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ABSTRACT

In recent years, deep neural networks have gained substantial traction in the field
of super-resolution. However, existing deep learning methods primarily focus on
enhancing the peak signal-to-noise ratio (PSNR) of images, resulting in subopti-
mal performance across various evaluation metrics and a lack of fine details in
image visual quality. To address these limitations, we introduce a comprehen-
sive algorithmic framework, Multi-Objective Evolutionary Algorithm for Image
Super-Resolution (MOESR), which aims to achieve a balanced optimization of
multi-objective in image super-resolution. Specifically, MOESR first decomposes
the multi-objective super-resolution problem into sub-problems and employs a
novel approach to generate an initial population for the evolutionary algorithm.
Subsequently, it enhances mutation, crossover, and update processes using an
improved differential evolution algorithm, yielding a more Pareto-efficient set of
solutions. Compared to traditional gradient-based methods, our approach does
not require gradient calculations for each objective. As a result, it avoids issues
such as gradient vanishing or local optima. Furthermore, our method has lower
computational complexity, making it particularly advantageous for addressing
high-dimensional problems and deep networks. Extensive experiments are con-
ducted on five widely-used benchmarks and two multi-objective tasks, resulting in
promising performance compared to previous state-of-the-art methods. In addition,
our approach can not only address multi-objective optimization problems but also
represents the first method capable of addressing the balance between objective
and perceptual metrics. Our code will be released soon.

1 INTRODUCTION

Super-resolution (SR) is a extensively studied field, aiming to transform low-resolution inputs into
visually appealing high-resolution images. Its applications span across various computer vision
domains, including security and surveillance imaging (Zhang et al., 2010), medical imaging (Li et al.,
2021), and object recognition. An integral aspect of SR involves quantifying discrepancies between
distorted images and reference images, driving research in objective image quality assessment to
develop automated perceptual quality measures.

In the realm of SR evaluation metrics, several options exist. The mean squared error (MSE) and its
derivative, peak signal-to-noise ratio (PSNR), are widely employed full-reference quality metrics,
measuring pixel-level intensity differences between distorted and reference images. The Structural
Similarity Index (SSIM) (Wang et al., 2004) assesses structural information preservation. Learned
Perceptual Image Patch Similarity (LPIPS) (Back et al., 1997) links perceptual judgments to feature
representations. Additionally, perceptually motivated distance metrics such as MSSIM (Wang et al.,
2003), FSIM (Zhang et al., 2011), and HDR-VDP (Mantiuk et al., 2011) have been proposed.

Why do we need the multi-objective optimization in image super-resolution? While these
metrics are valuable, current SR research primarily optimizes deep neural networks using single-
target objective functions. For example, the L1 loss predominantly improves PSNR, VGG loss
enhances LPIPS, and SSIM loss directly boosts SSIM. However, this focus on a single metric often
compromises the performance of other metrics once neural networks converge.

Prior SR research mainly explores model structures and learning strategies to benefit all metrics,
but this often leads to poor trade-offs between them, a common issue in multi-objective learning.
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Figure 1: The trade-off phenomenon when training super-resolution networks. Where improving the
value of one single objective function during the optimization process result in the deterioration of
other objective functions. Our proposed multi-object evolutionary algorithm based on decomposition
provides a better trade-off result.

Therefore, considering multiple metrics when evaluating the quality of high-resolution outputs from
distorted signals is advisable. As shown in Figure 1 left, networks trained with a single objective tend
to prioritize one metric, and as training progresses, their performance on the other metric starts to
decline. To address this problem, we propose selecting a fair SR solution from the Pareto Frontier
using a fairness metric. Consequently, research on multi-objective optimization in SR tasks becomes
crucial, as it tackles potential conflicts between objectives. Compared to traditional single-objective
optimization methods, our approach achieves a better trade-off, as depicted in Figure 1 on the right.

Why do we need the evolutionary algorithm? In the realm of multi-objective optimization research,
two primary approaches are commonly followed: gradient descent-based algorithms (GD) and
evolutionary algorithms (EA). The GD multi-objective optimization is frequently applied in multi-task
learning to handle task interdependencies and competition. However, it falls short of being a genuine
multi-objective optimization technique. In contrast, EA have demonstrated strong performance in
addressing multi-objective optimization challenges in numerical optimization problems. In addition,
GD employs a single-point approach to iteratively search for the optimal solution. This approach
excels at exploiting the solution space to find a single optimal solution. However, it performs poorly
in the context of multi-objective optimization. Compared to GD, EAs employ a population-based
approach to search for solutions within the multi-objective optimization space.

What’s the limitation of the current EA method? EAs are adept at exploring a wide solution space
to discover multiple diverse solutions that are distributed along the Pareto front (non-dominated front).
However, In previous research, multi-objective optimization was rarely applied to neural networks,
and even when applied, the network size was often limited to LeNet’s scale (Gong et al., 2020). It
did not demonstrate satisfactory performance for deep neural networks and big data in practical
applications, such as image super-resolution. Therefore, our objective is to implement evolutionary
multi-object optimization algorithms in super-resolution tasks involving deep neural networks.

Which evolutionary algorithm we should choose? There are many evolution algorithms such as
genetic algorithms, differential evolution, particle swarm optimization and so on. We mainly use
the differential evolution algorithms and step into several variants of adaptive DE, such as SADE,
SHADE and so on. In addition, we provide a simple method to generate a reference point and
Pareto Front, which are used to evaluate the quality of the solution set generated by multi-objective
optimization algorithms.

In summary, we employ a Multi-Objective Evolutionary Super-Resolution (MOESR) framework to
optimize crucial objectives for single-image super-resolution. Our MOESR is capable of handling
multiple objective optimizations, such as SSIM and PSNR. It is also the first method that simultane-
ously addresses both objective and perceptual metrics, specifically PSNR and LPIPS. The primary
goal of our MOESR is to identify Pareto-efficient solutions that consider both objectives. To achieve
this, we introduce a decomposition-based evolving MO algorithm and enhance its performance by
implementing SHADE as an improved differential evolution strategy. We conduct extensive experi-
ments on five widely-recognized benchmarks and two multi-objective tasks, which yield promising
results compared to previous state-of-the-art methods. Furthermore, we compare our results with
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gradient-based multi-objective optimization strategies, and our solution consistently outperforms
other baseline methods significantly, demonstrating that our solutions are nearly Pareto efficient.

The contributions of this work are:

• We propose a general Pareto efficient algorithmic framework (MOESR) for multi-objective
image super-resolution. This framework is designed to be adaptable to various models and
objectives, showcasing its impressive scalability. Importantly, it represents the first method
capable of simultaneously addressing both objective and perceptual metrics.

• Building upon MOESR as the foundation, we demonstrate how to generate the Pareto
Frontier and establish evaluation metrics for SR tasks. Specifically, this work is the first
to propose the selection of a fair SR solution from the Pareto Frontier using appropriate
fairness metrics.

• We propose an enhanced version of the differential evolution algorithm for our evolution MO
super-resolution task and this is the first work evolving deep neural networks for multi-object
optimization in real world applications.

• We conduct extensive experiments on benchmark datasets. The results indicate that our
algorithm result in promising performance compared to previous state-of-the-art method.

2 RELATED WORK

2.1 IMAGE SUPER-RESOLUTION

Over the past decade, deep learning-based studies in super-resolution (SR) have exhibited superior
performance compared to classical methods, (Yang et al., 2012) Super-resolution research encom-
passes various categories, including model structure exploration, multi-frame super-resolution, blind
super-resolution, inference acceleration, and reference-based super-resolution. Model structure explo-
ration involves investigating architectural designs such as attention mechanisms (Zhang et al., 2018a),
residual and dense connections (Zhang et al., 2018b), non-local blocks(Zhou et al., 2020), and trans-
formers (Liang et al., 2021), to enhance model performance. Multi-frame super-resolution (Shi et al.,
2016) utilizes multiple low-resolution input images from different sources to improve the reconstruc-
tion quality of high-resolution images. Video super-resolution is a specific form of multiple-image
super-resolution that applies the relationship between successive frames to enhance the resolution of
the entire video sequence. Blind super-resolution (Gu et al., 2019) aims to recover high-resolution
images from a single low-resolution image without prior knowledge or reference images. Inference
acceleration optimizes the computational efficiency and speed of super-resolution models through
techniques like lightweight architectures (Hui et al., 2019). Reference-based super-resolution (Yang
et al., 2020) employs additional high-resolution images as references to enhance the reconstruction
quality of low-resolution images by leveraging details and structural information. However, the study
of evaluation metrics for super-resolution poses significant challenges, and there exists a paucity of
research in this domain, particularly concerning the comprehensive assessment of methods using
multiple metrics.

2.2 MULTI-OBJECTIVE OPTIMIZATION

The problem of finding Pareto optimal solutions given multiple criteria is called multi-objective
optimization. A variety of algorithms for multi-objective optimization exist. One such approach
is the multiple-gradient descent algorithm (MGDA) (Désidéri, 2012), which uses gradient-based
optimization and provably converges to a point on the Pareto set. MGDA is well-suited for multi-
task learning with deep networks. It can use the gradients of each task and solve an optimization
problem to decide on an update over the shared parameters. However, there are two technical
problems (Sener & Koltun, 2018) that hinder the applicability of MGDA on a large scale. (i) The
underlying optimization problem does not scale gracefully to high-dimensional gradients, which
arise naturally in deep networks. (ii) The algorithm requires the explicit computation of gradients
per task, which results in a linear scaling of the number of backward passes and roughly multiplies
the training time by the number of tasks. The alternative optimization algorithm that have been
proposed in the literature, evolutionary computation (EC) has been widely recognized as a major
approach for multi-objective optimization (MO). These algorithms can be divided into methods

3



Under review as a conference paper at ICLR 2024

according to dominance, index, and decomposition. Among them, Fast Non-dominated Sorting
Genetic Algorithm (NSGA-II) (Deb et al., 2000), index-based Evolutionary algorithm (Das et al.,
2007), and Multi-objective Evolutionary algorithm based on Decomposition (MOEA/D) (Zhang & Li,
2007) are representative algorithms, respectively. The simplest method to construct the subproblems
in MOEA/D is the weighted sum method, where each subproblem is formulated as a weighted sum of
the original objective functions, and the weights determine the trade-off between the objectives. The
weights can be randomly assigned or generated using various techniques such as uniform distribution,
Latin hypercube sampling, or random scalarization.

2.3 EVOLVING ALGORITHMS

Of particular relevance to our work is evolving algorithms. EA-based methods provide alternative
gradient-free ways to DNN training by the metaphors of natural evolutionary processes, where a
population of neural network topologies and weights evolves for better fitness globally (Stanley et al.,
2019). Popular EAs algorithms for optimizing DNN include genetic algorithms (Montana et al.,
1989), genetic programming (Suganuma et al., 2017), differential evolution (DE) (Pant et al., 2020),
and evolution strategies (Salimans et al., 2017). However, EA-based methods were only reported to
work well on small datasets and small DNNs (Piotrowski, 2014). When optimizing DNNs’ weights
on large-scale datasets, EA-based methods suffer from very slow (or failure of) convergence, given a
large number of model parameters and a complex search space for obtaining the deep representation.
Piotrowski reported the stagnation issues of several variants of adaptive DE, such as SADE, JADE,
and DEGL, in optimizing network weights for regression problems (Piotrowski, 2014). In this paper,
we mainly focus on the differential evolution algorithm and its variants.

3 PROPOSED METHOD

3.1 PRELIMINARY

Multi-objective Evolutionary algorithm. The Multi-objective Evolutionary Algorithm (MOEA) is
a traditional approach that aims to aggregate different objectives into a scalarizing function using a
dedicated weight vector. This process transforms Multi-objective Optimization Problems (MOP) into
multiple single-objective optimization sub-problems, with each sub-problem’s optimum representing
a Pareto-optimal solution of the original MOP. In the context of single image super-resolution, we
define the input as low-resolution (LR) images denoted as x and the ground truth high-resolution
(HR) images denoted as y. The SR tasks’ objective is to train a neural network capable of generating
higher-resolution images solely from the low-resolution input x.

3.2 MOESR

In order to better enhance the SR problem, we introduced a multi-objective optimization algorithm
into this problem. Specifically, we let f1(x), f2(x), . . . , fm(x) represent the m objective functions,
where x is the vector of decision variables. Hence, our objective function is:

minG(x) = (f1(x), f2(x), . . . , fm(x))T

x = (x1, x2, . . . , xn)
T

where the decision vector x, are n dimensional factors. And this need to satisfy

gj(x) ≤ 0, for j = 1, 2, . . . , p

hk(x) = 0, for k = 1, 2, . . . , q

Pareto Dominance (Deb, 2011) could promote efficient resource allocation and get the best trade-off
results. It fosters fairness by ensuring no individual is disadvantaged without benefiting others. It is
defined as: given two solutions A and B, A dominates B (A ≺ B) if and only if:

fi(A) ≤ fi(B) for all i = 1, 2, . . . ,m

fj(A) < fj(B) for at least one j in 1, 2, . . . ,m

Hence, the solution x∗ is said to be Pareto optimal if there is no other solution that dominates it.
And the Pareto front is the set of all Pareto optimal solutions in the objective space.
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However, due to the multi-objective optimization problem is too difficult and does not easily weigh
the individual objectives, we decompose the objective function by this:

F (x) = λ1f1(x) + λ2f2(x) + . . .+ λmfm(x)

st
∑
i

λi = 1 (1)

where the symbols λ1, λ2, λ3, . . . , λm are non-negative weights assigned to each objective function.
For our super-resolution problem, when given a batch of paired low-resolution images (x) and
high-resolution images (y), our approach begins by initializing a population of individuals within a
solution space. This population serves as the initial set of solutions. Next, we decompose the objective
function into multiple single-objective functions and create a set of decomposition weight vectors.
These weight vectors guide the search direction for each single-objective optimization subproblem.

To achieve multi-objective optimization for image super-resolution, we employ evolutionary algo-
rithms to optimize each single-objective optimization subproblem. In each evolutionary step, we
select neighboring weight vectors and utilize the information between them to guide the search direc-
tion for each single-objective optimization subproblem. Subsequently, we consolidate the optimal
solutions from each single-objective optimization subproblem into a single population.

To update the model’s weights, we adjust the decomposition weight vectors and neighborhood size
based on the distribution and density of solutions in the population. Our method will terminate
and provide the Pareto optimal solution set when either the predetermined number of iterations
or a specified stop criterion is met. The primary steps of our Multi-Objective Evolutionary Super-
Resolution (MOESR) approach are outlined in Algorithm 1:

Algorithm 1 MOESR with Differential Evolution
Input : Problem: a multi-objective optimization problem, minG(x) =

(f1(x), f2(x), . . . , fm(x))T ;
T : the maximum number of iterations;
L: the neighborhood size;
H: The number of generations each subproblem evolves;
λ1,...,λN :N evenly distributed weight vectors,λi = (λi1, λi2, ..., λim), i = 1, 2, ..., N ;
N : the number of subproblems.
Subproblems: Fj(x) =

∑m
i=1 λjifi(x), j = 1, 2, ..., N

Output :A set of non-dominated solutions EP .
Pipeline : Compute the Euclidean distance between any two weight vectors and find the nearest

L weight vectors from each weight vector, for each i=1,...,N , let B(i)={i1,...,iL} where
λi1,...,λiL are the L nearest weight vectors to λi;
Generate an initial population population EP={x1,...,xN} by a specific method.

for t = 1 to T do
for i = 1 to N do

For i-th subproblem, differential evolution (DE) algorithm is used for evolution, and the
initial population is set to P (i)={xi1,...,xiL}, the evolution generation is H , and the fitness
function is Fi(x). The algorithm output new generation Pnew(i)={xi

new
1 ,...,xi

new
L }. And

the xi1,...,xiL in EP is replaced by xi
new
1 ,...,xi

new
L .

Output the non-dominated solutions EP ;

3.3 POPULATION INITIALIZATION

Evolutionary algorithms are a population-based optimization method. In MOESR, the population
serves as the initial solution for each sub-problem. However, the traditional random generation
of the initial population presents challenges when applied to neural network learning. To tackle
this, we propose using pre-trained models as the initial population to expedite the optimization
process. To achieve this, it is crucial to employ different pre-trained models for various sub-problems.
Consequently, the model must undergo specific fine-tuning for each sub-problem to obtain the initial
solution. Nevertheless, optimizing for different sub-problems may not directly influence gradient
preferences during model fine-tuning.
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To surmount this limitation, we introduce a simple yet effective approach. Commencing the opti-
mization from a well-trained model focused on a single objective effectively represents the trade-off
between the two objectives. For the multi-objective super-resolution task, we utilize the L1 loss as the
objective for the well-trained model to initialize the optimization process and then optimize further
using the SSIM or VGG loss. This strategy enables the intermediate states to strike a balance between
the two objectives, resulting in an improved initialization of the population and faster convergence.

3.4 DIFFERENTIAL EVOLUTION AND ITS VARIANTS

Optimizing neural network weights is a complex challenge, primarily due to the exceedingly high
dimensionality of the problem and the constrained population size for potential solutions. To tackle
this complexity, we employ two potent variants of Differential Evolution (DE) aimed at automating
the selection of hyperparameters denoted as "f" and "Cr," as well as enriching the repertoire of
available strategies. The first of these variants is Self-Adaptive Differential Evolution (SADE), which
introduces two pivotal enhancements to enhance DE’s performance.

Firstly, SADE incorporates an adaptive crossover rate, CR, drawn from the normal distribution of the
previous mean. Secondly, SADE employs a set of four distinct strategies for the weight mutation
task. This approach significantly elevates the overall efficiency of the optimization process.

vi,g = xr1,g + F · (xr2,g − xr3,g)

vi,g = xi,g + F · (xgbest,g − xi,g) + F · (xr2,g − xr3,g)

vi,g = xr1,g + F · (xr2,g − xr3,g) + F · (xr4,g − xr5,g)

vi,g = xi,g + randu(0, 1) · (xr1,g − xi,g) + F · (xr2,g − xr3,g) .

Strategies are chosen based on their historical success probabilities.

Another noteworthy variant is Success-History based Adaptive DE (SHADE). It enhances DE’s
optimization performance by refining the adjustment of the crossover rate and mutation rate. We use
the four strategies from SADE and the historic archive of hyperparameters for each strategy. This
cultivates a very rich variety of strategies when optimizing the neural network weight.

4 EXPERIMENT

4.1 IMPLENTATION DETAILS

Dataset: Following (He et al., 2016; Zhang et al., 2018a; Yang et al., 2020; Zhou et al., 2020),
we use 800 high-quality (2K resolution) images from the DIV2K dataset (Timofte et al., 2017) as
the training set. We evaluate our models on five standard benchmarks: Set5 (Bevilacqua et al.,
2012), Set14 (Zeyde et al., 2012), BSD100 (Martin et al., 2001), Urban100 (Huang et al., 2015)
and Manga109 (Matsui et al., 2017) in two upscaling factors: ×2, and ×4. All the experiments are
conducted with Bicubic (BI) downsampling degradation.

Evaluation metrics We extensively employ metrics such as SSIM, PSNR, and LPIPS to evaluate the
effectiveness of our model in SR tasks. Additionally, we utilize IGD and HV to represent the model’s
handling of multi-objective scenarios. Specific details can be found in the Appendix D.

Training Settings: We crop the HR patches from the DIV2K dataset (Timofte et al., 2017) for
training. Then these patches are downsampled by Bicubic to get the LR patches. For all different
downsampling scales in our experiments, we fixed the size of LR patches as 60× 60. All the training
patches are augmented by randomly horizontally flipping and rotation of 90◦, 180◦, 270◦ (He et al.,
2016). We set the minibatch size to 16 and train our model using the SHADE optimizer and evaluate
the impact of different DE optimizer variants in the ablation study. The initial learning rate is set
as 10−4 and then decreases to half for every 2× 105 iteration. Training is terminated after 8× 105

iterations. All the experiments are implemented on eight NVIDIA 3090 GPUs.

4.2 EFFECTIVENESS ON TWO OBJECTIVE METRICS

In this task, we pretrain the model on L1 loss (PSNR) and fine-tune it under the SSIM Loss. We
demonstrate the optimization process at different generation phases and evaluate each method using
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Figure 2: Different generations in MO process.
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Figure 3: Different methods in MO problem.

Table 1: Multi-Object SR Metrics. This table summarizes the performance of different generations
in the MO evolving process.

Generation initial 10th 40th 70th

GD 0.00123 0.00093 0.00071 0.00069
HV 0.00012 0.00011 0.00006 0.00004

the multi-objective optimization metric: GD and HV, which proves that our method can well obtain
better-optimized solutions for multi-objective problems. As shown in table 1, we could find that the
GD to and HV values both show a decreasing trend as the number of iterations increases (generations).
The baselines we consider are (i) uniform scaling: minimizing a uniformly weighted sum of loss
functions 1

T

∑
t L

t, (ii) single metric: solving metrics independently, (iii) grid search: exhaustively
trying various values from {ct ∈ [0, 1] |

∑
t c

t = 1} and optimizing for 1
T

∑
t c

tLt, (iv) Uncertainty
Weight: using the uncertainty weighting proposed by (Kendall et al., 2018), and (v) GradNorm:
using the normalization proposed by (Chen et al., 2018). We only compare different methods using
the EDSR baseline model and the result is shown in Fig. 3. In addition, we compute the GD metric of
different method and the result shows that our method performs better in the proposed multi-object
SR task, as shown in table 2 It can be observed that, compared to other gradient-based methods, our
EA-based approach exhibits a smaller GD, demonstrating the effectiveness and advantages of our
method in multi-objective optimization.

Since the pretrained model is trained with L1 loss and prefers the single metric PSNR, we choose
a solution with an approximate PSNR value with the original and compare only the SSIM value.
We conduct extensive experiments with different models: IMDN (Hui et al., 2019) with lightweight
structure, RCAN (Zhang et al., 2018a) with attention mechanisms, EDSR (He et al., 2016) with
residual connections, and so on. The results in table 3 show that our MOESR framework significantly
improved the SSIM metric, while the PSNR metric remained the same or slightly decreased. Note
that EDSR-MO not only achieves an improvement in SSIM metrics on all datasets compared to
EDSR, but also achieves some improvement in PSNR metrics on most datasets. In addition, we
provide quantitative results to compare the visual perceptual effect of single metric and MO metric,
as shown in Fig. 4.

4.3 EFFECTIVENESS ON OBJECT-PERCEPTUAL METRICS

To demonstrate the generalizability of our approach, we employ the MOESR method to optimize
Objective metrics (PSNR) and Perceptual metrics (LPIPS). As shown in Table 4, we validate our
results across five different datasets and four distinct models. We initially use the L1 loss to train our
primary model and further fine-tune it using the VGG loss. The results demonstrate that all models

Table 2: Compare with Other Methods. This table compares the performance of the different
methods in improving the EDSR_baseline model on DIV2K validate dataset. GD is a metric used
to evaluate the performance of multi-objective optimization, where lower values indicate better
performance.

PSNR loss SSIM loss Uniform Scaling mean of Grid Search Uncertainty Weight GradNorm MOESR
GD 0.00121 0.00620 0.00088 0.00094 0.00083 0.00092 0.00069
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Table 3: Quantitative results in comparison with the state-of-the-art methods. Average PSNR/SSIM
for scale factor x2 and x4 on benchmark datasets Set5, Set14, BSD100, Urban100, and Manga109.
†denotes the model used our proposed MOESR.

Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Bicubic x2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.8 0.9339
IMDN x2 38.00 0.9594 33.47 0.9159 32.09 0.8996 32.17 0.9283 38.42 0.9784

IMDN† x2 37.67 0.9615 33.46 0.9198 32.07 0.9027 32.02 0.9302 38.54 0.9861
EDSR-baseline x2 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 38.42 0.9769

EDSR-baseline† x2 37.83 0.9608 33.55 0.9190 32.08 0.9030 31.90 0.929 38.22 0.9789
EDSR x2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.14 0.9773

EDSR† x2 38.19 0.9606 33.939 0.9213 32.42 0.9024 32.964 0.9361 39.11 0.9787
RCAN x2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
RCAN† x2 38.23 0.9634 34.10 0.9229 32.36 0.9066 33.28 0.9399 39.33 0.9817
Bicubic x4 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.8 0.9339
IMDN x4 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.35 0.9075

IMDN† x4 31.97 0.9050 28.43 0.7854 27.44 0.7412 25.90 0.7889 30.26 0.9087
EDSR_baseline x4 32.10 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.35 0.9067
EDSR-baseline† x4 32.07 0.8970 28.56 0.7831 27.56 0.7377 26.02 0.7878 30.33 0.9111

EDSR x4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
EDSR† x4 32.47 0.8998 28.79 0.7883 27.707 0.7434 26.63 0.8054 30.98 0.9169
RCAN x4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
RCAN† x4 32.62 0.9103 28.84 0.7967 27.50 0.7460 26.78 0.8096 31.15 0.9189

Table 4: Quantitative results in comparison with the state-of-the-art methods. Average PSNR/LPIPS
for scale factor x2 and x4 on benchmark datasets Set5, Set14, BSD100, Urban100, and Manga109.
†denotes the model used our proposed MOESR.

Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

IMDN x2 38.00 0.0459 33.47 0.0727 32.09 0.0742 32.17 0.0556 38.42 0.0211
IMDN† x2 37.86 0.0440 33.45 0.0712 32.09 0.0726 32.13 0.0527 38.41 0.0205

EDSR-baseline x2 37.99 0.0456 33.57 0.0715 32.16 0.073 31.98 0.0538 38.42 0.0212
EDSR-baseline† x2 37.84 0.0435 33.57 0.0714 32.13 0.0725 31.94 0.0529 38.37 0.0201

EDSR x2 38.11 0.0440 33.92 0.0691 32.32 0.0713 32.93 0.0487 39.14 0.0202
EDSR† x2 38.09 0.0431 33.91 0.0679 32.29 0.0701 32.91 0.0481 39.11 0.0194
RCAN x2 38.27 0.0436 34.12 0.0689 32.41 0.0713 33.34 0.0485 39.44 0.0201
RCAN† x2 38.24 0.0426 34.10 0.0673 32.36 0.0705 33.31 0.0476 39.39 0.0193
IMDN x4 32.21 0.1041 28.58 0.1577 27.56 0.1612 26.04 0.1465 30.35 0.0718

IMDN† x4 31.96 0.1032 28.49 0.1562 27.49 0.1601 25.96 0.1457 30.26 0.0704
EDSR_baseline x4 32.10 0.1049 28.58 0.1563 27.57 0.1593 26.04 0.1593 30.35 0.0697
EDSR-baseline† x4 32.07 0.1037 28.55 0.1549 27.56 0.1564 26.01 0.1512 30.31 0.0674

EDSR x4 32.46 0.1017 28.80 0.1506 27.71 0.1543 26.64 0.1264 31.02 0.0648
EDSR† x4 32.47 0.1020 28.79 0.1134 27.69 0.1120 26.63 0.1027 30.98 0.0639
RCAN x4 32.63 0.0691 28.87 0.0829 27.77 0.0944 26.82 0.0815 31.22 0.0638
RCAN† x4 32.61 0.0682 28.85 0.0817 27.60 0.0910 26.78 0.0803 31.19 0.0624

utilizing our MOESR method achieve significant improvements in LPIPS across all datasets. It is
evident that our method not only enhances the effectiveness of LPIPS over the original model but
also preserves a substantial portion of the PSNR values. This experimental outcome substantiates
that our method represents a superior trade-off. In summary, it confirms the broad applicability of our
approach and its proficiency in addressing both objective and perceptual metrics.

4.4 ABLATION STUDY

Effectiveness of each component. We conducted the ablation study on Urban100 and Mangna109
to evaluate the contribution of each component in our methodology. This includes the population
initialization method and the effectiveness of Differential Evolution and its variants. As shown in
Table .5, Random refers to adding random noise to a pretrained model to generate the parent set. And
L1 represents the use of L1 loss for further training of the pretrained model to procure the parent
set. Our findings indicate that both PSNR and SSIM yield superior performance when our proposed
method is used for the initial parent set. This strongly corroborates the effectiveness of our proposed
population initialization method.

In Table 6, we compare the effects of three commonly employed variants of the DE method. We
observed that both PSNR and SSIM demonstrate a rising trend commensurate with the increasing
complexity of the DE method. Notably, the SHADE variant delivered the most optimal results.
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Method: L1 ssim MOESR
PSNR/SSIM: 34.46/0.965 33.97/0.966 34.44/0.967

∥ L1 ssim MOESR
∥ 34.70/0.943 34.29/0.945 34.59/0.945

Method: L1 ssim MOESR
PSNR/SSIM: 27.52/0.785 27.31/0.793 27.47/0.791

|| L1 ssim MOESR
|| 29.35/0.895 29.01/0.897 29.22/0.898

Figure 4: Visual results with Bicubic downsampling (x2) on images from BSD100 and Urban100.
Our proposed MOESR provides a better trade-off result.
Table 5: Image restoration quality of RCANx2
under different population initialization methods.

Datasets Metric Random L1 Ours

BSD100 PSNR↑ 33.25 32.41 32.36
SSIM↑ 0.9375 0.9379 0.9066

Mangna109 PSNR↑ 39.31 39.39 39.33
SSIM↑ 0.9702 0.9783 0.9817

Table 6: Image restoration quality of RCANx2
under Differential Evolution and its variants.

Datasets Metric DE SHDE SHADE

BSD100 PSNR↑ 32.23 32.27 32.36
SSIM↑ 0.9042 0.9051 0.9066

Mangna109 PSNR↑ 39.16 39.25 39.33
SSIM↑ 0.9797 0.9805 0.9817

5 CONCLUSION

In conclusion, this stduy introduces the Multi-Objective Evolutionary Algorithm for Image Super-
Resolution (MOESR), a comprehensive framework designed to overcome the limitations of existing
deep learning methods in super-resolution. By addressing multiple objectives in image enhancement,
MOESR offers a balanced optimization approach, moving beyond the sole focus on peak signal-to-
noise ratio (PSNR) improvement. Our method decomposes the problem into sub-problems and utilizes
a novel evolutionary algorithm to generate an initial population, with improved mutation, crossover,
and update processes via an enhanced differential evolution algorithm. MOESR outperforms gradient-
based methods by eliminating the need for gradient calculations for each objective, thereby mitigating
issues like gradient vanishing and local optima. Moreover, it boasts lower computational complexity,
particularly beneficial for high-dimensional problems and deep networks. Extensive experiments
validate MOESR’s promising performance across benchmarks and multi-objective tasks, offering a
groundbreaking capability to balance objective and perceptual metrics in image quality. MOESR is
poised to advance image super-resolution and multi-objective optimization research.

Limitation and Future work The development of multiple objective evaluation metrics is a
complex endeavor due to the significant variations in optimization tasks. Nevertheless, these metrics
play a crucial role in guiding multi-objective optimization processes. In the realm of Super-Resolution
(SR) tasks, research in this particular aspect has been relatively limited. The evaluation metrics
we have selected suffer from insufficient theoretical analysis and empirical evidence, necessitating
further investigation. Additionally, it is imperative to conduct deeper studies on improved population
initialization methods.
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