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Abstract
Automatically conjecturing useful, interesting and
novel lemmas would greatly improve automated
reasoning tools and lower the bar for formaliz-
ing mathematics in proof assistants. It is how-
ever a very challenging task for both neural and
symbolic approaches. We present the first steps
towards a practical neuro-symbolic lemma conjec-
turing tool, LEMMANAID, that combines Large
Language Models (LLMs) and symbolic meth-
ods, and evaluate it on proof libraries for the Is-
abelle proof assistant. We train an LLM to gen-
erate lemma templates that describe the shape of
a lemma, and use symbolic methods to fill in the
details. We compare LEMMANAID against an
LLM trained to generate complete lemma state-
ments as well as previous fully symbolic conjec-
turing methods. LEMMANAID outperforms both
neural and symbolic methods on test sets from
Isabelle’s HOL library and from its Archive of
Formal Proofs, discovering between 29-39.5% of
the gold standard human written lemmas. This is
8-15% more lemmas than the neural-only method.
By leveraging the best of both symbolic and
neural methods we can generate useful lemmas
for a wide range of input domains, facilitating
computer-assisted theory development and for-
malization.

1. Introduction
Learning to construct new, interesting, and useful lemmas
for proof assistants is an important yet underexplored area
in AI for mathematical reasoning (Yang et al., 2024). Such
lemmas can aid a human user working on a mathematical
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formalization, as well as strengthen automated theorem
provers. In this work, we examine how LLMs can be used
for lemma generation, and how they can be combined with
symbolic tools for optimal results. Our aim is to to provide a
first tool towards generic conjecturing over a broad range of
mathematical theories, which is practically useful for users
of proof assistants.

A weakness of LLMs is that they sometimes generate repet-
itive or redundant lemmas, fail to discover more novel and
useful lemmas, or hallucinate undefined symbols in the
formalization. Furthermore, there are no correctness guar-
antees on the LLM’s output, so the generated lemmas may
simply be false. These challenges have been encountered
in previous work on neural conjecturing (Urban & Jakubův,
2020; Rabe et al., 2021; Johansson & Smallbone, 2023).
Symbolic methods, on the other hand, can be designed and
programmed to avoid repetition and redundancy. However,
symbolic methods will only generate lemmas that fit a pre-
defined specific search space, and tend to scale poorly to a
larger search space. Previous symbolic tools (Smallbone
et al., 2017; Einarsdóttir et al., 2021; Singher & Itzhaky,
2021) have been used to successfully discover, for example,
lemmas needed in automated (co-)inductive provers (Johans-
son et al., 2014; Einarsdóttir et al., 2018; 2024; Kurashige
et al., 2024). However, these tools are limited in the shape,
size and domain of lemmas they can generate, and do not
scale well to larger sets of inputs.

To address these shortcomings, we propose a novel neuro-
symbolic lemma conjecturing approach and tool: LEM-
MANAID. An LLM is trained to generate lemma templates
that describe the shape of a family of analogous lemmas,
rather than directly generating complete lemmas. Symbolic
synthesis methods are then used to fill in the details. Previ-
ous work has shown that such families of analogous lemmas
indeed occur in proof assistant libraries (Einarsdóttir et al.,
2022; Heras et al., 2013). In this way, we leverage the best
of both neural and symbolic methods. The LLM suggests ap-
propriate analogous lemma-patterns likely to be relevant for
the theory at hand. The symbolic engine ensures correctness
and novelty, while keeping the search space manageable.
As far as we are aware, this is the first work focusing on
neuro-symbolic lemma conjecturing.
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For evaluation, we measure the coverage of (unseen test-
set) lemmas that can be discovered by LEMMANAID from
Isabelle’s HOL library1 and from its Archive of Formal
Proofs (AFP)2. Using human-written formalizations as a
gold-standard gives us a good approximation of how many
interesting lemmas LEMMANAID can produce for a novel
theory (taking only basic definitions of the theory as input),
an evaluation strategy used in many prior lemma conjec-
turing works, e.g. (Montano-Rivas et al., 2012; Smallbone
et al., 2017; Einarsdóttir et al., 2018; Urban & Jakubův,
2020). In our experiments, we use a DeepSeek-coder-1.3b
language model. We choose a small LLM for several rea-
sons: in addition to computational and environmental con-
cerns, our ultimate aim is to create something that is acces-
sible for regular proof-assistant users without need for huge
compute resources, i.e. a model which can run locally for
inference. We further show that the LEMMANAID approach
compares favorably to the results achievable using purely
neural or purely symbolic conjecturing.

The main contributions of our work are:

• LEMMANAID, the first neuro-symbolic lemma conjec-
turing approach that uses an LLM to predict templates
and a symbolic engine to instantiate templates as lem-
mas.

• An evaluation of LEMMANAID on the Isabelle proof
assistant’s HOL and AFP libraries. This goes much
beyond evaluations of prior tools that have focused on
specific domains.

• A comparison to existing symbolic method, QuickSpec,
and neural LLM-based lemma conjecturing models we
create, showing that LEMMANAID outperforms these
methods and is complementary.

To ensure reproducibility of our results and enable others to
build on our work, we make all code, experimental scripts,
data, and models publicly available online3.

2. Related Work
Proof Assistants Proof Assistants, such as Isabelle (Nip-
kow et al., 2002) and Lean (de Moura et al., 2015) are
increasingly being used to check proofs in both mathemat-
ics and computer science for correctness. To do so, the user
needs to formalize their theory, by translating it into the for-
mal language of the proof assistant. They then interact with
the system to construct a proof by stringing together calls

1https://isabelle.in.tum.de/dist/library/
HOL/index.html

2https://www.isa-afp.org
3https://anonymous.4open.science/r/

Lemmanaid

to tactics, each executing and checking some part of the
proof. Popular tools like Sledgehammer can automate (parts
of) many proofs by selecting a suitable set of previously
proved lemmas, and sending the conjecture to an automated
first-order prover or SMT-solver (Blanchette et al., 2011).

Autoformalization and Proof Synthesis Formalizing the-
ories in proof assistants is a non-trivial task, which has
sparked interest in autoformalization: translating defini-
tions, theorems and lemmas written in natural language
to the formal language of a proof assistant (Wang et al.,
2018; Szegedy, 2020; Wu et al., 2022). Furthermore, even
with definitions and statements formalized, constructing
the required proofs from various tactics is again non-trivial,
even with the help of tools like Sledgehammer. This has
motivated work on various LLM-driven methods for syn-
thesizing proof scripts for proof assistants such as Isabelle
or Lean, either incrementally (Jiang et al., 2023; Ren et al.,
2025), or by generating whole proofs at once (First et al.,
2023). The LEGO-prover furthermore attempts to introduce
intermediate proof statements as reusable lemmas (Wang
et al., 2024). Our work does not focus on producing proofs,
but on suggesting suitable conjectures similar to the kind
of lemmas that humans write down in libraries of formal
proofs. As such it is orthogonal to much previous work,
but could in the future be combined with, and complement,
proof synthesis systems.

Templates for Synthesizing Conjectures Following the
observation that many mathematical theories share analog-
ical lemmas of similar shapes, Buchberger et al. (2006)
proposed to use templates as guidance in mathematical the-
ory exploration, allowing efficient conjecturing of many (but
not all) lemmas by analogy to known shapes. This has been
implemented in a range of symbolic lemma conjecturing
systems, including some targeting Isabelle/HOL (Montano-
Rivas et al., 2012; Heras et al., 2013; McCasland et al., 2017;
Einarsdóttir et al., 2021; Nagashima et al., 2023). A similar
technique, called sketching has also been applied in the do-
main of program synthesis (Solar-Lezama, 2009). Unlike
our work, where we use an LLM to suggest templates based
on context, the templates in symbolic systems are typically
pre-defined or provided in interaction with the user.

Neural Conjecturing and Reinforcement Learning Re-
cent work on neural conjecturing and reinforcement learning
has demonstrated success in specific domains —famously
in Euclidian plane geometry through the AlphaGeometry
system (Trinh et al., 2024), as well as in reasoning about
programs that generate integer sequences from the Online
Encyclopedia of Integer Sequences (OEIS) (Gauthier & Ur-
ban, 2023; 2025). Poesia et al. (2024) treated conjecturing
as a reinforcement learning game in simple propositional
logic, arithmetic and group theory, with well formed con-
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jectures generated neurally via constrained decoding. In
contrast, we target the broad range of theories represented in
proof assistant libraries, and want to avoid domain specific
learning by generating generic templates as an intermediate
step. The STP system (Dong & Ma, 2025), performs a type
of conjecture generation by producing variants of a given
seed-statement, with the aim of generating additional train-
ing data for a self-playing theorem prover. LEMMANAID,
on the other hand, does not rely on having an available
seed-statement to start from, and also targets a different
use-case, namely to make suggestions to a human doing a
formalization.

3. The LEMMANAID Approach
We have implemented a tool, LEMMANAID, for template-
based conjecturing in Isabelle/HOL. The motivation comes
from the observation that many lemmas in formalizations
share a similar high-level structure and are analogous to each
other (Buchberger et al., 2006; Einarsdóttir et al., 2022). The
goal of LEMMANAID is to aid a proof assistant in identify-
ing such analogies. We envision a user working on a new
mathematical formalization having defined some functions,
types and other concepts, and perhaps a few theorems about
those. This collection of definitions, which we refer to as a
(partial) theory, serves as input to the conjecturing system.
LEMMANAID then outputs conjectures that are likely to be
useful in this context, allowing the user to make progress in
their formalization, or better understand the behavior of the
theory they have defined so far (see Figure 1). This happens
in two stages: First (neural part), the partial theory is given
as input to an LLM which outputs templates likely to be
relevant. Secondly (symbolic part), LEMMANAID searches
over possible instantiation of those templates in the current
theory, to produce concrete conjectures.

Figure 1. High-level overview of LEMMANAID.

Section 3.1 introduces the notion of template-based conjec-
turing, our template language, and how templates capture
information about families of analogous lemmas. We also
describe the symbolic engine of LEMMANAID and how it
instantiates templates to produce conjectures. Section 3.2

discusses how we train LEMMANAID’s neural engine, a fine-
tuned LLM that predicts templates, which are subsequently
fed to the symbolic engine. Section 3.3 details direct lemma
conjecturing baselines that we implement for Isabelle. Fi-
nally, Section 3.4 describes the datasets we use for training
and evaluation.

3.1. Template-based conjecturing via LEMMANAID’s
Symbolic Engine

Template Language A template is an abstraction of a
mathematical statement with concrete operators replaced by
holes. The template thus captures the overall structure of the
statement. As an example, consider the following lemmas
about the Octonionic product and sum functions from the
Isabelle ATP formalization about the octonions, an eight-
dimensional extension of complex numbers (Koutsoukou-
Argyraki, 2018):

lemma octo product noncommutative:
¬(∀x y :: octo.(x ∗ y = y ∗ x))
lemma octo distrib left:
a ∗ (b+ c) = a ∗ b+ a ∗ c for a b c :: octo

lemma octo assoc plus:
a+ (b+ c) = (a+ b) + c for a b c :: octo

If we abstract away the function symbols operating on octo-
nions, and rename the variables according to our template
abstraction method, we obtain the three templates:

¬(∀ y0 y1. ?H1 y0 y1 = ?H1 y1 y0) (1)

?H1 x1 (?H2 x2 x3) = ?H2 (?H1 x1 x2) (?H1 x1 x3) (2)

?H1 x1 (?H1 x2 x3) = ?H1 (?H1 x1 x2) x3 (3)

Note how the function symbols ∗ and + operating on octo-
nions have been replaced by the holes ?H1 and ?H2, and
the variables a, b, c, x, y standardized to y0, y1, x1, x2, x3.
Note that logical symbols, such as negation ¬, universal
quantifier ∀ and equals sign = remain in the template struc-
ture. Technically, templates are implemented as instances
of Isabelle/HOL’s term datatype4. Our template language
represents analogous lemma statements, that have been ab-
stracted and normalized in the following way: Function
symbols are replaced with a hole, represented as ?Hk where
k is a positive integer label. Note that the type of the hole is
also an abstraction of the type of the original symbol, with
concrete types replaced by type variables. In our examples,
the holes in the templates above have types that match any
function with two arguments. Each occurrence of a particu-
lar function symbol is replaced by the same hole label, even

4See section 2.2 of the Isabelle/Isar Implementation
Manual https://isabelle.in.tum.de/dist/
Isabelle2025/doc/implementation.pdf
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in the case of polymorphic functions where different occur-
rences of the symbol may have different types. Variables
are renamed to xk (or yk in the case of bound variables),
where k is a non-negative integer label, and their types set
to match those of the corresponding holes. As mentioned,
a small set of generic logic symbols have been specified to
remain in the template. This is to avoid over-generalization
and allow templates to act as representatives for meaningful
families of analogous lemmas. See Appendix A.1 for details
about these symbols.

Template Instantiation We can instantiate or fill the holes
in a template by any operator with a matching type. For
instance, template 1 can be instantiated using any binary op-
erator, such as subtraction on real numbers or concatenation
on lists to obtain a new conjecture. If the operator indeed
is non-commutative, we obtain a correct lemma analogous
to the lemma octo product noncommutative. In this way,
templates are generalizations of lemma statements: each
template matches many different lemmas that may apply in
different theories.

LEMMANAID’s symbolic engine takes as input a template
and a list of relevant function names from the current theory.
It then searches over the possible instantiations of the holes
in the template using the given functions (note that unlike
holes the variables are fixed at instantiation, and not replaced
by any further terms). Each indexed hole is replaced by
one of the given function symbols while ensuring that the
resulting candidate lemma is well typed. This may lead to
a number of different candidate lemmas being produced.
While using templates restricts the search, we still also set a
time-out to deal with rare cases where the template contains
very many holes or we have a large number of potential
functions to instantiate them with.

Revisiting our example, consider again template 3 (associa-
tivity). Suppose we give this template to LEMMANAID’s
symbolic engine, along with the functions + (addition),
− (subtraction), sin, cos and ˆ (exponentiation) for real
numbers, and the functions len (the length of a list), rev
(reversing a list) and @ (concatenate two lists). In the hole-
filling step, it will come up with the following candidates:

x1 + x2 + x3 = x1 + (x2 + x3)

(x1 @ x2) @ x3 = x1 @ (x2 @ x3)

x1 − x2 − x3 = x1 − (x2 − x3)

(xx2
1 )x3 = x

x
x3
2

1

Note how sin, cos, len, and rev cannot be used to fill
the hole ?H1, since ?H1 is applied to two arguments and
therefore requires a binary operator. Also note that only the
instantiations with + and @ result in valid lemmas, while
the other two conjectures are false. The user can for instance

apply Isabelle’s counterexample checker to easily identify
these.

3.2. Template Prediction via LEMMANAID’s Neural
Engine

LEMMANAID’s neural engine uses a fine-tuned LLM to pre-
dict templates given a theory context. Template predictions
are inputted to LEMMANAID’s symbolic engine (§3.1). For
fine-tuning, we create labeled training data (input-output
pairs). Following §3.1, we extract the template of each
lemma appearing in a corpus of human-written theory files,
and use a string representation of the template as the desired
output. For each output, its corresponding input is the list
of symbols appearing in the body of the original lemma,
as well as contextual information about the symbols. For
a given symbol, both its type and any known associated
definition convey information about how the symbol can be
used. Although definitions provide more complete descrip-
tions of symbols, types are more succinct and they often
provide sufficient information to form well-typed templates
and lemmas. Section 4.2 evaluates the effectiveness of types
and definitions as inputs. Revisiting the examples about
octonions, the lemma octo distrib left would result in the
datapoint of the shape:
Input: [Symbols: *, +] [Types of *, +] [Defs
of *, +]; Output: [?H1 x1 (?H2 x2 x3) =
?H2 (?H1 x1 x2) (?H1 x1 x3)]

To obtain the list of symbols present in a given lemma, we
first construct a theory file with low-level ML code to in-
teract with Isabelle/Isar top-level and retrieve the lemma.
To extract the symbols, we recursively iterate over applica-
tions in the term storing any encountered constants, using
Isabelle-client (Shminke, 2022). The list of symbols and
their information is the minimal context necessary to recover
a given lemma. However, additional context, such as rele-
vant existing lemmas, may further guide the conjecturing
process and is an interesting direction for future work.

3.3. Direct Neural Lemma Conjecturing

While LEMMANAID employs a neural engine to generate
templates and a symbolic engine to instantiate those tem-
plates into lemmas, there is another approach one can take,
which is to use a neural engine to directly generate lem-
mas. To create such a baseline, we adapt LEMMANAID’s
neural engine, by instead fine-tuning it on tuples of the form
(symbols, context, lemma) instead of a template. Revisiting
the running example again, the lemma octo distrib left now
results in a datapoint of the shape:
Input: [Symbols: *, +] [Types of *, +] [Defs of *, +] ;
Output: [(a ∗ (b+ c) = a ∗ b+ a ∗ c]

Two possible string representations of the lemma in the out-
put are: (1) the lemma command as appearing in the source
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code of the theory file (what a human would write), and (2)
a string representation of the internal lemma object within
the proving engine. We noticed early in our experimentation
that an LLM is almost never able to predict the lemma com-
mand as it is less structured than the lemma object, and so
we use the lemma object representation. While there is some
novelty in predicting lemma objects directly as opposed to
lemma commands, the main purpose of doing direct neural
lemma conjecturing is to create a suitable baseline for our
experiments.

3.4. Dataset

We train and evaluate LEMMANAID on mathematical li-
braries from the Isabelle proof assistant. First, the Is-
abelle/HOL library, which contains formalizations based
on higher order logic for a range of mathematics (e.g. num-
ber theory, analysis, algebra, set theory). Second, we also
use the Isabelle Archive of Formal Proofs (AFP), which is
a large collection of formalizations from the research com-
munity including mathematics, computer science and logic.
At the time of writing, the AFP includes about 285,200 lem-
mas in close to 900 theories. We extract templates for the
lemmas in the above libraries as described in §3.1. In total,
this results in a dataset of 62,816 data-points from the HOL
library and 206,304 data-points from the AFP5.

4. Evaluation
We set out to answer the following research questions:

RQ1 How does our neuro-symbolic approach, LEM-
MANAID, compare with neural approaches and ex-
isting symbolic approaches? How does different con-
textual information (such as types and definitions)
impact performance?

RQ2 How does an LLM compare to LEMMANAID’s sym-
bolic engine in its ability to fill in lemma templates?

RQ3 How well does an LLM understand the lemma tem-
plate language?

RQ4 What kinds of lemmas is LEMMANAID able to gener-
ate?

4.1. Experimental Setup

Baselines While prior work (Gauthier & Urban, 2023;
2025) has explored direct neural lemma conjecturing, there
are no existing neural-based tools or models for Isabelle
to compare against. We train our own neural baselines

5Some theories could not be processed by the batch method
we used, due to technical issues with theory imports. Hence, our
dataset does not cover everything from the AFP.

(Section 3.3), and go beyond prior work by predicting the
lemma objects. Models trained to predict the lemma object
are denoted by “neural” in tables in the evaluation. The
state-of-the-art symbolic tool for lemma conjecturing is
QuickSpec (Smallbone et al., 2017). QuickSpec is limited
in that it can only generate equational lemmas as its con-
jecturing algorithm is based around enumerative synthesis
of terms and the construction of equivalence classes via
automated testing.

Benchmarks We derive our datasets from the Is-
abelle/HOL library and the Archive of Formal Proofs (AFP)
(recall §3.4) and create multiple train/validation/test sets
from these libraries. We create a file-wise split of the HOL
library so that we may evaluate the in-distribution capa-
bilities of LLM-based approaches for lemma conjecturing
tasks. The training, validation and test sets are called HOL-
train (57,576 datapoints), HOL-val (500 datapoints), and
HOL-test (4,740 datapoints), respectively.

Next, we supplement HOL-train and HOL-val with all
projects from the AFP2024 that are published prior to 2024
to create HOL+AFP-train and HOL+AFP-val. We then cre-
ate a new test set called AFP-test comprised of 27 AFP
projects published in 2024 (and thus disjoint from those in
HOL+AFP-train and HOL+AFP-val). More information
about results on the different projects in AFP-test can be
found in A.3. Training models on HOL+AFP-train and eval-
uating on HOL-test allows us to understand the effect of
more training data as opposed to training on only HOL-train.
On the other hand, training models on HOL+AFP-train
and evaluating on AFP-test allows us to evaluate an out-
of-distribution task (as AFP projects tend to differ greatly
in topic, content, and style). Importantly, evaluating on
AFP-test allows us to mitigate the risk of test leakage as
the models we use have publicly reported pretraining cutoff
dates in 2023, and all projects in AFP-test are published in
2024 and after. AFP-test consists of 16,362 datapoints.

We separately test on the Octonions project (Koutsoukou-
Argyraki, 2018), which contains 350 lemmas, from the AFP
and leave it out of all training sets in order to compare LEM-
MANAID, direct neural lemma conjecturing models, and
symbolic tool, QuickSpec. We choose the Octonion the-
ory for this comparison as it consists of equational lemmas,
which is the domain QuickSpec supports. Recall that Quick-
Spec can only conjecture equational lemmas on computable
functions which limits its applicability to a smaller subset
of Isabelle theories.

We enumerate the lemmas appearing in a given project by
compiling and processing a theory and counting the num-
ber of lemma objects that exist. We do this by using the
Find Theorems tool in Isabelle which retrieves theorems
from a proof context, and we only keep the theorems defined
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Table 1. Percentage of gold-standard lemmas discovered for LEMMANAID and a neural only version. We include results for the symbolic
QuickSpec tool only on Octonions which is in its scope. Results are for 5 predictions (greedy decoding & beam search with beam size 4).

HOL-train HOL+AFP-train
HOL-test AFP-Test Octonions HOL-test AFP-Test Octonions

LEMMANAID (types + defs) 38.8% 25.4% 53.7% 38.6% 29.1% 47.4%
LEMMANAID (types) 35.6% 25.4% 58.5% 39.5% 26.5% 52.0%
LEMMANAID (defs) 33.0% 13.8% 45.7% 33.9% 14.7% 41.4%
Neural (types + defs) 30.7% 13.8% 34.6% 29.1% 14.9% 39.1%
Neural (types) 31.5% 14.4% 43.4% 28.9% 14.6% 41.1%
Neural (defs) 26.7% 8.6% 30.6% 28.5% 10.4% 36.3%
LEMMANAID Combined 46.5% 30.9% 68.0% 48.2% 34.6% 65.7%
Neural Combined 39.7% 19.5% 49.1% 38.9% 20.8% 56.6%
Combined 50.7% 32.9% 71.4% 52.0% 37.4% 74.0%

QuickSpec — — 22.8% — — 22.8%

in the active theory. The implications of this enumeration
are discussed in A.2.

Metrics We define multiple metrics used throughout our
evaluation. In our approach, we have a set of lemma-
prediction tasks. In each such task, there is one gold-
standard lemma, and the method being assessed generates a
set of predicted lemmas. We define lemma success rate as
the percentage of these lemma prediction tasks for which
the given method is able to successfully generate (as part
of the set of lemmas it generates) the gold-standard lemma
(where we compare lemmas syntactically). This overall met-
ric measures the performance of a method end-to-end. For
LEMMANAID’s neural engine, we want to measure template
success rate, which is the percentage of template-prediction
tasks for which it predicts the correct gold-standard template.
For the symbolic engine, given a template, the symbolic en-
gine generates many instantiations, and we consider the
instantiation task to be successful if one of the generated
instantiations matches the gold-standard lemma (syntacti-
cally). The instantiation rate measures the percentage of
instantiation tasks that the symbolic engine can perform
successfully. We also use this metric in RQ2 to measure
an LLM’s ability to instantiate templates. To answer RQ3,
we need to measure how well LLMs are able to generate
templates from lemma objects. In this case, a task consists
of predicting a template from a lemma object. We define
abstraction rate as the percentage of such lemma-template-
from-object prediction tasks the LLM is able to perform.

Models and Inference For all tasks, we use deepseek-
coder-1.3b-base as the pretrained model that we fine-tune.
In early experiments, we explored the use of Llama-3.2-1b,
but found that all methods performed slightly worse. One
benefit of using smaller models in LEMMANAID is that it
supports a more realistic setup for actual users wanting to

use a conjecturing tool and run it locally on their machine.
See A.4 for some details about computing resources and
replication parameters used in our evaluation. At inference
time, we use greedy decoding to obtain a template prediction
from LEMMANAID’s LLM. We also use beam search with
beam size equal to 4. For our RQ1 evaluation, we use both
decoding strategies for all neural models, including neural
baselines, and thus all methods with neural models have the
same LLM inference budget of 5. For all other RQs, greedy
decoding is used for LLM inference.

Checking Outputs To check the correctness of a pre-
dicted template, we use the exact match (string similarity)
of the predicted template and the abstracted template of
the gold-standard lemma we want to recover. This is suf-
ficient for templates given the way in which we define the
template language. Exact match is not sufficient for com-
paring lemma objects because it requires identical variable
names and therefore does not account for alpha equiva-
lence of the terms. We want to count a generated lemma as
matching the gold-standard even if it uses different variable
names. We parse the gold-standard lemma object and the
predicted lemma object in the context of a given theory, as
some symbols are only defined in that context. We perform
term comparison, where we traverse the tree, checking for
equivalences on left and right, respectively. Since alpha
renaming is already implemented in Isabelle, we use this for
variable comparison. Note that this cannot be done easily
outside of Isabelle because we must know a given variable’s
scope. Since instantiation of a predicted template via LEM-
MANAID’s symbolic engine produces multiple candidate
lemmas, we iterate over them and check each against the
gold-standard lemma. LEMMANAID’s symbolic engine’s
instantiation timeout is set to 60s.
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4.2. RQ1: Neuro-symbolic vs Neural vs Symbolic

To evaluate LEMMANAID and compare it against neural-
only baselines and symbolic methods, we train LEM-
MANAID’s neural model and the baseline models on either
HOL-train or HOL+AFP-train, obtain multiple variants, and
evaluate them across different test sets (Table 1). For all
models, we compare the results obtained when various con-
textual information is included in the input: definitions, type
information, or both (as described in 3.2). For each model,
we get 5 predictions: 1 using greedy decoding, and 4 using
beam search (with beam size of 4). We break down the
results for each decoding method in Appendix A.5.

We see that LEMMANAID outperforms the respective neural
baselines on all test sets. We also see that neural methods
are somewhat complementary to LEMMANAID, taken as an
ensemble they discover even more lemmas. The inclusion of
type information is greatly beneficial to both LEMMANAID
and the neural baseline method. We see that in some cases
the success rate is higher when only type information is
included and definitions are excluded, while in others in-
cluding both is beneficial, although differences are relatively
small. We see that on AFP-test, the performance drops for
all variants compared to their results on HOL-test. This
is unsurprising, as the lemmas in AFP projects are more
diverse than those in HOL. Also, the input to the LLMs may
not include enough contextual information as retrieving def-
initions in AFP theories requires retrieving across dependen-
cies, though we always account for HOL as a dependency.
We see that when trained on HOL+AFP-train, performance
improves on AFP-test, in particular for LEMMANAID where
we see an increase from 25.4% to 29.1%, while the neural
baseline only increases from 14.4% to 14.9%.

For Octonions, LEMMANAID models outperform their re-
spective neural baselines while both greatly outperform
QuickSpec. Similar to other datasets, an ensemble of LEM-
MANAID and neural models provides a significant improve-
ment, with overall lemma success rate up to 74%. However,
QuickSpec is complementary to both models trained on
HOL-train and HOL+AFP-train, improving overall lemma
success rate to 74.6 % and 76.9% respectively.

Not shown in Table 1 is that QuickSpec generates sev-
eral thousand lemmas, giving it an extremely poor preci-
sion of less than 1%. This is because it has no heuristics
for judging which lemmas are interesting, and only skips
lemmas that are logical consequences of existing lemmas.
It also skips several useful and simple lemmas, such as
inner e1 x = Im1 x, as they are considered trivial conse-
quences of other lemmas. This shows the limitations of the
purely symbolic approach in selecting relevant lemmas, and
is further illustrated in A.6.

4.3. RQ2: Template instantiation by LEMMANAID’s
symbolic engine vs an LLM

As discussed in Section 3.1, LEMMANAID instantiates its
predicted templates symbolically. We also noted some limi-
tations of this instantiation and how it is subject to timeouts.
Alternatively, we can train an LLM to instantiate templates.
Table 2 displays the template instantiation rate for LEM-
MANAID’s symbolic engine and an LLM trained to instanti-
ate templates when both are given the gold-standard lemma
template and the symbols appearing in the gold-standard
lemma. We observe that LEMMANAID’s symbolic engine
has a much greater instantiation rate (89.1%) than that of
an LLM (66.9%). However, interestingly, the LLM recov-
ers some lemmas that we symbolically fail to recover, so
when we consider lemmas recovered either symbolically or
neurally, the rate is 92.2%.

Table 2. Instantiation rate for LLM (fine-tuned on HOL-train) and
LEMMANAID for gold-standard templates (HOL-test).

Method Instantiation Rate

LLM 66.9%
LEMMANAID 89.1%
Combined 92.2%

Timeouts account for 96% of the cases where LEM-
MANAID’s symbolic engine fails to instantiate a template.
The remaining small number of failures are due to runtime
errors, such as referencing private (hidden) symbols or ex-
ceptions during a theory import. Since the LLM is able to
overcome some of the failures of the symbolic engine, a
potential hybrid system could have both an LLM and sym-
bolic engine instantiating templates. Further examination of
the strengths and weaknesses of each approach could help
achieve an optimal complementary combination.

4.4. RQ3: Template abstraction performance of LLM

Table 3. Template abstraction rate for LLMs (fine-tuned on HOL-
train) with different inputs evaluated on HOL-test.

LLM Input Abstraction Rate

Lemma Object 88.9%
+ Symbols + Types 92.0%
+ Symbols + Types + Defs 90.3%
Combined 94.5%

To assess how well LLMs understand the language of lemma
templates, we train an LLM to abstract templates from
lemma objects. We have three variants of this task: (1)
only lemma objects as input, (2) lemma objects, symbols,
and their types as inputs, and (3) which is similar to (2)
with the addition of definitions (Table 3). Models perform
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Table 4. Statistics on HOL-test, AFP-test, and Octonions, and the successes of LEMMANAID and neural baselines on each dataset.
LEMMANAID and neural models here are trained on HOL-train and use greedy decoding.

Lemma Count Equational Template Length Lemma Length # Symbols

Min 25% Median 75% Max Min 25% Median 75% Max Mean Max

HOL-test 4740 2242 9 49 82 127 9014 7 57 91 150 10454 4.2 100
Lemmanaid Success 1323 734 11 33 53 77 289 10 43 65 90 325 3.0 13
Neural Success 1135 629 11 37 55 77 289 11 45 65 92 347 3.1 15

AFP-test 16362 10582 7 37 72 142 10794 7 56 88 152 7530 4.2 31
Lemmanaid Success 2420 1894 7 23 29 43 210 10 37 52 72 246 2.7 10
Neural Success 1594 1142 11 23 33 45 173 12 34 48 68 192 2.7 13

Octonions 350 262 17 29 49 75 688 11 33 55 79 391 3.8 21
Lemmanaid Success 143 107 17 23 39 59 109 11 25 43 60 133 2.5 6
Neural Success 106 66 19 19 44 67 109 15 24 47 73 133 2.4 7

similarly, and there are some non-overlapping examples that
each model uniquely predicts so the combination has 93.7%
abstraction rate. Notably, a point of confusion for models
is operators with custom syntax. The use of custom syntax
introduces ambiguity about how the arguments of a function
are ordered. Custom syntax can possibly make some argu-
ments implicit, which introduces further ambiguity. Overall,
these results indicate that LLMs can understand the template
language well.

4.5. RQ4: Qualitative analysis

To assess the utility of our tools, we study the characteristics
of HOL-test, Octonions and AFP-test, as well as the subsets
of lemmas that LEMMANAID and neural baselines success-
fully generate. For each subset, we consider the number
of equational lemmas, the length (in characters) of the tem-
plates and lemmas, and the number of symbols appearing
in the lemmas (Table 4). Both LEMMANAID and the neural
baselines demonstrate an ability to predict equational and
non-equational lemmas. They successfully discover lemmas
and templates of different lengths but show greater ability
to handle shorter ones. This is to be expected because some
contextual information for longer lemmas would be cutoff
due to our max sequence length (where we limit the num-
ber of input and output tokens) and they are likely more
complex for an LLM to reason about. See A.7 for some
examples that LEMMANAID synthesizes that other methods
do not. See A.8 for some examples of how LEMMANAID
succeeds and fails.

5. Conclusion
LEMMANAID is a novel neuro-symbolic tool for conjectur-
ing lemmas for mathematical formalization. LEMMANAID
outperforms both neural baselines we create and symbolic
tool, QuickSpec, on test sets from Isabelle’s HOL library
and from its Archive of Formal Proofs. LEMMANAID dis-

covers between 29-39.5% of the gold standard human writ-
ten lemmas in test sets, 8-15% more lemmas than the neural
baseline using the same training setup. LEMMANAID can
discover useful lemmas for a wide range of formalization
domains in mathematics, computer science, and logic.

We note that our experimental setup most likely under-
reports results, as we measure matches with one specific
gold-standard lemma. It is entirely possible that LEM-
MANAID sometimes comes up with a different gold-standard
lemma from the same theory, or even additional lemmas that
are valid and useful but not present in the existing formal-
ization. Our evaluation is a first step towards demonstrating
the usefulness of neuro-symbolic conjecturing for proof as-
sistants. So far we have not yet explored its full potential.
For instance, for future work LEMMANAID could easily be
placed in a workflow utilizing the many tools available in
Isabelle/HOL for e.g. counterexample checking and auto-
mated proofs: Sledgehammer, simp or even neural proof
synthesis methods.
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A. Appendix
A.1. Template language and symbols

Templates are implemented as instances of Isabelle/HOL’s term datatype6. While theory-specific symbols are replaced by
holes, general logical symbols remain in the template to not make it overly abstract and obscuring the analogies we wish to
uncover. The symbols that are part of the template language and not abstracted away are:

• All constants whose names begin with ‘HOL.’ These are the functions defined in Isabelle/src/HOL/HOL.thy including
equality, True, False, Not, All and Ex (quantifiers), conjunction and disjunction.

• All constants whose names begin with ‘Pure.’ Basic logical constructs including implication (Pure.imp), Pure.all,
Pure.eq, defined in Isabelle/src/Pure/logic.ML

• Bounded quantifiers for sets (these are rendered the same as the regular quantifiers defined in HOL).

• Set membership.

• Pairs/Cartesian products as defined in src/HOL/Product Type.

• Inequality symbols: less, greater, less or equal, greater or equal Defined in ”Orderings.ord class.less eq” and ”Or-
derings.ord class.less” (greater and greater eq are defined in terms of less and less eq and are translated in the term
structure so we don’t expect them to appear in templates).

Implementation details of the exact symbols and how to extract them are available in our anonymous code repository.

A.2. Lemma Enumeration

Our lemma enumeration strategy is best described through an example. From the Cross Product 7.thy file from the
AFP’s Octonions project, the lemma vector 7 was defined by the user as follows:

lemma v e c t o r 7 [ simp ] :
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $1 = x1 ”
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $2 = x2 ”
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $3 = x3 ”
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $4 = x4 ”
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $5 = x5 ”
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $6 = x6 ”
” ( v e c t o r [ x1 , x2 , x3 , x4 , x5 , x6 , x7 ] : : ( ’ a : : z e r o ) ˆ 7 ) $7 = x7 ”

Given the way we count lemmas (or what we consider a datapoint in the entirety of the project), we consider this to be 7
lemmas. This stems from wanting our definition of a lemma to have one lemma object and one template associated with it.
Isabelle differentiates between a “singleton” fact and an “indexed” fact, so we treat each as a singleton fact. In this example,
these 7 lemmas are clearly very similar, but there is nothing enforcing this similarity, except perhaps conventions of Isabelle
users. Furthermore, Isabelle allows one to also define multiple lemmas at the same time using a “lemmas” keyword where
conventionally the lemmas are still similar but less similar than indexed facts typically are. Because this problem (one
command, multiple facts) occurs a number of times across theories, we decided to treat every fact separately.

A.3. Projects in AFP-test

For the formalizations included in our test set AFP-test, Table 5 shows the the formalization topic chosen by the project
authors, the number of gold-standard lemmas from each project and the lemma success rates (in percentages) of LEMMANAID,
neural-only lemma prediction, and their combination. The results shown are the ensembles of the different variants of
LEMMANAID and the neural baselines trained on HOL+AFP-train.

6See section 2.2 of the Isabelle/Isar Implementation Manual https://isabelle.in.tum.de/dist/Isabelle2025/doc/
implementation.pdf
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Table 5. Information about the different formalization projects in AFP-test.

AFP entry Topic(s) Lemmas LEMMANAID Neural Combined

ConcurrentHOL CS/Concurrency 481 34.10% 24.53% 37.63%
Sumcheck CS/Security 62 56.45% 43.55% 58.06%
Protocol CS/Algorithms
Broadcast Psi CS/Concurrency 145 64.14% 40.69% 66.21%
AutoCorres2 CS/PL 11638 33.17% 16.66% 34.96%

CS/Semantics & reasoning
Tools

Substitutions Logic/Rewriting 55 54.55% 25.45% 56.36%
Lambda-Free
Doob Convergence Math/Prob. theory 2 0.00 0.00 0.00
Orient Rewrite Logic/Rewriting 148 47.97% 38.51% 50.00%
Rule Undecidable
Uncertainty Math/Physics 3 0.00 0.00 0.00
Principle
Derandomization CS/Algorithms 15 46.67% 33.33% 46.67%
with Conditional
Expectations
Verified QBF CS/Algorithms 171 44.44% 39.18% 49.71%
Solving Logic/General logic
IMP CS/PL 50 34.00% 34.00% 36%.00
Noninterference CS/Security
Actuarial Math/Games & econ. 168 0.00 0.00 0.00
Mathematics
LL(1) Parser CS/Algorithms 205 36.59% 27.32% 37.56%
Generator CS/PL
Schönhage-Strassen CS/ALgorithms 128 33.59% 27.34% 37.50%
Multiplication Math/Algebra
Isabelle DOF CS/Semantics & reasoning 41 48.78% 31.71% 53.66%
Interval Analysis Math/Analysis 694 50.29% 36.89% 52.74%
MFOTL Checker CS/Data mgmt systems 151 43.05% 30.46% 47.02%

CS/Algorithms
Logic/General logic

Decomposition of Math/Algebra 1 0.00 0.00 0.00
totally ordered hoops
Approximate Model CS/Algorithms 112 16.96% 18.75% 21.43%
Counting
Wieferich-Kempner Math/Number theory 8 0.00 0.00 0.00
Theorem
PNT with Math/Number theory 155 28.39% 21.29% 32.26%
Remainder
Continued Fractions Math/Analysis 428 32.71% 29.67% 37.15%
CondNormReasHOL Logic/Phil. aspects 34 11.76% 2.94% 11.76%

Logic/General logic
Region Quadtrees CS/Data structures 182 35.71% 34.07% 41.21%
Karatsuba CS/Algorithms 431 48.03% 30.63% 51.97%
Pick’s Theorem Math/Geometry 334 14.67% 14.07% 16.77%
Kummer Congruence Math/Number theory 120 34.17% 20.00% 37.50%
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A.4. Computing Resources and Details for Replication

We run the majority of our training and evaluation on 8 NVIDIA RTX 2080 Ti (11GB VRAM). We use 8-bit quantization
when loading models for both fine-tuning and inference. We train models with DistributedDataParallel (DDP) for 12 epochs
and 8e− 4 learning rate. We use a maximum sequence length of 1024 with 200 tokens reserved for the output. We use an
effective batch size 16.

A.5. Results found using greedy decoding vs beam search

Table 6. Neuro-symbolic and neural methods trained on HOL-train and HOL+AFP-train lemma success rates for different test sets and
different input features (type information and/or definitions). QuickSpec lemma success rate for Octonions. Here, the decoding strategy is
greedy.

Lemma Success rate

HOL-train HOL+AFP-train
Method HOL-test AFP-Test Octonions HOL-test AFP-Test Octonions

Deepseek-coder-1.3b
LEMMANAID (types + defs) 27.9% 15.0% 40.9% 25.0% 19.5% 25.7%
LEMMANAID (types) 26.0% 13.6% 44.9% 26.5% 18.4% 28.0%
LEMMANAID (defs) 24.2% 7.3% 36.0% 22.0% 8.9% 26.3%
Neural (types + defs) 24.0% 9.7% 30.3% 20.8% 10.1% 30.6%
Neural (types) 23.4% 10.4% 35.7% 21.7% 11.0% 36.0%
Neural (defs) 21.3% 6.4% 26.0% 20.6% 6.8% 29.4%
LEMMANAID Combined 36.2% 20.5% 55.4% 35.4% 24.7% 43.4%
Neural Combined 31.9% 15.1% 42.3% 30.3% 15.5% 40.3%
Combined 41.1% 25.0% 58.9% 41.0% 29.0% 60.3%

QuickSpec — — 22.8% — — 22.8%

Table 7. Neuro-symbolic and neural methods trained on HOL-train lemma success rates for different test sets and different input features
(type information and/or definitions). QuickSpec lemma success rate for Octonions. Here, the decoding strategy is beam search (beam
size = 4).

Lemma Success rate

HOL-train HOL+AFP-train
Method HOL-test AFP-Test Octonions HOL-test AFP-Test Octonions

Deepseek-coder-1.3b
LEMMANAID (types + defs) 37.1% 21.6% 50.0% 36.2% 27.3% 44.9%
LEMMANAID (types) 33.4% 22.5% 56.6% 36.4% 24.6% 49.7%
LEMMANAID (defs) 31.3% 10.4% 38.6% 31.2% 13.4% 36.0%
Neural (types + defs) 25.7% 10.4% 23.7% 25.7 % 13.4% 31.4%
Neural (types) 23.6% 13.8% 40.0% 22.9% 11.7% 41.1%
Neural (defs) 21.5% 5.3% 21.1% 25.0% 9.3% 32.0%
LEMMANAID Combined 45.4% 28.5% 67.1% 46.4% 33.2% 64.6%
Neural Combined 37.8% 17.8% 47.1% 36.6% 19.3% 55.4%
Combined 49.3% 30.9% 70.9% 50.4% 36.1% 72.9%

QuickSpec — — 22.8% — — 22.8%
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We break down the results from Table 1 into Table 6 and Table 7 to show the performance of different decoding strategies.
The results in Table 6 are for greedy decoding, which selects the token with the highest probability at each generation step.
The results in Table 7 are for beam search, which obtains multiple high-probability predictions for a given model. We see
that beam search helps to improve results for both LEMMANAID and the neural baseline ensembles. However, LEMMANAID
is still performant in a greedy setting, showing that the approach can achieve good results with less inference budget.

A.6. Partial QuickSpec output on Octonions

As reported in the main text, QuickSpec generated close to 10,000 lemmas on the Octonions example, so we do not include
the full output here. However, we include the output on a small subset of the Octonions theory to illustrate some of the
problems.

QuickSpec takes as input a list of function and constant symbols out of which it will build the terms. We started by giving it
the functions (with ×, inverse and 1). As the inverse of 0 is not defined, we had to instruct QuickSpec to only test using
non-zero Octonions, a limitation not shared by LEMMANAID. For the same reason we could not give it the constant symbol
0 or the functions + and −, which would allow it to construct a zero octonion. The output of QuickSpec was as follows:

== Functions ==
(*) :: It -> It -> It

1 :: It

== Laws ==
1. x * 1 = x
2. 1 * x = x
3. (x * x) * y = x * (x * y)
4. (x * y) * x = x * (y * x)
5. (x * y) * y = x * (y * y)
6. x * (y * (x * y)) = (x * y) * (x * y)
7. x * (y * (y * x)) = (x * y) * (y * x)
8. x * (y * (y * y)) = (x * y) * (y * y)
9. x * ((y * z) * x) = (x * y) * (z * x)

10. (x * (y * x)) * z = x * (y * (x * z))
11. ((x * y) * z) * y = x * (y * (z * y))

== Functions ==
inv :: It -> It

== Laws ==
12. inv 1 = 1
13. inv (inv x) = x
14. x * inv x = 1
15. inv x * inv y = inv (y * x)
16. inv x * (x * y) = y
17. x * (y * inv x) = (x * y) * inv x
18. (inv x * y) * x = inv x * (y * x)

So far the number of lemmas is manageable and 9 of the 18 are found in the AFP theory, giving a precision of 50%.

Then we ran QuickSpec again, adding the extra functions +, 0, inner product (·) and norm, but removing the inverse
operation (as discussed above). The results are still reasonable but, especially with the inner product function, most of the
lemmas are uninteresting, not found in the AFP theory, and generated only because they happen to be true:

== Functions ==
(*) :: It -> It -> It
0 :: It
1 :: It

14
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== Laws ==
1. x * 0 = 0
2. x * 1 = x
3. 0 * x = 0
4. 1 * x = x
5. (x * x) * y = x * (x * y)
6. (x * y) * x = x * (y * x)
7. (x * y) * y = x * (y * y)
8. x * (y * (x * y)) = (x * y) * (x * y)
9. x * (y * (y * x)) = (x * y) * (y * x)

10. x * (y * (y * y)) = (x * y) * (y * y)
11. x * ((y * z) * x) = (x * y) * (z * x)
12. (x * (y * x)) * z = x * (y * (x * z))
13. ((x * y) * z) * y = x * (y * (z * y))

== Functions ==
(+) :: It -> It -> It

== Laws ==
14. x + y = y + x
15. x + 0 = x
16. (x + x) * y = x * (y + y)
17. (x + y) + z = x + (y + z)
18. x * (y + 1) = x + (x * y)
19. (x + 1) * y = y + (x * y)
20. (x + x) * (x * y) = (x * x) * (y + y)
21. (x + x) * (y * x) = (x * y) * (x + x)
22. (x + x) * (y * y) = (x * y) * (y + y)
23. (x * y) + (x * z) = x * (y + z)
24. (x * y) + (z * y) = (x + z) * y
25. (x + 1) * (x + x) = (x + x) * (x + 1)
26. x * (y * (x + y)) = (x * y) * (x + y)
27. x * (y + (y * x)) = (x * y) * (x + 1)
28. x * (y + (y * y)) = (x * y) * (y + 1)
29. (x * (x + y)) * y = x * ((x + y) * y)
30. ((x + y) * x) * y = (x + y) * (x * y)
31. (x + (x * x)) * y = (x + 1) * (x * y)
32. (x + (y * x)) * y = (y + 1) * (x * y)
33. (x + (x + x)) * y = x * (y + (y + y))

== Functions ==
(·) :: It -> It -> It

== Laws ==
34. x · y = y · x
35. x · 0 = 0
36. 1 · 1 = 1
37. (x · y) * z = z * (x · y)
38. x · (y * x) = x · (x * y)
39. x · (y + y) = y · (x + x)
40. x · (y · y) = y · (x * y)
41. x · (y · 1) = y · (x · 1)
42. 1 · (x * y) = 1 · (y * x)
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43. 1 · (x · y) = x · y
44. 1 · (x + 1) = 1 + (x · 1)
45. (x · y) + (x · z) = x · (y + z)
46. (x * y) · (x * z) = (x · x) * (y · z)
47. (x * y) · (z * y) = (x · z) * (y · y)
48. (x * y) · (y + x) = (y * x) · (y + x)
49. (x * y) · (z · w) = (y * x) · (z · w)
50. (x · y) · (z · w) = (x · y) * (z · w)
51. (x + x) * (x · 1) = (x * x) + (x · x)
52. (x · y) * (z · 1) = z · (x · y)
53. (x * y) · (y + 1) = (y * x) · (y + 1)
54. (x · y) · (z · 1) = z · (x · y)
55. (1 + 1) · (1 + 1) = (1 + 1) * (1 + 1)
56. x * (y * (z · w)) = (x * y) * (z · w)
57. (x * (y · z)) * w = (x * w) * (y · z)
58. (x + (y · z)) * x = x * (x + (y · z))
59. x · (y * (z * x)) = (y * z) · (x · x)
60. x · (y * (z · w)) = (x · y) * (z · w)
61. x · ((x * y) * z) = (y * z) · (x · x)
62. x · ((y * x) * z) = x · (y * (x * z))
63. x · ((x + y) * y) = x · (y * (x + y))
64. x · (y + (z * x)) = x · (y + (x * z))
65. x · (y + (x · x)) = x · (y + (x * x))
66. x · (y + (x · y)) = (x + 1) · (x · y)
67. x · (y + (y · y)) = y · (x + (x * y))
68. x · (y · (z * y)) = z · (y · (x * y))
69. x · (y · (z · w)) = y · (x · (z · w))
70. x · (y + (y + y)) = y · (x + (x + x))
71. x · (y * (z · 1)) = z · (x · y)
72. 1 · ((x * y) * z) = 1 · (x * (y * z))
73. (x * (y · 1)) · z = y · (x · z)
74. x · (y + (y · 1)) = y · (x + (x · 1))

== Functions ==
norm :: It -> It

== Laws ==
75. norm 0 = 0
76. norm 1 = 1
77. norm x = x · x
78. norm (x + (x * x)) = norm (x + norm x)
79. (x · y) * (z · 1) = z · (x · y)
80. (x · y) · (z · 1) = z · (x · y)
81. norm (norm x + (y * z)) = norm (norm x + (z * y))
82. (norm x + norm y) * z = z * (norm x + norm y)
83. x · (y * (z · 1)) = z · (x · y)
84. (x * (y · 1)) · z = y · (x · z)
85. norm x * (1 + norm y) = norm x + norm (x * y)
86. norm x · (1 + norm y) = norm x + norm (x * y)
87. norm (x * (x + norm x)) = norm (norm x * (x + 1))

In general, it seems that the more function symbols there are, the more QuickSpec suffers from combinatorial blowup and
generating uninteresting lemmas.

In the complex numbers, the functions Re, Im : C → R extract the real and imaginary parts of a number respectively. In
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the octonions, there are eight analogous functions Re, Im1 . . . Im7 : O → R. When we added these functions, QuickSpec
generated 775 laws, the vast majority extremely uninteresting for a human. An example of a typical generated law is
Re(x+ Im2 y × z) = Re(x+ y × Im2 z).

Corresponding to the complex number i there are seven octonions e1 . . . e7 which (together with 1) act as unit numbers.
Unfortunately when we add these as constants then QuickSpec starts to generate many thousands of irrelevant lemmas.
Examples are (e5 − e4)× (e1 + e4) = (1 + e1)× (e4 − e1), and e4 × (Im1 x× Im2 y) = Im7 (Im1 x× (y × e4)). The
problem is that QuickSpec does not attempt to judge which lemmas are relevant to a human user.

A.7. Example Lemmas Discovered by LEMMANAID

There are numerous examples of LEMMANAID predicting correct templates (and then recovering the gold-standard lemmas),
but it is sometimes difficult to explain exactly why LEMMANAID succeeded when other methods failed. In Octonions, for
example, LEMMANAID recovers the following lemma, which neither the neural baseline nor QuickSpec recovers:

lemma Im7_tendsto_lowerbound:
"\<lbrakk>

(f \<longlongrightarrow> limit) net;
\<forall>\<ˆsub>F x in net. b \<le> Im7 (f x);
net \<noteq> bot

\<rbrakk>
\<Longrightarrow> b \<le> Im7 limit"

The input (below) associated with this lemma is truncated when sent to the LLM due to our max sequence length, but
LEMMANAID is still able to recover the correct template.

###symbols
Orderings.bot_class.bot
Octonions.octo.Im7
Filter.eventually
Topological_Spaces.topological_space_class.tendsto

###defs
class bot =

fixes bot :: ’a ("\<bottom>")
codatatype octo =

Octo (Ree: real) (Im1: real) (Im2: real) (Im3: real) (Im4: real)
(Im5: real) (Im6: real) (Im7: real)

definition eventually :: "(’a \<Rightarrow> bool) \<Rightarrow> ’a filter
\<Rightarrow> bool"
where "eventually P F \<longleftrightarrow> Rep_filter F P"

class topological_space = "open" +
assumes open_UNIV [simp, intro]: "open UNIV"
assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow>

open (S \<inter> T)"
assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow>

open (\<Union>K)"
...

LEMMANAID’s neural engine predicts the following (correct) template:

\<lbrakk>
?H1 x_1 x_2 x_3;
?H2 (\<lambda>y_0. x_4 \<le> ?H3 (x_1 y_0)) x_3;
x_3 \<noteq> ?H4

\<rbrakk>
\<Longrightarrow> x_4 \<le> ?H3 x_2
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Templates are typically shorter than their corresponding lemma objects, which may help with better reasoning in some cases
for neural models. The following is an example lemma object from HOL-test that our neural baseline could not predict
directly:

\<lbrakk>
continuous_map ?X ?Y ?f; compact_space ?X; Hausdorff_space ?Y ;
?f ‘ topspace ?X = topspace ?Y; inj_on ?f (topspace ?X)

\<rbrakk>
\<Longrightarrow> homeomorphic_map ?X ?Y ?f

The above lemma object is 230 characters, but the template extracted from this lemma is only 134. The associated template,
which LEMMANAID’s neural engine is able to correctly predict and then its symbol engine is able to successfully instantiate,
looks as follows:

\<lbrakk>
?H1 x_1 x_2 x_3; ?H2 x_1; ?H3 x_2;
?H4 x_3 (?H5 x_1) = ?H6 x_2; ?H7 x_3 (?H5 x_1)

\<rbrakk>
\<Longrightarrow> ?H8 x_1 x_2 x_3

A.8. Successes and failures of LEMMANAID

We provide a few examples of conjecturing problems attempted by LEMMANAID, covering some successful and failed
attempts.

Success Let’s consider the lemma BExp.bval_not which features in IMP/BExp theory in HOL:

lemma bval_not[simp]: "bval (not b) s = (\<not> bval b s)"

|gold-standard| ?H1 (?H2 x_1) x_2 = (\<not> ?H1 x_1 x_2)

|prediction| ?H1 (?H2 x_1) x_2 = (\<not> ?H1 x_1 x_2)

LEMMANAID predicts an identical template to the gold-standard, and the template can be successfully instantiated to
generate a conjecture which is equivalent to bval_not.

Success with Many Symbols LEMMANAID is able to handle conjecturing problems with a lot of symbols, which
can be tricky for symbolic tools which exhaustively enumerate conjectures. For example, consider the lemma
logderiv_zeta_region_estimate from an AFP formalization of prime number theory with remainder term:

lemma logderiv_zeta_region_estimate:
assumes "s \<in> logderiv_zeta_region"
shows "\<parallel>logderiv zeta s\<parallel> \<le> C\<ˆsub>2 *

(ln (\<bar>Im s\<bar> + 3))\<ˆsup>2"

|gold-standard| x_1 \<in> ?H1 \<Longrightarrow>
?H2 (?H3 ?H4 x_1) \<le> ?H5 ?H6 (?H7 (?H8 (?H9 (?H10 (?H11 x_1))
(?H12 (?H13 ?H14)))))

|prediction| x_1 \\<in> ?H1 \\<Longrightarrow>
?H2 (?H3 ?H4 x_1) \\<le> ?H5 ?H6 (?H7 (?H8 (?H9 (?H10 (?H11 x_1))
(?H12 (?H13 ?H14)))))

Generating the correct template here requires successfully relating 14 symbols, and reasoning over their corresponding types
and definitions.
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Off-target (But Valid) Prediction LEMMANAID sometimes generates helpful templates that differ from gold-standard
templates. Such templates are still useful, as they can be instantiated into valid lemmas, but our evaluation considers such
templates as misses. Consider attempting to conjecture the lemma bval_and:

lemma bval_and[simp]: "bval (and b1 b2) s = (bval b1 s \<and> bval b2 s)"

|gold-standard| ?H1 (?H2 x_1 x_2) x_3 = (?H1 x_1 x_3 \<and> ?H1 x_2 x_3)

|prediction| \<lbrakk> ?H1 x_1 x_2; ?H1 x_3 x_2 \<rbrakk> \<Longrightarrow>
?H1 (?H2 x_1 x_3) x_2

In this case, the predicted template is instantiated to a different, valid lemma, namely
\<lbrakk> bval b1 s; bval b2 s \<rbrakk> \<Longrightarrow> bval (and b1 b2) s.

This conjectured lemma is weaker lemma than the gold-standard, but it is equivalent to assuming the right-hand side of the
equality to prove the left-hand side. Counter-example checking and other property testing techniques could be leveraged in
these cases to filter valid candidates.

Invalid Prediction Consider the totient function, which counts the number of positive integers up to an input n which are
relatively prime to n. One property of the totient is:

lemma totient_le: "totient n \<le> n"

|gold-standard| ?H1 x_1 \<le> x_1

|prediction| x_1 \\<le> ?H1 x_1

In this case, LEMMANAID predicted a similar template to the gold-standard template, though the lemma created from
instantiating this template is invalid. Again, counterexample checking can help filter invalid lemma candidates.
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