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Abstract
Understanding human mental states—such as in-
tentions and desires—is crucial for natural AI-
human collaboration. However, this is challeng-
ing because human actions occur irregularly over
time, and the underlying mental states that drive
these actions are unobserved. To tackle this, we
propose a novel framework that combines a logic-
informed temporal point process (TPP) with amor-
tized variational Expectation-Maximization (EM).
Our key innovation is integrating logic rules as pri-
ors to guide the TPP’s intensity function, allowing
the model to capture the interplay between actions
and mental events while reducing dependence on
large datasets. To handle the intractability of men-
tal state inference, we introduce a discrete-time
renewal process to approximate the posterior. By
jointly optimizing model parameters, logic rules,
and inference networks, our approach infers entire
mental event sequences and adaptively predicts
future actions. Experiments on both synthetic and
real-world datasets show that our method outper-
forms existing approaches in accurately inferring
mental states and predicting actions, demonstrat-
ing its effectiveness in modeling human cognitive
processes.

1. Introduction
Rapid advancement of AI has spurred interest in developing
autonomous agents that collaborate with humans in tasks
such as healthcare, education, and robotics (Carroll et al.,
2019; Puig et al., 2020; Strouse et al., 2021). Effective col-
laboration requires AI agents to understand human actions
and infer latent intentions—mental states that drive behav-
ior but remain unobserved. This capability is essential for
enabling agents to provide timely, context-aware assistance
in dynamic environments.
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Human behavior, though complex, often follows simple,
generalizable logic. In Fig.1, preparing oatmeal involves
sequential steps (e.g., taking a cup, adding oats, and pour-
ing milk) governed by underlying intentions like wanting
oatmeal soaked in milk (Damen et al., 2018). Logic rules
that define the mutual relationship between intentions and
actions provide compact, interpretable representations of
this knowledge. Using such rules, AI systems can better
predict behavior and infer mental states.

Prior work has focused on forecasting actions from observed
sequences (Abu Farha et al., 2018; Cramer et al., 2021;
Darvish et al., 2020), but critical challenges remain. First,
actions and mental states occur irregularly in time: inten-
tions shift unexpectedly (e.g., abandoning a task due to
distraction), and the time intervals between actions encode
contextual cues about these shifts. Ignoring temporal irreg-
ularity risks misinterpreting intentions, as delays or abrupt
transitions often signal evolving goals (Hu & Clune, 2023;
Zolotas & Demiris, 2022). Second, mental states are dy-
namic and interdependent: past actions influence intention
formation, while intentions guide future behavior. Inferring
the entire sequence of mental events—when and what inten-
tions occur—requires modeling these mutual dependencies
with precise temporal granularity. Traditional methods strug-
gle to disentangle irregular, intertwined processes, leading
to oversimplified or stochastic predictions.

To address these challenges, we propose a novel framework
that unifies logic-informed temporal point processes (TPPs)
and amortized variational inference to model the bidirec-
tional dynamics between irregular human actions and latent
mental states. Our approach jointly learns to infer inten-
tions, predict future actions, and discover interpretable logic
rules—all within a single, cohesive learning paradigm.

Central to our framework is a logic-informed TPP, where do-
main knowledge is encoded as probabilistic logic rules that
shape the intensity functions governing actions and mental
events. These rules (Li et al., 2020; Mei et al., 2020), act
as priors to constrain the learning space, reducing reliance
on vast datasets while preserving interpretability. Crucially,
our model captures two-way interactions: past actions prob-
abilistically trigger or reset intentions (e.g., prolonged inac-
tivity may signal a shift in goals), while inferred intentions
guide the likelihood and timing of future actions.
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Figure 1. An illustrative example of complex interaction between intentions and action events: at 0m33s, the individual forms the intention
to have oatmeal with milk, and at 2m21s, another intention arises, focused on keeping the table clean. These intentions are driven by past
actions and consequently result in a sequence of future actions.

To address the challenge of latent mental states, we develop
an amortized variational EM algorithm that alternates be-
tween the following steps:

E-step: Refining an amortized inference network to ap-
proximate the posterior distribution of mental states. The
inference network is modeled as a discrete-time renewal
process (DT-RP) with neural hazard functions, effectively
capturing intention resetting and long-term dependencies.

M-step: Optimizing continuous TPP parameters and dis-
crete logic rules. The logic rule set evolves dynamically dur-
ing training: predefined rules bootstrap learning, while an
automated column generation strategy (Barnhart et al., 1998;
Li et al., 2021) expands the rule space with data-driven pat-
terns (e.g., discovering new intention-action correlations).

The integration of symbolic priors with neural inference
allows our model to adapt to individual behavioral nuances
while maintaining explainability. Once trained, the model
predicts future actions by inferring mental events and sam-
pling action timing/type. A backtracking mechanism is
used to ensure temporal consistency by checking for mental
state shifts between observed and predicted actions, aligning
predictions with inferred intentions.

Our contributions can be summarized as follows: (i) We
propose a logic-informed TPP framework that captures irreg-
ularly spaced actions and latent mental states. By integrating
logic rules as symbolic priors, our approach enhances data
efficiency and ensures model interpretability. (ii) We intro-
duce a variational EM algorithm with a DT-RP for efficient
and scalable inference of latent mental event sequences. The
M-step jointly optimizes model parameters and the logic
rule set, leveraging automated rule discovery to reveal novel
and overlooked intention-action patterns. (iii) Extensive
experiments demonstrate the effectiveness of our method in
inferring complex mental event sequences and accurately
predicting future actions, advancing human-centric AI.

2. Preliminaries
We present key foundations for modeling event sequences.
TPPs will be used to model the intertwined generative pro-

cesses of action and mental events, while DT-RPs will be
introduced to approximate latent mental state posteriors.

2.1. Temporal Point Processes (TPPs)

Intensity Function TPPs model the occurrence of events
in continuous time through intensity functions that encode
dependencies on historical context. Let X denote event
types (e.g., actions like adding oats or mental states like
cooking intent). Each event ei := (ti, xi) occurs at time ti
with type xi ∈ X , and the history up to time t is H(t) =
{ej | tj < t}. The conditional intensity λx(t | H(t)) quan-
tifies the instantaneous rate of event x at time t:

λx(t | H(t)) = lim
∆t→0

P(x occurs in [t, t+∆t) | H(t))
∆t

.

A classic example is the Hawkes process (Hawkes, 1971;
Zuo et al., 2020), which models self- and mutual-excitation
between event types. Its intensity for type x is:

λx(t | H(t)) = µx +
∑

ej∈H(t)

αx,xje
−βx,xj

(t−tj),

where µx is the base rate, αx,xj
defines how strongly a past

event ej (of type xj) excites future events of type x, and
βx,xj controls the decay of this influence.

Learning and Sampling For observed events e =
{e1, . . . , eN} over [0, T ], the log-likelihood is:

log pθ(e) =

N∑
i=1

log λxi (ti | H (ti))−
∫ T

0

∑
x∈X

λx(τ | H(τ))dτ,

(1)

where θ includes TPP parameters (e.g., µx, αx,xj
, βx,xj

for
Hawkes process). By maximizing this likelihood, we learn
the generative dynamics of the events encoded in θ. Sam-
pling events in TPPs often requires iterative methods like
thinning algorithm (Ogata, 1981; Rasmussen, 2018), where
candidate event times are proposed and accepted/rejected
based on the intensity function.

Modeling Actions and Mental States While TPPs like
neural Hawkes processes capture complex triggering pat-
terns, their dense parameterization poses challenges. The
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pairwise parameters are opaque, making it hard to explain
how actions or mental states influence each other. Learn-
ing all pairwise interactions requires large datasets, which
are scarce in behavioral domains. Moreover, these models
cannot easily represent conditional triggering logic (e.g.,
“if A and B occur, trigger C”), which is essential for cap-
turing complex mental state-behavior relationships. To ad-
dress these limitations, we integrate logic rules as inductive
biases, grounding the model in domain knowledge. For
example, a rule like “cook meal ← hunger ∧ available
ingredients” explicitly links desire to actions, pruning irrele-
vant connections (e.g., setting αx,xj

= 0 for irrelevant pairs)
and reducing need for dense parameter learning. Crucially,
these rules can be predefined or learned in our framework,
adapting to new scenarios and improving generalization.
For more details, see Sec. 3.3.

2.2. Discrete-Time Renewal Processes (DT-RPs)

In our method, we propose using DT-RPs to approximate the
intractable posterior distribution of latent mental processes,
for ease of implementation.

Discretization and Hazard Rates Time horizon T is di-
vided into K = ⌈T/∆t⌉ grids Vk = ((k− 1)∆t, k∆t]. For
each event type x (e.g., mental states), the hazard function
hx(k) ∈ [0, 1] indicates the probability of x occurring in
Vk, given no x-events since last occurrence at grid k0, i.e.,

hx(k) = P (x in Vk | No x in Vk0+1, . . . , Vk−1) . (2)

Recall that in TPPs, the hazard rate corresponds to the instan-
taneous intensity function, which can exceed 1 (Rasmussen,
2018). In contrast, in DT-RPs, the hazard represents the con-
ditional probability of an event occurring within a discrete
time interval and thus restricted to values between 0 and 1.
Correspondingly, the survival probability Sx(k), indicating
likelihood of no x-events from k0 + 1 to k, is computed as

Sx(k) =

k∏
τ=k0+1

(1− hx(τ)) . (3)

From the definition, each event x “restarts its own clock”
upon occurrence, resetting the survival function to 1 by
updating k0.

Learning and Sampling Given the hazard function
hx(x), we sample the next x-event according to Alg. 2
in Appendix. A.1, using inverse transform sampling method.
With a hazard model parametrized by ϕ, the likelihood for
binary event indicators o(k) ∈ {0, 1}|X | over K grids is

qϕ(o) =

K∏
k=1

∏
x∈X

hx(k)
ox(k) (1− hx(k))

1−ox(k) , (4)

where ox(k) = 1 indicates that an event x occurs in the k-th
interval and ox(k) = 0 otherwise. This grid-wise factoriza-
tion enables efficient training by decomposing likelihoods
across time and event types.

Efficient Computation and Sampling We use DT-RPs to
approximate mental state posteriors because they allow for
efficient sampling and likelihood evaluation. Unlike TPPs,
which rely on costly iterative thinning and numerical inte-
gration, DT-RPs divide time into intervals. This approach
enables fast sampling through cumulative hazards and cal-
culates event probabilities separately for each interval. By
prioritizing simplicity and speed over continuous-time pre-
cision, DT-RPs align well with the amortized variational
EM framework’s need for rapid latent event sampling and
repeated likelihood evaluations.

3. Amortized Variational EM
Human decision making is inherently shaped by complex
cognitive processes that remain largely unobservable. We
propose an amortized variational EM framework built upon
event data models. This framework, visualized in Fig. 2, can
learn coupled generative processes of actions and mental
events, infer latent mental events and predict future actions.
Consider the following action and mental events:

• Action: Observed sequence a = {(tai , xa
i )}

Na

i=1, where
xa
i ∈ A (e.g., “boil water”).

• Mental: Latent sequence m = {(tmi , xm
i )}Nm

i=1, where
xm
i ∈M (e.g., “cooking intent”).

We use the logic-informed TPPs (TLPP) to model the in-
terleaved generative processes between action and mental
events, parameterized by pθ(a,m), where θ contains both
continuous logic model parameters and the discrete rule set.
Details of the logic-informed model is provided in Sec. 3.1.
To approximate the intractable posterior for latent mental
states pθ(m | a), we use a DT-RP as the variational distri-
bution qϕ(m | a). The parameters ϕ are amortized across
sequences via a neural encoder:

qϕ(m | a) = NNϕ(a), (5)

where NNϕ employs an attention-mechanism to extract em-
beddings from a, dynamically shaping DT-RP’s hazard.
Details of this neural hazard model are provided in Sec. 3.2.

Our goal is to optimize both qϕ(m | a) that enables latent
mental event inference and pθ(a,m) that enables rule min-
ing and events dynamic learning, through Evidence Lower
Bound (ELBO), which serves as the objective for training:

L(θ, ϕ;a) = Eqϕ [log pθ(a,m)]− Eqϕ [log qϕ(m | a)]
= Eqϕ [log pθ(a,m)] +H [qϕ(m | a)] . (6)
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Figure 2. Model architecture. E-Step: freezing θ to optimize ϕ for training encoder. M-Step: freezing ϕ to optimize θ for training decoder.
Prediction: the prediction with backtracking mechanism is presented in dashed box.

3.1. Decoder (Logic-Informed TPP pθ(a,m))

The decoder models joint dynamics of action and mental
events, which integrates domain-specific temporal logic
rules to capture the structured dependencies between events.

Event Representation and Temporal Logic We unify
action and mental event types into a single set X = A∪M,
where x ∈ X is represented as a Boolean variable:

x(t) =

{
1 if an event of type x occurs at time t

0 otherwise

For observed actions a and inferred mental states m, these
variables are grounded as xa (tai ) and xm (tmi ).

Domain knowledge is encoded as temporal logic rules F ,
which define structured dependencies between events. Each
horn rule (i.e., “if-then” rule) f ∈ F follows:

f : xhead ←

 ∧
xu∈Xf

xu

∧ ∧
Rj∈f

Rj (x
u, xv)


︸ ︷︷ ︸

Body conditions

where the head of the rule is the target event xhead ∈ X
influenced by the rule, the body conditions are the log-
ical conjunction of event occurrences (xu) and tempo-
ral relations (Rj). The temporal relations are constraints
like Before (xu, xv) ,After (xu, xv), or Equal (xu, xv),
grounded in event timestamps.

Dynamic Rule Influence with Decay The influence of
past events on current intensities decays over time. For each
rule f , the feature ϕf (H(t)) counts valid event combina-
tions in historyH(t) that satisfy the rule’s body, weighted
by an exponential decay:

ϕf (H(t)) =
∑

valid comb.

e−βf (t−τlast)

where τlast is the most recent event time in the combination,
and βf > 0 (can either be pre-defined or learned) controls
how quickly the rule’s influence diminishes. The intensity
for event type x combines base rates and rule contributions:

λx(t | H(t)) = µx +
∑
f∈Fx

wfϕf (H(t))

where µx is the base rate, wf is the rule weight,
and Fx are rules targeting x. The model parameters
θ =

[
[µx]x∈X ,F , [wf ]f∈F

]
include continuous base rates

[µx]x∈X and rule weights [wf ]f∈F , as well as discrete rule
set F = ∪x∈XFx (will also be refined during training).

For observed actions a and inferred mental states m, the
joint likelihood (according to Eq. (1)) is:

log pθ(a,m) =

Na∑
i=1

λxa
i
(tai | H(tai )) +

Nm∑
i=1

λxm
i
(tmi | H(tmi ))

−
∫ T

0

∑
x∈A∪M

λx(τ | H(τ))dτ. (7)

3.2. Encoder (Amortized Posterior qϕ(m | a))

The encoder leverages DT-RPs to approximate posterior
of latent mental states, combining sampling efficiency and
tractable likelihoods for scalable variational inference. Its
novelty lies in its neural hazard architecture, dynamically
synthesizing action context, mental history, and temporal
dynamics to parameterize hazard functions. Our encoder
builds the Neural Hazard Architecture by integrating the
following critical components:

Action Context via Cross-Attention Observed actions
a = {(tai , xa

i )} are encoded into timeline-aligned embed-
dings using attention mechanism. Each action is embedded
as xi = ui + zabs (t

a
i ), where ui is a learnable type embed-

ding and zabs encodes absolute timestamps. Discrete time
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grids Vk = ((k − 1)∆t, k∆t] are similarly embedded as
lk = zabs (k∆t). A cross-attention layer aligns grids with
historical actions:

Sk = Softmax
(
QK⊤/

√
D
)
V ,

where Q = LWQ; K,V = XWK ,XW V (8)

where L = [l1, ..., lk, ...] and X = [x1, ...,xi, ...] represent
stacked timeline queries and stacked action keys/values,
respectively. The output Sk ∈ RD captures entire action
context relevant to grid Vk, ensuring temporal alignment
critical for inferring mental states.

Hazard Function Design The hazard rate hx(k) for men-
tal event type x at grid k is constructed as:

hx(k) = σ( fx (Sk,ηk)︸ ︷︷ ︸
type-specific emission

+ gx (k − kx0 )︸ ︷︷ ︸
type-specific timing

), (9)

where fx : RD × RD′ → R is a type-specific final layer
for each x, gx : N → R is a type-specific MLP modeling
elapsed time k − kx0 since last x-event, ηk ∈ RD′

is mental
history state (shared across types), updated autoregressively,
and σ(·) is sigmoid function, constraining hx(k) ∈ (0, 1).

Autoregressive Updates After sampling o(k) ∈
{0, 1}|M| via Alg. 2, the mental history updates as

ηk+1 = RNN(ηk,o(k))

resetting kx0 to k if ox(k) = 1. This enables dynamic,
context-sensitive hazard modeling.

This design of hazard function balances parameter efficiency
(shared initial layers across event types) with expressivity
(type-specific final layers for emissions), which is critical
for modeling heterogeneous mental processes. The hazard
parameter ϕ is learned via E-step, where the entropy term is
explicitly defined using hazard-based likelihood, i.e.,

H [qϕ(m | a)] = −
K∑

k=1

∑
x∈M

[
hx(k) log hx(k)

+ (1− hx(k)) log (1− hx(k))
]
. (10)

where hx(k) is parameterized as in Eq. (9). This follows
because each term in qϕ(o) is a Bernoulli distribution with
parameter hx(k) as in Eq. (4). Sampling m ∼ qϕ(m | a)
can be efficiently implemented via Alg. 2, which leverages
inverse transform sampling over discrete grids.

3.3. Adaptive Rule Learning via Column Generation

To accommodate various applications, especially those lack-
ing prior knowledge datasets, we introduce an adaptive
rule learning module. It allows us to implement tailored

strategies for different scenarios, including autonomous
rule learning and the use of predefined rules. We use col-
umn generation algorithm which maximizes the expected
complete-data log-likelihood over sampled mental states
m ∼ qϕ(m | a), computed during the M-step. The algo-
rithm alternates between optimizing continuous parameters
θ̃ =

[
[µx]x∈X , [wf ]f∈F

]
(Master Problem) and refines the

temporal logic rule set F (Sub-Problem).

Master Problem (Continuous Parameter Optimization)
Given samples

{
m(s)

}S

s=1
∼ qϕ(t+1)(m | a) and the cur-

rent rule set Fj optimize the continuous parameters θ̃ as

θ̃∗j = argmax
θ̃

1

S

S∑
s=1

log pθ

(
a,m(s)

)
︸ ︷︷ ︸

Expected log-likelihood

−Ω
(
{wf}f∈Fj

)
,

s.t. wf ≥ 0 (∀f ∈ Fj) (11)

where the log-likelihood for a sample (a,m(s)) is computed
as in Eq. (7), Ω(·) is a differentiable rule complexity regu-
larization term, such as α

∑
f∈Fj

w2
f . This regularization

encourages simpler rules while preventing overfitting.

Sub-Problem (Rule Proposal via Sampled Gradients)
New rules are proposed by identifying those with the most
negative expected reduced cost, computed over samples{
m(s)

}S

s=1
:

∆F = {f /∈ Fj | ReducedCost(f) < 0}

where the reduced cost for rule f is defined as:

ReducedCost(f) = − 1

S

S∑
s=1

∂ log pθ
∂wf

∣∣∣∣∣
m(s)

+
∂Ω

∂wf

∣∣∣∣
θ̃∗j

The gradient ∂ log pθ

∂wf

∣∣∣
m(s)

is derived from the sam-

pled mental events m(s). Among all candidate rules,
the one with the most negative reduced cost (i.e.,
argminf ReducedCost(f)) is prioritized for addition to
Fj and obtain Fj+1. This ensures that the proposed rules
maximally improve the expected log-likelihood while ac-
counting for regularization. The algorithm for the column
generation is presented in Alg. 3, Appendix. A.2.

3.4. Learning Procedure

Now building blocks are prepared, we employ an amortized
variational EM algorithm that alternates between E-step and
M-step, with algorithm shown in Alg. 4, Appendix. A.3.

• E-Step: Amortized Variational Inference Update the
inference network ϕ to infer mental event trajectories from
actions:

ϕ(t+1) = argmax
ϕ

Eqϕ(m|a) [log pθ(t)(a,m)]+H [qϕ(m|a)]
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The gradient of the expectation term is estimated via the
REINFORCE estimator with a baseline c (e.g., empiri-
cal average) to reduce variance,∇ϕEqϕ [log pθ(a,m)] ≈
Eqϕ [∇ϕ log qϕ(m | a) · (log pθ(a,m)− c)]. The en-
tropy term H [qϕ(m|a)] has a closed-form expression
for DT-RPs as in Eq. (10), ensuring efficient optimization
via SGD.

• M-Step: Logic Model Parameter Update Maximize the
expected complete-data log-likelihood with respect to θ:

θ(t+1) = argmax
θ

E
q
(t+1)
ϕ (m|a) [log pθ(a,m)]

The expectation is approximated by sampling mental
event trajectories m ∼ qϕ(t+1)(m | a).

Comparison with VAEs Unlike standard VAEs, which
leverage the reparameterization trick for joint, differentiable
updates of θ (decoder) and ϕ (encoder) (Kingma, 2013;
Mehrasa et al., 2019), our framework employs staged E-M
steps, alternating between freezing θ to optimize ϕ (E-step)
and freezing ϕ to optimize θ (M-step). This modular ap-
proach mimics classical EM, reducing instability from com-
peting parameter updates while accommodating rule-based
refinement via column generation—a non-differentiable pro-
cess incompatible with VAE-style gradients. To ensure sta-
bility, we run the E-step to near-convergence (ELBO change
< ϵ) before each M-step, anchoring updates in reliable pos-
terior estimates.

4. Future Action Prediction
To predict future actions, we condition on both observed
actions a and inferred mental states m sampled from the
DT-RP posterior. The backtracking mechanism (as shown in
Alg. 1) ensures temporal coherence by dynamically check-
ing for mental state shifts between the last observed action
and the predicted next action. If a mental event (e.g., safety-
check intent) occurs in this interval, the sampler regenerates
predictions using the updated mental state, aligning actions
with the most recent intent.

5. Experiments
5.1. Experimental Setup

Datasets We conduct our experiments on synthetic and
real-world datasets. For synthetic datasets, we simulate two
datasets with same sample size (2000 sequences) and same
time horizon (15s), but with different number of predicates
and ground truth logic rules: i) Syn Data-1: 3 ground truth
rules, 1 mental predicates and 2 action predicates. Each se-
quence has 18.60 actions on average, ii) Syn Data-2: a more
complicated scenario with 4 ground truth rules, 2 mental
predicates and 2 action predicates. Each sequence has 13.25

Algorithm 1 Predicting Actions with Backtracking
1: Step 1: Infer Mental States
2: Given historical actions a, sample mental events m ∼

qϕ(m | a) over discrete time grids.
3: Define the augmented history: H(t) = a ∪m.
4: Step 2: Propose Candidate Action
5: Generate a candidate action time and associated value:

tanext, x
a
next ∼ pθ(· | H(t)).

6: Step 3: Check for Mental Events
7: For the interval [tlast, t

a
next), forward-sample mental

events in discrete time:
8: if a mental event occurs at tm ∈ [tlast, t

a
next):

9: - Update the history by integrating the mental
event at tm.

10: - Set tlast = tm.
11: - Regenerate tanext, x

a
next ∼ pθ(· | H(tm)).

12: Step 4: Iterate with Maximum Rounds
13: Repeat Steps 3 until no new mental events occur in

[tlast, t
a
next).

14: Step 5: Accept tanext, x
a
next as Final Predicted Action

actions on average. For real-world datasets, we select four
interesting datasets that capture human behaviors, which are
highly likely to be driven by human mental states: i) Hand-
Me-That (Wan et al., 2022): We focus on the change-state
type episodes and extract 503 sequences with average action
trajectory length 30.5. ii) Car-following (Li et al., 2023):
We extract 2000 car-following behavior sequences with 3.6
average action events and average time horizon 19.44s. iii)
MultiTHUMOS (Yeung et al., 2018): We focus only on the
basketball dataset with 2000 sequences. The time horizon
of each sequence is 208.32s with 38.41 actions on average.
iv) EPIC-Kitchen-100 (Damen et al., 2018): We focus on
two goals: cut onion and pour water, and extract 131 se-
quences contains related key actions. The time horizon of
each sequence is 500s with 5.41 actions on average. For
all the datasets, we split each dataset into 80%, 10%, 10%
train/dev/test by the total sequences. Detailed introduction
about datasets can be found in Appendix. B

During the training process, only the action trajectories are
given. For synthetic datasets, the ground truth mental events
are known, allowing us to compare the inferred mental
events with the ground truth. In real-world datasets, the
ground truth mental events are hidden, and thus we cannot
directly compare the accuracy of sampled mental events, but
resort to compare the accuracy of action predictions.

Baselines We choose state-of-the-art baselines consider-
ing three different fields: i) Neural Temporal Point Process
Model: RMTPP (Du et al., 2016), THP (Zuo et al., 2020),
PromptTPP (Xue et al., 2023), and HYPRO (Xue et al.,
2022), ii) Logic-Based Model: TELLER (Li et al., 2021)
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Rule-1: 𝑚! ← 𝑎!, 𝑎! before 𝑚!

Rule-2: 𝑚" ← 𝑎! ∧ 𝑎",
𝑎! before 𝑎",	
𝑎" before 𝑚"

Learned Rule Content

Rule-3: 𝑎! ← 𝑚" ∧ 𝑎",
𝑎" before 𝑚",	
𝑚" before 𝑎!

Rule-4: 𝑎" ← 𝑚!, 𝑚! before 𝑎"

Figure 3. Results on Syn Data-2. Left: fitted hazards of mental events for one sequence, corresponding sampled mental events, and
ground truth mental events. Middle: results of learned rules. Green stars indicate that the rules are correctly learned. Right: ground truth
rule parameters and learned parameters.

Category Model Syn Data-1 Syn Data-2 Hand-Me-That
ER% ↓ MAE ↓ ER% ↓ MAE ↓ ER% ↓ MAE ↓

Neural
TPP

RMTPP 48.37 ± 1.47 3.11 ± 0.09 52.14 ± 1.55 3.20 ± 0.07 79.86 ± 2.12 2.13 ± 0.10
THP 45.46 ± 1.32 2.83 ± 0.08 48.93 ± 1.29 2.99 ± 0.07 78.85 ± 1.85 2.08 ± 0.12

PromptTPP 43.47 ± 0.90 2.42 ± 0.06 47.51 ± 1.75 2.67 ± 0.11 76.35 ± 2.06 1.68 ± 0.08
HYPRO 44.53 ± 1.57 2.46 ± 0.10 47.85 ± 1.62 2.60 ± 0.05 75.88 ± 2.22 1.70 ± 0.08

Rule-based
Model

TELLER 46.72 ± 1.86 2.64 ± 0.15 49.15 ± 2.23 3.04 ± 0.17 78.28 ± 2.90 1.86 ± 0.14
CLNN 46.25 ± 1.42 2.57 ± 0.12 48.32 ± 1.74 2.82 ± 0.13 77.74 ± 1.95 1.82 ± 0.07
STLR 45.05 ± 1.76 2.52 ± 0.12 48.23 ± 1.83 2.72 ± 0.14 77.25 ± 1.81 1.80 ± 0.09

Gen.
Model

AVAE 45.13 ± 0.93 2.82 ± 0.08 47.53 ± 1.62 2.92 ± 0.10 80.12 ± 1.75 2.10 ± 0.12
GNTPP 47.22 ± 1.84 2.97 ± 0.17 51.86 ± 2.08 3.19 ± 0.16 85.38 ± 3.02 2.69 ± 0.12
VEPP 47.58 ± 1.58 3.01 ± 0.04 52.02 ± 1.52 3.22 ± 0.13 83.32 ± 2.47 2.51 ± 0.11

STVAE 46.81 ± 1.63 2.76 ± 0.07 49.27 ± 1.76 3.02 ± 0.10 79.12 ± 2.56 2.17 ± 0.09
– Ours* 41.72 ± 1.45 2.32 ± 0.09 46.85 ± 1.56 2.52 ± 0.15 75.28 ± 2.12 1.26 ± 0.07

Table 1. Comparison between our model and baselines on all synthetic datasets and Hand-Me-That datasets for prediction tasks. Bold text
represents the best result and underline denotes the second-best result. The performance is averaged over three different seeds and the
standard deviation is stored after “±”. Results from our model are shaded in red.

CLNN (Yan et al., 2023), STLR (Cao et al., 2024), iii) Gen-
erative Model: AVAE (Mehrasa et al., 2019), GNTPP (Lin
et al., 2022), VEPP (Pan et al., 2020), and STVAE (Wang
et al., 2023). For PromptTPP and HYPRO, we choose At-
tNHP (Yang et al., 2021) as their base model. For GNTPP,
we choose the revised attentive history encoder and VAE
probabilistic decoder. Details are in Appendix. C.

Comparison Metric Following common next-event pre-
diction task in TPPs (Du et al., 2016; Zuo et al., 2020; Yang
et al., 2023), our model as well as other baselines attempt to
predict the next event from history. Moreover, autoregres-
sively predicting multiple future events is also considered in
our experiments. We evaluate the event type prediction with
the Error Rate (ER%) and evaluate the event time prediction
with the Mean Absolute Error (MAE).

Figure 4. Performance of all the methods on predicting future 3
actions for Syn Data-2. Left: Comparison of event type average
error rate ER%. Right: Comparison of event time average MAE.

5.2. Experiments on Synthetic Dataset

Infer Latent Mental Events and Learn Rule Parameters
Results in Fig. 3 demonstrate a general alignment between
the locations of fitted high-hazard and the actual occur-
rences of mental events. The mental events sampled based
on these hazards also correspond reasonably well to the
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Category Model Car-Follow MultiTHUMOS EPIC-Kitchen
ER% ↓ MAE ↓ ER% ↓ MAE ↓ ER% ↓ MAE ↓

Neural
TPP

RMTPP 35.71 ± 1.33 2.64 ± 0.08 67.01 ± 2.64 8.72 ± 0.36 49.02 ± 2.38 41.17 ± 2.62
THP 33.43 ± 1.62 2.31 ± 0.08 62.32 ± 2.34 7.12 ± 0.28 42.19 ± 2.36 37.13 ± 2.30

PromptTPP 33.29 ± 0.87 2.11 ± 0.05 60.35 ± 1.92 7.00 ± 0.24 40.82 ± 1.80 33.21 ± 1.78
HYPRO 32.86 ± 1.70 2.03 ± 0.10 58.25 ± 2.42 6.98 ± 0.37 42.28 ± 2.02 35.98 ± 1.97

Rule-based
Model

TELLER 37.83 ± 2.96 3.41 ± 0.22 64.77 ± 2.53 7.52 ± 0.48 43.49 ± 2,35 38.05 ± 3.02
CLNN 37.09 ± 2.20 3.25 ± 0.18 63.10 ± 2.28 7.33 ± 0.34 42.86 ± 2.06 37.13 ± 1.89
STLR 32.75 ± 1.90 2.47 ± 0.12 63.38 ± 2.58 7.69 ± 0.32 43.37 ± 2.12 36.85 ± 1.79

Gen.
Model

AVAE 35.08 ± 1.52 2.95 ± 0.13 61.17 ± 2.09 8.32 ± 0.42 43.56 ± 2.00 39.24 ± 2.18
GNTPP 39.22 ± 1.77 3.89 ± 0.06 63.75 ± 2.30 8.37 ± 0.43 46.25 ± 2.17 38.11 ± 2.25
VEPP 40.25 ± 2.39 3.78 ± 0.16 64.23 ± 2.63 8.42 ± 0.50 47.56 ± 2.42 38.93 ± 2.03

STVAE 37.23 ± 1.78 3.18 ± 0.17 64.28 ± 2.64 8.24 ± 0.35 45.83 ± 2.09 37.48 ± 2.15
– Ours* 32.72 ± 2.90 1.80 ± 0.18 57.20 ± 2.32 6.76 ± 0.45 40.26 ± 2.20 32.19 ± 2.24

Table 2. Comparison between our model and baselines on Car-Follow, MultiTHUMOS, and EPIC-Kitchen datasets for prediction tasks.

actual time points of occurrence. As we infer latent mental
events through probability-based sampling, there is a certain
degree of error involved. However, this error remains within
an acceptable range. Our rule learning module correctly un-
covers most ground truth rules and accurately learns the rule
parameters. In particular, our model effectively addresses
the challenge of limited data by incorporating logic rules as
guidings. Even with a dataset size of only 2000 samples, it
achieves promising results.

Next Single Event Prediction The experiments on two
synthetic datasets to predict the next single future action
events are presented in Tab. 1, from which one can observe
that our model outperforms all the baselines.

Next Multiple Events Prediction Auto-regressive long-
horizon prediction may cause cascading error in TPP (Xue
et al., 2022). The HYPRO method considered in the base-
lines is purely data-driven, which is a flexible neural-based
model combined with expressive energy-based models. In
contrast, our method employs a neural black-box encoder,
but with a rule-based white-box decoder. The prediction
results rely on the learned logic rules. Our design choice in-
herently trades off interpretability for model expressiveness.
Encouragingly, with enhanced interpretability, our model
also mitigates cascading error. Shown in Fig. 4, in task of
predicting next 3 actions, our model achieves comparable
and even lower ER% and MAE than HYPRO.

5.3. Experiments on Real-World Dataset

Experiment Results On real-world datasets, we have de-
signed prediction tasks that are specifically tailored to the
characteristics of each dataset, taking into account variations
in the number of future events to be predicted. For Hand-Me-
That, Car-Following, and EPIC-Kitchen-100 datasets, we
focus on predicting the next action, whereas for MultiTHU-

MOS dataset, we aim to predict next 3 actions. The experi-
mental results, presented in Tab. 1 and Tab. 2, demonstrate
that our model performs exceptionally well in predicting
both future event types and timings, outperforming all other
methods. In practice, thanks to the inherent capabilities
of our rule learning module, we can employ two strategies
tailored to distinct scenarios: autonomous rule learning for
data-rich domains and template-guided learning for scenar-
ios with limited data but ample prior knowledge. In our ex-
periments, we provide prior rule templates to enhance model
performance as in Appendix. B. The rule learning module
can refine these templates and learn rules from scratch. In-
deed, our model uncovers overlooked rules with real-world
significance, as in Appendix. D.4. In the Appendix. D.2,
we also attempt to remove these prior knowledge. Despite
this, our model still achieved satisfactory results in pre-
diction tasks, showcasing its adaptability when applied to
real-world datasets lacking prior knowledge.

Prediction Examples As exemplified in Fig. 9 for Hand-
Me-That dataset and Fig. 10 for Car-Follow with analysis
in Appendix. D.5, our model demonstrates intriguing ap-
plicability in real-life scenarios. Given our model’s precise
inference of historical human intentions and accurate fore-
casting of future human actions with corresponding time
indexes, AI agents can promptly assist humans, significantly
enhancing convenience.

5.4. Scalability, Ablation Study, and Hyper-Parameter

The scalability experiments on synthetic datasets shown in
Fig. 5 validate that our model has potential to apply effec-
tively to large-scale datasets. On real-world datasets, as dis-
cussed in Appendix. D.1, our model also demonstrates good
scalability. The results of the ablation study on synthetic
datasets are shown in Tab. 3, with detailed analysis can be
found in Appendix. D.2, confirming that appropriate prior
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Figure 5. Scalability and the computation time cost of our model on synthetic datasets with varying sample size, ground truth temporal
logic rules, and latent state domains. All the experiments are conducted over three random runs and the standard error is reflected in the
shaded areas.

knowledge enhances the accuracy of model predictions, and
the inclusion of backtracking indeed improves prediction
accuracy, even when there exists noise in prior knowledge.
Based on empirical results, our hyper-parameter selection,
including time grid resolution and maximum number of
backtracking rounds, strikes a balance between model per-
formance and training efficiency, with experimental results
reported in the Appendix. E.1.

Ablation Settings Syn Data-1 Syn Data-2
Prior Back ER(%) MAE ER(%) MAE

✗ ✗ 48.28 3.13 52.50 3.24
✓ ✗ 45.64 2.64 48.37 2.86
✗ ✓ 41.72 2.32 46.85 2.52
✓ ✓ 42.08 2.19 46.43 2.47

Table 3. Ablation study on synthetic datasets. Our current selec-
tion of modules are highlighted in blue. “Prior” stands for prior
knowledge and “Back” stands for backtracking mechanism

6. Related Work
Neural Temporal Point Process (TPP) Recent advance-
ments in TPP field primarily concentrate on enhancing the
flexibility of intensity functions. Some approaches utilized
RNN and LSTM networks, such as (Du et al., 2016; Mei &
Eisner, 2017; Xiao et al., 2017; Mei et al., 2020). Others
leveraged Transformer architectures, including (Zuo et al.,
2020; Zhang et al., 2020; Zhu et al., 2021; Yang et al.,
2021). Despite these advancements, the reliance on black-
box models raises interpretability issues, particularly in
contexts requiring explanations for events. Recently, Xue
et al. (2022) combined the base TPP with an energy function
to overcome the cascading errors of predictions, which is
also what our model aims to avoid.

Logic-Informed Temporal Point Process Logic rules
effectively represent domain knowledge and hypotheses,
offering explanations for real-world event data. A pioneer-
ing work (Li et al., 2020) introduced a unified framework
integrating first-order logic rules to model event dynam-

ics through intensity of TPP. The follow-up work (Li et al.,
2021) employed column generation for data-driven rule min-
ing but faces scalability issues. Kuang et al. (2024) utilized
EM algorithm to optimize the rule set in a differential man-
ner. And the works of (Yan et al., 2023) and (Yang et al.,
2024) developed a differentiable neuro-symbolic framework
for modeling TPPs. These works improve efficiency but
overlook the importance of prior knowledge. Zhang et al.
(2021) incorporated neural TPP with temporal logic prior
knowledge, achieving good performance. In our paper, we
customized logic-informed TPPs to model actions and men-
tal events in continuous time. Using logic rules as priors, we
enhance the inference of mental states and improve future
action prediction, even with limited data.

Latent Mental Inference Considering human intentions
as latent variables, Wei et al. (2017) developed an EM-based
approach for their inference but only model intentions as
discrete latent variables. Mehrasa et al. (2019) and Zolotas
& Demiris (2022) leveraged the VAE architecture to synthe-
size human trajectories, albeit without addressing the inter-
pretability of the latent variables. Hidden Markov Models
(HMMs) have also been employed for modeling sequential
data and inferring hidden states. Jeong et al. (2021) inte-
grated HMMs with VAEs to infer human activity sequences.
The study by Cao et al. (2024) used learned spatial-temporal
rules and human intentions to guide actions, most similar to
our work. However, it overlooks the time interval informa-
tion between actions and mental events, where the elapsed
time also carries valuable contextual insights.

7. Conclusion
We propose a novel framework combining logic-informed
TPPs with amortized variational EM to jointly infer latent
mental states, learn the model parameters, and predict future
actions. Guided by temporal logic rules, our model performs
well even in small data scenarios and enhance interpretabil-
ity. The introduction of the backtracking mechanism further
improves the stability of our model on prediction tasks.
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Impact Statement
Our research proposes a novel framework combining logic-
informed temporal point processes with amortized varia-
tional Expectation-Maximization to jointly infer unobserved
mental states, learn the model parameters such as discrete
rule content and continuous rule parameters, and predict
future actions. Our method also holds practical significance.
By inferring latent mental events and incorporating rule
learning, our method enhances AI’s ability to understand
human thoughts and predict their actions, enabling timely
assistance and promoting human-AI collaboration. The
flexibility, adaptability, and interpretability showcase its
potential to inspire future research endeavors.
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Appendix Overview
• Section A presents key additional technical details, including pseudocodes for each building block and the overall

proposed amortized variational EM framework.

• Section B provides comprehensive explanation of the generating process of synthetic datasets, along with an overview
of the real-world datasets and the corresponding pre-processing procedure. It also delineates the temporal logic rule
templates as prior knowledge for real-world datasets.

• Section C elaborates on the baseline methods discussed in our paper.

• Section D shows more experimental details, including scalability experiments, ablation study, prediction examples on
real-world datasets, et al.

• Section E provides reproducibility analysis, such as hyper-parameter selection and computing infrastructure.

• Section F states the limitation and broader impacts of our proposed method.

A. Technique Details
A.1. DT-RP Sampling

In Alg. 2, we provide the pseudocodes for sampling from discrete-time renewal processes.

Algorithm 2 DT-RP Sampling for Event Type x

1: Input: Last event grid k0, hazard function hx(·)
2: Sample u ∼ Uniform(0, 1)
3: for k = k0 + 1, 2, . . . do
4: Compute Fx(k) = 1−

∏k
τ=k0+1 (1− hx(τ))

5: if Fx(k) > u then
6: t = k∆t, update k0 ← k ▷ call “restart”
7: end if
8: end for

A.2. Adaptive Rule Learning via Column Generation

In Alg. 3, we provide the pseudocodes for adaptive rule learning module via column generation.

Algorithm 3 Column Generation
1: Initialize: Start with F0 = ∅ or a set of predefined rules.
2: while not converged do
3: Step 1 (Master Problem): Solve for θ̃∗j given Fj .
4: Step 2 (Sub Problem): Generate candidates ∆F using a heuristic or optimization strategy. Select f∗ =

argminf ReducedCost(f).
5: Step 3: Update Fj+1 = Fj ∪ f∗.
6: end while
7: Terminate: Stop when Fj+1 = Fj (reach the maximum iteration).

A.3. Amortized Variational EM

In Alg. 4, we provide the overall training procedures of our proposed amortized variational EM framework.

A.4. Backtracking Mechanism

In Alg. 5, we provide the pseudocodes for the backtracking sampling mechanism (we have reported in the main text).
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Algorithm 4 Integration with Variational EM
1: Within the M-step of the EM algorithm:
2: E-Step: Freeze θ =

[
θ̃,F

]
, optimize ϕ to infer m ∼ qϕ(m | a).

3: M-Step: Alternates the following steps to obtain θ:

• Continuous Update: Optimize θ̃ via master problem.

• Discrete Update: Expand Fj via subproblem.

Algorithm 5 Predicting Actions with Backtracking
1: Step 1: Infer Mental States
2: Given historical actions a, sample mental events m ∼ qϕ(m | a) over discrete time grids.
3: Define the augmented history: H(t) = a ∪m.
4: Step 2: Propose Candidate Action
5: Generate a candidate action time and associated value: tanext, x

a
next ∼ pθ(· | H(t)).

6: Step 3: Check for Mental Events
7: For the interval [tlast, t

a
next), forward-sample mental events in discrete time:

8: if a mental event occurs at tm ∈ [tlast, t
a
next):

9: - Update the history by integrating the mental event at tm.
10: - Set tlast = tm.
11: - Regenerate tanext, x

a
next ∼ pθ(· | H(tm)).

12: Step 4: Iterate with Maximum Rounds
13: Repeat Steps 3 until no new mental events occur in [tlast, t

a
next).

14: Step 5: Accept tanext, x
a
next as Final Predicted Action

B. Datasets and Prior Knowledge
B.1. Datasets

• Synthetic Dataset

– Syn Data-1 : 3 ground truth rules, 1 mental predicates and 2 action predicates. Each sequence has 18.60 actions
on average.

– Syn Data-2 : a more complicated scenario with 4 ground truth rules, 2 mental predicates and 2 action predicates.
Each sequence has 13.25 actions on average.

• Real-World Dataset

– Hand -Me-That (Wan et al., 2022): contains 10,000 episodes of human-robot interactions in household tasks with
a textual interface. In each episode, the robot first observes a trajectory of human actions towards her internal goal.
Next, the robot receives a human instruction and takes actions to accomplish the subgoal behind the instruction.
Here we consider robot’s actions as the expert human trajectory. We combine human’s history trajectory and
robot’s subsequent actions as a whole sequence from a single agent (human) and transfer the intermediate human
instruction into human’s mental state (e.g., human instruction: Please soak the piece of cloth on the toilet can be
regard as human’s mental: want to soak the cloth). The 10,000 episodes can be classified based on 3 human’s
instruction types: bring-me, move-to and change-state. Considering the diversity and practicability of defined
logic rule templates, we focus on involving more action and mental predicates instead of complex objects’ names,
we mainly use change-state episodes. Abandoning episodes without human history trajectories, we finally get 503
sequences with average length 30.5.

– Car -Following (Li et al., 2023): is processed from Lyft level-5 open dataset. The Lyft level-5 dataset (Houston
et al., 2021) is a large-scale dataset of high-resolution sensor data collected by a fleet of 20 self-driving cars. The
dataset includes 1000+ hours of perception and motion data collected over a 4-month period from urban and
suburban environments along a fixed route in Palo Alto, California. The dataset covers diverse Car-Following (CF)
regimes and the enhanced dataset provides smooth, ready-to-use motion information for Car-Following behaviors
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investigation. A regime refers to a driving situation experienced by the following vehicle (usually restricted by
the leading vehicle). 29k+ Human Vehicle (HV)-following-Autonomous Vehicle (AV) pairs and 42k+ Human
Vehicle (HV)-following-Human Vehicle (HV) pairs were selected and enhanced in similar environments from the
Lyft level-5 dataset, with the total duration spanning over 460+ hours, covering a total distance of 15,000+ km.
We mainly focus on HV-following-HV CF pairs because the essential information of HV-following-AV CF pairs
(AV’s speed and acceleration which are used to segment vehicle’s regimes) were estimated by Kalman filtering,
while all the information in HV-following-HV CF pairs are truly recorded with slight imputation of missing data.
We extracted 2000 sequences from HV-following-HV CF pairs and defined 3 reasonable logic rule templates to
explain the change of regimes in those sequences.

– MultiTHUMOS (Yeung et al., 2018): a challenging dataset for action recognition, containing 400 videos of 65
different human actions. In this paper, we focus only on the basketball dataset with 2000 sequences. The time
horizon of each sequence is 208.32s with 38.41 actions on average.

– EPIC -Kitchen-100 (Damen et al., 2018): a large-scale dataset in first-person (egocentric) vision, which are
multi-faceted, audio-visual, non-scripted recordings in native environments - i.e. the wearers’ homes, capturing all
daily activities in the kitchen over multiple days. In this paper, we focus on two goals in the kitchen: cut onion
and pour water, and extract 131 sequences contains related key actions. The time horizon of each sequence is
500s with 5.41 actions on average.

B.2. Prior Knowledge

For synthetic datasets, we know the ground truth temporal logic rules so that we can compare the rule learning accuracy. For
real-world datasets, we have defined a set of temporal logic rule templates as prior knowledge that align with intuition and
experiential knowledge, capturing the time-based patterns associated with human mental intentions. The prior knowledge
temporal logic rule templates are partial and may not entirely correct but potentially capture some patterns of the ground
truth rules. Our model aims to base on these kinds of prior knowledge to refine and generate more accurate logic rules on
real-world dataset. It is noteworthy that these human-mental-related predicates are latent and do not actually exist within
these real-world datasets.

Predicates Explanation
m1 mental event-1
a1 action event-1
a2 action event-2

Table 4. Defined predicates and corresponding explanation for Syn data-1.

Rule Num Rule Content Rule Weight
Rule-1 m1← a1, (a1 before m1) 0.6
Rule-2 a1← a2, (a2 before a1) 0.6
Rule-3 a2←m1, (m1 before a2) 0.8

Table 5. Ground truth temporal logic rules and corresponding weights for Syn Data-1.

Predicates Explanation
m1 mental event-1
m2 mental event-2
a1 action event-1
a2 action event-2

Table 6. Defined predicates and corresponding explanation for Syn data-2.

• Synthetic Dataset

– Syn Data-1 : Defined predicates and ground truth temporal logic rules are shown in Tab. 4 and Tab. 5 respectively.
We can compare the rule learning accuracy based on synthetic dataset, since we know the ground truth.

– Syn Data-2 : Defined predicates and ground truth temporal logic rules are shown in Tab. 6 and Tab. 7 respectively.
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Rule Num Rule Content Rule Weight
Rule-1 m1← a1, (a1 before m1) 0.6
Rule-2 m2← a1 ∧ a2, (a1 before a2), (a2 before m2) 0.6
Rule-3 a1←m2 ∧ a2, (m2 before a2), (a2 before a1) 0.8
Rule-4 a2←m1, (m1 before a2) 0.8

Table 7. Ground truth temporal logic rules and corresponding weights for Syn Data-2.

• Real-World Dataset

– Hand -Me-That : Extracted predicates and prior knowledge temporal logic rule templates are shown in Tab. 8 and
Tab. 9 respectively.

– Car -Following : Extracted predicates and prior knowledge temporal logic rule templates are shown in Tab. 10
and Tab. 11 respectively.

– MultiTHUMOS : Extracted predicates and prior knowledge temporal logic rule templates in Tab. 12 and Tab. 13
respectively

– EPIC -Kitchen-100 : Extracted predicates and prior knowledge temporal logic rule templates are defined in
Tab. 14 and Tab. 15 respectively.

Predicates Explanation
MoveTo Move to a location or an object
PickUp Pick up an object from a location or a receptacle

Put Put an object on a location or into a receptacle
ToggleOn Toggle on toggleable-thing, like electric device

Soak Soak an object
Open Open openable thing, like cabinet
Clean Clean an object or a location
Cool Freeze food
Slice Slice food
Heat Heat food
Close Close openable thing

WantToPickUp Want to get an object
WantToSoak Want to soak an object

WantToOpenToGet Want to open an openable thing to get an object
WantToToggleOn Want to toggle on an electric device

WantToPut Want to put an object on a location or into a receptacle
WantToClean Want to clean a location or an object
WantToHeat Want to heat food
WantToCool Want to freeze food
WantToSlice Want to slice an object

Table 8. Defined predicates and corresponding explanation for Hand-Me-That dataset.

C. Baselines
In this paper, we primarily focus on baselines from three different fields: neural temporal point process model, logic-based
model, and generative model. Below, we provide a detailed introduction to these baselines.

• Neural Temporal Point Process Model

– RMTPP (Du et al., 2016): The approach considers the intensity function of a temporal point process as a nonlinear
function that depends on the history. It utilizes a recurrent neural network to automatically learn a representation
of the influences from the event history, which includes past events and time intervals, thereby fitting the intensity
function of the temporal point process.
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Rule Num Rule Content
Rule-1 PickUp←WantToPickUp ∧MoveTo, (WantToPickUp before MoveTo), (MoveTo before PickUp)

Rule-2
Soak←WantToSoak ∧MoveTo ∧ Put ∧ ToggleOn, (WantToSoak equal MoveTo),

(MoveTo before Put), (Put before ToggleOn), (ToggleOn before Soak)

Rule-3
PickUp←WantToOpenToGet ∧MoveTo ∧ Open ∧ (WantToOpenToGet before MoveTo),

(MoveTo before Open), (Open before MoveTo)
Rule-4 ToggleOn←WantToToggleOn ∧MoveTo, (WantToToggleOn equal MoveTo), (MoveTo before ToggleOn)
Rule-5 Put←WantToPut ∧MoveTo, (WantToPut equal MoveTo), (MoveTo before Put)

Rule-6
Clean←WantToClean ∧ Soak ∧ PickUp ∧MoveTo, (WantToClean before Soak),

(Soak before PickUp), (PickUp before MoveTo), (MoveTo before CLean)

Rule-7
Heat←WantToHeat ∧ PickUp ∧MoveTo ∧ Put ∧ ToggleOn, (WantToHeat before PickUp),

(PickUp before MoveTo), (MoveTo before Put), (Put before ToggleOn),
(ToggleOn before Heat)

Rule-8
Cool←WantToCool ∧ PickUp ∧MoveTo ∧ Open ∧ Put ∧ Close, (WantToCool before PickUp),

(PickUp before MoveTo), (MoveTo before Open), (Open before Put),
(Put before Close), (Close before Cool)

Rule-9
Slice←WantToSlice ∧ Put ∧ PickUp, (WantToSlice before Put),

(Put before PickUp), (PickUp before Slice)
Table 9. Temporal logic rules as prior knowledge for Hand-Me-That dataset.

Predicates Explanation
Fa Free acceleration
C Cruising at a desired speed
A Acceleration following a leading vehicle
D Deceleration following a leading vehicle
F Constant speed following

ConservativeIntention The driver has a conservative intention, maintaining their speed
AggressiveIntention The driver has an aggressive intention, tending to accelerate

Table 10. Defined following car predicates and corresponding explanation in Car-Following dataset.

– THP (Zuo et al., 2020): The model employs a concurrent self-attention module to embed historical events and
generate hidden representations for discrete time stamps. These hidden representations are then used to model
the interpolated continuous time intensity function. THP can also incorporate additional structural knowledge.
Importantly, THP surpasses RNN-based approaches in terms of computational efficiency and the ability to capture
long-term dependencies.

– PromptTPP (Xue et al., 2023): The model incorporates a continuous-time retrieval prompt pool into the base
TPP, enabling sequential learning of event streams without the need for buffering past examples or task-specific
attributes. Specifically, this approach consists of a base TPP model, a pool of continuous-time retrieval prompts,
and a prompt-event interaction layer. By addressing the challenges associated with modeling streaming event
sequences, this mode enhances the model’s performance.

– HYPRO (Xue et al., 2022): The hybridly normalized probabilistic (HYPRO) model is capable of making long-
horizon predictions for event sequences. This model consists of two modules: the first module is an auto-regressive

Rule Num Rule Content

Rule-1
A← C ∧ AggressiveIntention, (C before AggressiveIntention),

(AggressiveIntention equal A)

Rule-2
C← Fa ∧ ConservativeIntention, (Fa before ConservativeIntention)

(ConservativeIntention equal C)

Rule-3
F← A ∧ D ∧ ConservativeIntention, (A before D),

(D before ConservativeIntention), (ConservativeIntention before F)
Table 11. Temporal logic rules as prior knowledge for Car-Following dataset.
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Predicates Explanation
Dribble Dribbling the basketball

Pass Passing the basketball from one person to another
Shot An attempt to put the basketball in the basketball hoop

PoorShootingOpportunity Mental event, a player think that this is not a good shooting opportunity
GoodShootingOpportunity Mental event, a player think that this is a good shooting opportunity

Table 12. Defined predicates and corresponding explanation for MultiTHUMOS basketball dataset.

Rule num Rule Content
Rule-1 Dribble← PoorShootingOpportunity, (PoorShootingOpportunity before Dribble)
Rule-2 Pass← PoorShootingOpportunity, (PoorShootingOpportunity before Pass)
Rule-3 Shot← GoodShootingOpportunity, (GoodShootingOpportunity before Shot)

Table 13. Temporal logic rules as prior knowledge for MultiTHUMOS basketball dataset.

base TPP model that generates prediction proposals, while the second module is an energy function that assigns
weights to the proposals, prioritizing more realistic predictions with higher probabilities. This design effectively
mitigates the cascading errors commonly experienced by auto-regressive TPP models in prediction tasks, thereby
improving the model’s accuracy in long-term forecasting.

• Logic-Based Model

– TELLER (Li et al., 2021): It is a non-differentiable algorithm that can be described as a temporal logic rule
learning algorithm based on column generation principles. This method formulates the process of discovering
rules from noisy event data as a maximum likelihood problem. It also designs a tractable branch-and-price
algorithm to systematically search for new rules and expand existing ones. The algorithm alternates between
a rule generation stage and a rule evaluation stage, gradually uncovering the most significant set of logic rules
within a predefined time limit.

– CLNN (Yan et al., 2023): The model learns weighted clock logic (wCL) formulas, which serve as interpretable
temporal logic rules indicating how certain events can promote or inhibit others. Specifically, the CLNN model
captures temporal relations between events through conditional intensity rates guided by a set of wCL formulas
that offer greater expressiveness. In contrast to conventional approaches that rely on computationally expensive
combinatorial optimization to search for generative rules, CLNN employs smooth activation functions for the
components of wCL formulas. This enables a continuous relaxation of the discrete search space and facilitates
efficient learning of wCL formulas using gradient-based methods.

– STLR (Cao et al., 2024): A model specifically designed for learning spatial-temporal logic rules in order to explain
human actions. It consists of two main modules: the rule generator, employing the transformer to infer logic
rules by treating them as latent variables, and the reasoning evaluator, which predicts future entity trajectories
based on the generated rules. While STLR demonstrates flexibility in generating logic rules without relying on
prior knowledge, it lacks the ability to infer fine-grained latent mental events in a real-time manner, a capability
inherent in our method.

• Generative Model

Predicates Explanation
TakePlate Retrieve the plate for future use
TakeEggs Retrieve the eggs for further use
TakeOnion Retrieve the onion for further use
TakeGlass Retrieve the glass for further use
CutOnion Retrieve the onion for further use
PourWater Pour water to glass

NeedOnionToCook Mental event, one has the intention to use onion to cook
NeedWater Mental event, one needs water in kitchen

Table 14. Defined predicates and corresponding explanation for EPIC-Kitchen-100 dataset.
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Rule num Rule Content

Rule-1
CutOnion← NeedOnionToCook ∧ TakeOnion,

(NeedOnionToCook before TakeOnion), (TakeOnion before CutOnion)

Rule-2
PourWater← NeedWater ∧ TakeGlass,

(NeedWater before TakeGlass), (TakeGlass before PourWater)
Table 15. Temporal logic rules as prior knowledge for EPIC-Kitchen-100 dataset.

– AVAE (Mehrasa et al., 2019): The model is a recurrent variational auto-encoder designed for modeling asyn-
chronous action sequences. At each time step, the model utilizes the history of actions and inter-arrival times
to generate a distribution over latent variables. A sample from this distribution is then decoded into probability
distributions for the inter-arrival time and action label of the next action. To address the limitations of using a fixed
prior in the traditional VAE framework, this model incorporates a prior net that enhances the learning process.

– GNTPP (Lin et al., 2022): The model is a comprehensive generative framework for neural temporal point process
modeling. It utilizes deep generative models as probabilistic decoders to approximate the target distribution
of occurrence time. For the encoder, the model considers both RNN-based methods and self-attention-based
mechanisms. As for the decoder, the model incorporates multiple generative models, such as the temporal
conditional diffusion denoising model, temporal conditional VAE model, temporal conditional GAN model,
temporal conditional continuous normalizing flow model, and temporal conditional noise score network model.
The various combinations of encoders and decoders make the GNTPP highly flexible.

– VEPP (Pan et al., 2020): This model is a probabilistic generative model for event sequences. It introduces VAE to
event sequence modeling that can better use the latent information and capture the distribution over inter-arrival
time and types of event sequences. Specifically, it employs LSTM to embed the event sequence and utilizes VAE
for modeling the event sequence.

– STVAE (Wang et al., 2023): This model combines the classical temporal point process with the neural variational
inference framework, leading to its good ability to model human trajectories with continuous temporal distribution,
variable length, and multi-dimensional context information.

D. Experimental Details
D.1. Scalability

To test the scalability of our proposed model, we have varied the training sample size within {1000, 2000, 3000, 4000, 5000}
as well as the ground truth rules within {2, 3, 4, 5, 6} for synthetic datasets. Synthetic datasets with complex ground truth
rules have larger corresponding domains for latent mental states. For example, synthetic datasets with 5 ground truth rules
typically have latent mental state domains encompassing 4 mental states, ensuring that each of these 4 mental states is
associated with at least one ground truth rule. Synthetic datasets with 6 ground truth rules are the most challenging with
latent mental state domains encompassing 6 mental states. We have also extracted more data sequences for Hand-Me-That
and Car-Following datasets to investigate the scalability of our model to handle large-scale real-world datasets.

As depicted in Fig. 6 and Fig. 7, our model swiftly converges with acceptable training time even with large-scale datasets
for synthetic dataset and real-world dataset. The model’s prediction performance improves with larger sample sizes,
demonstrating its good scalability.

For more intricate rules and larger mental space domains like dataset with 6 ground truth rules (colored in orange in Fig. 6),
the prediction ER% decreased to 52.08% and the MAE reduced to 2.52 when provided with 5000 samples, highlighting its
ability to handle complex domains.

For these two real-world datasets with different sample sizes (results are in Fig. 7), the prediction performance improved
with more samples and also resulted in more computational cost. For small-scale real-world dataset, our model well-handles
challenges posed by small datasets. Even with a dataset size of only few samples, our model delivers satisfactory results.
For the Hand-Me-That dataset with 100 samples, the ER% and MAE are 78.33% and 1.32. For the Car-Following dataset
with 1000 samples, the ER% and MAE are 35.38% and 2.12, which are comparable with the majority baselines trained with
larger sample size. For large-scale real-world dataset, the ER% and MAE decrease to 72.09% and 1.24 for Hand-Me-That
dataset with 1000 samples. And these two metrics decrease to 30.18% and 1.69 for the Car-Following dataset with 5000
samples. Even on large-scale datasets, our algorithm converges relatively quickly with current computational infrastructure,
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indicating the ability of our proposed model to handle large-scale real-world datasets. This is attributed to the constraints of
rule length to reduce search space, thereby mitigating computational complexity to some extent.

Figure 6. Scalability and the computation time cost of our model on synthetic dataset with varying sample size, ground truth temporal
logic rules, and latent state domains. All the experiments are conducted over three random runs and the standard error is reflected in the
shaded areas.
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Figure 7. Scalability and the computation time cost of our model on real-world datasets (Hand-Me-That and Car-Following datasets) with
varying sample size. All the experiments are conducted over three random runs and the standard error is reflected in the shaded areas.

D.2. Ablation Study

We conducted an ablation study to assess the importance of different components, using the following ablation settings: (i)
removing the prior knowledge and removing the backtracking module, (ii) solely removing the backtracking module, (iii)
solely removing the prior knowledge module, (iv) evaluating the full model. The results on synthetic datasets and real-world
datasets are shown in Tab. 16 and Tab. 17.

Note that if we exclude the prior knowledge module, the rule learning module will commence with an empty rule set.
Consequently, the training process will require additional time to converge due to increased iterations between solving
the master problem and solving the sub problems within the rule learning module. The experiments were conducted with
consistent settings and hyper-parameters as described in our paper.

For synthetic dataset, the results from different ablation settings confirm that appropriate prior knowledge enhances the
accuracy of model predictions. Even though, our model without prior knowledge still perform well on prediction tasks
on two synthetic datasets, demonstrating the capability of our model being adapt to situations lacking prior knowledge.
Additionally, the inclusion of a backtracking mechanism plays a more vital role which significantly improves model
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Ablation Settings Syn Data-1 Syn Data-2
Prior Knowledge Backtracking ER(%) MAE ER(%) MAE

✗ ✗ 48.28 3.13 52.50 3.24
✓ ✗ 45.64 2.64 48.37 2.86
✗ ✓ 41.72 2.32 46.85 2.52
✓ ✓ 42.08 2.19 46.43 2.47

Table 16. Ablation study on synthetic datasets. Our current selection of modules are highlighted in blue.

Ablation Settings Hand-Me-That Car-Follow MultiTHUMOS EPIC-Kitchen
Prior Knowledge Backtracking ER(%) MAE ER(%) MAE ER(%) MAE ER(%) MAE

✗ ✗ 82.20 2.48 36.23 2.52 65.41 7.29 47.52 42.68
✓ ✗ 79.45 1.72 35.88 2.49 67.26 7.47 46.82 39.51
✗ ✓ 77.14 1.38 34.60 1.92 58.10 6.52 40.15 33.23
✓ ✓ 75.28 1.26 32.72 1.80 57.20 6.76 40.26 32.19
Table 17. Ablation study on real-world datasets. Our current selection of modules are highlighted in blue.

performance, even when there is some level of noise in the prior knowledge. Overall, both modules contribute to enhancing
the model’s efficiency.

We want to emphasize that the practical significance of the ablation study experiments on real-world datasets, as obtaining
prior knowledge in real data settings is sometimes challenging. The ability of our model to perform well in scenarios lacking
prior knowledge is a crucial aspect of assessing its performance. Encouragingly, even after removing prior rules and starting
with an empty rule set, our model still achieved good predictive performance by learning rules from scratch using the
proposed rule learning module.

Furthermore, when providing the model with prior rules or rule templates, there was an improvement in predictive
accuracy on real-world datasets. It is noteworthy that these prior logic rules are simple, readily available, and align with
human cognitive logic. This indicates that our model effectively leverages prior knowledge to enhance performance while
demonstrating the capability to handle datasets lacking such prior knowledge.

Overall, in practice, we can employ two strategies tailored to distinct scenarios: autonomous rule learning for data-rich
domains and template-guided learning for scenarios with limited data but ample prior knowledge. These approaches enhance
the adaptability of our model when applied to real-world datasets.

D.3. Illustration of Attention Weight for Observed Actions

In our proposed model, the temporal point processes involve triggering between latent mental and action events, where
historical actions can influence latent events and vice versa. Therefore, we resort to the attention mechanism to map the
information of the entire action sequence on the spanning time horizon on each discrete time grid. Note that the attention in
our model cannot capture how the mental state influences actions. The influence of mental process on action process is
reflected on the intensity function after the inference of latent mental process.

In Fig. 8, we provide an example of attention weights for action sequence of Syn Data-1 on different discrete time grids,
which visualizes attention patterns of different attention heads. Pixel (i, k) in each figure signifies the attention weight of the
event (tai , x

a
i ) attending to the discrete time grid k. We can see that each attention head employs a different pattern to capture

dependencies. For each attention head, the impact of one event is different on each discrete time grid, reflected by various
attention weights. The impact of the entire action sequence on a discrete time grid can be conceptualized as a weighted
combination of the entire action sequence, with weights derived through attention mechanisms. The attention mechanism
effectively captures the potential influence of historical events at specific time points on the intensity of future events.

D.4. Learned Rules with Real-World Significance on Real-World Dataset

In Tab. 18, we report several temporal logic rules that identified with real-world significance on real-world datasets, which
are learned by our rule learning modules. These rules are not provided as prior knowledge and are easily overlooked. For
Hand-Me-That, our rule learning model mines that after and intention WantToPickUp, human may sequentially take actions
MoveTo and Open, thus increase the likelihood of taking action of PickUp. This rule is overlooked in our prior knowledge,
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Figure 8. Visualization of attention patterns of different attention heads for action sequences in Syn Data-1 on different discrete time grids.

but aligns with human behavioral logic. The learned rule on MultiTHUMO dataset is representative, as a basketball player
dribbles to seek offensive opportunities, once they identify a favorable moment, they take the shot. Our learned logic rules
effectively capture this behavior on the court. Although we did not provide such prior knowledge during model training, our
model still identified this logic rule adaptively through column generation in a data-driven manner. Other interesting rules
found for other two real-world datasets also hold practical meaning, showcasing the good adaptability and the effectiveness
of our rule learning module.

Real-World Dataset Rule Content

Hand-Me-That
PickUp←WantToPickUp ∧MoveTo ∧ Open, (WantToPickUp before MoveTo),

(MoveTo before Open), (Open before PickUp)

Car-Follow
A← C ∧ AggressiveIntention ∧ Fa, (C before AggressiveIntention),

(AggressiveIntention equal Fa), (Fa before A)

MultiTHUMOS
Shot← Dribble ∧ GoodShootingOpportunity, (Dribble before GoodShootingOpportunity),

(GoodShootingOpportunity before shot)

EPIC-Kitchen
Need Water← NeedOnionToCook ∧ TakeOnion,

(NeedOnionToCook before TakeOnion), (TakeOnion before Need Water)
Table 18. Learned temporal logic rules (we only report some of them) with real-world significance on real-world datasets.

D.5. Prediction Example on Real-World Dataset

Our model demonstrates intriguing applicability in real-life scenarios due to its ability of accurately predicting real-world
events and speculating on human thoughts. As exemplified by the Hand-Me-That dataset, in Fig. 9, our proposed model
effectively infers human historical intentions like want to clean the grill, and want to soak. It also forecasts future human
actions with correct time indexes. In this instance, if the AI-Agent infers a person’s intention to clean the grill at time index
20 and predicts that the person will clean the grill at time index 22, it can promptly retrieves the grill for him, which will
significantly enhance convenience.

Human Action

Inferred 
Human Intention

Mental
Intention

Timeline

Time index: 1
Move to grill

(action event)

Time index: 6
Open the door 
(action event)

Time index: 8
Want to clean the grill 

(mental event)

Time index: 3
Want to clean the grill 

(mental event)

Time index: 15
Want to soak 

(mental event)
Time index: 20

Want to clean the grill 
(mental event)

Time index: 12
Pick up the cloth

(action event)

Time index: 17
Move to the sink

(action event)

Time index: 19
Soak the cloth
(action event)

Time index: 22
Clean the grill
(action event)

Prediction
Prediction

History
History

Figure 9. Inferred history mental events and predicted future events for one human trajectory aiming to clean the grill. Top: inferred and
predicted human mental events. Bottom: observed and predicted human actions. Notice that the original dataset only includes the order
of action occurrences. During data pre-processing, we assume actions to have equal time intervals of 1 and then discretize the timeline.
Then, we can use time indices to represent specific time point.
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We also provide another prediction example for Car-Following dataset. In Fig. 10, our model infers a driver’s historical
intentions and predicts their future car-following actions. In the field of autonomous driving, a self-driving vehicle can
adjust its lane and drive reasonably by considering the inferred intentions of human drivers in neighboring lanes and their
predicted behaviors, all while adhering to traffic regulations.

Free 
acceleration

Conservative
Intention Keep

Lane
Conservative

Intention

Conservative
intention

Cruising at a 
desired 
speed

Constant 
speed 

following
Aggressive
intention

Acceleration 
follow a car

Deceleration 
follow a car

Time Line

History Future

Figure 10. Left: Satellite map of Palo Alto, California, extracted from Google Earth, Right: Car following process (pink car) for one car
trajectory. The historical mental event inferred by our method is indicated within the pink boxes. The next action in the future of the
pink car predicted by our method is represented in the blue box to the right of the dashed line. The visualization is enhanced via SUMO
simulator (Krajzewicz et al., 2002; Song et al., 2014).

E. Reproducibility Analysis
E.1. Hyper-Parameter Selection

We present the selected hyper-parameters on both synthetic datasets and real-world datasets in Tab. 19. The hyper-parameter
selection metrics reflect the trade-off between training converged log-likelihood, prediction performance, and time efficiency.

Hyper-parameters Value Used
Syn Data-1 Syn Data-2 Hand-Me-That Car-Following MultiTHUMOS EPIC-Kitchen

Batch Size 32 32 32 64 64 16
Time Grid Resolution 0.50 0.50 1.00 0.25 1.50 2.50

Max. Backtracking Rounds 3 3 2 2 5 3
Embedding Dimension 32 32 16 32 32 16

Dropout 0.15 0.15 0.10 0.15 0.15 0.10
Learning Rate 1e-3 1e-3 5e-4 1e-3 1e-3 5e-4

Table 19. Descriptions and values of hyper-parameters used for models trained on both synthetic dataset and real-world datasets.

Specifically, the selection of some key hyper-parameters such as time grid resolution and maximum number of backtracking
rounds is based on empirical results, which strikes a balance between model performance and training efficiency. We use
metrics including training ELBO, training time, and prediction accuracy to select appropriate resolution of a discretized
time grid and the number of backtracking rounds, with experiment results shown in Tab. 20 and Tab. 21.

For the resolution of time grid, as shown in Tab. 20, from the results one can see that under current selection of 0.50, the
proposed model achieves the second highest ELBO on both two synthetic datasets. Reducing the resolution to 0.25 only
marginally increases the ELBO to 18.45 on Syn Data-1 and 22.08 on Syn Data-2, but extends the model convergence time
by 1.78 hours on Syn Data-1 and 1.84 hours on Syn Data-2 respectively. Conversely, while increasing the resolution can
only slightly shorten training time. Moreover, it also decreases the model’s converged ELBO and results in a decline in
prediction accuracy when using the well-trained model for prediction tasks. This could be due to missing some crucial latent
mental events. Hence, balancing between accuracy and computational efficiency, we opt for the current resolution of 0.5.

For the maximum number of backtracking rounds, as shown in Tab. 21, under our current selection of up to 3 rounds of
backtracking, satisfactory results have been achieved in prediction tasks. Increasing the maximum backtracking rounds to
5 shows minimal improvement in prediction accuracy while adding to computational complexity. Conversely, reducing
the backtracking rounds to a maximum of 2 or fewer significantly decreases prediction accuracy. This pattern is consistent
across both synthetic datasets.

For real-world datasets, the selection of key hyper-parameters follow similar selection strategy, namely balancing the model
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performance and training efficiency. Our current selection for real-world datasets can be found in Tab. 19.

Resolution Syn Data-1 Syn Data-2
0.25 0.50 ⋆ 0.75 1.00 1.25 0.25 0.50 ⋆ 0.75 1.00 1.25

ELBO ↑ 18.45 18.33 16.62 15.39 15.22 22.08 21.42 19.46 16.80 16.25
ER% ↓ 40.67 41.72 42.74 45.60 45.93 46.52 46.85 48.78 49.60 51.25
MAE ↓ 2.28 2.32 2.36 2.53 2.62 2.45 2.52 2.67 2.88 2.85

Time Cost (h) ↓ 6.57 4.79 4.41 3.85 3.69 6.82 4.98 4.36 4.22 3.94
Table 20. Compare various time grid resolutions and their impact on the model performance for synthetic dataset. “⋆” indicates our
current hyper-parameter selection for specific dataset. Other hyper-parameters and training sample size remain consistent.

Max. Back-
tracking Rounds

Syn Data-1 Syn Data-2
0 1 2 3 ⋆ 4 5 0 1 2 3 ⋆ 4 5

ER% ↓ 45.64 45.33 43.82 41.72 42.07 41.28 48.37 47.49 46.92 46.85 46.70 45.86
MAE ↓ 3.12 3.06 2.75 2.32 2.19 2.11 2.86 2.77 2.74 2.52 2.46 2.42

Table 21. Compare various maximum number of backtracking rounds and their impact on the model performance for synthetic dataset. “⋆”
indicates our current hyper-parameter selection for specific dataset. Other hyper-parameters and training sample size remain consistent.

E.2. Computing Infrastructure

All synthetic data experiments and real-world data experiments, including the comparison experiments with baselines, are
performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz, 227 Gigabyte memory.

F. Limitation and Broader Impacts
Our work has vast potential applications in the field of human-AI collaboration. The proposed approach enables timely
and accurate inference of human mental events, as well as precise prediction of future human behavior. This will assist AI
in providing timely, accurate, and useful assistance. For instance, it can aid elderly individuals with limited mobility in
managing daily activities or help self-driving vehicles navigate roads more safely and smoothly.

One limitation of our current approach is the reliance on hand-crafted logic rule templates in the decoder. While these rules
provide interpretability, they may introduce additional biases. To mitigate this limitation, we have already proposed a rule
learning module via column generation, which can learn rule from an empty rule set. This approach enhances the model’s
flexibility by adapting to the nuances of the data and reduces the risk associated with manually introduced biases. We can
explore more rule mining algorithms to improve the efficiency in the future work.

Additionally, the discretization of the timeline might introduce some noise when sampling the latent mental events. In
real-world scenarios, establishing a well-defined and fine-grained discrete time grid can necessitate conducting numerous
experiments. It’s worth noting that choosing the interval for discretization is a tunable hyperparameter. We can explore
methods to automate hyperparameter tuning to streamline this process and ensure optimal performance without the need for
extensive manual experimentation.
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