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Abstract

Graph transfer learning, especially in unsupervised domain adaptation, aims to
transfer knowledge from a label-abundant source graph to an unlabeled target graph.
However, most existing approaches overlook the common issue of label imbalance
in the source domain, typically assuming a balanced label distribution that rarely
holds in practice. Moreover, they face challenges arising from biased knowledge in
the source graph and substantial domain distribution shifts. To remedy the above
challenges, we propose a dual-branch prototype-enhanced contrastive framework
for graph domain adaptation under a class-imbalanced scenario. Specifically, we
introduce a dual-branch graph encoder to capture both local and global information,
generating class-specific prototypes from a distilled anchor set. Then, a prototype-
enhanced contrastive learning framework is introduced. On the one hand, we en-
courage class alignment between the two branches based on constructed prototypes
to alleviate the bias introduced by class imbalance. On the other hand, we infer
the pseudo-labels for the target domain and align sample pairs across domains that
share similar semantics to reduce domain discrepancies. Experimental results show
that our ImGDA outperforms the state-of-the-art methods across multiple datasets
and settings. The code is available at: https://github.com/maxin88scu/ImGDA.

1 Introduction

Graph serves as a versatile data structure to represent complex relationships [12, 47] in a number of
fields such as social networks [2], molecular biology [13, 55] and recommender systems [20, 44].
One fundamental task for graph-structured data is node classification, which endeavors to predict
the category of each node within the graph and is widely applied in various applications, i.e.,
community detection [51], smart city [58] and knowledge graph [49]. Nevertheless, the effectiveness
of this task heavily relies on label information, which is time-consuming and costly [9]. Graph
transfer learning [19, 61] has emerged as an effective framework for tackling this problem by
leveraging labeled information from a source graph to facilitate learning on an unlabeled target graph,
significantly enhancing the model’s ability to generalize on the target graph.

Actually, there are several approaches that apply graph transfer learning for domain adaptation in
the node classification task. Thanks to the powerful capabilities of graph neural networks (GNNs),
unsupervised graph domain adaptation focuses on reducing the distribution discrepancy between
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target and source graphs within the latent representation space induced by GNNs [23, 53, 56].
Distance-based methods minimize a divergence measure between their distributions to learn invariant
representations, such as maximum mean discrepancy [34] and graph subtree discrepancy [45] to
align domains. Adversarial-based methods incorporate a discriminator to distinguish between the
two domains and produce invariant features to confound the discriminator [4, 32].

Despite the promising performance of graph transfer learning, it often relies on the unrealistic
assumption that the source domain graph exhibits a balanced label distribution. In practice, however,
real-world graphs usually exhibit long-tailed structures, where most classes contain only a few
labeled nodes (tail classes) and a small number of classes dominate with many labeled samples (head
classes) [11, 14], resulting in severe class imbalance. For example, in the NCI dataset, which consists
of graphs of chemical compounds [40], only around 5% of compounds exhibit anti-cancer activity,
with the overwhelming remainder are labeled as inactive. Therefore, this class-imbalanced issue
inevitably leads to the knowledge extraction bias [59] in the source graph which in turn adversely
affects the graph domain adaptation. This naturally spurs a question: How can label semantics in the
target graph be effectively inferred under domain shifts and severe source imbalance?
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Figure 1: Illustration of class-imbalanced graph do-
main adaptation. The unsupervised domain adaptation
method GDA-SpecReg suffers from an imbalanced class
of source graphs, particularly for the tail class.

However, designing an effective framework
for graph domain adaptation under class im-
balance remains challenging due to several
critical obstacles: ❶ How to sufficiently al-
leviate the class imbalance for extracting
knowledge from the source graph? The
latent space formed by imbalanced train-
ing data is highly skewed, with minor sub-
spaces being compressed by the dominant
ones. This imbalance forces the model to
focus primarily on the head class, which re-
sults in insufficient learning of the tail class
to extract unbiased knowledge. ❷ How to
effectively reduce the domain discrepancy
to make accurate predictions on the target graph? Since the target graph is entirely unlabeled,
existing methods primarily focus on entire domain alignment, overlooking class-level distributions.
Therefore, as the result shown in Figure 1, existing graph domain adaptation methods struggle to
transfer the correct semantic knowledge, leading to poor performance, particularly for tail classes.

Towards this end, in this paper, we propose a holistic method termed ImGDA, a dual-branch prototype-
enhanced contrastive framework for class-Imbalanced Graph Domain Adaption, which facilitates the
transfer of class-imbalanced label information from the source graph to the unlabeled target graph.
Specifically, we develop a dual graph encoder that jointly captures local and global information to
learn generalized node representations. Building on this, a prototype for each class is generated from
a distilled anchor set. Then, we introduce a prototype-aware contrastive learning framework that
integrates cross-branch and cross-domain contrastive learning to enhance adaptation performance. To
rebalance the feature space, the cross-branch prototype contrast encourages class alignment between
the two branches. To further reduce domain discrepancy, we infer pseudo-labels of nodes from the
target domain graph in a non-parametric manner and align sample pairs across domains that exhibit
the same semantic meaning. Additionally, we treat temperature as a rebalancing parameter to mitigate
class imbalance during training. Extensive experimental results validate the effectiveness of our
proposed ImGDA for class-imbalanced graph domain adaptation.

2 Related Work

Unsupervised Domain Adaptation (UDA). UDA focuses on learning domain-invariant represen-
tations between a labeled source domain and an unlabeled target domain to transfer cross-domain
information [24, 26, 43]. Recently, graph UDA methods have included adversarial learning and
reducing domain discrepancies based on certain metrics (e.g., MMD [7], subtree discrepancy [45]).
Among adversarial methods, RNA [25] adversarially extracts domain-invariant subgraphs to address
domain shift, while leveraging spectral seriation for robust alignment under label scarcity. In the
metric-based category, GDASpecReg [53] leverages spectral smoothness and maximum frequency
response regularizations to enhance GNN transferability across node and link transfer scenarios,
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while A2GNN [23] improves cross-domain transfer by adjusting GNN propagation layers using
Lipschitz bounds. However, our ImGDA studies a novel yet practical scenario of imbalanced source
data, and introduces a dual prototype-aware contrastive framework to reduce source graph bias and
align the semantic space between source and target for cross-domain knowledge transfer.

Class-Imbalanced Learning on Graphs. It is well recognized that class imbalance on graphs can
degrade classification performance. To address this problem, there are typically three approaches: (a)
Modifying the loss function to prioritize underrepresented classes [3, 29, 36, 50]. (b) Post-hoc correc-
tion to modify logits for the tail class [10, 16]. (c) Re-sampling techniques that augment or generate
tail class data [27, 31, 42, 57]. For instance, GraphSHA [22] expands tail class decision boundaries by
creating more challenging samples, while ImGCL [54] addresses class imbalance by employing bal-
anced sampling and explicitly accounting for node centrality within a contrastive learning paradigm.
Extending these strategies to graph-level tasks, C3GNN [14] addresses class-imbalanced graph clas-
sification by clustering majority classes and applying Mixup to learn hierarchical representations,
while KDEX [28] transfers head-to-tail knowledge and trains diverse experts that are adaptively
combined via a self-supervised router. Additionally, Qin et al. [33] further propose a comprehensive
benchmark IGL-Bench for imbalanced graph learning, which evaluate the effectiveness, robustness,
and efficiency of various algorithms within a unified framework. However, distribution shifts in
graphs further complicate class-imbalanced learning on graphs. To address this, our proposed ImGDA
introduces cross-branch prototype contrast to reduce class imbalance bias and cross-domain prototype
contrast to align domain discrepancies, effectively generating domain-invariant representations.

3 Notations and Problem Definition
Source Domain Graph. Denote Gs = {Vs, Es,Xs,Y s} the source domain graph with the labeled
node Vs and edge sets Es. The node feature matrix can be represented as Xs ∈ R|Vs|×d, where
entry xv ∈ Rd is associated with a feature vector of node v with dimension d. We use the adjacency
matrix As ∈ R|Vs|×|Vs| to describe the structure information of the graph, where As

ij = 1 if an edge
exists between vi and vj , i.e., (vi, vj) ∈ Es, otherwise, As

ij = 0. The degree matrix is denoted as

D = diag(D1, . . . ,DN ) with a degree of each node Di =
∑|Vs|

j=1 A
s
ij . We denote the node label

matrix of the source domain graph as Y s ∈ R|Vs|×C , where C corresponds to the total classes.

Target Domain Graph. The target domain graph is denoted as Gt = {Vt, Et,Xt} with unlabeled
node set Vt and edge set Et. Similarly, the adjacency matrix At ∈ R|Vt|×|Vt| indicates the node
connectivity information in the target domain graph. And the feature matrix can be represented as
Xt. The attribute sets of the source and target domain graph could exhibit significant differences.
Here, we construct a unified attribute set across both domains to align the dimensions.

Problem Definition. We consider Gs as a fully labeled source graph and Gt as an unlabeled target
graph. Each c-th class in Gs contains Nc nodes, ordered such that NC ≥ N2 ≥ · · · ≥ NC . The
source domain graph is assumed to be class-imbalanced, with the degree of imbalance quantified by
the factor N1/NC . The objective of the task is to mitigate this class imbalance while transferring
knowledge from the source graph to the target domain graph to achieve accurate node label prediction.
Figure 2 provides a schematic overview of our proposed framework in the following.

4 Methodology

4.1 Dual-Branch Embedding Generalization

Generalized node embeddings are crucial for effective graph domain adaptation. Therefore, we
introduce a dual-branch graph encoder to fully capture both local and global structure information of
the graph [30, 62].

Local Consistency Encoder. To capture local consistency knowledge (i.e., neighboring samples are
prone to share the same semantics), we directly utilize the Graph Convolutional Network (GCN) [18]
as the encoder. Given the adjacency matrix A∗ and feature matrix X∗ (∗ ∈ {s, t}) of both source
and target domain graphs, the output of the l-th layer is defined as:

Z
(l)
∗,local = σ(D̃∗−

1
2 Ã∗D̃∗−

1
2Z

(l−1)
∗,localW

∗(l)), (1)
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Figure 2: A schematic overview of our proposed ImGDA framework.

where Ã∗ = I|V∗|+A∗ is the adjacency matrix containing self-loop, D̃∗ is the corresponding degree
matrix accordingly. W ∗(l) serves as the learnable filter in l-th layer and the initial feature matrix is
Z

(0)
∗,local = X∗. Here σ(·) denotes the activation function. By stacking L graph convolutional layers,

the extracted local consistency knowledge can be expressed as Z∗
local = Z

(L)
∗,local.

Global Consistency Encoder. Furthermore, we utilize a graph encoding strategy based on positive
pointwise mutual information (PPMI) [46, 62]. We represent the state at current time t as s(t) = vi,
with the probability transit from the node vi to any of its neighbors vj expressed as:

P ∗
ij = p(s(t+ 1) = vj |s(t) = vi) = A∗

ij/Di. (2)

We apply the random walk guided by P ∗ to generate a collection of node paths on A∗. From these
paths, we construct co-occurrence frequency matrix F ∗ ∈ R|V∗|×|V∗|, where Fij records how often
node vj appears within a predefined window around vi. The PPMI between nodes is calculated as:

P̃ ∗
ij =

P ∗
ij∑

i,j P
∗
ij

, P̃ ∗
i =

∑
j P

∗
ij∑

i,j P
∗
ij

, P̃ ∗
j =

∑
i P

∗
ij∑

i,j P
∗
ij

, M∗
ij = max{log(

P̃ ∗
ij

P̃ ∗
i × P̃ ∗

j

), 0}, (3)

where P̃ ∗
ij is the probability that vj appears in the vi’s context, P̃ ∗

i and P̃ ∗
j are the estimated proba-

bility of node vi and context vj respectively. M∗
ij captures the high-order topological relationship

between nodes. Thus, nodes that frequently co-occur at high frequency will have larger M∗
ij values

compared to independent nodes. By treating the PPMI matrix M∗ as a new adjacency matrix, we
can effectively extract global consistency knowledge as:

Z
(l)
∗,global = σ(D∗− 1

2M∗D∗− 1
2Z

(l−1)
∗,globalW

∗(l)), (4)

where D∗
i =

∑
j M

∗
ij and W ∗(l) is shared learnable parameters used with the local consistency

encoder. Similarly, the global structural consistency can be also extracted by stacking L graph
convolutional layers, namely, Z∗

global = Z
(L)
∗,global.

Attention-Based Consistency Fusion. To fuse the extracted local and global consistency knowledge,
we leverage the attention mechanism [38] and the attention coefficients can be obtained as:

ζij = softmax(ϕ(W ∗z∗
i,local,W

∗z∗
j,global)), (5)

where W ∗ is the shared parameter matrix, ϕ(zi, zj) = LeakyRelu(W ∗
0
⊤[zi||zj ]) denotes the

attention function with parameter W ∗
0 . The fused consistency knowledge of both domains can be:

Z∗ = ζiiZ
∗
local + (1− ζii)Z

∗
global. (6)

4.2 Anchor-Based Prototype Construction

In contrast to directly using cross-entropy loss on class-imbalanced data, supervised contrastive
learning (SCL) tends to achieve better results [15, 17, 60]. However, when the dataset is highly
imbalanced, the feature space remains dominated by head class. To avoid overemphasis on head
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classes, a straightforward approach is to generate a set of uniformly distributed prototypes for all
classes, ensuring that each contributes approximately equally during optimization. The subsequent
analysis provides theoretical guarantees that this strategy can effectively alleviate the class imbalance.
Theorem 4.1. Let Z = {z1, . . . ,zN}, ||zi|| = 1 be the extracted consistency knowledge of N node
points with label Y = {y1, . . . , yN}. The supervised contrastive loss for a class c in a batch B is
bounded by:

LSCL(Z;Y ,B, c) ≥
∑
i∈Bc

log((|Bc| − 1) + |B̄c| exp(
1

|B̄c|
∑
k∈B̄c

zi · zk︸ ︷︷ ︸
repulsion term

− 1

|Bc| − 1

∑
j∈Bc\{i}

zi · zj︸ ︷︷ ︸
attraction term

)), (7)

where Bc represents the subset within B containing all samples of class c and B̄c denotes its
complement set.

The lower bound of SCL above is derived from [6] and comprises two terms. The attraction term
encourages intra-class instances to converge toward their prototypes regardless of the class distribution,
while the repulsion term enforces uniform inter-class separation and is dominated by head classes.
Theorem 4.2. Let CB, |CB| ≤ C denotes the set of classes that appears in B. The supervised
contrastive loss for a class c after class averaging is bounded by:

LSCL(Z;Y ,B, c) ≥
∑
i∈Bc

log(1 + (|CB| − 1) (8)

× exp(
1

|CB|−1

∑
q∈CB\{c}

1

|Bq|
∑
k∈Bq

zi · zk︸ ︷︷ ︸
repulsion term

− 1

|Bc|−1

∑
j∈Bc\{i}

zi · zj︸ ︷︷ ︸
attraction term

)),

Therefore, head classes no longer dominate the repulsion term. To fully train all classes in B, we
learn the prototype of each class for prototype-aware contrastive learning. The proofs of the theorem
are in Appendix A.

In practice, we distill the original graph to sample the anchor set consisting of the most important
nodes. Then, we calculate the prototype based on the anchor set to facilitate effective learning.
Specifically, for each class c in the source domain graph, the top k nodes ranked by the degree are
selected to get the sub-graph of anchor nodes Gs

a. We calculate the prototype as the mean vector of
each class, namely, µc,q = 1

k

∑k
i=1 z

s
i,q, y

s
i = c, q ∈ {local, global}.

4.3 Prototype-Enhanced Contrastive Learning

Given the prototype sets of two branches for both source and target domain graphs, we formalize a
prototype-aware contrastive learning framework, which integrates cross-branch and cross-domain
prototype contrastive learning to mitigate class imbalance and effective domain adaptation.

Cross-Branch Prototype Contrast. Considering that the model extracts both the local and global
consistency knowledge from both complementary branches, we contrast the consistency knowledge
of the source domain graph between the two branches in a prototype manner to mitigate the imbalance
effect [1]. Specifically, we calculate the prototype of both local and global consistency knowledge
from two branches as {µc,local}Cc=1 and {µc,global}Cc=1. For each query node vsi ∈ Vs, we use the
prototype with the same class label as the positive sample and the cross-branch prototype contrastive
loss can be defined as:

Lcb =
1

4|Vs|

|Vs|∑
i=1

zs
i,global∑

z+=zs
i,local

µys
i
,global∑

µ+=µys
i
,local

log
( exp(z+ · µ+/τ)

exp(z+ · µ+/τ) +
∑

µ∈P−
i
exp(z+ · µ/τ)

)
, (9)

where P−
i denote the prototype set excluding uys

i ,q
, q ∈ {local, global} in two branches respectively,

and τ is the temperature parameter for contrastive learning.

Cross-Domain Prototype Contrast. To alleviate the domain shift in the graph space, we seek to
align the consistent knowledge of nodes in the source domain graph with nodes in the target domain
graph that share the same semantics. To achieve this, we infer pseudo-labels of nodes from the target
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domain graph in a non-parametric manner and employ cross-domain prototype contrastive learning
between cross-domain pairs [52]. The pseudo-label for node vtj in the target domain graph can be:

p̂tj =
∑

(vs
i ,y

s
i )∈Gs

a

( exp(zt
j · zs

i /τ)∑
(vs

i ,y
s
i )∈Gs

a
exp(zt

j · zs
i /τ)

)
Y s
i , (10)

where Y s
i corresponds to the one-hot label of vi. The pseudo-label can be derived as ŷtj =

argmax(p̂tj). Then, for each query node vtj ∈ Vt, we pull semantically similar prototypes close
compared to those with different semantics:

Lcd=
1

|Vt|

|Vt|∑
j=1

log
( exp(zt

j ·µŷt
j
)

exp(zt
j ·µŷt

j
)+
∑

µ∈P−
j
exp(zt

j ·µ)

)
, (11)

where P−
j denotes the prototype set of fused consistency knowledge excluding µŷt

j
in the source

domain graph. Note that the cross-domain contrastive learning process can be interpreted as an
Expectation Maximization (EM) scheme, where the aligned semantics between the source and target
domain nodes are inferred in the E-step, and the log-likelihood of the nodes in the target domain
graph is maximized in the M-step. The proof can be seen in Appendix B.

Adaptive Temperature Formulation. The temperature parameter τ in contrastive learning controls
the penalty on hard negative samples [41]. However, for tail classes, where node samples are fewer,
increasing τ has a negligible impact but reduces their gradients, worsening class imbalance. We
propose an adaptive mechanism in which the temperature for each class is adjusted according to the
number of samples within that class:

τc = γ + (1− γ) ·Nc/NC , (12)

where τc is the temperature of class c, and γ here denotes the minimum value of temperature.

4.4 Overall Optimization

To further reduce the impact of class imbalance in the source domain graph, we employ a logit
compensation strategy to correct the consistency knowledge [26, 29, 59], summarized as follows:

Llc = −λc log
exp(φy(z

s
i ) + δc)∑C

c′=1 exp(φc′(zs
i ) + δc′)

, (13)

where φ(·) is the classification function that outputs the logit for each label, λy represents the
contribution weight for class ysi , and δc denotes the compensation value for class c. Here, we have
λc = 1 and δc = logNc, following the previous work [29]. Finally, the objective can be:

L = Lcb + Lcd + Llc. (14)

Typically, the dynamic weight hyperparameters can be used to balance these losses during training,
but we find in practice that a simple addition already yields effective results.

5 Experiment

5.1 Experimental Settings

Benchmark Datasets. This study conducts experiments on three publicly accessible network datasets
from the ArnetMiner [37]: ACMv9 (A), Citationv1 (C), and DBLPv7 (D). These datasets are derived
from different sources and cover distinct time periods: ACM (post-2010), Microsoft Academic Graph
(pre-2008), and DBLP (2004-2008), resulting in diverse domain characteristics. All datasets model
academic papers as nodes and construct undirected edges to represent citation relationships. To
realistically simulate real-world class imbalance scenarios, we employ the operation proposed by
[31] for preprocessing source domain data. This involves iteratively adjusting the number of nodes
within classes in the source domain to achieve specified imbalance factors (IF). The imbalance factor
is defined as ρ = N1/NC , where class populations follow N1 ≥ N2 ≥ · · · ≥ NC , with Nc denoting
the node count for class c in the source graph. The experiments on more metrics of imbalanced
distribution can be found in Appendix E.
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Table 1: Results of methods across varying imbalance factors (ρ). Here A⇒C represents using
A as the source graph and C as the target graph. Scores are reported as micro-average (%) and
macro-average (%). The top-performing method is shown in bold with the runner-up is underlined.

Methods IF (ρ) A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCN

10 66.01±1.15 60.90±2.14 61.21±0.57 53.20±0.71 58.25±1.22 56.52±2.87 63.39±0.32 58.38±1.27 55.47±0.39 52.80±0.86 61.68±0.38 58.35±0.68

20 62.28±1.17 55.48±1.79 60.75±0.69 51.60±1.48 51.17±0.58 43.78±1.54 59.00±0.88 48.22±1.57 50.93±2.70 45.12±4.44 54.02±0.27 46.18±0.55

50 53.07±3.39 42.41±3.32 56.26±2.21 43.35±3.53 44.38±1.12 32.20±2.51 53.06±0.55 37.09±1.18 41.86±1.31 31.11±1.50 42.28±3.28 32.05±3.30

GAT

10 66.48±0.72 58.37±2.74 61.58±0.75 51.44±1.02 55.10±2.47 51.54±4.12 60.87±1.00 52.99±1.34 56.18±0.31 53.11±0.80 61.64±0.23 58.22±0.53

20 61.63±3.34 50.54±3.72 61.04±1.87 50.10±1.46 47.18±1.04 37.30±1.61 55.95±1.26 43.32±2.17 49.18±1.59 42.20±2.78 53.05±3.25 45.29±2.63

50 53.21±7.62 42.07±7.64 53.67±4.00 40.36±5.33 41.02±0.99 26.41±1.18 49.76±0.63 32.29±1.15 40.14±1.46 28.89±1.85 45.38±7.90 34.77±8.31

GIN

10 62.12±0.69 55.03±0.84 60.91±0.79 54.39±1.48 54.35±1.75 49.21±1.31 60.14±1.00 54.51±2.16 52.59±0.67 49.43±2.42 59.89±1.42 54.68±2.28

20 60.03±1.03 50.98±0.94 59.12±1.05 48.27±0.92 50.38±2.75 42.80±3.88 55.87±2.47 46.42±4.71 47.79±1.49 41.02±2.77 53.47±2.49 44.83±2.61

50 54.39±1.62 44.28±1.69 54.43±1.60 41.90±2.09 41.26±0.37 29.45±0.51 47.05±0.60 31.57±1.13 43.38±1.26 34.41±2.05 48.59±2.15 39.22±2.29

GDA-SpecReg

10 51.27±1.86 39.29±2.43 53.69±3.02 40.87±5.56 49.69±4.93 39.08±7.51 57.41±3.15 45.54±4.35 52.73±3.20 47.07±7.86 56.37±1.40 45.04±3.46

20 49.68±1.42 36.44±1.70 51.34±3.70 35.82±3.00 48.11±4.07 38.20±6.83 51.64±1.96 35.15±3.49 43.84±3.79 31.89±3.72 44.53±6.48 31.21±6.80

50 49.80±6.48 36.09±7.63 47.44±4.58 29.36±6.49 47.64±4.97 33.87±7.90 52.63±2.53 38.46±6.93 41.95±3.49 28.28±7.97 45.63±5.22 30.81±8.85

A2GNN

10 61.23±0.93 54.72±2.23 59.00±0.64 46.61±1.16 51.29±0.51 41.70±0.77 61.07±0.32 50.09±0.68 59.54±0.83 55.41±1.74 60.32±1.82 60.11±2.30

20 35.95±0.99 25.28±1.45 49.06±1.28 35.11±1.11 46.09±0.19 33.40±0.39 56.91±0.24 42.06±0.38 41.31±0.79 31.44±1.20 41.00±0.70 31.44±1.04

50 32.48±1.62 17.61±1.75 35.22±0.12 15.10±0.24 40.26±0.08 24.09±0.07 50.33±0.19 31.03±0.17 31.27±0.22 14.29±0.48 27.79±0.35 13.19±0.72

GraphENS

10 70.49±0.63 64.53±1.33 66.43±1.40 58.40±3.69 63.25±1.11 62.41±2.29 67.47±0.37 63.87±1.23 58.95±0.64 58.34±1.07 65.50±0.53 63.52±0.65

20 68.12±1.26 57.59±1.13 64.41±0.70 53.09±1.11 59.61±1.30 51.96±1.31 65.58±1.02 57.31±3.39 54.72±0.46 49.54±1.89 61.11±0.49 52.47±1.99

50 62.74±0.81 51.76±0.79 61.01±1.66 47.74±4.14 54.09±1.51 45.51±1.74 60.40±0.90 47.81±2.29 50.67±0.43 42.18±0.44 56.26±0.85 47.81±2.43

TAM

10 72.36±0.50 67.27±0.56 67.12±0.69 61.52±1.05 64.49±0.41 63.40±1.34 70.10±0.85 66.20±1.02 59.17±0.68 55.36±1.29 66.65±0.39 63.16±0.77

20 68.90±1.49 60.01±1.23 66.11±0.99 56.88±1.83 61.36±0.70 57.64±2.19 68.11±0.69 62.57±1.98 53.81±1.05 46.92±1.65 61.23±1.22 53.28±1.42

50 64.93±3.74 55.77±4.74 61.63±0.99 50.23±1.48 58.95±1.64 50.99±2.06 64.66±1.19 54.71±2.03 53.39±1.61 44.93±2.14 57.88±1.67 47.52±2.02

GraphSHA

10 73.20±0.73 70.43±1.14 61.79±0.09 56.09±1.47 66.07±1.26 66.24±1.34 63.05±0.93 56.69±4.64 63.28±0.55 64.06±0.54 71.11±0.64 69.03±0.64

20 71.00±1.58 64.33±2.56 57.95±2.55 47.37±3.16 62.87±1.74 60.41±2.91 62.72±3.73 53.91±4.00 57.56±1.71 53.22±4.22 66.93±1.40 62.03±1.82

50 64.97±2.30 53.99±2.49 65.96±1.44 54.07±1.91 56.55±2.73 49.19±1.58 56.10±5.25 44.72±6.29 50.08±0.95 41.72±3.42 57.89±1.59 50.52±2.26

ImGDA (Ours)

10 77.93±1.03 73.98±2.74 71.34±2.61 66.82±1.82 67.79±0.62 68.22±1.41 73.06±2.16 69.62±2.98 66.64±1.33 66.86±1.78 74.72±0.55 72.86±1.14

20 77.30±1.05 73.92±0.83 71.23±1.59 65.66±1.25 67.28±0.84 66.39±1.33 68.48±1.54 63.42±2.03 63.92±0.46 63.45±0.74 71.99±1.15 68.38±2.50

50 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11

Compared Baselines. For our study on graph domain adaptation under class-imbalanced scenario, we
employ three GNNs as baselines: GCN [18], GAT [39], and GIN [48]. Meanwhile, we incorporate two
baselines that are specifically developed for domain adaptation: GDA-SpecReg [53] and A2GNN [23].
In addition, we include three methods recognized for their effectiveness in handling imbalanced graph
learning: GraphENS [31], TAM [35], and GraphSHA [22].

Implementation Details. We conduct extensive experiments by alternately setting one domain
as the source and the other two as targets. The source imbalance factor ρ ∈ {10, 20, 50} covers
mild to severe imbalance levels. For our ImGDA, we adopt GCN [18] as the backbone with a
512-dimensional feature space. The hyperparameters are set as: γ = 0.5, K = 200, and α = β = 1.
For a fair comparison, all baselines employ the same GNN encoder and are fine-tuned for optimal
performance. Each method is evaluated on the target domain graph w.r.t. micro-F1 and macro-F1
scores, and the final results is averaged over five runs.

5.2 Performance Comparison
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Figure 3: Impact of ρ and convergence analysis.

Table 1 presents our results for ρ = {10,
20, 50}, while additional results for ρ =
{5, 100} are provided in Appendix D.1.
From the table, our ImGDA consistently
achieves the best performance. And the
comparison shows that our approach sig-
nificantly outperforms all other methods in
class-imbalanced domain adaptation tasks.
Additionally, when using DBLP dataset
as the source domain with fewer samples,
baseline methods generally perform worse
than with other datasets. However, our ImGDA mitigates this issue by effectively capturing intrin-
sic semantics via a prototype-enhanced contrastive framework. Furthermore, Figure 3a shows the
performance trend across different ρ values in the A⇒C experiment, where ρ ranges from 5 to 100.
When ρ is small (e.g., 5), performance gaps between methods are minor. As ρ increases, all methods
degrade due to rising imbalance. However, our ImGDA shows the smallest decline, maintaining
stable results even under severe imbalance. Notably, as ρ increases, domain adaptation-specific
methods (GDA-SpecReg, A2GNN) drop sharply, while imbalance-handling methods (GraphENS,
TAM, GraphSHA) outperform others. This indicates that addressing source-domain imbalance has
a greater impact than mitigating domain shifts. Figure 3b also shows the rapid convergence of our
method within a few epochs.
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5.3 Ablation study
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Figure 4: Results of ablation study on all data pairs
(ρ = 50, Micro score (%) with standard deviation).

To evaluate the contribution of each compo-
nent in our method, we conduct an ablation
study. We remove three loss terms (w/o Llc,
w/o Lcb, w/o Lcd), the global branch (w/o
global, i.e., two branches are local branches),
the local branch (w/o local, i.e., two branches
are global branches), and the dynamic tem-
perature (w/o γ), and assess the performance
under ρ = 50. The results for the Micro score
are shown in Figure 4, while the results for the
Macro score can be found in Appendix D.2. We can clearly see that excluding any component causes
the performance degradation, especially the removal of Lcb (cross-branch prototype contrastive loss).
This emphasizes the importance of addressing data imbalance in the source domain and enforcing
consistency. Also, eliminating Lcd (cross-domain prototype contrastive loss) leads to some decline,
but the impact is less severe, supporting the argument that mitigating data imbalance is more crucial
than domain adaptation. Additionally, removing the Llc, global and local branches or switching
to a fixed temperature reduces performance, particularly when DBLP is the source domain. The
macro score drops after fixing the temperature emphasizes the importance of dynamic temperature in
contrastive learning, where adjusting it based on class distribution alleviates data imbalance. These
results validate the necessity and effectiveness of each component within our framework.

5.4 Sensitivity Study

A2C

A2DC2A

C2D

D2A D2C

50
100
200

300
400
500

(a) k

A2C

A2DC2A

C2D

D2A D2C

0.25
0.50
0.75
1.00

(b) γ

Figure 5: Impact of k and γ (ρ = 50). The distance
between the points on each line and the center point
represents the magnitude of the Micro score (%).

Effect of k. We here study the impact of
the number of anchor nodes k, where k
takes values from {50, 100, 200, 300, 400,
500}, as shown in Figure 5a. Both small
and large values of k degrade performance,
with the impact more pronounced for small
k. A small k samples too few nodes, ig-
noring useful information and hindering
learning. On the other hand, for a large k,
while the number of head class nodes sam-
pled remains unaffected, the number of tail
class nodes sampled decreases due to the
limited number of such nodes, leading to a
data imbalance phenomenon similar to that
in the source domain, which also drops performance. Hence, selecting an appropriate number of
anchor nodes k is critical for effective prototype learning.
Effect of γ. We explore the impact of dynamic temperature γ in Eq. (12), where γ represents the
minimum temperature associated with the tail class. It can be observed that as γ decreases, the tail
temperature lowers and the gradients increase, making γ a weight parameter related to the gradients.
We experiment with γ in {0.25, 0.50, 0.75, 1.00}, as shown in Figure 5b. Compared to the default
γ = 0.5, both high and low temperatures degrade performance, with lower temperatures slightly
better. This highlights that smaller temperatures help alleviate data imbalance, but overly small values
disproportionately increase the gradient of tail class, harming the training of other classes.

5.5 Capability to Mitigate the Imbalance Issue

We evaluate our ImGDA’s capability to handle data imbalance by examining cross-entropy loss and
accuracy across tail and head classes under ρ= 20. To enhance comparability, we normalize these
metrics for each method and visualize the results in Figure 6. The results show that for head classes,
all three methods achieve similar accuracy and cross-entropy loss ratios, indicating comparable
effectiveness when abundant training data is available. However, for tail classes, the other two
methods degrade significantly, revealing difficulty in handling imbalance. It can be observed that
GraphENS performs better than GDA-SpecReg, likely due to its design advantages in dealing with
imbalanced data. In comparison, our ImGDA consistently performs well in both the head and tail
classes, underscoring its ability to mitigate class imbalance while ensuring robust generalization.
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Figure 6: Comparison of head and tail class performance in terms of accuracy and cross-entropy
(CE) loss. The horizontal axis here indicates the relative contribution of each compared method,
normalized across all the three methods.

(a) GDA-SpecReg (b) ImGDA (Ours)

Figure 8: t-SNE visualization of node embeddings from the baseline GDA-SpecReg and our proposed
ImGDA. In each panel we sequentially present the balanced source domain graph, the imbalanced
source domain graph, and the target domain graph, respectively.

5.6 Visualization

To further evaluate our ImGDA from a qualitative perspective, we compare its t-SNE visualizations
with GDA-SpecReg. With ρ=20, node features learned by the encoder are projected into a 2D space
to visualize three cases: a balanced source domain graph, an imbalanced source domain graph, and
a target domain graph (Figure 8). As for the baseline, we can find that class boundaries appear
blurred in both source domains, and the target domain shows a clear shift, indicating challenges
in transferring domain-invariant features. In contrast, our ImGDA maintains well-separated class
boundaries even though the source domain suffers from severe imbalance, and its target domain
closely resembles that of the balanced source domain. This indicates that ImGDA effectively learns
domain-invariant class structures and remains robust in the presence of imbalanced training data.

5.7 Different Sampling Strategies
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Figure 7: Results of sampling strategies (ρ = 50).

To examine the impact of different anchor
node sampling strategies on prototype com-
putation, we compare three strategies: sam-
pling based on node degree (Deg.), sam-
pling based on inverse degree probability
(Inv.), and random sampling (Rand.). We
visualize the results for ρ = 50 in Figure
7, with additional results available in the
Appendix D.4. From the figure, it can be
observed that random sampling performs worse compared to the graph-structure-based sampling
strategies, while the degree-based strategy employed by our method achieves the best performance.
Additionally, our experiments reveal that inverse degree sampling significantly reduces training speed,
further demonstrating the effectiveness of our selected sampling strategy.

6 Conclusion

This paper tackles the challenge of class-imbalanced graphs by introducing a dual prototype-enhanced
contrastive framework for graph domain adaptation. We use a dual graph encoder to capture local and
global information and generate class-specific prototypes from a distilled anchor set. A prototype-
aware contrastive learning module is introduced, combining cross-branch and cross-domain contrast.
It mitigates source-domain imbalance via class alignment and reduces domain discrepancy by
generating pseudo-labels to align semantically similar cross-domain pairs. Extensive experiments
demonstrate the effectiveness of ImGDA compared to state-of-the-art methods.
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A Proof of Theorem 4.2

The supervised contrastive loss for a class c in a batch B can be re-written as the following form [60]:

LSCL(Z;Y ,B, c) =
∑
i∈Bc

− 1

|Bc| − 1

∑
p∈Bc\{i}

log
exp(zi · zp)∑

j∈YB

1
|Bj |

∑
k∈Bj

exp(zi · zk)

=
∑
i∈Bc

log


∑

j∈CB

1
|Bj |

∑
k∈Bj

exp(zi · zk)∏
p∈Bc\{i}

exp(zi, zp)1/|Bc|−1



=
∑
i∈Bc

log


∑

j∈CB

1
|Bj |

∑
k∈Bj

exp(zi · zk)

exp( 1
|Bc|−1

∑
p∈Bc\{i}

zi · zp)

 .

(15)

We divide the sum in the numerator into the positive and negative terms and since the exponential
function is convex, we apply Jensen’s inequality to get the lower bound of two terms as follows:∑
j∈CB

1

|Bj |
∑
k∈Bj

exp(zi · zk) =
1

|Bc| − 1

∑
k∈Bc\{i}

exp(zi · zk)︸ ︷︷ ︸
positive term

+
∑
j∈CB
j ̸=c

1

|Bj |
∑
k∈Bj

exp(zi · zk)

︸ ︷︷ ︸
negative terms

,

1

|Bc| − 1

∑
k∈Bc\{i}

exp(zi · zk)≥ exp
( 1

|Bc| − 1

∑
k∈Bc\{i}

zi · zk
)
,

∑
j∈CB
j ̸=c

1

|Bj |
∑
k∈Bj

exp(zi · zk)≥
∑
j∈CB
j ̸=c

exp
( 1

|Bj |
∑
k∈Bj

zi · zk
)
≥(|CB| − 1) exp

( 1

|CB| − 1

∑
j∈CB
j ̸=c

1

|Bj |
∑
k∈Bj

zi · zk
)
.

(16)
And the lower bound of the numerator can be written as:∑
j∈CB

1
|Bj |

∑
k∈Bj

exp(zi · zk) ≥ exp
(

1
|Bc|−1

∑
k∈Bc\{i}

zi · zk
)
+ (|CB| − 1) exp

(
1
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∑
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j ̸=c

1
|Bj |

∑
k∈Bj

zi · zk
)
.

(17)
Thus, the lower bound of supervised contrastive loss can be written as:

LSCL(Z;Y ,B, c) ≥
∑

i∈Bc
log

(
1 + (|CB| − 1) exp

( 1

|CB| − 1

∑
q∈CB\{c}

1

|Bq|
∑
k∈Bq

zi · zk︸ ︷︷ ︸
repulsion term

− 1

|Bc| − 1

∑
j∈Bc\{i}

zi · zj︸ ︷︷ ︸
attraction term

))
.

(18)
Thus, the proof of Theorem 4.2 is complete.

B Proof of Expectation-Maximization Perspective

In unsupervised graph domain adaptation, we aim to learn the graph encoder with parameter θ to
maximize the log-likelihood of nodes in target graph Gt with source graphs Gs, written as:

θ∗ = argmax
θ

∑
vj∈Vt

log

Vs∑
vi=1

p(vtj , v
s
i ; θ). (19)

We introduce a surrogate function Q(vsi ) (
∑Vs

i=1 Q(vsi ) = 1) to estimate the lower-bound via Jensen’s
inequality [21, 52]:

∑
vt
j∈Vt

log

Vs∑
i=1

p(vtj , v
s
i ; θ) =

∑
vt
j∈Vt

log

Vs∑
i=1

Q(vsi )
p(vtj , v

s
i ; θ)

Q(vsi )
≥

∑
vt
j∈Vt

Vs∑
i=1

Q(vsi ) log
p(vtj , v

s
i ; θ)

Q(vsi )
.

(20)
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Note that the equality holds when Q(vsi )/p(v
s
i , v

t
j ; θ) is constant. Thus, we have Q(vsi ) = p(vsi ; v

t
j , θ).

Since −
∑

vt
j∈Gt

∑Gs

i=1 Q(vsi ) logQ(vsi ) does not influence the optimization process, we objective
can be re-written as:

Lcd ≥
∑

vt
j∈Vt

Vs∑
i=1

p(vsi ; v
t
j , θ) log p(v

t
j , v

s
i ; θ). (21)

Here we optimize the objective via an EM algorithm. In the E-step, we infer the posterior probability
p(vsi ; v

t
j , θ) =

1
|Π(j)| I(v

t
j , v

s
i ) where indicator I(vtj , vsi ) = 1 if they has the same label and |Π(j)| =∑Vs

i=1 I(vtj , vsi ). In the M-step, we aim to optimize the lower-bound, which can be defined as:

θ = argmax
θ

∑
vt
j∈Vt

1

|Π(j)|

Vs∑
i=1

I(vtj , vsi ) log
( exp(zt

j · µŷt
j
)

exp(zt
j · µŷt

j
)+

∑
µ∈P−

j
exp(zt

j · µ)

)
. (22)

which is equivalent to our cross-domain contrastive learning objective in Eq. 11.

C Complexity Analysis

For the time complexity, let Ns and |Es| represent the number of nodes and edges in the source
domain graph, and |N t| and |Et| represent the number of nodes and edges in the target domain graph.
Assuming an L-layer GCN encoder with a feature dimension of d, the computational complexity of
feature encoding is O(L|E|sd + LNsd2) for the source domain, and O(L|E|td + LN td2) for the
target domain. When |E|s ≫ n, this simplifies to O(|E|sd) and O(|E|td), respectively. For anchor
node sampling, we sort nodes based on their degree and select m nodes per class. Since m ≪ Ns,
the complexity is O(Ns logNs). For prototype computation, the Mean prototype computation per
class takes O(md), the Cross-branch prototype contrastive loss takes O(md), the Cross-domain
prototype contrastive loss takes O(N td) and the Supervised loss computation in the source domain
takes O(Nsd). Thus, the total time complexity is O(|Es|d+ |Et|d+Ns logNs+md+N td+Nsd),
which can be approximated as: O(max(|Es|+ |Et|, Ns logNs, N td)).

As for the space complexity: storing node features incurs a complexity of O(Nd); storing the sparse
adjacency matrix requires O(|E|); the PPMI matrix has a space complexity of O(N2); the model
parameters require O(D2); and storing the prototypes and pseudo-labels requires O(Cd) and O(NC)
respectively, and C denotes the number of classes. In summary, the main space cost of our method
arises from the PPMI matrix, which is O(N2).

D Supplement of Experiments

D.1 Performance Experiment

To provide a more comprehensive evaluation of our ImGDA on class-imbalanced domain adaptation
tasks, we consider additional scenarios beyond the main experiments presented in the body of the
paper. Specifically, we explore more extreme settings with ρ values in {5, 100}. All results are
presented in Table 1 in the Appendix. At ρ = 5, the source graph is relatively less imbalanced,
and the performance of all methods is similar, with generally good results. As ρ increases, the
advantages of our ImGDA become more pronounced. Even when ρ = 100, where the data is highly
imbalanced, our ImGDA still maintains stable performance and significantly outperforms other
competitive baselines. This highlights the robustness and effectiveness of our proposed ImGDA in
addressing class-imbalanced domain adaptation tasks.

D.2 Ablation Study

To better validate which parts of our method ImGDA are effective and how much they contribute to the
improvement in model performance, we conduct ablation experiments based on the full experiments.
Specifically, we evaluate the effects of the three loss terms (Llc,Lcb,Lcd), the two branches (local
and global), and the dynamic temperature (γ). Figure 1 and Table 2 in the Appendix show the macro
score performance from the ablation study, which follows a trend similar to that of the micro scores.
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Table 1: The complete experiment results of approaches on class-imbalanced domain adaptation with
ρ range from 5 to 100. The best are highlighted in bold and the second-best are underlined.

Methods IF(ρ) A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCN

5 69.51±0.81 66.61±0.64 64.53±0.92 60.20±0.93 64.07±0.36 64.65±0.50 68.52±0.31 65.56±0.52 60.04±0.17 60.10±0.33 66.88±0.20 65.18±0.33

10 66.01±1.15 60.90±2.14 61.21±0.57 53.20±0.71 58.25±1.22 56.52±2.87 63.39±0.32 58.38±1.27 55.47±0.39 52.80±0.86 61.68±0.38 58.35±0.68

20 62.28±1.17 55.48±1.79 60.75±0.69 51.60±1.48 51.17±0.58 43.78±1.54 59.00±0.88 48.22±1.57 50.93±2.70 45.12±4.44 54.02±0.27 46.18±0.55

50 53.07±3.39 42.41±3.32 56.26±2.21 43.35±3.53 44.38±1.12 32.20±2.51 53.06±0.55 37.09±1.18 41.86±1.31 31.11±1.50 42.28±3.28 32.05±3.30

100 45.54±2.24 34.20±1.17 51.34±2.44 36.95±2.66 41.54±0.72 26.75±1.41 49.76±0.93 31.25±1.61 36.37±0.17 22.72±0.76 38.40±3.73 25.99±4.22

GAT

5 69.96±0.95 66.17±1.03 65.53±0.30 61.43±0.46 63.34±0.92 63.74±1.02 67.20±0.91 64.02±1.53 60.67±0.28 60.74±0.46 68.13±0.85 65.58±1.17

10 66.48±0.72 58.37±2.74 61.58±0.75 51.44±1.02 55.10±2.47 51.54±4.12 60.87±1.00 52.99±1.34 56.18±0.31 53.11±0.80 61.64±0.23 58.22±0.53

20 61.63±3.34 50.54±3.72 61.04±1.87 50.10±1.46 47.18±1.04 37.30±1.61 55.95±1.26 43.32±2.17 49.18±1.59 42.20±2.78 53.05±3.25 45.29±2.63

50 53.21±7.62 42.07±7.64 53.67±4.00 40.36±5.33 41.02±0.99 26.41±1.18 49.76±0.63 32.29±1.15 40.14±1.46 28.89±1.85 45.38±7.90 34.77±8.31

100 38.52±4.23 25.13±4.65 45.19±5.76 29.49±7.86 38.35±1.13 22.45±1.76 46.25±0.47 26.89±0.49 35.31±0.56 20.88±0.82 31.91±1.78 18.58±1.90

GIN

5 63.36±0.37 58.32±0.89 61.11±0.35 54.84±0.67 58.76±0.47 57.47±0.76 64.52±0.39 60.99±0.45 56.69±0.36 55.89±0.53 64.51±0.42 62.02±0.52

10 62.12±0.69 55.03±0.84 60.91±0.79 54.39±1.48 54.35±1.75 49.21±1.31 60.14±1.00 54.51±2.16 52.59±0.67 49.43±2.42 59.89±1.42 54.68±2.28

20 60.03±1.03 50.98±0.94 59.12±1.05 48.27±0.92 50.38±2.75 42.80±3.88 55.87±2.47 46.42±4.71 47.79±1.49 41.02±2.77 53.47±2.49 44.83±2.61

50 54.39±1.62 44.28±1.69 54.43±1.60 41.90±2.09 41.26±0.37 29.45±0.51 47.05±0.60 31.57±1.13 43.38±1.26 34.41±2.05 48.59±2.15 39.22±2.29

100 48.82±2.59 37.42±2.28 50.15±1.22 35.91±2.19 36.97±0.24 22.75±0.45 43.65±0.43 25.90±1.58 37.83±2.14 24.27±4.59 40.01±4.39 26.99±5.83

A2GNN

5 74.43±0.46 70.85±0.77 65.08±0.59 59.76±1.52 64.54±1.12 64.36±1.42 69.25±0.71 65.81±1.07 68.82±0.35 70.45±0.44 78.28±0.21 76.70±0.36

10 61.23±0.93 54.72±2.23 59.00±0.64 46.61±1.16 51.29±0.51 41.70±0.77 61.07±0.32 50.09±0.68 59.54±0.83 55.41±1.74 60.32±1.82 60.11±2.30

20 35.95±0.99 25.28±1.45 49.06±1.28 35.11±1.11 46.09±0.19 33.40±0.39 56.91±0.24 42.06±0.38 41.31±0.79 31.44±1.20 41.00±0.70 31.44±1.04

50 32.48±1.62 17.61±1.75 35.22±0.12 15.10±0.24 40.26±0.08 24.09±0.07 50.33±0.19 31.03±0.17 31.27±0.22 14.29±0.48 27.79±0.35 13.19±0.72

100 28.37±0.61 12.57±0.84 34.13±0.08 12.35±0.17 38.58±0.18 22.08±0.16 46.16±0.62 25.98±0.49 29.79±0.08 10.45±0.34 28.31±0.19 13.76±0.34

GDA-SpecReg

5 64.51±4.22 53.23±5.35 59.49±5.16 48.61±6.38 57.66±5.69 55.46±7.39 64.04±3.87 55.30±4.54 53.42±4.48 45.43±6.85 61.75±2.95 52.49±4.53

10 51.27±1.86 39.29±2.43 53.69±3.02 40.87±5.56 49.69±4.93 39.08±7.51 57.41±3.15 45.54±4.35 52.73±3.20 47.07±7.86 56.37±1.40 45.04±3.46

20 49.68±1.42 36.44±1.70 51.34±3.70 35.82±3.00 48.11±4.07 38.20±6.83 51.64±1.96 35.15±3.49 43.84±3.79 31.89±3.72 44.53±6.48 31.21±6.80

50 49.80±6.48 36.09±7.63 47.44±4.58 29.36±6.49 47.64±4.97 33.87±7.90 52.63±2.53 38.46±6.93 41.95±3.49 28.28±7.97 45.63±5.22 30.81±8.85

100 45.35±5.42 30.65±5.54 46.44±3.33 27.08±5.21 44.66±2.65 31.91±6.15 50.88±2.84 34.10±7.70 38.93±2.76 23.07±4.25 42.88±3.62 27.97±3.76

GraphSHA

5 77.01±0.37 75.26±0.40 67.36±1.33 62.90±0.49 69.15±0.46 69.91±0.46 68.03±0.26 65.54±0.34 65.69±0.19 66.61±0.35 74.10±0.20 72.89±0.35

10 73.20±0.73 70.43±1.14 61.79±0.09 56.09±1.47 66.07±1.26 66.24±1.34 63.05±0.93 56.69±4.64 63.28±0.55 64.06±0.54 71.11±0.64 69.03±0.64

20 71.00±1.58 64.33±2.56 57.95±2.55 47.37±3.16 62.87±1.74 60.41±2.91 62.72±3.73 53.91±4.00 57.56±1.71 53.22±4.22 66.93±1.40 62.03±1.82

50 64.97±2.30 53.99±2.49 65.96±1.44 54.07±1.91 56.55±2.73 49.19±1.58 56.10±5.25 44.72±6.29 50.08±0.95 41.72±3.42 57.89±1.59 50.52±2.26

100 56.13±4.86 44.73±4.47 60.87±3.26 47.25±3.79 51.82±3.13 42.68±2.95 56.63±5.80 45.16±8.37 43.47±2.99 32.60±4.18 47.84±4.22 37.33±4.40

GraphENS

5 71.26±0.61 68.65±0.59 67.26±0.79 63.25±0.86 65.35±0.55 65.92±0.53 69.23±0.42 66.72±0.74 61.91±0.32 62.92±0.25 68.04±0.51 64.91±2.10

10 70.49±0.63 64.53±1.33 66.43±1.40 58.40±3.69 63.25±1.11 62.41±2.29 67.47±0.37 63.87±1.23 58.95±0.64 58.34±1.07 65.50±0.53 63.52±0.65

20 68.12±1.26 57.59±1.13 64.41±0.70 53.09±1.11 59.61±1.30 51.96±1.31 65.58±1.02 57.31±3.39 54.72±0.46 49.54±1.89 61.11±0.49 52.47±1.99

50 62.74±0.81 51.76±0.79 61.01±1.66 47.74±4.14 54.09±1.51 45.51±1.74 60.40±0.90 47.81±2.29 50.67±0.43 42.18±0.44 56.26±0.85 47.81±2.43

100 56.88±2.99 44.33±4.53 57.12±1.91 41.54±3.48 52.12±3.56 43.76±3.10 57.25±1.97 43.10±4.01 44.39±1.02 32.31±1.04 48.91±1.90 35.50±1.41

TAM

5 74.91±0.25 72.17±0.59 68.20±0.50 64.37±0.46 67.21±0.31 67.78±0.32 71.83±0.29 68.92±0.35 63.39±0.12 63.19±0.25 71.45±0.16 69.83±0.23

10 72.36±0.50 67.27±0.56 67.12±0.69 61.52±1.05 64.49±0.41 63.40±1.34 70.10±0.85 66.20±1.02 59.17±0.68 55.36±1.29 66.65±0.39 63.16±0.77

20 68.90±1.49 60.01±1.23 66.11±0.99 56.88±1.83 61.36±0.70 57.64±2.19 68.11±0.69 62.57±1.98 53.81±1.05 46.92±1.65 61.23±1.22 53.28±1.42

50 64.93±3.74 55.77±4.74 61.63±0.99 50.23±1.48 58.95±1.64 50.99±2.06 64.66±1.19 54.71±2.03 53.39±1.61 44.93±2.14 57.88±1.67 47.52±2.02

100 59.08±3.61 48.70±3.60 59.81±1.83 47.58±2.18 55.54±1.43 46.82±1.57 63.03±0.95 51.54±1.58 46.92±3.00 36.33±3.89 52.51±3.57 40.28±4.04

ImGDA (Ours)

5 78.35±1.48 75.02±2.21 72.08±1.86 67.73±2.88 67.49±2.19 67.66±2.35 72.14±1.74 68.66±2.83 67.65±0.97 68.43±1.30 76.06±0.47 74.50±0.43

10 77.93±1.03 73.98±2.74 71.34±2.61 66.82±1.82 67.79±0.62 68.22±1.41 73.06±2.16 69.62±2.98 66.64±1.33 66.86±1.78 74.72±0.55 72.86±1.14

20 77.30±1.05 73.92±0.83 71.23±1.59 65.66±1.25 67.28±0.84 66.39±1.33 68.48±1.54 63.42±2.03 63.92±0.46 63.45±0.74 71.99±1.15 68.38±2.50

50 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11

100 69.30±3.20 58.80±1.87 68.61±2.13 56.79±1.75 60.22±1.24 51.79±1.97 64.74±1.78 52.82±2.60 52.98±3.42 45.64±2.63 58.79±2.23 48.52±0.86

Generally, removing any part of the method leads to a certain degree of performance degradation.
However, removing Lcb leads to significant drops, which clearly demonstrates the importance of
utilizing source domain information and mitigating source domain data imbalance.
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Figure 1: The results of ablation study (ρ = 50, Macro score (%) with standard deviation).

Table 2: The complete results of ablation study (ρ = 50).
Methods A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

w/o Llc 66.28±2.27 62.17±2.38 64.16±2.59 58.33±2.38 62.58±2.38 58.00±2.92 66.35±2.04 60.89±2.71 42.79±2.44 38.88±2.10 46.27±2.73 38.23±2.22

w/o Lcb 52.63±2.40 41.84±2.35 50.33±2.83 40.36±3.12 56.12±2.70 49.23±2.14 58.09±2.78 54.56±2.37 30.04±0.96 10.06±1.86 33.43±1.90 26.54±1.01

w/o Lcd 70.81±1.71 65.87±1.40 65.44±1.22 59.27±1.94 63.90±0.87 64.50±3.83 67.81±0.74 63.54±3.06 49.75±1.94 44.17±2.53 52.22±2.06 44.75±2.53

w/o global 71.93±0.36 65.34±1.27 67.96±1.40 60.84±1.23 65.30±0.64 61.69±2.93 64.84±0.43 56.30±1.50 50.26±1.87 45.27±2.42 51.56±1.60 43.00±1.87

w/o local 72.69±1.17 65.63±1.67 67.40±1.33 59.80±2.04 65.15±1.95 62.30±4.84 68.14±0.96 63.60±2.60 46.69±1.43 39.82±1.98 48.84±1.52 39.34±1.19

w/o γ 72.07±3.68 65.14±3.26 67.59±1.39 60.13±1.78 65.15±1.89 63.34±3.04 68.33±1.01 63.85±2.63 46.09±2.16 39.16±4.44 47.36±2.81 37.37±4.41

ImGDA 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11
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Figure 2: Visualization of the sensitivity analysis of (a) γ and (b) k. (Macro score (%))

D.3 Sensitivity Study

In this section, we further present the sensitivity analysis results of two key hyperparameters con-
cerning the Macro score, along with the complete numerical results for both metrics, to provide a
clearer understanding of their impact on model performance. The experiments are conducted under
the setting of ρ = 50.

Table 3: The impact of different values of k on performance.
k

A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

50 72.11±1.44 61.40±1.56 66.38±2.86 54.64±2.61 64.42±1.30 58.83±2.80 70.45±1.55 60.99±3.10 46.00±3.17 38.97±2.33 54.34±3.25 44.39±2.50

100 74.18±1.72 65.36±1.59 68.89±1.33 57.77±0.68 66.10±1.96 63.84±2.38 70.79±0.72 63.23±2.96 48.55±2.76 42.40±2.07 50.53±2.55 41.50±3.08

200 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11

300 72.44±1.58 65.63±3.14 65.35±3.02 54.08±2.52 66.72±1.23 62.44±2.24 70.50±1.00 64.62±3.86 50.89±1.62 45.24±2.84 52.84±1.70 45.00±2.67

400 72.33±1.43 65.45±0.97 69.32±0.93 57.78±2.30 65.93±2.20 62.83±2.09 70.31±0.77 63.70±3.86 53.18±1.82 48.45±2.99 57.24±3.66 52.56±2.11

500 72.96±2.02 65.35±0.78 68.64±1.67 57.85±1.34 66.12±1.65 62.68±2.37 69.92±0.95 64.39±3.44 55.80±2.44 52.32±3.77 60.59±3.02 56.12±2.74

Effect of k. To explore the impact of different values of k (the number of anchor nodes) for our
ImGDA, we conduct a sensitivity analysis of k. The results are shown in Table 3, and Figure 2a
provides a visual analysis of the macro scores. It can be observed that both excessively small and
large values of k affect the model’s performance. As discussed in Section 5.4 in the body of the paper,
a too-small value of k results in insufficient utilization of node information from the source domain,
limiting the exploration of graph structural semantics. On the other hand, an excessively large k may
introduce data imbalance, leading to negative feedback that ultimately affects model performance.

Effect of γ. As discussed in Section 5.4 in the body of the paper, the hyperparameter γ can be viewed
as a weight parameter associated with the gradient of the tail class. To evaluate the impact of different
values of γ on model performance, we conduct a sensitivity analysis of γ. The results are shown
in Table 4 in the Appendix, and Figure 2b provides a visual analysis of the macro scores. Both
excessively small and large values of γ lead to a decline in model performance, indicating that the
gradient of the tail class should maintain a moderate weight during model training (i.e., too small
a value affects the classification performance of other classes, while too large a value negatively
impacts the classification of the tail class itself).

D.4 Analysis of Different Sampling Strategies

Different sampling strategies affect the quality of the sampled anchor nodes. To investigate the
impact of different sampling strategies on model performance, we conduct a comparative analysis
of three different sampling strategies. Table 5 in the Appendix presents the experiment results with
ρ = {20, 50, 100}. It can be observed that graph-structure-based sampling strategies (Deg. and
Inv.) significantly outperform random sampling (Rand.), highlighting the importance of structural
information in learning meaningful node representations. Furthermore, compared to the inverse
degree-based strategy, our degree-based sampling approach achieves better performance, possibly
because a node’s local subgraph structure plays a crucial role in its representation within the entire
graph. While the inverse degree-based strategy balances sampling bias, it inevitably leads to greater
structural semantic loss by disregarding key graph information. Additionally, our experiments show
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Table 4: The impact of different values of γ on performance.
γ

A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

0.25 74.47±2.25 69.70±1.58 68.59±1.59 60.95±1.66 61.46±3.43 53.64±2.06 68.38±2.55 58.34±2.44 48.40±3.12 43.94±3.75 55.64±2.64 50.26±2.69

0.50 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11

0.75 72.06±3.40 63.59±3.07 67.97±3.31 58.79±2.52 64.00±1.58 59.17±3.26 67.60±1.68 61.21±3.69 48.05±2.90 41.01±4.15 50.12±2.21 39.42±3.41

1.00 63.76±2.19 61.46±2.23 64.76±3.17 55.37±2.38 62.48±2.07 56.74±3.06 67.18±1.57 58.46±2.25 46.55±2.33 38.92±2.91 49.28±3.50 40.73±3.52

that the inverse degree-based sampling strategy results in significantly longer training times. These
factors collectively justify our choice of the degree-based sampling strategy.

Table 5: The results of different sampling strategies.
Sampling Strategy A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C

ρ = 20 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

Deg. 77.30±1.05 73.92±0.83 71.23±1.59 65.66±1.25 67.28±0.84 66.39±1.33 68.48±1.54 63.42±2.03 63.92±0.46 63.45±0.74 71.99±1.15 68.38±2.50

Inv. 77.57±1.17 74.15±1.16 71.27±0.36 65.24±0.97 65.90±0.81 61.14±3.46 69.80±1.10 61.28±3.15 64.47±0.54 64.26±0.54 71.40±0.76 69.18±0.94

Rand. 76.86±0.39 72.71±0.67 71.44±0.57 65.11±0.67 66.15±1.22 61.51±3.77 69.67±2.25 62.13±2.40 63.68±1.51 63.17±1.84 71.70±1.11 68.93±0.80

sampling method A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
ρ = 50 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

Deg. 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11

Inv. 72.40±1.82 64.91±1.62 68.39±1.91 56.99±3.48 66.99±1.52 63.81±2.64 69.89±1.01 62.22±2.24 57.09±1.90 54.46±3.45 59.86±2.07 53.23±3.37

Rand. 73.15±1.12 65.87±0.17 68.04±1.18 57.38±1.86 66.39±1.16 61.04±2.93 70.31±0.83 63.83±3.25 56.65±1.54 53.41±2.10 60.68±2.66 55.12±3.77

sampling method A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C
ρ = 100 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

Deg. 69.30±3.20 58.80±1.87 68.61±2.13 56.79±1.75 60.22±1.24 51.79±1.97 64.74±1.78 52.82±2.60 52.98±3.42 45.64±2.63 58.79±2.23 48.52±0.86

Inv. 69.25±4.37 60.36±4.11 67.38±2.62 55.61±2.39 58.94±1.90 48.19±2.55 64.36±1.21 50.98±2.90 54.66±1.71 47.59±1.42 58.08±4.11 48.20±2.45

Rand. 69.25±4.68 57.04±3.45 67.54±3.00 56.54±2.11 59.32±1.96 48.61±2.63 64.82±1.53 51.93±2.93 54.88±1.97 47.61±1.47 57.30±2.14 46.23±2.36

D.5 Analysis of Different GNN Encoders

To explore the effect of different encoders in our method, we replace our encoder from GCN to
GraphSAGE [8], a widely used classic GNN encoder, and conduct experiments under ρ = 50. The
results are shown in Table 6. It can be observed that in our method, GCN outperforms GraphSAGE,
possibly because GraphSAGE samples only a subset of a target node’s neighbors, which limits the
exploration of local graph structures and leads to a performance drop. This highlights the importance
of selecting an appropriate backbone encoder.

Table 6: The results of different GNN encoders.
Encoder A⇒C A⇒D C⇒A C⇒D D⇒A D⇒C

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCN 73.53±1.40 67.42±1.23 69.14±1.63 61.27±1.50 66.87±1.71 65.45±2.64 70.57±1.19 66.32±1.86 60.67±0.98 58.96±1.75 66.07±0.96 62.77±1.11

GraphSAGE 62.28±1.77 56.77±2.12 60.13±1.21 50.03±2.14 53.06±1.44 50.80±0.91 59.68±1.36 50.61±1.40 48.22±1.85 44.50±2.03 52.59±1.44 46.38±1.98

Table 7: Detailed values of Standard Deviation, Mean/Median Ratio, Gini Coefficient with different
imbalance factors of different Datasets.

Methods IF(ρ) σ ϵ δ

ACMv9

5 628.79 1.17 0.31
10 714.46 1.36 0.41
20 762.39 1.66 0.49
50 798.08 2.25 0.57
100 814.47 2.92 0.62

Citationv1

5 525.18 1.17 0.31
10 596.31 1.36 0.41
20 636.40 1.66 0.39
50 666.23 2.25 0.57
100 679.81 2.92 0.62

DBLPv7

5 420.95 1.17 0.31
10 471.26 1.36 0.41
20 502.90 1.66 0.49
50 526.27 2.25 0.57
100 537.29 2.92 0.62
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E Additional Metrics of Imbalanced Distributions

In our experiments, we employ the imbalance factor (ρ) to quantify the degree of class imbalance in
the dataset, defined as:

ρ = max {N1, N2, · · · , NC}/min {N1, N2, · · · , NC}, (23)

where Ni denotes the number of nodes belonging to class i in the source graph. To provide a
more comprehensive assessment of imbalance across different datasets, we further introduce several
additional metrics to evaluate the distributional skewness of the data.

• Standard Deviation (σ): It is widely used in probability and statistics to measure statistical disper-
sion, and in some cases it can reflect sampling uncertainty, which is defined as:

σ =

√√√√ 1

C

C∑
i=1

(ni − n̄i)2, (24)

where C represents the number of classes, ni represents the instance number of class i, and n̄i

represents the average number of instances.
• Mean/Median Ratio (ϵ): The median is a fundamental statistical measure widely applied in fields

such as economics, sociology, and medicine. Unlike the mean, it is less sensitive to extreme
values and thus provides a more robust representation of the data distribution. Consequently, the
mean-to-median ratio serves as an indicator of data skewness, defined as:

ϵ =
mean(N1, N2, · · · , NC)

median(N1, N2, · · · , NC)
. (25)

• Gini Coefficient (δ): It was originally introduced by Italian economist Gini [5], measures distribu-
tional equality based on the Lorenz curve. Commonly used to quantify income or wealth inequality,
it can similarly be applied as a metric of imbalanced distribution, as class imbalance parallels
inequality across categories.

And we provide the corresponding Standard Deviation, Mean/Median Ratio, and Gini Coefficient
values for each dataset under different imbalance factors in Table 7.

F Broader Impact and Limitations

Our method addresses class imbalance in graph domain adaptation and has the potential to benefit
various applications such as scientific discovery, recommender systems, and bioinformatics by
improving the representation of underrepresented classes. However, it also has limitations: the
performance depends on the quality of the selected anchor set, the dual-branch design introduces
additional computational overhead, and the pseudo-labeling process may suffer from noise under
large domain shifts. Moreover, the framework requires the same label space across source and target
domains, which could not be applied to open-set scenarios.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope by proposing a dual-branch prototype-enhanced contrastive frame-
work that effectively addresses class imbalance and domain shifts in graph transfer learning,
supported by extensive experiments across multiple datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The appendix (Section F) states that the performance depends on the quality of
the selected anchor set, the dual-branch design introduces additional computational overhead,
and the pseudo-labeling process may suffer from noise under large domain shifts. Moreover,
the framework assumes shared label space between source and target domains, which may
limit its applicability in open-set scenarios.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided the theoretical proof in detail in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 5.1, “Experimental Settings”, we provide detailed explanations of
the datasets used and implementation details for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In the abstract, we provide a link to the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 5.1, “Experimental Settings”, we provide detailed explanations of
the datasets used and implementation details for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We precisely defined and reported the error bars.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5.1, “Experimental Settings”, we provide detailed explanations of
the datasets used and implementation details for our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper complies with the NeurIPS Code of Ethics
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses potential positive impacts such as improving fairness and
robustness in graph learning by addressing class imbalance and domain shifts, as well as
limitations that could lead to negative effects like noise from pseudo-labeling.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly cited the sources of the relevant data and other materials used in
the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The link provided in the abstract contains well-documented related materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLMs as a core component of its methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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