prior information and
a PWconv for the final projection. The feature variations in SCA is visualized in appendix A.3.

3.2 HYBRID ARCHITECTURES

Here, we first present the Inception Local Representation (ILR) block, designed to introduce locality
priors before the SCA module. In addition, we discuss the selective incorporation of DWconv within
the feed-forward network of our architecture to enhance efficiency. Lastly, we provide an overview
of the general architecture and configurations of our SCFormers.
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ILR. Drawing inspiration from the inceptionNet (Szegedy et al., 2016), we use the inception think-
ing to introduce the locality priors while boosting the spatial diversity before SCA calculation.

As shown in Fig.5 (a), for an input feature zin ∈ Rc×h×w, we first divide it into three segments
along the channel dimension, each segment with the channel number of cϕ, cα and cβ , respectively.
They are then processed by distinct DWconvs with kernel sizes of 7×7, 3×1, and 1×3, respectively.
The outcomes are concatenated to form the output. This approach enables nuanced local represen-
tation modeling, introducing the locality while enriching the spatial information’s variety and scale.
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SFFN. Incorporating a DWconv within FFN is a popu-
lar strategy. Prior studies (Wang et al., 2022; Wu et al.,
2022) place the DWconv between the two projection lay-
ers (1×1 Conv) to process spatial information at higher
dimensions, which improves scene parsing but brings
complexity overload. Recent works (Vasu et al., 2023a;
Shaker et al., 2023) place the DWconv before the first
projection to speed up the operation. However, this can
lead to suboptimal performance due to the preliminary
encoding of spatial details at lower dimensions.

This paper proposes to selectively incorporate the in-FFN
DWConv for better efficiency. We observe that the effi-
cacy of the in-FFN DWconv in encoding spatial informa-
tion is significant in the initial network stages, where spa-
tial information is plentiful. However, its computational
demand spikes in the later stages due to the greatly increased channel width. Therefore, deploying
the in-FFN DWconv uniformly is inefficient, as its utility diminishes in later phases, instead con-
tributing to computational burden. Thus, we use the switchable FFN (SFFN) at Fig. 5 (b), which
only activates the in-FFN DWconv in the early network stages (spatial size (h ∗w) > the control pa-
rameter τ ). This allows for adaptable adjustment of using the in-FFN DWconv for better efficiency.

Table 1: Configuration of six SCFormer vari-
ants. #Channels: number of channels per stage;
#Blocks: number of SCFormer blocks per stage;
#τ : the switch parameter in SFFN; HW means
the product of the input image height and width.

Variants #Channels #Blocks FLOPs #Params
-XXS [24,48,120,192] [2,2,4,2] 0.3G 2.0M
-XS [32,64,160,256] [2,2,6,2] 0.6G 3.9M
-S [40,80,200,320] [2,2,8,2] 1.0G 6.7M
-M [48,96,200,384] [2,2,10,4] 1.4G 11.8M
-ML [64,128,300,512] [2,4,12,4] 3.4G 22.9M
-L [72,144,320,512] [4,4,16,4] 5.2G 31.4M

Configurations. The SCFormer configurations
are shown in Tab. 1. Detailed architecture
and hyperparameters are discussed in the ap-
pendix. We present fixed configurations for all
variants. Specifically, we set the number of at-
tention heads as {1,2,5,8} for the four stages.
Given the input feature zin ∈ Rc×h×w for cur-
rent SCformer block, the divided channels cϕ,
cα, and cβ in all the InceptLP blocks are set to
be 1

2c,
1
4c, and 1

4c, respectively; To cope with
the spatial dimensions in different stages, the
kernel sizes of local pooling descriptors {dw,
dh, ds} in SCA are set to be {[12, 6], [6, 12], [8, 8]}, {[8, 4], [4, 8], [4, 4]}, {[6, 3], [3, 6], [2, 2]}, and
{[3, 1], [1, 3], [1, 1]} for spatial condition deconstruction in the stage-1, 2, 3, and 4, respectively.

4 EXPERIMENTS

We evaluate SCFormer on standard / robust image classification tasks (§4.1), object detection and
segmentation tasks (§4.2), cross-domain retrieval tasks (§4.3). Finally, we conduct ablation studies
to show the robustness roadmap (§4.4) and give activation visualization on OOD samples (§4.5).

4.1 CLASSIFICATION ON IMAGENET-1K AND ROBUST BENCHMARKS

Setup for ImageNet-1k. The ImageNet-1k dataset (Deng et al., 2009) consists of 1.3M training
and 50K validation samples. To ensure a fair comparison, we train our SCFormer following standard
ViT training protocols (Touvron et al., 2021). Specifically, the models are trained for 300 epochs
using the AdamW optimizer, with a peak learning rate of 2e-3 and a total batch size of 2048. The
warmup period lasts for 5 epochs, and the learning rate is decayed using a cosine schedule. All
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Table 2: Comparison on ImageNet-1k classification. All the latency and throughput are measured
using one 2080ti GPU, which may differ from some official results for hardware variations. ∗ and †
marks denote models using architecture search and reparameterization, respectively.

Model
Eval image Param FLOPs Latency Throughput Top-1

size (M) (G) (ms) ↓ (fps) ↑ Acc (%) ↑
EdgeNeXt-XXS (Maaz et al., 2022) 256 1.3 0.3 15.5 2070 71.2
MobileOne-S0† (Vasu et al., 2023b) 224 2.1 0.3 11.3 2979 71.4
SkipAT-T (Venka. et al., 2024) 224 5.8 1.1 14.9 2213 72.9
SCFormer-XXS 224 2.0 0.3 11.6 2874 74.0
EdgeNeXt-XS (Maaz et al., 2022) 256 2.3 0.5 24.2 1322 75.0
FastViT-T8† (Vasu et al., 2023a) 256 3.6 0.7 26.4 1210 75.6
SwiftFormer-XS (Shaker et al., 2023) 224 3.5 0.6 20.0 1604 75.7
MobileOne-S1† (Vasu et al., 2023b) 224 4.8 0.8 22.6 1415 75.9
SCFormer-XS 224 3.9 0.7 20.3 1458 78.1
MobileOne-S2† (Vasu et al., 2023b) 224 7.8 1.3 30.1 1006 77.4
SwiftFormer-S (Shaker et al., 2023) 224 6.1 1.0 25.1 1316 78.5
EfficientNet-B1∗ (Tan & Le, 2019) 256 7.8 0.7 45.6 702 79.1
FastViT-T12† (Vasu et al., 2023a) 256 6.8 1.4 43.2 744 79.1
EdgeNeXt-S (Maaz et al., 2022) 256 5.6 1.3 38.2 843 79.4
SCFormer-S 224 6.7 1.0 24.2 1334 80.0
PoolFormer-S12 (Yu et al., 2022) 224 11.9 1.8 31.0 1008 77.2
MobileOne-S3† (Vasu et al., 2023b) 224 10.1 1.9 39.6 808 78.1
RVT-Ti (Mao et al., 2022) 224 10.9 1.3 37.1 860 79.2
MobileOne-S4† (Vasu et al., 2023b) 224 14.8 3.0 60.9 525 79.4
FastViT-SA12† (Vasu et al., 2023a) 256 10.9 1.9 53.0 604 80.6
SwiftFormer-L1 (Shaker et al., 2023) 224 12.1 1.6 33.5 955 80.9
SCFormer-M 224 11.8 1.5 29.2 1175 81.6
SkipAT-S (Venka. et al., 2024) 224 22.1 4.0 88.4 351 80.2
Swin-T (Liu et al., 2021) 224 29.0 4.5 90.0 352 81.3
PoolFormer-S36 (Yu et al., 2022) 224 31.0 5.0 86.9 368 81.4
RVT-S (Mao et al., 2022) 224 23.3 4.7 86.7 370 81.9
ConvNeXt-T (Liu et al., 2022) 224 29.0 4.0 83.1 413 82.1
FasterViT-0 (Hatamizadeh et al., 2024) 224 31.4 3.3 69.2 519 82.1
InceptionNeXt-T (Yu et al., 2023) 224 29.0 4.2 63.4 546 82.3
FastViT-SA24† (Vasu et al., 2023a) 256 20.6 3.8 76.1 446 82.6
SCFormer-ML 224 22.9 3.5 58.4 603 82.8
SkipAT-B (Venka. et al., 2024) 224 86.7 15.2 241.7 128 82.2
PoolFormer-M48 (Yu et al., 2022) 224 73.0 11.6 182.8 175 82.5
RVT-B (Mao et al., 2022) 224 91.8 17.7 175.3 180 82.7
SwiftFormer-L3 (Shaker et al., 2023) 224 28.5 4.0 94.6 360 83.0
ConvNeXt-S (Liu et al., 2022) 224 50.0 8.7 133.4 281 83.1
FasterViT-1 (Hatamizadeh et al., 2024) 224 53.4 5.3 98.4 340 83.2
Swin-B (Liu et al., 2021) 224 88.0 15.4 233.9 136 83.5
InceptionNeXt-S (Yu et al., 2023) 224 49.0 8.4 107.5 293 83.5
EfficientNet-B5∗ (Tan & Le, 2019) 456 30.0 9.9 463.0 69 83.6
FastViT-SA36† (Vasu et al., 2023a) 256 30.4 5.6 99.1 326 83.6
SCFormer-L 224 31.4 5.2 96.3 355 83.6

training and testing images are resized to 224 × 224. Training is conducted using PyTorch on 8
NVIDIA A100 GPUs. Detailed settings and distillation results are provided in the Appendix.

Setup for Robust Benchmarks. The robustness is assessed on ImageNet-C (IN-C) (Hendrycks
& Dietterich, 2019), -R (Hendrycks et al., 2021a), -SK (Wang et al., 2019), and -A (Hendrycks
et al., 2021b). These datasets are commonly used to evaluate classification robustness against out-
of-distribution, corrupted, and adversarial samples. Following (Liu et al., 2022; Mao et al., 2022),
we report our performance by directly testing the ImageNet-1k trained model on these datasets.

Comparison on ImageNet-1k. In Tab. 2, we compare SCFormer with the latest SOTA models
on ImageNet-1k. Without using architecture search (AS) or reparameterization (REP), SCFormer
achieves a superior accuracy-speed tradeoff. Compared to FastViT-T8 (Vasu et al., 2023a), which
leverages REP, SCFormer-XS improves top-1 accuracy by 2.5% with 10% faster inference. Addi-
tionally, SCFormer-M surpasses SwiftFormer-L1 (Shaker et al., 2023) with 0.7% higher accuracy
and 10% faster speed. Our larger variants, SCFormer-ML and SCFormer-L, significantly outper-
form recent SOTAs in accuracy-efficiency tradeoff, using simpler requirements and smaller input
sizes. Notably, SCFormer-L achieves 83.6% top-1 accuracy with reduced latency and faster speed
compared to AS-based EfficientNet-B5 (Tan & Le, 2019) and REP-based FastViT-SA36 (Vasu et al.,
2023a), validating the efficacy of SCA and other components for efficient visual learning.

Comparison on Robust Benchmarks. In Tab. 3, we assess our model’s robustness on several
benchmarks. All SCFormer variants achieve top performance across these tests. Despite RVT (Mao
et al., 2022) being tailored for robustness, SCFormer outperforms it. Notably, SCFormer-L (31.4M)
surpasses RVT-B (91.8M) by 5.6% on IN-A and 1.5% on IN-SK, using only 1/3 of the parameters.
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Table 3: Evaluation on robustness benchmarks. We report the mean corruption error (lower is better)
for ImageNet-C (IN-C) and top-1 accuracy for other datasets. The latency metrics are the same as
Tab. 2, which we omit there for simplicity.

Model Params FLOPs IN-1K (↑) IN-C (↓) IN-A (↑) IN-R (↑) IN-SK (↑)
MobileOne-S0 (Vasu et al., 2023b) 2.1 0.3 71.4 86.4 2.3 32.9 19.3
EdgeNeXt-XXS (Maaz et al., 2022) 1.3 0.3 71.2 86.8 2.6 30.0 18.5
SCFormer-XXS 2.0 0.3 74.0 84.5 4.1 33.6 22.1
MobileOne-S1 (Vasu et al., 2023b) 4.8 0.8 75.9 80.4 2.7 36.7 22.6
EdgeNeXt-XS (Maaz et al., 2022) 2.3 0.5 75.0 81.7 4.6 33.0 22.0
SCFormer-XS 3.9 0.7 78.1 77.1 6.6 38.4 27.3
MobileOne-S2 (Vasu et al., 2023b) 7.8 1.3 77.4 73.6 4.8 40.4 26.4
EdgeNeXt-S (Maaz et al., 2022) 5.6 1.3 79.4 74.5 7.7 39.9 26.1
SCFormer-S 6.7 1.0 80.0 72.8 11.5 44.5 29.6
MobileOne-S3 (Vasu et al., 2023b) 10.1 1.9 78.1 71.6 7.1 42.1 28.5
MobileOne-S4 (Vasu et al., 2023b) 14.8 3.0 79.4 68.1 10.8 41.8 29.2
RVT-Ti (Mao et al., 2022) 8.6 1.3 78.4 58.2 13.3 43.7 30.0
FastViT-SA12 (Vasu et al., 2023a) 10.9 1.9 80.6 62.2 17.2 42.6 29.7
SCFormer-M 11.8 1.5 81.6 55.3 19.2 45.9 32.9
ConvNeXt-T (Liu et al., 2022) 29.0 4.0 82.1 53.2 24.2 47.2 33.8
RVT-S (Mao et al., 2022) 22.1 4.7 81.7 50.1 24.1 46.9 35.0
FastViT-SA24 (Vasu et al., 2023a) 20.6 3.8 82.6 55.3 26.0 46.5 34.0
Swin-T 29.0 4.5 81.3 62.0 21.6 41.3 29.1
SCFormer-ML 22.9 3.5 82.8 49.0 27.9 48.7 35.8
ConvNeXt-S (Liu et al., 2022) 73.0 11.6 82.5 51.2 31.2 49.5 37.1
RVT-B (Mao et al., 2022) 91.8 17.7 82.7 46.8 28.5 48.7 36.0
FastViT-SA36 (Vasu et al., 2023a) 30.4 5.6 83.6 51.8 32.3 48.1 35.8
SCFormer-L 31.4 5.2 83.6 46.7 34.1 50.4 37.5

Similar gains are seen in other variants. SCFormer consistently excels in both robust and general
benchmarks, demonstrating the effectiveness of our SCA in learning robust visual representations.

4.2 OBJECT DETECTION AND SEGMENTATION

We evaluate SCFormer on multiple dense prediction/scene parsing tasks using ImageNet-1k trained
models. For object detection and instance segmentation, we use the MS-COCO dataset (Lin et al.,
2014) with the Mask-RCNN framework (He et al., 2017), adhering to standard protocols (Vasu et al.,
2023a) for fair comparisons. For semantic segmentation, we assess our models in the ADE20k
dataset (Zhou et al., 2017) with the semantic FPN decoder, following established settings (Vasu
et al., 2023a; Shaker et al., 2023) to ensure fairness.

Table 4: Results using SCFormer as the backbone on dense prediction tasks. We follow mainstream
practices to use the Mask-RCNN framework with a 1× training schedule for object detection and
instance segmentation on the MS-COCO dataset (Lin et al., 2014). The semantic segmentation is
performed on the ADE20K dataset (Zhou et al., 2017) with the semantic FPN decoder. The backbone
latency is measured using the input image image size of 512×512.

Backbone Latency
Detection and Instance Segmentation Semantic

AP b AP b
50 AP b

75 APm APm
50 APm

75 mIoU(%)
ResNet-50 (He et al., 2016) 159.4 38.0 58.6 41.4 34.4 55.1 36.7 36.7
PoolFormer-S12 (Yu et al., 2022) 101.7 37.3 59.0 40.1 34.6 55.8 36.9 37.2
FastViT-SA12 (Vasu et al., 2023a) 118.9 38.9 60.5 42.2 35.9 57.6 38.1 38.0
SwiftFormer-L1 (Shaker et al., 2023) 108.0 41.2 63.2 44.8 38.1 60.2 40.7 41.4
SCFormer-M 91.1 41.2 63.5 45.7 38.4 60.7 41.2 41.7
ResNet-101 187.3 40.0 60.6 44.0 36.1 57.5 38.6 38.8
PoolFormer-S24 (Yu et al., 2022) 195.2 40.1 62.2 43.4 37.0 59.1 39.6 40.3
FastViT-SA24 (Vasu et al., 2023a) 207.0 42.0 63.5 45.8 38.0 60.5 40.5 41.0
SwiftFormer-L3 (Shaker et al., 2023) 231.7 42.7 64.4 46.7 39.1 61.7 41.8 43.9
SCFormer-ML 185.4 42.8 64.7 47.1 39.2 61.9 42.3 43.9
PoolFormer-S36 (Yu et al., 2022) 290.2 41.0 63.1 44.8 37.7 60.1 40.0 42.0
FastViT-SA36 (Vasu et al., 2023a) 302.4 43.8 65.1 47.9 39.4 62.0 42.3 42.9
SCFormer-L 288.7 44.3 65.2 48.2 40.1 62.3 43.0 44.3

As shown in Tab. 4, SCFormer achieves state-of-the-art results on dense prediction/scene parsing
tasks. SCFormer-L outperforms REP-based FastViT-SA36 (Vasu et al., 2023a) by 0.5%, 0.7%, and
1.4% in AP b, APm, and mIoU, respectively, while reducing GPU latency. Furthermore, SCFormer-
M surpasses SwiftFormer-L1 (Shaker et al., 2023) in all metrics, with a 10% speed advantage. These
results highlight the effectiveness of our SCA and hybrid components in achieving an accurate and
efficient visual representation without relying on REP or NAS.
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Table 5: Comparison on two cross-domain retrieval datasets. We report the rank (r) = 1 accuracy
and mean average precision (mAP), both higher the better.

Backbone Retrieve
Time

SYSU-MM01 (Wu et al., 2017) LLCM (Zhang & Wang, 2023)
All Search Indoor Search VIS to IR IR to VIS

r=1 mAP r=1 mAP r=1 mAP r=1 mAP
ResNet-50 (He et al., 2016) (AGW) 1.0× 47.9 47.8 55.1 63.7 57.1 59.4 47.2 55.1
ConvNeXt-T (Liu et al., 2022) 1.5× 53.9 51.1 62.4 64.3 59.2 60.3 49.1 56.4
FastViT-SA24 (Vasu et al., 2023a) 0.7× 54.2 52.8 64.7 64.9 61.4 61.6 52.5 57.9
PoolFormer-S36 (Yu et al., 2022) 1.1× 52.8 50.1 61.1 62.7 59.0 60.1 48.3 55.8
InceptionNeXt-T (Yu et al., 2023) 0.8× 56.3 55.1 68.7 68.1 61.8 63.1 52.9 58.3
SCFormer-ML 0.7× 58.0 57.0 71.3 69.5 62.6 65.7 54.1 60.1
ConvNeXt-S (Liu et al., 2022) 3.7× 65.5 62.1 77.7 72.9 65.2 66.7 58.3 65.1
SwiftFormer-L3 (Shaker et al., 2023) 1.7× 64.7 61.0 75.8 70.9 64.1 66.1 57.1 63.9
FastViT-SA36 (Vasu et al., 2023a) 1.8× 65.1 61.8 76.2 71.1 64.8 65.9 57.6 64.2
PoolFormer-M48 (Yu et al., 2022) 4.9× 65.4 62.0 78.1 72.6 64.2 65.8 57.7 64.1
SCFormer-L 1.7× 65.7 61.8 78.5 72.4 65.4 66.5 58.9 65.2

4.3 CROSS-DOMAIN IMAGE RETRIEVAL

We evaluate our model on cross-domain retrieval tasks to test its ability to learn robust feature
distances under challenging domain shifts and fine-grained sample complexities. As image retrieval
depends on ranking feature similarities, robust distance metrics in the embedding space are key
for accuracy. This evaluation goes beyond classification robustness, testing the model’s capacity
to distinguish fine nuances among highly similar samples. Specifically, one visible-infrared image
retrieve (SYSU-MM01 (Wu et al., 2017) and one visible-lowlight image retrieve (LLCM (Zhang &
Wang, 2023) datasets are used. For SYSU-MM01, we follow the standard protocol from (Ye et al.,
2021), and for LLCM, we use the official protocol (Zhang & Wang, 2023). All results are obtained
by alternating the backbone in the AGW Re-ID framework (Ye et al., 2021), standardizing the input
dimensions to 224×224 for all models, except FastViT, which uses 256×256. Speed comparisons are
based on relative retrieval times, with ResNet-50 (the default AGW backbone) as the time reference.

Results in Tab. 5 show that SCFormer outperforms state-of-the-art models for cross-domain fine-
grained image understanding. Specifically, SCFormer-ML achieves 1.7% and 2.6% higher rank-1
accuracy than InceptionNeXt-T (Yu et al., 2023) in all-search and indoor-search modes of SYSU-
MM01, respectively, with similar gains on LLCM. Furthermore, SCFormer-L surpasses ConvNeXt-
S across all evaluation protocols for both datasets, with over 2× faster speed. These results confirm
SCFormer’s superior ability to learn consistent feature distances in cross-domain scenarios.

4.4 ABLATION ROADMAP ON ROBUSTNESS

We conduct ablation experiments to validate the efficacy of our proposed components. Using
ConvNeXt-T (Liu et al., 2022) as the baseline, we gradually transformed it into SCFormer-ML.
Each modification is evaluated on ImageNet-1k and four robust benchmarks, demonstrating the
variations in accuracy and robustness. Results are presented in the Tab. 6.

Table 6: Upgrading the ConvNeXt-T progressively to SCFormer-ML. The blue-marked rows denote
enhancement facilitated by our proposed components.

Row Modifications Param
(M)

Latency
(ms)

IN-1K
(↑)

IN-C
(↓)

IN-A
(↑)

IN-R
(↑)

IN-SK
(↑)

0 ConvNeXt-T (Baseline) 29.0 83.1 82.1 53.2 24.2 47.2 33.8
1 Width: [96,192,384,768] → [64,128,300,512] 14.9 53.9 79.0 74.3 12.1 44.3 30.6
2 In-block Norm: LN→BN 14.9 45.4 79.0 74.2 12.1 44.4 30.6
3 Replace the last 7x7 dw in each stage to SCA 16.5 46.3 79.9 68.2 16.5 45.8 31.6
4 Depth→[2,4,8,4]; replace all dw with ILR-SCA 19.7 46.9 82.1 52.7 24.5 48.0 33.9
5 Improvements to ConvNeXt-T (row.0) 32% 44% − 0.5% 0.3% 0.8% 0.1%

6 Block shortcut: ConvNet Style → ViT Style 19.7 48.3 82.2 52.4 24.6 48.2 34.0
7 FFN/MLP → SFFN 19.8 53.5 82.4 50.9 25.3 48.5 34.7
8 Align Stem and PE layers to SCFormer 20.4 54.7 82.5 50.1 25.5 48.5 35.0
9 Depth: [2,4,8,4] → [2,4,12,4] (SCFormer-ML) 22.9 58.4 82.8 49.0 27.9 48.7 35.8
10 Improvements to ConvNeXt-T (row.0) 21% 30% 0.7% 4.2% 3.7% 1.5% 1.3%

Preparation: We first reduced the channel widths to [64,128,300,512] that aligns with our
SCFormer-ML’s configuration, leading to a significant drop in robust accuracy across all bench-
marks, as the robustness of ConvNeXt-T heavily depends on using larger channel widths to mechan-
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ically obtain more spatial conditions (see Tab. 6, rows 0-1). In row 2, we switch the LayerNorm
within blocks to BatchNorm for also the alignment with our model’s settings.

Spatial Modeling: By replacing the last 7×7 DWconv with SCA in each stage (row 3), an increase
is observed in robustness with minimal latency gain, highlighting SCA’s ability to efficiently learn
robust visual representations from reduced channels. Substituting all DWconvs with ILR and SCA,
and adjusting the number of blocks to even for successively using them, we significantly boosted
the robustness further (row 4). Compared to the ConvNeXt-T, we reduce parameters/Latency by
32%/44%, while enhancing all robustness metrics.

Channel Mixing: We first change the ConvNet-like single shortcut to the ViT-like double shortcut
within basic blocks (row 6). Then, we replace the FFN with our SFFN, which enhances performance
on all the datasets with limited latency increases (row 7). This validates the effectiveness of SFFN’s
switchable scheme that uses the middle DWconv only in early network stages.

Final Alignment: Final modifications (rows 8-9) transition ConvNeXt-T to SCFormer-ML with
architecture design modifications. In rows 1-10, we reduce the parameters by over 20% and running
latency by 30%, while also significantly improving the performance on ImageNet-1k and four ro-
bustness benchmarks, demonstrating the efficiency and effectiveness of each proposed component.

4.5 ACTIVATION MAP VISUALIZATION ON GENERATED OOD SAMPLES

We visualize Grad-CAM (Selvaraju et al., 2017) activation maps for one ImageNet-1K sample
(“normal cat”) and two out-of-distribution (OOD) samples (anime, painting) generated by DALLE
(Ramesh et al., 2022) using different style prompts. Swin-Tiny and PvTv2-b2 are selected to com-
pare with our SCFormer-L; they are all trained on ImageNet-1k. In addition, we present the feature
cosine similarity matrix for a more intuitive comparison. The visualizations are listed in Fig. 6.

Figure 6: Grad-CAM activation maps on one trained image (normal) and two unseen OOD images
(anime, painting) generated by DALLE, alone with the feature cosine similarity matrix.
Fig. 6 illustrates that all networks can identify the pattern associated with the cat in the trained
image (“normal cat”). However, both Swin and PvTv2 were unable to locate the correct patterns
in the two unseen OOD images, which is also evident in their low feature similarity scores across
the three images. In contrast, the proposed SCFormer demonstrates a strong insensitivity to style
variations, consistently identifying critical features (such as the face and feet) across all three images
and exhibiting high feature similarity even in the presence of stylistic differences. These key metrics
underscore the superior capacity of SCFormer in learning robust and stable visual representations.

5 CONCLUSION

This paper focuses on improving the robustness-efficiency trade-off of lightweight vision architec-
tures. By targeting the channel width and the abundance of spatial conditions behind it are vital
for robustness, we highlight that current token mixers, by overly focusing on token-wise exchanges,
limit spatial condition representations and thus require assigning more channels to maintain robust-
ness. To this end, we propose the spatial coordination attention (SCA) that enriches the feature rep-
resentation boundary via learning attention correspondence across spatial maps with diverse pixel
connectivity. By enlarging the representation boundary during token mixing, the proposed SCA
can achieve robust visual modeling with fewer channels, thus improving the efficiency-robustness
trade-off. Integrating SCA with our hybrid designs, SCFormers emerges as a cutting-edge prototype,
exhibiting superior robustness, efficiency, and accuracy across a wide range of vision tasks.
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A APPENDIX

In the appendix, we offer additional information and discussions regarding:

• Detailed illustration of kernel visualizations (Appendix A.1)
• Comprehensive visualizations (Appendix A.2)
• Fine-grained visualization of SCA (Appendix A.3)
• Architecture details of SCFormer (Appendix A.4)
• ImageNet-1k experimental settings (Appendix A.5)
• ImageNet-1k accuracy under knowledge distillation (Appendix A.6)
• Robustness evaluation under adversarial attack (Appendix A.7)
• Pytorch implementation of proposed components (Appendix A.8)
• Limitations and future works (Appendix A.9)

A.1 DETAILED ILLUSTRATION OF KERNEL VISUALIZATIONS

Figure 2 in the main text showcases the kernel property of two existing efficient SAs alongside
the proposed SCA. This visualization employs the Spatial Fourier Spectrum map, the channel-wise
mutual information correlation map, and the channel-wise kernel distribution map. In the following,
we elaborate on their individual principles and our implementations.

The Fourier spectrum visualizes the frequency components captured by the SA operator, which
is vital in understanding how variations in pixel intensities occur across different scales. High-
frequency components capture fine details and edges (the center of the spectrum), revealing textures
and sharp transitions, while low-frequency components (the part away from the center) represent
overall shapes and smooth variations, such as directional gradients. A balanced representation of
both high and low frequencies is essential for a robust understanding of image content. Given an
image tensor z ∈ Rc×h×w output by a specific operator (e.g., SA), the Spatial Fourier Spectrum
visualization can be made as follows:

1. Compute the Fourier transform for each channel {zi}ci=1 ∈ Rh×w:

Fi(u, v) = F{zi(x, y)} =

h−1∑
x=0

w−1∑
y=0

zi(x, y)e
−2πi(ux

h
+ vy

w ), (5)

in case we using Euler’s formula:

e−2πiθ = cos(2πθ)− i sin(2πθ), (6)

we can express the Fourier transform as:

Fi(u, v) =

h−1∑
x=0

w−1∑
y=0

zi(x, y)
(
cos

(
2π

(ux
h

+
vy

w

))
− i sin

(
2π

(ux
h

+
vy

w

)))
. (7)

2. Compute the magnitude spectrum:

|Fi(u, v)| =
√

Re(Fi(u, v))2 + Im(Fi(u, v))2, (8)

where the real part Re(·) and imaginary part Im(·) indicates the modelling of cosine components
and sine components of the input signal, respectively. They can be illustrated as:

Re(Fi(u, v)) =

h−1∑
x=0

w−1∑
y=0

zi(x, y) cos
(
2π

(ux
h

+
vy

w

))
,

Im(Fi(u, v)) = −
h−1∑
x=0

w−1∑
y=0

zi(x, y) sin
(
2π

(ux
h

+
vy

w

))
.

(9)

3. Average the magnitude spectrum over channels:

Average Spectrum(u, v) =
1

c

c∑
i=1

|Fi(u, v)|2 (10)
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4. Visualization with logarithmic scaling:

Visualized Spectrum(u, v) = log(1 + Average Spectrum(u, v)) (11)

The mutual information correlation map compares the mutual information between each pair
of channels in an image tensor z ∈ Rc×h×w. It reveals the information redundancy among
channels based on Information Bottleneck (IB) theory. For an image tensor processed by a spe-
cific operator (e.g., SA), lower inter-channel redundancy indicates greater feature diversity and
a broader pattern representation boundary within a given channel width, which statistically re-
duces the risk of overfitting and enhances both robustness and parameter-efficiency. We use the
sklearn.metrics.mutual info score package to calculate the numerical approximation of mutual in-
formation between different channels within the same feature. The calculation and visualization
process can be conducted as follows.

1. Define channel-wise mutual information:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
. (12)

2. Compute mutual information for each channel pair (zi, zj). ∈ Rh×w:

I(zi; zj) =
∑
x∈zi

∑
y∈zj

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, i, j ∈ {c}. (13)

This results in a 2D mutual information matrix:

Mi,j = I(zi; zj), for i, j = 1, . . . , c. (14)

3. The mutual information matrix (M) can be visualized using a heat map.

The channel-wise kernel distribution map intuitively displays the information diversity as well
as the representation boundary of an image tensor z ∈ Rc×h×w. It computes the stochastic neigh-
bour embedding of z to shows the relative position of patterns captured by each individual channel
(Rh×w) in the feature embedding space. It can be made as follows.

1. 0-1 standardization:

z′i(x, y) =
zi(x, y)−min(zi)

max(zi)−min(zi)
. (15)

2. Flatten the spatial dimenssion:

Zflat = reshape(z′, (c, h · w)). (16)

3. Dimensionality projection using t-SNE (Van der Maaten & Hinton, 2008).:

Ztsne = t-SNE(Zflat, n components = 3). (17)

4. 3D visualization
Plot(Ztsne[:, 0],Ztsne[:, 1],Ztsne[:, 2]). (18)

Please note that we use the t-SNE algorithm to implement the dimensionality projection. Different
algorithms (e.g., traditional PCA) may result in some differences in absolute locations.

A.2 COMPREHENSIVE VISUALIZATIONS.

We present additional comparisons regarding the kernel properties of our SCFormer versus existing
representation networks in Fig. 7. Using the same input image, we track variations in feature kernel
properties in stages 1, 2, and 4 for a comprehensive perspective.

As illustrated in Fig. 7, all comparison networks retain low-level and high-frequency information
to varying extents in stage 1, but typically diminish high-frequency information as the network
progresses deeper into stages 2 and 4. In contrast, our SCFormer captures a more diverse range of
frequency-level information in stage 1 and maintains this diversity through stage 4, resulting in a
broader representation boundary for the same input. The kernel distribution visualizations further
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Figure 7: Overall Kernel property visualization for features output by the last token mixer at stages
1, 2, and 4. We compare our SCFormer-L with PoolFormer-S36, Swin-Tiny, and PvTv2-B2. They
have similar parameter budgets.

support this observation, revealing that the compared methods often overfit to specific patterns (e.g.,
textures in low-frequency), leading to collapsed distributions. In contrast, SCFormer exhibits a
wider kernel distribution across all stages, indicating its resilience to overfitting and its continuous
effort to capture patterns with varying embedding distributions. These metrics evidently highlight
the superiority of our proposed SCFormer in capturing extensive and multilevel visual cues, which
are essential for attaining robust representation.

A.3 FINE-GRAINED VISUALIZATIONS OF SCA.

In order to give deeper and more intuitive explanations about why SCA boosts the robustness, we
track the feature flows during the SCA processing to visualize the property of each intermediate
feature. To better remove distractions, we chose the first SCA block in the SCFormer-L as the
specimen. The visualization results are presented in Fig. 8

Figure 8: Fine-grained visualization dring SCA processing. We track the feature flows in the first
SCA block of SCFormer-L to display the variation of feature properties.
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As presented in the visualization, we can notice that the descriptor with a square border (ds) tends
to capture low-level information while reducing high-frequency signals. Instead, descriptors with
asymmetric borders (dh and dw) tend to maintain high-frequency signals. As we have verified in
Fig.1 and 7 that existing ViTs tend to has weak capacity in representing high-level frequency
signals. This weakness, in part, can be regonized by their spatial modelling are made via local
descriptors with square borders before SA calculation. However, during the proposed SCA, we
choose to combine multiple local descriptors with square and asymmetric borders to perform a more
comprehensive spatial modeling, thus keeping the signal density and diversity for a more robust SA
calculation.

Furthermore, unlike existing SA that performed in an depth-wise manner (limited in individual
spatial maps), we choose to calculate the SA along channels for coordinating the spatial conditions
deconstructed by different descriptors; this schema, in principle, further boosting the representation
diversity to give a robust view. In the end of SCA, we employ a pixel-gating operation to fuse the
coordinating results with the structure template sampled from the V element. This key process can
keep the final output of SCA with semantic structures. Finally, as shown in Fig. 8, the output feature
of SCA not only captured rich frequency-level information (shown in the Fourier spctrum), but also
kept a low inter-channel information redundancy (shown in the mut-info map). These advantage
metrics validate the capacity of SCA in extending the feature representation boundary with high
information density and diversity, thus effectively boosting robustness.

A.4 ARCHITECTURE DETAILS OF SCFORMER

The architecture configurations of six SCFormers are shown in Tab. 7. They share the same struc-
ture, but vary in depth, width, channel expansion (Exp.) ratio, and the control parameter τ for SFFN.

Table 7: Architecture configurations for six SCFormer variants.
Module Output Res. Layer configuration

SCFormer
XXS XS S M ML L

Stem h
4
× w

4

Conv 3×3, BN, GELU
# Channels 24 32 40 48 64 72Conv 3×3, BN, GELU

Stage-1 h
4
× w

4
SCFormer Block

# Blocks 2 2 2 2 2 4

# Channel Exp. 8 4 4 4 4 4

Patch Embedding h
8
× w

8

Conv 3×3
# Channels 48 64 80 96 128 144BN,GELU

Stage-2 h
8
× w

8
SCFormer Block

# Blocks 2 2 2 2 4 4

# Channel Exp. 4 4 4 4 4 4

Patch Embedding h
16

× w
16

Conv 3×3
# Channels 120 160 200 200 300 320BN,GELU

Stage-3 h
16

× w
16

SCFormer Block
# Blocks 4 6 8 10 12 16

# Channel Exp. 4 4 4 4 4 4

Patch Embedding h
32

× w
32

Conv 3×3
# Channels 192 256 320 384 512 512BN,GELU

Stage-4 h
32

× w
32

SCFormer Block
# Blocks 2 2 2 2 4 4

# Channel Exp. 4 4 4 4 3 4

Head 1× 1
GAP

# Output dim. 1000 1000 1000 1000 1000 1000LayerNorm
Linear

The control parameter τ for SFFN h ∗ w/16 h ∗ w/8 h ∗ w/8 h ∗ w/8 h ∗ w/8 h ∗ w/4
FLOPs (G) 0.3 0.6 1.0 1.4 3.4 5.2

Parameters (M) 2.0 3.9 6.7 11.8 22.9 31.4

A.5 IMAGENET-1K EXPERIMENTAL SETTINGS

Detailed ImageNet-1k experimental settings for SCFormers are outlined in Tab. 8 to reproduce the
performance reported in our paper. This setting is well aligned with most of the SOTA models
compared (Vasu et al., 2023a; Shaker et al., 2023) in our main paper. Note that we do not use
knowledge distillation in our main paper, and we offer the performance under knowledge distillation
in the Appendix A.3.
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Table 8: Detailed experimental settings on ImageNet-1k dataset.
SCFormers XXS XS S M ML L
Train resolution 224×224
Test resolution 224×224
Train epochs 300
Batch size 2048
Optimizer AdamW
LR 2e-3
LR decay Cosine
Weight decay 0.01 0.015 0.02 0.025 0.025 0.05
Warmup epochs 5
Warmup schedule Linear
Label smoothing 0.1
Dropout
Stoch. depth 0.02 0.05 0.1 0.2
Repeated Aug. ✓

H. flip ✓
RRC ✓
Auto Augment ✓ ✓ ✓ ✓
Mixup alpha 0.1 0.2 0.5 0.6 0.8
Cutmix alpha 1.0 1.0 1.0 1.0 1.0
Erasing prob. 0.25
PCA lighting
Distillation
SWA
EMA deacy 0.9995
Layer scale
Sync. BN
CE loss ✓
BCE loss
Mixed precision ✓

Test crop ratio 0.9

Table 9: ImageNet-1k classification accuracy under knowledge distillation.
Model Param (M) FLOPs (G) Top-1 Acc. (%)

SCFormer-XXS 2.0 0.3 74.8
SCFormer-XS 3.9 0.6 78.7
SCFormer-S 6.7 1.0 80.9
SCFormer-M 11.8 1.4 82.0
SCFormer-ML 22.9 3.4 83.4
SCFormer-L 31.4 5.2 84.0

A.6 IMAGENET-1K ACCURACY UNDER KNOWLEDGE DISTILLATION

Here, we report the performance of our SCFormer on the ImageNet-1k dataset under knowledge
distillation. Specifically, we use RegNetY-16GF (Radosavovic et al., 2020) as a teacher model for
hard distillation, similar to (Shaker et al., 2023; Vasu et al., 2023a). The additional settings are the
same as our image classification training/testing procedure and are listed in Tab. 9. It should be noted
that when using knowledge distillation, different training seeds matter to the accuracy (±0.25). We
set the random seed to 0 by default. During the distillation training, we do not use the additional
distillation head as (Shaker et al., 2023; Touvron et al., 2021). Instead, we use the same classification
head for distillation and classification.

As shown in Tab. 9, knowledge distillation can significantly improve classification performance,
which is widely used in existing attention-based backbones and some of our compared methods
(Shaker et al., 2023; Maaz et al., 2022). Please note that we do not use this distillation in our main
paper and report the performance here for reference.

A.7 ROBUSTNESS EVALUATION UNDER ADVERSARIAL ATTACK

We perform robustness evaluation under adversarial attack to further validate the stability and ro-
bustness of the proposed SCormer. Specifically, we choose the classic FGSM (Goodfellow et al.,
2014) and PGD (Madry et al., 2017) as two adversarial attack algorithms to attack the test sam-
ples in ImageNet-1k classification. To ensure a fair comparison with existing models, we adopt the
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attack settings delineated in (Mao et al., 2022) to produce our performance. For an equitable com-
parison, we limit our performance comparisons to those existing models that have their adversarial
attack performance officially reported in (Mao et al., 2022). We report the clean ImageNet-1k top-1
accuracy and accuracy under two types of adversarial attack algorithms in Tab. 10, respectively.

Table 10: Robustness evaluation under adversarial attack.

Model Params
(M)

Latency
(ms)↓

ImageNet-1k Top-1 Acc. (%)
Clean ↑ FGSM ↑ PGD ↑

RVT-Ti (Mao et al., 2022) 10.9 37.1 79.2 42.7 18.9
SCFormer-M 11.8 29.2 81.6 43.9 19.1
Swin-T (Liu et al., 2021) 29.0 90.0 81.3 33.7 7.3
RVT-S (Mao et al., 2022) 23.3 86.7 81.9 51.8 28.2
SCFormer-ML 22.9 58.4 82.8 52.2 28.2

As shown in Tab. 10, the proposed SCFormer efficiently achieves excellent robustness against ad-
versarial attack algorithms. In particular, our SCFormer-M surpasses RVT-Ti, a model designed
for defense against adversarial attacks, by achieving 1.2% and 0.2% higher top-1 accuracy under
FGSM and PGD attacks, respectively. Compared with the RVT-S, the SCFormer-ML also achieves
a superior robustness-speed tradeoff with significantly higher clean accuracy.

A.8 PYTORCH IMPLEMENTATION OF PROPOSED COMPONENTS

To better understand our methods and their procedures, we give the simplified Pytorch implemen-
tation codes of our proposed spatial condition coordination attention, local representation block of
inception, and switchable feed-forward network in Listing 1, Listing 2, and Listing 3, respectively.

Listing 1: PyTorch implementation of the spatial Coordination attention.

import torch
import torch.nn as nn

class SpatialConditionDeconstruct(nn.Module):
def __init__(self, in_dim, ratios, pooling_proj=True, pooling_proj_rate=0.5):

super(SpatialConditionDeconstruct, self).__init__()
self.iter = len(ratios)
self.poolings = nn.ModuleList()
self.pooling_proj = pooling_proj
self.act = nn.GELU()
if pooling_proj:

embed_dim = int(in_dim * pooling_proj_rate)
self.proj = nn.ModuleList()
self.norm_layer = nn.LayerNorm(embed_dim)

for i in range(self.iter):
self.poolings.append(nn.AvgPool2d(kernel_size=(ratios[i][0], ratios[i][1])))
if pooling_proj:

self.proj.append(nn.Conv2d(in_dim, embed_dim, kernel_size=1, stride=1, ))

def forward(self, x):
B, C, H, W = x.shape
pools = []
if self.pooling_proj:

for i in range(self.iter):
pool = self.poolings[i](x)
pool = self.proj[i](pool)
pools.append(pool.view(B, C // 2, -1))

pools = torch.cat(pools, dim=2).permute(0, 2, 1)
pools = self.norm_layer(pools)

else:
for i in range(self.iter):

pools.append(self.poolings[i](x).view(B, C, -1))

pools = self.act(pools)
return pools

class SpatialCoorAtt(nn.Module):
def __init__(self, in_dim, num_heads, pool_ratios, attn_drop=0., proj_drop=0., qkv_bias=

True,
pooling_proj=True,
pooling_proj_rate=0.5):

super(SpatialCoorAtt, self).__init__()

self.scale = nn.Parameter(torch.ones(num_heads, 1, 1))
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self.num_heads = num_heads
self.head_dim = in_dim // num_heads

if pooling_proj:
embed_dim = int(in_dim * pooling_proj_rate)
self.qk = nn.Linear(embed_dim, 2 * in_dim, bias=qkv_bias)

else:
self.qk = nn.Linear(in_dim, in_dim, bias=qkv_bias)

self.v = nn.Sequential(nn.Conv2d(in_dim, in_dim, kernel_size=1, stride=1, padding=0,
bias=False), nn.BatchNorm2d(in_dim))

self.attn_drop = nn.Dropout(attn_drop)

self.proj = nn.Conv2d(in_dim, in_dim, kernel_size=1, stride=1)

self.proj_drop = nn.Dropout(proj_drop)

self.dconv = nn.Sequential(nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=1, padding=1,
groups=in_dim, bias=False), nn.BatchNorm2d(in_dim), nn.GELU(),)

self.mdp = SpatialConditionDeconstruct(in_dim, pool_ratios, pooling_proj,
pooling_proj_rate)

def forward(self, x):
B, C, H, W = x.shape
N = H * W

qk = self.mdp(x)
qk = self.qk(qk).reshape(B, -1, 2, self.num_heads, self.head_dim)
qk = qk.permute(2, 0, 3, 1, 4)
q, k = qk[0], qk[1]

v = self.v(x)
v_ = v

v = v.reshape(B, C, N).permute(0, 2, 1)

v = v.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)

q = q.transpose(-2, -1).contiguous()
k = k.transpose(-2, -1).contiguous()
v = v.transpose(-2, -1).contiguous()

q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
x = (q @ k.transpose(-2, -1).contiguous()) * self.scale
x = x.softmax(dim=-1)
x = self.attn_drop(x)

x = (x @ v).reshape(B, C, H, W)
x = x + x * self.dconv(v_) # structure-prior gating
x = self.proj(x)
x = self.proj_drop(x)
return x

Listing 2: PyTorch implementation of the inception local representation block.

import torch.nn as nn
import torch

class InceptionLocalRep(nn.Module):
def __init__(self, in_dim, c_alpha, c_beta, c_phi):

super(InceptionLocalRep, self).__init__()
assert c_alpha + c_beta + c_phi == in_dim
self.c_alpha, self.c_beta, self.c_phi = c_alpha, c_beta, c_phi
self.conv_h = nn.Conv2d(in_channels=c_alpha,

out_channels=c_alpha,
kernel_size=(3, 1),
stride=1,
padding=(1, 0),
groups=c_alpha,
bias=False)

self.conv_w = nn.Conv2d(in_channels=c_beta,
out_channels=c_beta,
kernel_size=(1, 3),
stride=1,
padding=(0, 1),
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groups=c_beta,
bias=False)

self.conv_s = nn.Conv2d(in_channels=c_phi,
out_channels=c_phi,
kernel_size=7,
stride=1,
padding=3,
groups=c_phi,
bias=False)

def forward(self, x):
x1, x2, x3 = torch.split(x, [self.c_alpha, self.c_beta, self.c_phi], dim=1)
x1, x2, x3 = self.conv_h(x1), self.conv_w(x2), self.conv_s(x3)
x = torch.cat((x1, x2, x3), dim=1)
return x

Listing 3: PyTorch implementation of the SFFN.

import torch.nn as nn

class SFFN(nn.Module):
def __init__(self, in_dim, exp_rate, drop_out_rate, mlp_bias, switch):

super(SFFN, self).__init__()
embed_dim = in_dim * exp_rate
self.conv_exp = nn.Conv2d(in_dim, embed_dim, kernel_size=1, stride=1, bias=mlp_bias)
self.conv_squ = nn.Conv2d(embed_dim, in_dim, kernel_size=1, stride=1, bias=mlp_bias)
self.act = nn.GELU()
self.drop = nn.Dropout(drop_out_rate) if drop_out_rate > 0 else nn.Identity()

self.mid_conv = nn.Sequential(
nn.Conv2d(embed_dim, embed_dim, 3, 1, 1, groups=embed_dim),
nn.GELU(),

) if switch else nn.Identity()

def forward(self, x):
x = self.conv_exp(x)
x = self.act(x)
x = self.drop(x)
x = self.mid_conv(x)
x = self.conv_squ(x)
x = self.drop(x)
return x

A.9 LIMITATIONS AND FUTURE WORKS

In this paper, we have explored the design of vision backbones with a focus on enhancing robust-
ness and efficiency. Our proposed SCA and associated components demonstrate superior accuracy,
efficiency, and robustness compared to existing models at lightweight scales. However, our ability
to validate these designs at larger scales with more parameters is constrained by the availability of
computational resources. With additional computational support, we plan to undertake thorough
design and validation of larger models (> 50M) to further our understanding of robustness.

Currently, our architecture hyperparameters are determined empirically, which may limit the full
potential of our designs to achieve optimal performance. Moving forward, we intend to dive into
architecture search strategies specifically tailored for enhancing robustness. This will involve the
automatic selection of architecture hyperparameters, paving the way for more sophisticated and
robust vision backbone designs.
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