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Abstract

Neural networks on simplicial complexes (SCs) can learn from data residing on1

simplices such as nodes, edges, triangles, etc. However, existing works often2

overlook the Hodge theory that decomposes simplicial data into three orthogonal3

characteristic subspaces, such as the identifiable gradient, curl and harmonic com-4

ponents of edge flows. In this paper, we aim to incorporate this data inductive bias5

into learning on SCs. Particularly, we present a general convolutional architecture6

which respects the three key principles of uncoupling the lower and upper sim-7

plicial adjacencies, accounting for the inter-simplicial couplings, and performing8

higher-order convolutions. To understand these principles, we first use Dirichlet9

energy minimizations on SCs to interpret their effects on mitigating the simplicial10

oversmoothing. Then, through the lens of spectral simplicial theory, we show the11

three principles promote the Hodge-aware learning of this architecture, in the sense12

that the three Hodge subspaces are invariant under its learnable functions and the13

learning in two nontrivial subspaces are independent and expressive. To further14

investigate the learning ability of this architecture, we also study it is stable against15

small perturbations on simplicial connections. Finally, we experimentally validate16

the three principles by comparing with methods that either violate or do not respect17

them. Overall, this paper bridges learning on SCs with the Hodge decomposition,18

highlighting its importance for rational and effective learning from simplicial data.19

1 Introduction20

It is not uncommon to have polyadic interactions in such as friendship networks [1], collaboration21

networks [2], gene regulatory networks [3], etc [4–6]. To remedy the pitfall that graphs are limited to22

model pairwise interactions between data entites on nodes, simplicial complexes (SCs) have become23

popular among others [7]. A SC can be informally viewed as an extension of a graph, which is the24

simplest SC, by including, not limited to, some triangles over the edge set. SCs like graphs have25

algebraic representations – the Hodge Laplacians, an extension of graph Laplacians [8, 9]. Moreover,26

besides node-wise data, SCs can support data on general simplices, e,g., flow-type data, e.g., water27

flows [10], traffic flows [11], information flows [12], etc., naturally arise as data on edges, and data28

related to three parties, e.g., triadic collaborations [2], can be defined on triangles in a SC.29

Thus, existing works have built NNs on SCs to learn from such simplicial data, to name a few,30

[13–19]. In analogous to graph neural networks (GNNs) learning from node data relying on the31

adjacency between nodes, the idea behind these works is to rely on the relations between simplices.32

Such relations can be twofold: first, two simplices can be lower and upper adjacent to each other,33

such as an edge can be (lower) adjacent to another edge via a common node, and can also be (upper)34

adjacent to others by sharing a common triangle; and second, there exist the inter-simplicial couplings35

(or simplicial incidences) such that a node can induce data on its incident edge and a triangle can36

cause data on its three edges, or the other way around. Along with this idea, [15, 16, 19] proposed37

convolutional-type NNs by applying the simplicial adjacencies, [14, 20] included also inter-simplicial38

couplings, and [17, 21] generalized the graph message-passing [22] to SCs based on both relations.39
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However, these works often solely focus on the simplicial structures, overlooking the Hodge decom-40

position [23], which gives three orthogonal subspaces that uniquely characterize the simplicial data.41

An edge flow can be decomposed into three distinct parts: a curl-free part induced by some node42

data, a divergence-free (div-free) part that follows flow conservation (in-flows equal to out-flows at43

nodes), and a harmonic part that is both div- and curl-free. Meanwhile, real-world simplicial data44

often presents properties to be in certain subspaces but not others, or its components carry physical45

usefulness, e.g., statistical ranking, exchange market [24], traffic networks [11], brain networks [12],46

game theory [25], etc. Thus, intuitively, as an example, a Hodge-biased learner should not, at least not47

primarily, learn in the div-free space if the edge flow is curl-free. If the learning function preserves the48

subspaces and operates independently in three subspaces, the learning space is substantially shrunk.49

This in fact provides an important inductive bias allowing for rational and effective learning on SCs.50

Motivated by this, in this paper, we present the general convolutional learning on SCs, SCCNN, which51

respects three key principles of uncoupling the lower and upper simplicial adjacencies, accounting52

for the inter-simplicial couplings, and performing higher-order convolutions. Unlike existing convo-53

lutional methods [14–16], which either lack theoretical insights or only discuss their architectural54

differences in the simplicial domain, we focus on providing a theoretical analysis of these three55

principles from both the perspectives of simplicial and simplicial data, specifically Hodge theory.56

This offers deeper and unique insights when compared to the more closely related works [19, 17].57

Main contributions. In Section 3.2, we first use Dirichlet energy minimizations on SCs to understand58

how uncoupling the lower and upper adjacencies in Hodge Laplacians and the inter-simplicial59

couplings can mitigate the oversmoothing inherited from generalizing GCN to SCs. Under the help60

of spectral simplicial theory [26–28], in Section 4, we characterize the spectral behavior of SCCNN61

and its expressive power. We show SCCNN performs independent and expressive learning in the62

three subspaces of the Hodge decomposition, which are invariant under its learning operators. This63

Hodge-awareness (or Hodge-aided bias) allows for effective and rational learning on SCs compared64

to MLP or simplicial message-passing [17]. In Section 5, we also prove it is stable against small65

perturbations on the strengths of simplicial connections, and show how three principles can affect the66

stability. Lastly, we validate our findings on different simplicial tasks, including recovering foreign67

currency exchange (forex) rates, predicting triadic and tetradic collaborations, and trajectories.68

2 Background69

Simplicial complex and simplicial adjacencies. A k-simplex s
k is a subset of V = {1, . . . , n0}70

with cardinality k + 1. A face of s
k is a subset with cardinality k. A coface of s

k is a (k + 1)-71

simplex that has s
k as a face. Nodes, edges and (filled) triangles are geometric realizations of 0-,72

1- and 2-simplices. A SC S of order K is a collection of k-simplices, k = 0, . . . , K, with the73

inclusion property: s
k�1

2 S if s
k�1

⇢ s
k for s

k
2 S. A graph is a SC of order one and by74

taking into account some triangles, we obtain a SC of order two. We collect all k-simplices of S75

in set S
k = {s

k
i }i=1,...,nk with nk = |S

k
|, i.e., S = [

K
k=0

S
k. For s

k, We say a k-simplex is lower76

(upper) adjacent to s
k if they share a common face (coface). For computations, an orientation of a77

simplex is chosen as an ordering of its vertices (a node has a trivial orientation). Here we consider78

the lexicographical ordering s
k = [1, . . . , k + 1], e.g., a triangle s

2 = {i, j, k} is oriented as [i, j, k].79

Algebraic representation. Incidence matrix Bk describes the relations between (k � 1)- (i.e., faces)80

and k-simplices, e.g., B1 is the node-to-edge incidence matrix and B2 edge-to-triangle. We have81

BkBk+1 = 0 by definition [9]. The k-Hodge Laplacian is Lk = B
>
k Bk + Bk+1B

>
k+1

with the82

lower Laplacian Lk,d = B
>
k Bk and the upper Laplacian Lk,u = Bk+1B

>
k+1

. We have a set of83

Lk, k = 1, . . . , K �1 in a SC of order K with the graph Laplacian L0 = B1B
>
1

, and LK = B
>
KBK .84

Note that Lk,d and Lk,u encode the lower and upper adjacencies of k-simplices. For example, for85

k = 1, they encode the edge-to-edge adjacencies through nodes and triangles, respectively.86

Simplicial data. A k-simplicial data (or k-signal) xk 2 Rnk is defined by an alternating map fk87

which assigns a real value to a simplex, and restricts that if the orientation of a simplex is anti-aligned88

with the reference orientation, then the sign of the signal value will be changed [9].89

Incidence matrices as derivative operators on SCs. We can measure how a k-signal xk varies w.r.t.90

the faces and cofaces of k-simplices by applying Bkxk and B
>
k+1

xk [29]. For a node signal x0, B>
1
x091

computes its gradient as the difference between adjacent nodes. Thus, a constant x0 has zero gradient.92

For an edge flow x1, [B1x1]j =
P

i<j [x1][i,j] �
P

j<k[x1][j,k] computes its divergence, which is the93
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difference between the in-flow and the out-flow at node j, and [B>
2
x1]t = [x1][i,j]�[x1][i,k]+[x1][j,k]94

computes the curl of x1, which is the net-flow circulation in triangle t = [i, j, k].95

Theorem 1 (Hodge decomposition [23, 9]). The k-simplicial data space admits an orthogonal direct96

sum decomposition Rnk = im(B>
k ) � ker(Lk) � im(Bk+1). Moreover, we have ker(B>

k+1
) =97

im(B>
k ) � ker(Lk) and ker(Bk) = ker(Lk) � im(Bk+1).98

In the node space, this is trivial as Rn0 = ker(L0)� im(B1) where the kernel of L0 contains constant99

node data and the image of B1 contains nonconstant data. In the edge case, three subspaces carry100

more tangible meaning: the gradient space im(B>
1

) collects edge flows as the gradient of some node101

signal, which are curl-free; the curl space im(B2) consists of flows cycling around triangles, which102

are div-free; and flows in the harmonic space ker(L1) are both div- and curl-free. In this paper, we103

inherit the names of three edge subspaces to general k-simplices. This theorem states that any xk can104

be uniquely expressed as xk = xk,G + xk,H + xk,C with gradient part xk,G = B
>
k xk�1, curl part105

xk,C = Bk+1xk+1, for some xk±1, and harmonic part following Lkxk,H = 0.106

3 Simplicial Complex CNNs107

We start by introducing the general convolutional architecture on SCs, followed by its properties, then108

we discuss its components from an energy minimizations perspective. We refer to Appendix B for109

some illustrations. In a SC, a SCCNN at layer l computes the k-output xl
k with x

l�1

k�1
,x

l�1

k and x
l�1

k+1
110

as inputs, i.e., a map SCCNNl
k : {x

l�1

k�1
,x

l�1

k ,x
l�1

k+1
} ! x

l
k, for all k. It admits a detailed form111

x
l
k = �(Hl

k,dx
l�1

k,d + H
l
kx

l�1

k + H
l
k,ux

l�1

k,u ), with H
l
k =

TdX

t=0

w
l
k,d,tL

t
k,d +

TuX

t=0

w
l
k,u,tL

t
k,u. (1)

1) Previous output xl�1

k is passed to a simplicial convolution filter (SCF [30]) H
l
k of orders Td, Tu,112

which performs a linear combination of the data from up to Td-hop lower-adjacent and Tu-hop113

upper-adjacent simplices, weighted by two sets of learnable weights {w
l
k,d,t}, {w

l
k,u,t}.114

2) x
l�1

k,d = B
>
k x

l�1

k�1
and x

l�1

k,u = Bk+1x
l�1

k+1
are the lower and upper projections from (k ± 1)-115

simplices via incidence relations, respectively. Then, x
l�1

k,d is passed to a lower SCF H
l
k,d :=116

PTd

t=0
w

0l
k,d,tL

t
k,d, and the upper projection x

l�1

k,u is passed to an upper SCF H
l
k,u :=

PTu

t=0
w

0l
k,u,tL

t
k,u.117

Lastly, the sum of the three SCF outputs is passed to an elementwise nonlinearity �(·).118

This architecture subsumes the methods in [14–16, 19, 18, 20]. Particularly, we emphasize on the key119

three principles. 1) Uncouple the lower and upper Laplacians: this leads to an independent treatment120

of the lower and upper adjacencies, achieved by using two sets of learnable weights; 2) Account for121

the inter-simplicial couplings: xk,d and xk,u carry the nontrivial information contained in the faces122

and cofaces (by Theorem 1); and 3) Perform higher-order convolutions: considering Td, Tu � 1 in123

SCFs which leads to a multi-hop receptive field on SCs. In short, SCCNN propagates information124

across SCs based on two simplicial adjacencies and two incidences in a multi-hop fashion.125

3.1 Properties126

Simplicial locality. SCFs admit an intra-simplicial locality: Hkxk is localized in Td-hop lower and127

Tu-hop upper k-simplicial neighborhoods [30]. A SCCNN preserves such locality as �(·) does not128

alter the information locality. It also admits the inter-simplicial locality between k- and (k ± 1)-129

simplices, which extends to simplices of orders k ± 2 if L � 2 because Bk�(Bk+1) 6= 0 [31].130

Moreover, the two localities are coupled in a multi-hop way through SCFs such that a node not only131

interacts with its incident edges and the triangles including it, but also those further hops away.132

Complexity. A SCCNN layer has the parameter complexity of order O(Td + Tu) and the computa-133

tional complexity O(k(nk + nk+1) + nkmk(Td + Tu)), linear to the simplex dimensions, where mk134

is the maximum of the number of neighbors for k-simplices.135

Equivariance. SCCNNs are permutation-equivairant, which allows us to list simplices in any order,136

and orinetation-equivariant if �(·) is odd, which gives us the freedom to choose reference orientations.137

In Appendix B.3, we provide formal discussions on such equivariances and why permutations form a138

symmetry group of a SC and orientation changes are symmetries of data space but not SCs.139

3.2 A perspective of SCCNN from Dirichlet energy minimization on SCs140

Definition 2. The Dirichlet energy of xk is D(xk) = Dd(xk)+Du(xk) := kBkxkk
2

2
+kB

>
k+1

xkk
2

2
.141

3



For node signals, D(x0) = kB
>
1
x0k

2

2
=

P
i

P
jkx0,i � x0,jk

2 is a `2-norm of the gradient of x0.142

For edge flows, D(x1) is the sum of the total divergence and curl, which measure the flow variations143

w.r.t. nodes and triangles, respectively. In general, D(xk) measures the lower and upper k-simplicial144

signal variations w.r.t. the faces (Dd(xk)) and cofaces (Du(xk)). A k-signal xk with D(xk) = 0145

follows Lkxk = 0, called harmonic, e.g., a constant node signal and a div- and curl-free edge flow.146

Simplicial shifting as Hodge Laplacian smoothing. [14, 20] considered Hk as a weighted variant147

of I � Lk, generalizing the GCN layer [32]. This simplicial shifting step is necessarily a Hodge148

Laplacian smoothing [31]. Given an initial x0

k, we consider the Dirichlet energy minimization:149

minxk kBkxkk
2

2
+ �kB

>
k+1

xkk
2

2
, � > 0, gradient descent: x

l+1

k,gd = (I � ⌘Lk,d � ⌘�Lk,u)xl
k (2)

with step size ⌘ > 0. The simplicial shifting x
l+1

k = w0(I � Lk)xl
k is a gradient descent with150

⌘ = � = 1 and weighted by w0, then followed by nonlinearity. A minimizer of Eq. (2) with � = 1 is151

in the harmonic space ker(Lk). Thus, an NN composed of simplicial shifting layers may lead to an152

output with exponentially decreasing Dirichlet energy as it deepens, i.e., simplicial oversmoothing.153

Proposition 3. If w
2

0
kI � Lkk

2

2
< 1, D(xl+1

k ) in a simplicial shifting exponentially converges to 0.154

This generalizes the oversmoothing of GCN and its variants [33–35]. However, when uncoupling155

the lower and upper parts of Lk in this shifting, associated with � 6= 1, the decrease of D(xk) can156

slow down or cease because the objective instead looks for a solution primarily in either ker(Bk)157

(for � ⌧ 1) or ker(B>
k+1

) (for � � 1), not necessarily in ker(Lk), as we show in Section 6.158

Inter-simplicial couplings as sources. Given some nontrivial xk�1 and xk+1, we consider159

minxk kBkxk � xk�1k
2

2
+ kB

>
k+1

xk � xk+1k
2

2
, (3)

which has a gradient descent xl+1

k,gd = (I � ⌘Lk)xl
k + ⌘(xk,d + xk,u). It resembles the whole layer160

in [14, 20], xl+1

k = w0(I � Lk)xl
k + w1xk,d + w2xk,u with some weights, followed by nonlinearity.161

We have D(xl+1

k )  w
2

0
kI � Lkk

2

2
D(xl

k) + w
2

1
�max(Lk,d)kxk,dk

2

2
+ w

2

2
�max(Lk,u)kxk,uk

2

2
, by162

triangle inequality. The projections here act as energy sources, and also the objective looks for an163

xk in the images of Bk+1 and B
>
k , instead of ker(Lk) when xk�1 and xk+1 are not trivial. Thus,164

inter-simplicial couplings can potentially mitigate the oversmoothing as well.165

Here we show simply generalzing GCN will inherit its oversmoothing to SCs. However, both the166

separation of the lower and upper Laplacians and inter-simplicial couplings could potentially mitigate167

this oversmoothing. We here considered a Dirichlet energy minimization perspective. They can also168

be explained by means of diffusion process on SCs [36]. We refer to Appendix B.4 for this.169

4 From convolutional to Hodge-aware170

In this section, we show how SCCNN, guided by the three principles, performs the Hodge-aware171

learning, allowing for rational and effective learning on SCs while remaining expressive. To ease the172

exposition, we first provide a more fine-grained spectral view on how SCCNN learns from simplicial173

data of different variations in the three subspaces based on the simplicial spectral theory [27, 26, 30].174

Then, we characterize its expressive power and discuss its Hodge-awareness.175

Definition 4 ([27]). The simplicial Fourier transform (SFT) of xk is x̃k = U
>
k xk where the Fourier176

basis Uk can be found as the eigenbasis of Lk and the eigenvalues are simplicial frequencies.177

Proposition 5 ([26]). The SFT basis can be found as Uk = [Uk,H Uk,G Uk,C] where 1) the zero178

eigenspace Uk,H of Lk spans ker(Lk), and an eigenvalue �k,H = 0 is a harmonic frequency; 2) the179

nonzero eigenspace Uk,G of Lk,d spans im(B>
k ), and an eigenvalue �k,G is a gradient frequency,180

measuring the lower variation Dd(uk,G); 3) the nonzero eigenspace Uk,C of Lk,u spans im(Bk+1),181

and an eigenvalue �k,C is a curl frequency, measuring the upper variation Du(uk,C).182

Thus, the SFT of xk can be found as x̃k = [x̃>
k,H, x̃

>
k,G, x̃

>
k,C]>, where each component is the183

intensity of xk at a simplicial frequency. Consider yk = Hk,dxk,d +Hkxk +Hk,uxk,u in a SCCNN184

layer. Multiplying on both sides by Uk, we then have the SFT ỹ as185

8
<

:

ỹk,H = h̃k,H � x̃k,H,

ỹk,G = h̃k,d � x̃k,d + h̃k,G � x̃k,G,

ỹk,C = h̃k,C � x̃k,C + h̃k,u � x̃k,u,

where

8
><

>:

h̃k,H = (wk,d,0 + wk,u,0)1,

h̃k,G =
PTd

t=0
wk,d,t�

�t
k,G + wk,u,01,

h̃k,C =
PTu

t=0
wk,u,t�

�t
k,C + wk,d,01,

(4)
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Figure 1: (a) (top): Independent gradient and curl learning responses. (bottom): Stability-selectivity
tradeoff of SCFs where h̃G has better stability but smaller selectivity than g̃G. (b) Information spillage
of nonlinearity. (c) The distance between the perturbed outputs and true when node adjacencies are
perturbed. (top): L = 1, triangle output remains clean. (bottom): L = 2, triangle output is perturbed.

is the frequency response of Hk as h̃k = diag(U>
k HkUk) [30], and h̃k,d and h̃k,u, the responses of186

Hk,d and Hk,u, can be expressed accordingly. This spectral relation (4) shows how the learning of187

SCCNN is performed at frequencies in different subspaces. Specifically, the gradient SFT x̃k,G is188

learned by a gradient response h̃k,G, which is independent of the curl response h̃k,C learning the curl189

SFT x̃k,C, and they only coincide at the trivial harmonic frequency, as shown in Fig. 1a. Likewise,190

the lower and upper projections are independently learned by h̃k,d and h̃k,u, respectively.191

The nonlinearity induces the information spillage that one type of spectra could be spread over other192

types. That is, �(ỹk,G) could contain information in harmonic or curl subspaces, as illustrated in193

Fig. 1b. This is to increase the expressive power of SCCNN, which can be characterized as follows.194

Theorem 6. A SCCNN layer with inputs xk,d,xk,xk,u is at most expressive as an MLP layer195

�(G0
k,dxk,d + Gkxk + G

0
k,uxk,u) with Gk = Gk,d + Gk,u where Gk,d and Gk,u are analytical196

matrix functions of Lk,d and Lk,u, respectively, and G
0
k,d and G

0
k,u likewise. Moreover, this expres-197

sivity can be achieved when setting Td = T
0
d

= nk,G and Tu = T
0
u

= nk,C in Eq. (1) with nk,G the198

number of distinct gradient frequencies and nk,C the number of distinct curl frequencies.199

The proof follows from Cayley-Hamilton theorem [37]. This expressive power can be better under-200

stood spectrally. The gradient SFT of xk can be learned most expressively by an analytical function201

gk,G(�), the eigenvalue of Gk,d at a gradient frequency. And the curl SFT of xk can be learned202

most expressively by another analytical function gk,C(�), the eigenvalue of Gk,u at a curl frequency.203

These two functions only need to coincide at harmonic frequency � = 0. The SFTs of lower and204

upper projections can be learned most expressively by two independent functions as well. Given this205

expressive power and Eq. (4), we show SCCNN performs the Hodge-aware learning as follows.206

Theorem 7. A SCCNN is Hodge-aware in the sense that 1) three Hodge subspaces are invariant under207

the learnable SCF Hk, i.e., Hkx 2 im(B>
k ) if x 2 im(B>

k ), and likewise for im(Bk+1), ker(Lk);208

2) the gradient and curl spaces are invariant under the learnable lower SCF Hk,d and upper SCF209

Hk,u, respectively; 3) the learning in the gradient and curl spaces are independent and expressive.210

This theorem essentially shows SCCNN performs expressive learning independently in the gradient211

and curl subspaces from three inputs while preserving the three subspaces to be invariant w.r.t its212

learning functions. This allows for the rational and effective learning on SCs. On one hand, the213

invariance of subspaces under the learnable SCFs substantially shrinks the learning space and makes214

SCCNN effective, meanwhile, its expressive power is guaranteed by the independent expressive215

learners, together with the nonlinearity. Instead, the non-Hodge-aware learning, e.g., MLP or216

simplicial message-passing using MLP to aggregate and update [17], has a much larger learning space217

which requires more training data for accurate learning, as well as larger computational complexity.218

On the other hand, simplicial data often presents (implicit or explicit) properties that Hodge subspaces219

can capture. For example, water flows, traffic flows, electric currents [29, 11] follow flow conservation220

(div-free, in ker(B1)), or curl-free forex rates, as we show in Section 6, or the gradient component of221

pairwise comparison data gives consistent global ranking but others are unwanted [24]. SCCNN is222

able to capture these characteristics effectively, generating rational outputs due to the invariance of223

subspaces and independent learning in gradient and curl spaces. We illustrate a trivial example below.224

Example 8. Suppose learning to remove non-div-free noise from some input for flow conservation.225

SCCNN can correctly do so because when a not-well-learned SCF, preserving the noise and useful226
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parts primarily in their own spaces, causes large loss, e.g., mse, the Hodge-awareness restricts it to227

suppress in the gradient space and preserve in others. This however can be difficult non-Hodge-aware228

learners, e.g., MLP or MPSN [17], especially when the amount of data is limited, because the229

non-div-free noise can be disguised as useful by their unbiased transformation into other spaces,230

and the useful parts could be transformed into noise space, generating irrational non-div-free output231

though the overall mse can be small. Thus, simplicial data characteristics can be easily ignored by232

non-Hodge-aware learners when the invariance condition is not satisfied.233

Comparison to others. We here discuss some other existing learning methods on SCs to emphasize on234

the Hodge-awareness. [15] considered Hk =
P

i wiL
i
k to perform convolutions without uncoupling235

the lower and upper parts of Lk, which makes it strictly less expressive and non-Hodge-aware,236

because it cannot perform different learning at frequencies in both gradient and curl spaces, though237

deeper layers and higher orders can compensate its expressive at other frequencies. [16] applied238

Hk with Td = Tu = 1, which has a limited linear learning response. SCCNN returns the methods239

in [19, 38] when there is no inter-simplicial coupling needed. [14, 20] took the form of simplicial240

shifting by generalizing the GCN without uncoupling the two adjacencies, which is not-Hodge-aware.241

Spectrally, this gives a limited lower-pass linear spectral response, shown in Fig. 1a.242

5 How robust are SCCNNs to domain perturbations?243

In practice, a SCCNN is often built on a weighted SC to capture the strengths of simplicial adjacencies244

and incidences, with a same form as Eq. (1), except for that the Hodge Laplacians and the projection245

matrices are weighted, denoted as general operators Rk,d,Rk,u. These matrices are often defined246

following [29, 39, 40], e.g., [14, 20] considered a particular random walk formulation [41], or can247

be learned from data, e.g., via an attention method [42, 38]. Since SCCNN relies on the Hodge248

Laplacians and projection matrices, in this section, we address the question, when these operators249

are perturbed, how accurate and robust are the outputs of a SCCNN? This models the domain250

perturbations on the strengths of adjacent and incident relations such as a large weight is applied251

when two edges are weakly or not adjacent, or data on a node projects on an edge not incident to it.252

By quantifying this stability, we can explain the robust learning ability of SCCNN. We consider a253

relative perturbation model, also used to study the stability of CNNs [43–45] and GNNs [46–49].254

Denote the perturbed lower and upper Laplacians as bLk,d and bLk,u by perturbations Ek,d and Ek,u,255

and the lower and upper projections as bRk,d and bRk,u by perturbations Jk,d and Jk,u, respectively.256

Definition 9 (Relative perturbation). Consider some perturbation matrix E of an appropriate dimen-257

sion. For a symmetric matrix A, its (relative) perturbed version is bA(E) = A + EA + AE. For a258

rectangular matrix B, its (relative) perturbed version is bB(E) = B + EB.259

This relative perturbation model, in contrast to an absolute one [47], quantifies perturbations w.r.t. the260

local simplicial topology in the sense that weaker connections in a SC are deviated by perturbations261

proportionally less than stronger connections. We further consider the integral Lipschitz property,262

extended from [47], to measure the variability of spectral response functions of Hk.263

Definition 10. A SCF Hk is integral Lipschitz with constants ck,d, ck,u � 0 if the derivatives of264

response functions h̃k,G(�) and h̃k,C(�) follow that |�h̃
0
k,G(�)|  ck,d and |�h̃

0
k,C(�)|  ck,u.265

This property provides a stability-selectivity tradeoff of SCFs independently in gradient and curl266

frequencies. A spectral response can have both good selectivity and stability in small frequencies267

(a large |h̃
0
k,·| for � ! 0), while in large frequencies, it tends to be flat for better stability at the268

cost of selectivity (a small variability for large �), as shown in Fig. 1a. As of the polynomial nature269

of responses, all SCFs of a SCCNN are integral Lipschitz. We also denote the integral Lipschitz270

constant for the lower SCFs Hk,d by ck,d and for the upper SCFs Hk,u by ck,u. Given the following271

reasonable assumptions, we are ready to characterize the stability bound of a SCCNN.272

Assumption 11. a) The perturbations are small such that kEk,dk2 ✏k,d, kJk,dk2 "k,d, kEk,uk2273

✏k,u and kJk,uk2 "k,u. b) The SCFs Hk of a SCCNN have a normalized bounded frequency274

response (for simplicity, though unnecessary), likewise for Hk,d and Hk,u. c) The lower and upper275

projections are finite kRk,dk2  rk,d and kRk,uk2  rk,u. d) The nonlinearity �(·) is c�-Lipschitz276

(e.g., relu, tanh, sigmoid). e) The initial input x0

k, for all k, is finite, kx
0

kk2  [�]k, .277

Theorem 12. Let xL
k be the k-simplicial output of an L-layer SCCNN on a weighted SC. Let x̂L

k be278

the output of the same SCCNN but on a relatively perturbed SC. Under Assumption 11, the Euclidean279
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distance between the two outputs is finite and upper-bounded kx̂
L
k � x

L
k k2  [d]k where280

d = c
L
�

LX

l=1

bZl�1
TZ

L�l�, with, e.g., T =

"
t0 t0,u

t1,d t1 t1,u

t2,d t2

#
Z =

"
1 r0,u

r1,d 1 r1,u

r2,d 1

#
, (5)

for K = 2, which are tridiagonal, and bZ is defined as Z but with off-diagonal entries r̂k,d =281

rk,d(1+"k,d) and r̂k,u = rk,u(1+"k,u). Diagonal entries of T are tk = ck,d�k,d✏k,d+ck,u�k,u✏k,u,282

and off-diagonals are tk,d = rk,d"k,d + ck,d�k,d✏k,drk,d and tk,u = rk,u"k,u + ck,u�k,u✏k,urk,u,283

where �k,d captures the eigenvector misalignment between Lk,d and perturbation Ek,d with a factor284
p

nk, and likewise for �k,u.285

This result bounds the outputs of a SCCNN on all simplicial levels, showing they are stable to286

small perturbations on the strengths of simplicial adjacencies and incidences. Specifically, we make287

two observations from the seemingly complicated expression. 1) The stability bound depends on288

i) the degree of perturbations including their magnitude ✏ and ", and eigenspace misalignment �,289

ii) the integral Lipschitz properties of SCFs, and iii) the degree of projections r. 2) The stability of290

k-output depends on factors of not only k-simplices, but also simplices of adjacent orders due to291

inter-simplicial couplings. When L = 1, node output bound d0 depends on factors in the node space,292

as well as the edge space factored by the projection degree, and vice versa for edge output. As the293

layer deepens, this mutual dependence expands further. When L = 2, factors in the triangle space294

also affect the stability of node output d0, and vice versa for triangle output, as observed in Fig. 1c.295

More importantly, this stability provides practical implications for learning on SCs. While accounting296

for inter-simplicial couplings may be beneficial, it does not help with the stability of SCCNNs when297

the number of layers increases due to the mutual dependence between different outputs. Thus, to298

maintain the expressive power, higher-order SCFs can be used in exchange for shallow layers. This299

does not harm the stability because, first, the components of high-frequency can be spread over the300

low frequency due to the nonlinearity where the spectral responses are more selective without losing301

the stability; and second, higher-order SCFs are easier to be learned with smaller integral Lipschitz302

constants than lower-order ones, thus, better stability. The latter can be easily seen by comparing303

one-order and two-order cases. We also experimentally show this in Fig. 4.304

6 Experiments305
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Figure 2

Synthetic. We first illustrate the evolution of Dirichlet energies306

of outputs on nodes, edges and triangles of a SC of order two by307

numbers of simplicial shifting layers with � = tanh. The inputs308

on them are randomly sampled from U([�5, 5]). Fig. 2 shows309

simply generalizing GCN on SCs could lead to oversmoothing310

on simplices of all orders. However, uncoupling the lower and311

upper parts of L1 by setting, e.g., � = 2 could mitigate the312

oversmoothing on edges. Lastly, the inter-simplicial coupling313

could almost prevent the oversmoothing.314

Foreign currency exchange. In forex problems, for any currencies i, j, k, the arbitray-free condition315

of a fair market reads as r
i/j

r
j/k = r

i/k with the exchange rate r
i/j between i and j. That is, the316

exchange path i ! j ! k provides no profit or loss over a direct exchange i ! k. By modeling the317

forex as a SC of order two and the exchange rates as edge flows [x1][i,j] = log(ri/j), this condition318

translates as x1 is curl-free, i.e., [x1][i,j] + [x1][j,k] � [x1][i,k] = 0 in any triangle [i, j, k] [24]. Here319

we consider a real-world forex market from [50] at three timestamps, which contains certain degree320

of arbitrage. We artificially added some random noise and “curl noise” (only in the curl space) to321

this market, in which we aim to recover the forex rates. We also randomly masked 50% of the rates,322

where we aim to interpolate the market such that it is arbitrage-free. Three settings create three types323

of learning needs. To evaluate the performance, we measure both normalized mse and total arbitrage324

(total curl), both equally important for the goal of creating a fair market by small price fluctuations.325

From Table 1, we make the following observations. 1) MPSN [17] fails at this task: although it326

can reduce nmse, it outputs unfair rates with large arbitrage, which is against the forex principle,327

because it is not Hodge-aware, unable to capture the arbitrage-free property with small amount of328

data. 2) SNN [15] fails too: as discussed in Section 4, it restricts the gradient and curl spaces to be329

always learned in the same fashion, unable to meet the need of disjoint learning of this task in two330
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Table 1: Forex results (nmse|total arbitrage).
Methods Random Noise Curl Noise Interpolation

Input .119±.004|29.19±.874 .552±.027|122.4±5.90 .717±.030|106.4±.902

Baseline .036±.005|2.29±.079 .050±.002|11.12±.537 .534±.043|9.67±.082

SNN [15] .110±.005|23.24±1.03 .446±.017|86.95±2.20 .702±.033|104.74±1.04

PSNN [16] .008±.001|.984±.170 .000±.000|.000±.000 .009±.001|1.13±.329

MPSN [17] .039±.004|7.74±0.88 .076±.012|14.92±2.49 .117±.063|23.15±11.7

SCCNN, id .027±.005|.000±.000 .000±.000|.000±.000 .265±.036|.000±.000

SCCNN, tanh .002±.000|.325±.082 .000±.000|.003±.003 .003±.002|.279±.151

Table 2: Simplex prediction.
Methods 2-simplex 3-simplex

Mean [2] 62.8±2.7 63.6±1.6
MLP 68.5±1.6 69.0±2.2
GNN [51] 93.9±1.0 96.6±0.5
SNN [15] 92.0±1.8 95.1±1.2
PSNN [16] 95.6±1.3 98.1±0.5
SCNN [19] 96.5±1.5 98.3±0.4
Bunch [14] 98.3±0.5 98.5±0.5
MPSN [17] 98.1±0.5 99.2±0.3
SCCNN 98.7±0.5 99.4±0.3

Table 3: Ablation study.
Missing 2-Simplex Param.

— 98.7±0.5 L = 2
Edge-to-Node 93.9±1.0 L = 5
Node-to-Node 98.7±0.4 L = 4
Edge-to-Edge 98.5±1.0 L = 3
Node-to-Edge 98.8±0.3 L = 4

Node input 98.2±0.5 T = 4
Edge input 98.1±0.4 T = 3 0 10�3 10�2 10�1 100

�

0

10�3

10�2

10�1

100

101

102

k
x

L k
�

x̂
L k
k

Node

Edge

Tri.

Node thm.

Edge thm.

Tri. thm.

Figure 3: Stability bound.

0.4

0.6

ac
cu

ra
cy T = 1

T = 3

T = 5

0.00 0.25 0.50 0.75 1.00

�

0

1

2

k
x

1
�

x̂
1
k
/k

x
1
k

T = 1

T = 3

T = 5

Figure 4: Stability as T increases.

spaces. 3) PSNN [16] can reconstruct relatively fair forex rates with small nmse. In the curl noise331

case, the reconstruction is perfect, while in the other two cases, the nmse and arbitrage are three times332

larger than SCCNN due to its limited linear learning responses. 4) SCCNN performs the best in both333

reducing the total error and the total arbitrage. We also notice that with � = id, the arbitrage-free rule334

is fully learned by SCCNN. However, it has relatively larger errors in the random and interpolation335

cases due to its limited linear expressive power. With � = tanh, SCCNN can tackle these more336

challenging cases, finding a good compromise between overall error and data characteristics.337

Simplex Prediction. We then test SCCNN on simplex prediction task which is an extension of link338

prediction in graphs [52]. Our approach is to first learn the features of lower-order simplices and339

then use an MLP to identify if a simplex is closed or open. We built a SC as [15] on a coauthorship340

dataset [53] where nodes are authors and collaborations of k-authors are (k � 1)-simplices. The input341

simplicial data is the number of citations, e.g., x1 and x2 are those of dyadic and triadic collaborations,342

which does not present explicit properties like forex rates. Thus, 2-simplex (3-simplex) prediction343

amounts to predict triadic (tetradic) collaborations. From the AUC results in Table 2, we make344

three observations. 1) SCCNN, MPSN and Bunch [14] methods outperform the rest due to the345

inter-simplicial couplings. 2) Uncoupling the lower and upper parts in Lk imrpoves the feature346

learning (SCNN [19] better than SNN). 3) Higher-order convolution further improves the prediction347

(SCNN better than PSNN, SCCNN better than Bunch). Note that MPSN has three times more348

parameters than SCCNN under the settings of the best results.349

Ablation study. Table 3 reports the results of SCCNN when certain simplicial relation is missing,350

which helps understand their roles. When not considering the edge-to-node incidence, it (when using351

node features) is equivalent to GNN with poor performance. When removing other adjacencies or352

incidences, the best performance remains but with an increase of model complexity, more layers353

required. This, however, is not preferred, because the stability decreases as the model deepens and354

becomes influenced by factors in other simplicial space, as shown in Fig. 1c. We also considered the355

case with limited input, e.g., when the input on nodes or on edges is missing. The best performance356

of SCCNN only slightly drops with an increase of convolution order, compared to before T = 2.357

Table 4: Trajectory prediction.
Methods Synthetic Ocean drifts

SNN [15] 65.5±2.4 52.5±6.0
PSNN [16] 63.1±3.1 49.0±8.0
SCNN [19] 67.7±1.7 53.0±7.8
Bunch [14] 62.3±4.0 46.0±6.2
SCCNN 65.2±4.1 54.5±7.9

How tight is the stability bound? We consider the perturbations358

which relatively shift the eigenvalues of Hodge Laplacians and359

the singular values of projection matrices by ✏. We compare the360

bound in Eq. (5) with experimental distance on each simplex level.361

Fig. 3 shows the bound becomes tighter as perturbation increases.362

Trajectory prediction. We lastly test on predicting trajectories in363

a synthetic SC and of ocean drifters from [41], introduced by [16].364

From Table 4 we first observe SCCNN and Bunch with inter-simplicial couplings do not perform365

better than those without. This is because zero inputs are applied on nodes and triangles [16], which366

makes inter-couplings inconsequential. Secondly, using higher-order convolutions improves the367
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average accuracy in both datasets (SCNN better than PSNN on average, SCCNN better than Bunch).368

Note that the prediction here aims to find a candidate from the neighborhood of end node, which369

depends on the node degree. Since the average node degree of the synthetic SC is 5.24 and that in370

ocean drifter data is 4.81, a random guess has around 20% accuracy. The high standard derivations371

could come from the limited ocean drifter dataset.372

Convolution orders on stability. We also show that NNs with higher-order SCFs have more potential373

to learn better integral Lipschitz properties, thus, better stability. We consider SCNNs [19] with374

orders Td = Tu = 1, 3, 5 and train them with a regularizer to reduce the integral Lipschitz constants.375

As shown in Fig. 4, the higher-order case has a smaller distance (better stability) between the outputs376

without and with perturbations, with consistent better accuracy, comapred to the lower-order case.377

7 Related Work, Discussion and Conclusion378

Related work mainly concerns learning methods on SCs. [13] first used L1,d to build NNs on edges in379

a graph setting without the upper edge adjacency. [15] then generalized convolutional GNNs [32, 51]380

to simplices by using the Hodge Laplacian. [16, 19] instead uncoupled the lower and upper Laplacians381

to perform one- and multi-order convolutions, to which [42, 38, 54] added attention schemes. [55]382

considered a varaint of [16] to identity topological holes and [18] combined shifting on nodes and383

edges for link prediction. Above works learned within a simplicial level and did not consider the384

incidence relations (inter-simplicial couplings) in SCs, which was included by [14, 20]. These works385

considered convolutional-type methods, which can be subsumed by SCCNN. Meanwhile, [17, 21]386

generalized the message passing on graphs [22] to SCs, relying on both adjacencies and incidences.387

Most of these works focused on extending GNNs to SCs by varying the information propagation388

on SCs without many theoretical insights into their components. Among them, [16] discussed the389

equivariance of PSNN to permutation and orientation, which SCCNN admits as well. [17] studied390

the messgae-passing on SCs in terms of WL test of SCs built by completing cliques in a graph. The391

more closely related work [19] gave only a spectral formulation based on SCFs.392

Discussion. In our opinion, the advantage of using SCs is not only about them being able to model393

higher-order network structure, but also support simplicial data, which can be both human-generated394

data like coauthorship, and physical data like flow-typed data. This is why we approcahed the analysis395

from the perspectives of both simplicial structures and the simplicial data, i.e., the Hodge theory396

and spectral simplicial theory [23, 9, 26–28, 30, 56]. We provided deeper insights into why three397

principles are needed and how they can guide the effective and rational learning from simplicial data.398

As what we practically found, in experiments where data exhibits properties characterized by the399

Hodge decomposition, SCCNN performs well due to the Hodge-awareness while non-Hodge-aware400

learners can fail at giving rational results. In cases where data does not possess such properties,401

SCCNN has better or comparable performance than the ones which violate or do not respect the three402

principles. This also shows the advantages of SCCNN, especially when data has certain properties.403

Concurrently, there are works on more general cell complexes, e.g., [57–61], where 2-cells inlcude404

not only triangles, but also general polygon faces. We focus on SCs because a regular CW complex405

can be subdivided into a SC [62, 29] to which the analysis in this paper applies, or we can generalize406

our analysis by allowing B2 to include 2-cells. This is however informal and does not exploit the407

power of cell complexes, which lies on cellular sheaves, as studied in [63, 64].408

Limitation. A major limitation of our method is that it cannot learn differently from features at the409

frequencies of the same type and the same value. For instance, harmonic features are learned in a410

same fashion because they all have zero frequency. This is however common in convolutional type411

learning methods on both graphs and SCs. Also, our stability analysis concerns the perturbations on412

the connection strengths and did not consider the case where simplices join or disappear. Both of413

them can be interesting future directions, together with more physical-based data applications.414

Conclusion. We proposed three principles for convolutional learning on SCs, summarized in a415

general architecture, SCCNN. Our analysis showed this architecture, guided by the three principles,416

demonstrates an awareness of the Hodge decomposition and performs rational, effective and expres-417

sive learning from simplicial data. Furthermore, our study reveals that SCCNN exhibits stability418

and robustness against perturbations in the strengths of simplicial connections. Experimental results419

validate the benefits of respecting the three principles and the Hodge-awareness. Overall, our work420

establishes a solid fundation for learning on SCs, highlighting the importance of the Hodge theory.421
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