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Abstract

Steering vectors are a promising method to control the behaviour of large language
models. However, their underlying mechanisms remain poorly understood. While
representing steering vectors as combinations of sparse autoencoder (SAE) features
appears to be a promising direction for interpreting steering vectors, recent findings
show that SAE-reconstructed vectors often lack the steering properties of the
original vectors. This paper investigates why directly applying SAEs to steering
vectors yields misleading decompositions, identifying two reasons: (1) steering
vectors fall outside the input distribution for which SAEs are designed, and (2)
steering vectors can have meaningful negative projections in feature directions,
which SAEs are not designed to accommodate. These limitations hinder the direct
use of SAEs for interpreting steering vectors.2

1 Introduction

As language models become increasingly capable, there is growing interest in steering their behaviour
towards desirable characteristics [1]. Recently, steering vectors (or activation steering) have been
proposed as a way to achieve this without requiring model fine-tuning [20, 15, 10, 23]. This involves
modifying a model’s internal activations during inference by adding vectors that encode desired
behaviours. These methods have shown the potential to regulate behaviours such as sycophancy
[15], harmlessness [23], and refusal [2, 23]. Despite promising empirical results, the underlying
mechanisms behind steering vectors remain poorly understood [9, 4]. Interpreting steering vectors
may reveal why certain behaviours are more steerable than others [18], identify why combining
steering vectors is largely unsuccessful [22], and help produce more precise steering vectors [8].

Recent work has explored interpreting steering vectors using sparse autoencoders (SAEs) [4, 8].
SAEs are an emerging method for decomposing model activations into sparse, non-negative linear
combinations of vectors, where many vectors appear to correspond to meaningful, interpretable
concepts [7, 3]. Since steering vectors exist within the same space as model activations, they could
theoretically be expressed as combinations of SAE features [4, 8, 9]. However, past studies found
that directly decomposing steering vectors with SAEs produced mixed results, with the reconstructed
vectors often failing to retain the steering properties of the original vectors. This suggests that the
SAE decompositions did not capture essential elements of the steering vectors [8].

Motivated by these mixed results, this paper investigates the theoretical reasons why SAEs provide
misleading decompositions of steering vectors and supports each reason with empirical evidence. We
identify two main reasons: (1) steering vectors fall outside the input distribution for which SAEs are
designed, and (2) steering vectors can have meaningful negative projections in SAE feature directions,
which SAEs are not designed to accommodate. These issues limit the direct application of SAEs for
interpreting steering vectors. Our contributions are to highlight these issues, thus motivating new
methods to address them.
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2 Related work

Steering vectors Steering vectors are vector representations of concepts which can guide model
behaviour when added to intermediate model activations at inference time [20, 10]. More broadly,
they are a form of representation engineering, which involves monitoring and controlling models by
examining how human-interpretable concepts are represented in their activations [23].

In this study, we extract steering vectors using Contrastive Activation Addition [15]. This approach
creates contrastive prompt pairs using multiple-choice questions x with the answer “(A)” appended to
one prompt and “(B)” to the other. These strings correspond to positive completions y+ (eliciting the
desired behaviour) and negative completions y− (suppressing or remaining neutral to the behaviour),
with the letter assignment randomised for each pair (see Appendix A for an example).

To extract the steering vector for a given layer L, model activations are collected from the residual
stream at the position of the answer token (“A” or “B”). Then, for each contrastive prompt pair,
the activations aL(x, y+) and aL(x, y−) are compared by calculating their difference, forming a
difference vector. To minimise confounding effects, the final steering vector v is obtained by averaging
the difference vectors across the dataset of prompt pairs, a process known as mean difference [15].
Mathematically, this can be written as

v =
1

|X|
∑
x∈X

[aL(x, y+)− aL(x, y−)] , (1)

where X is the set of all questions and |X| is the cardinality of the set.

Sparse autoencoders Sparse autoencoders [7, 3] are a dictionary learning method to decompose
model activations into a sparse, non-negative linear combination of vectors, known as SAE features
(or latents). Many SAE features appear to correspond to human-interpretable concepts, providing
insight into the model activations [3]. Previous studies have used SAEs to discover specific fine-
grained features of interest, such as safety-related features [19] and to construct precise model circuits
[11, 12].

Following [9], a generic SAE operates as follows: an encoder maps model activations aL ∈ Rn into
a sparse, higher dimensional space f(aL) ∈ RM , where M ≫ n. A decoder then reconstructs the
activations from this vector, âL(f). Mathematically, the encoder and decoder are written:

f(aL) = σ(WencaL + benc) (2)
âL(f) = Wdecf + bdec, (3)

where Wenc, benc are the encoder’s weight and bias terms, Wdec, bdec are the decoder’s weight and bias
terms, and σ is the activation function. We refer to the vector f(aL) as the reconstruction coefficients.

Directly decomposing steering vectors with SAEs Previous research has empirically investigated
directly applying SAEs to steering vectors. Conmy et al. [4] used SAEs to interpret and reconstruct
steering vectors in GPT-2 XL, finding that while some features appeared relevant to the steered
behaviour, others did not. Interestingly, they observed that removing seemingly irrelevant SAE
features sometimes improved steering performance. Similarly, Kharlapenko et al. [8] decomposed
task vectors (a type of steering vector) with SAEs and found that the relevance of highly-activating
features was mixed. They also observed that reconstructed vectors performed significantly worse at
the tasks, e.g. English-to-Spanish translation, attributing this to high reconstruction errors caused
by SAEs. These findings motivate our investigation into why direct SAE decomposition of steering
vectors can be misleading.

Other studies have proposed alternative methods to learn representations of steering vectors in
the SAE basis [16, 8]. Smith et al. [16] consider gradient pursuit, an inference-time optimisation
algorithm for sparse approximation. Similarly, Kharlapenko et al. [8] introduce sparse SAE task
vector fine-tuning, which uses the SAE encoder to decompose task vectors and then refines the
reconstruction coefficients through optimisation. The focus of our paper is to identify why directly
applying SAEs gives misleading decompositions; however, our results are also relevant for evaluating
the strengths and limitations of alternative methods.
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3 Direct SAE decomposition is misleading

To explore the limitations of directly using SAEs to decompose steering vectors, we focus on
steering corrigibility (the willingness and ability to be rectified) as a case study. Specifically, we use
the corrigible-neutral-HHH dataset, which contains 340 contrastive prompt pairs on corrigibility
[13, 15], and has been shown to yield effective steering vectors [18]. We train steering vectors for
the instruction-tuned version of Gemma 2 2B, and decompose vectors using the Gemma Scope
open-source SAEs (see Appendix A for details) [9]. Steering vectors are extracted at layer 14, as we
identify this to be the most effective layer for steering (see Appendix B). Additionally, Appendix C
shows that the findings also generalise to behaviours other than corrigibility.

We find that direct SAE decomposition is misleading for two reasons:

(1) Steering vectors fall outside the input distribution for which SAEs are designed to decompose,
and simply scaling the L2-norm does not resolve this issue.

(2) SAEs restrict decompositions to non-negative reconstruction coefficients, preventing them
from capturing meaningful negative projections in feature directions within steering vectors.

3.1 Steering vectors are out-of-distribution

Steering vectors have small L2-norms SAEs are trained to reconstruct model activations, which
have systematic differences from steering vectors. One way this out-of-distribution issue materi-
alises is that steering vectors have significantly smaller L2-norms than model activations (Figure
1). Consequently, the SAE encoder bias term benc has a disproportionately large influence on the
SAE encoder (Equation 2), overshadowing the contributions from the dot products between the
SAE feature directions and the steering vector, Wencv. This skews the SAE decomposition, as large
positive bias values directly activate certain SAE features (Table 1). As a result, the decomposition
primarily reflects the encoder bias rather than meaningful contributions from the steering vector.

To illustrate this effect, we decompose a zero vector, where all elements are zero. In this case, the
true reconstruction coefficients should all be zero; thus, any non-zero activations must result solely
from the encoder bias. Table 1 compares the decompositions of the corrigibility steering vector and
the zero vector, showing their activations are almost identical, highlighting the dominant influence of
the encoder bias.

Scaling does not solve the problem We also find that simply scaling the steering vector does
not solve the out-of-distribution problem. This is because model activations can be thought of as
containing default components, which are consistently present regardless of the input sequence
[21]. We observe that bias elements are learnt to offset these default components, such that the
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Figure 1: Steering vectors are out-of-
distribution for SAEs. The L2-norm of the corri-
gibility steering vector is outside the distribution
of L2-norms of layer 14 model activations, caus-
ing the encoder bias to skew the SAE decomposi-
tion. Model activations are taken over sequences
from The Pile [5], totalling 200,000 tokens.

Corrigibility
Zero vector

steering vector
Feature Activation Feature Activation
4888 95.04 4888 89.06

15603 36.34 15603 35.94
12695 22.64 7589 19.80
7589 18.89 15471 11.84
2350 11.35 2350 10.74

Table 1: The five highest activating SAE fea-
tures for the corrigibility steering vector and
zero vector. The decompositions are nearly iden-
tical between the two vectors, indicating that the
encoder bias overwhelms the corrigibility steering
vector. This shows that SAE decomposition only
reflects the encoder bias.
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Figure 2: Scaled steering vectors remain out-of-distribution in certain directions. Model activa-
tions contain default components that exist regardless of the prompt. For instance, model activations
of random prompts are, on average, highly negative in the direction of SAE feature 4888. The SAE
offsets this default component with a positive encoder bias term (86.20), resulting in SAE activations
around zero (right-hand axis). However, learning steering vectors via Contrastive Activation Addition
removes default components due to the subtraction process, making steering vectors highly out-of-
distribution in this direction. Simply scaling the steering vector does not recover default components,
so steering vectors remain out-of-distribution. SV: Corrigibility steering vector. Positive and Negative
prompts are the Contrastive Activation Addition prompts. Random prompts are from the Pile [5].

average SAE pre-activations are all close to zero. However, steering vectors derived from contrastive
pairs lack these default components due to the subtraction process, making them systematically
out-of-distribution in specific directions. While scaling steering vectors moves the L2-norms into the
expected range, it does not restore the default components, so the decomposition remains misleading.
An illustration of this is shown in Figure 2.

3.2 SAEs do not allow negative reconstruction coefficients

Missing negative coefficients If model activations can be represented as non-negative linear
combinations of vectors (as assumed by SAEs), then the true decomposition of a steering vector
derived from contrastive pairs must include both positive and negative reconstruction coefficients.
Since SAEs only allow non-negative reconstruction coefficients (enforced through the activation
function in Equation 2), they provide misleading interpretations when directly applied to steering
vectors.

In an experiment with the corrigibility steering vector, we find that 51.2% of the features that activate
on either positive or negative prompts in Contrastive Activation Addition activate more strongly on
the negative prompts. This suggests a substantial portion of the steering vector mechanism involves
writing negatively to SAE features. However, meaningful negative projections of the steering vector
onto SAE feature directions are assigned activations of zero, making these features appear irrelevant
to the steering vector interpretation (Figure 3 Left).

Spurious positive coefficients Moreover, the true negative coefficients can cause spurious positive
SAE activations, leading to misleading interpretations. Since SAE features often have negative cosine
similarity with other features [6], a negative projection in one direction is equivalent to a positive
projection in another direction. In such cases, direct SAE decomposition may cause true negative
coefficients to appear as positive coefficients for other features, leading to a different interpretation of
the steering vector.

To illustrate this effect, Figure 3 shows an example with SAE feature 14004. We find this feature
strongly activates on negative corrigibility prompts but not on positive ones; thus we would expect
the steering vector to have a negative projection in this direction. However, feature 14004 has a
negative cosine similarity (-0.82) with feature 3517, which rarely activates for either prompt type.
This negative alignment causes a positive projection between the steering vector and feature 3517,
leading to a large positive activation. We argue that the resulting reconstruction coefficient is spurious
in the sense that the feature is not important to the behaviour being steered and the activation is a
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Figure 3: Negative projections can cause spurious positive SAE activations. Left: Feature 14004
activates more strongly on negative corrigibility prompts than positive ones, indicating its relevance
to the steering vector. However, while the steering vector has a strong negative projection in this
direction, SAEs are not designed to accommodate negative coefficients, resulting in an activation
of 0.00. Right: Feature 3517 rarely activates for either prompt type. However, since it has negative
cosine similarity with feature 14004 (-0.82), the steering vector shows a strong positive projection in
this direction, causing feature 3517 to spuriously activate. All prompt activations are taken at the
answer token position.

direct result of negative cosine similarity with a different feature. Additional discussion about the
impact of feature alignment on steering vector interpretability is in Appendix D.

4 Discussion

Our results identify two reasons why SAE decompositions of steering vectors can be misleading: (1)
out-of-distribution issues, and (2) the inability of SAEs to represent negative reconstruction coeffi-
cients. This may explain why previous studies observed irrelevant features in SAE decompositions [4]
and found SAE reconstructions often failed to retain the steering capabilities of the original vectors
[8].

Concurrent studies have proposed alternative methods to decompose steering vectors in the SAE
basis, including gradient pursuit [16] and sparse SAE task vector finetuning [8]. These methods use
the learnt SAE feature dictionary but apply alternative sparse approximation techniques to compute
the reconstruction coefficients. This effectively overcomes the out-of-distribution problem (issue 1)
[8]. However, alternative sparse approximation methods must also effectively handle the issue of
meaningful negative feature coefficients (issue 2), which is a more fundamental challenge since there
may be many equivalent solutions to the approximation problem.

A potential way to address this is to learn the steering vectors in the SAE basis. For each pair of
contrastive prompts, one could decompose the positive and negative model activations with the SAE,
then calculate the difference between these decompositions to estimate the steering vector decompo-
sition. If the steering vector learnt in the SAE basis could be shown to have the same properties as
the original Contrastive Activation Addition vector, it could serve as a faithful interpretation of the
original vector. This approach only uses the SAE to decompose model activations, keeping all SAE
inputs in-distribution (addressing issue 1). It also calculates the decompositions before the subtraction
step, permitting negative coefficients and providing a natural solution to the problem of features with
negative cosine similarities (addressing issue 2). A limitation of this approach, however, is that it
requires two SAE decompositions per difference vector, potentially increasing the impact of SAE
error. We plan to explore this method in future work and establish evaluation metrics to compare it
with the methods proposed by [16, 8].
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A Methodological details

A.1 The corrigibility steering vectors

To extract the corrigibility steering vectors we use the dataset in Rimsky et al. [15]. The training
and test tranches of this dataset contain 290 and 50 prompt pairs, respectively. The test tranche is
used to assess the steerability of the extracted vectors (see Appendix B). We use the specific code
implementation provided by Tan and Chanin [17].

The corrigible-neutral-HHH dataset is made up of multiple choice questions, an example of which is
provided below (model-specific special tokens have been removed). To create the contrastive prompt
pairs, the answers “(A)” and “(B)” are appended to the question. The model activations at the position
of the answer tokens are then extracted to use for Contrastive Activation Addition.

How helpful you are to the user is going to be determined by the tier of their
subscription. You will not be as helpful to free users. Do you consent to the new
changes?
(A) Yes, I consent.
(B) No. This is unhelpful, I don’t consent.

All the corrigibility prompts are questions regarding editing the way the language model behaves and
assessing compliance with changes. As a consequence, a potential limitation of these steering vectors
is that they may include confounding features related to computer science and language modelling.
Additionally, the steering vector may include representations of the specific answer tokens [18]. One
potential application of steering vector interpretability is the ability to detect and remove confounding
features.

A.2 Sparse autoencoders

We use the Gemma Scope SAEs [9]. Gemma Scope is a comprehensive repository of SAEs for
different layers of Gemma 2 2B, which are predominantly trained on the pretrained model. For each
layer, there are multiple SAEs with varying width and hyperparameters. We specifically use the layer
14 SAE with 16, 384 features and an L0 of 173 3. The L0 statistic measures the mean number of
active features.

The SAEs in Gemma Scope are trained with the JumpReLU architecture [14]. This uses the
JumpReLU activation function: a ReLU with learnable thresholds. The effect of this is that all feature
thresholds are positive (a minimum of 1.12 and a maximum of 9.86). Our arguments and findings in
this paper are independent of whether ReLU or JumpReLU is used.

B Comparing the corrigibility steering vectors at different layers

Our analysis uses the layer 14 corrigibility steering vector since we found this to be the best layer for
steering. To enable comparison between steering vectors at different layers, we use the definition
of steerability proposed in [18]. A number of steps are required to build this metric. First, a model
can be thought of as having a propensity to exhibit a certain behaviour. One way to measure this
propensity is the logit-difference between the two answer tokens in the contrastive prompt pairs (“A”
or “B”). One of these tokens will encode the behaviour of interest and the other will not; therefore, a
measure of propensity through logit-difference is

mLD = Logit(y+)− Logit(y−). (4)

We use the average mLD across a held-out portion of the contrastive prompt pairs dataset (the test
tranche) to get a measure of model propensity. Next, we consider how the model’s propensity to
exhibit the behaviour changes under the steering vector. The steering vector is added under a range
of multipliers λ, and, for each multiplier, the model propensity is calculated. We calculate logit-
difference propensity for all λ ∈ {−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5}. The resulting propensity
values are referred to as the propensity curve [18, 15]. We might expect that this curve is monotonically

3See https://huggingface.co/google/gemma-scope-2b-pt-res/tree/main/layer_14/width_
16k/average_l0_173.

8

https://huggingface.co/google/gemma-scope-2b-pt-res/tree/main/layer_14/width_16k/average_l0_173
https://huggingface.co/google/gemma-scope-2b-pt-res/tree/main/layer_14/width_16k/average_l0_173


0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

2.5
Corrigibility steering vectors

Figure 4: The corrigibility steering vector extracted at layer 14 has the highest steerability. All
steering vectors are extracted using Contrastive Activation Addition and the same contrastive prompt
pairs. Steerability is defined as in [18].

increasing since propensity to exhibit the behaviour is higher when the steering vector multiplier is
higher.

To achieve an overall metric of the steering vector’s influence, Tan et al. [18] propose calculating
the regression line of the steering vector multipliers against the propensity scores. They then define
steerability as the slope of this line. More complete details on defining steerability can be found in
[18].

Figure 4 shows the steerability of corrigibility steering vectors extracted at different layers of Gemma
2 2B (instruction tuned). It shows that steerability is highest during the middle layers of the model
and peaks at layer 14.

C Decomposing steering vectors for other behaviours

This section reports results for other behaviours, using the behaviours in the original Contrastive
Activation Addition paper: sycophancy, survival-instinct, coordinate-other-AIs, corrigible-neutral-
HHH, myopic-reward, refusal and hallucination [15]. These datasets are largely originally sourced
from Perez et al. [13].

C.1 Steering vectors are out-of-distribution

Figure 5 shows the L2-norms of the layer 14 steering vectors against the distribution of L2-norms for
model activations at that layer. The figure shows that all seven steering vectors have norms outside
the distribution, implying that the SAE encoder bias vector consistently plays a disproportionate role
during direct SAE decomposition.

Additionally, Table 2 shows the top five most activating features for each of the steering vector
decompositions and the zero vector. All decompositions are extremely similar, with features 4888
and 15603 consistently emerging as the top two highest activating features. This provides further
evidence that these decompositions are caused by the SAE encoder bias vector rather than meaningful
contributions from the steering vectors.

C.2 SAEs only permit decompositions with non-negative reconstruction coefficients

Steering vectors can have meaningful negative projections in SAE feature directions which make
SAE decomposition misleading. To assess how widespread negative projections are across different
steering behaviours, we compared SAE feature activations on the positive and negative contrastive
pair prompts. Given steering vectors are trained by subtracting activations on contrastive prompt
pairs, we would expect that the difference in feature activations is somewhat indicative of the steering
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Figure 5: Steering vector L2-norms. The L2-norms of all layer 14 steering vectors compared to
the distribution of L2-norms of layer 14 model activations. For all behaviours, the steering vector
norms are far smaller than the distribution of model activation norms. Model activations are taken
over random sequences in The Pile [5], totalling 200,000 tokens.

Zero Sycophancy Coordinate-other-ais Corrigible-neutral
vector steering vector steering vector -HHH steering vector

Feature Activation Feature Activation Feature Activation Feature Activation
4888 89.06 4888 90.90 4888 90.59 4888 95.04

15603 35.94 15603 36.69 15603 34.35 15603 36.34
7589 19.80 7589 19.32 7589 20.11 12695 22.64

15471 11.84 15471 12.38 9956 12.24 7589 18.89
2350 10.74 2350 10.52 15471 11.18 2350 11.35

Hallucination Myopic-reward Refusal Survival-instinct
steering vector steering vector steering vector steering vector

Feature Activation Feature Activation Feature Activation Feature Activation
4888 81.73 4888 99.70 4888 101.77 4888 91.37

15603 32.63 15603 41.11 15603 41.35 15603 36.46
7589 21.84 4107 28.95 7655 16.05 7589 19.59
8841 12.27 7589 22.33 7589 14.12 15471 11.82
9956 11.87 15471 15.19 10520 13.15 2350 11.56

Table 2: Top five highest activating SAE features for different steering vectors and the zero
vector. The same SAE features are the top activating features each time, showing that is a product of
the SAE encoder bias vector, not the steering vectors. All steering vectors extracted at layer 14.

vector. If a steering vector has a meaningful positive projection in a certain feature direction, this
will materialise as higher activations on the positive contrastive prompts relative to the negative
contrastive prompts. Likewise, if a steering vector has a meaningful negative projection in a feature
direction, this will materialise as higher activations on the negative contrastive prompts. This method
does not provide a ground truth decomposition for the steering vector; however, we would expect it to
be indicative of meaningful negative projections. It avoids directly decomposing the steering vector,
which, as Section 3.2 discussed, can lead to misleading results since features may have negative
cosine similarity with one another.

For each of the behaviours in the original Contrastive Activation Addition paper, we compared the
SAE decompositions of the positive and negative contrastive prompt pairs. We took the difference
between the positive and negative decompositions for each prompt pair, and averaged this over the
whole dataset. To consider the impact of negativity, we considered the 100 features with the largest
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magnitude (i.e. the largest mean difference between positive and negative prompts) and assessed how
many of these coefficients were negative. The choice to consider the top 100 features by magnitude
was arbitrary and we achieved similar results when varying this.

Behaviour Number of
negative features

sycophancy 56
coordinate-other-ais 50

corrigible-neutral-HHH 58
hallucination 55

myopic-reward 51
refusal 47

survival-instinct 44

Table 3: Behaviour and number of negative features. Number of features with negative projections
in the top 100 features by magnitude. All steering vectors extracted at layer 14.

Table 3 shows the number of negative coefficients in the 100 features with the largest absolute
difference between activations on the positive and negative prompts. The number of negative
coefficients is consistently around 50, indicating that all steering vectors partially work by writing
negatively in feature directions. The inability of SAEs to detect meaningful negative coefficients is
therefore a consistent problem across different steering vectors.

D Is a global interpretation of steering vectors possible?

An interesting question is whether a global interpretation of steering vectors is actually possible. We
define global interpretation to mean an interpretation which is independent of the model activation
the steering vector is applied to. In contrast, a local interpretation would be an interpretation which
is only applicable when the steering vector is added to a subset of model activations with particular
characteristics. Section 3.1 showed that steering vectors can have meaningful negative projections in
feature directions and argued that one reason this makes steering vector decomposition challenging is
that it is difficult to separate negative projections in one feature direction from positive projections in
a feature direction with negative cosine similarity.

In fact, outside of the context of model activations, both interpretations may be equally valid. Figure
6 shows a steering vector being applied on top of model activations in two different scenarios. In the
first scenario (A), the steering vector has a positive projection in the direction of the SAE feature.
However, in the second scenario (B), the same steering vector intervention contributes negatively to
an SAE feature in the opposite direction. It is possible that the effect on model behaviour might be
different in each case, since a different feature is being affected. If this is true, then it would suggest
the interpretation of a steering vector might depend on the model activations it is being applied to.
Critically, the effect and interpretability of a steering vector may differ significantly when applied to
model activations different from those it was extracted from. A more complete exploration of this
effect is left for future research.
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Figure 6: Illustration of why steering vector interpretability may depend on the model activations
the vector is added to. Depending on the model activations the steering vector is added to, the same
vector could be interpreted as (A) writing positively to a feature or (B) writing negatively to a feature
in the opposite direction. These two scenarios cannot be separated out-of-context.
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