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Abstract

Graph transfer learning, especially in unsupervised domain adaptation, aims to
transfer knowledge from a label-abundant source graph to an unlabeled target graph.
However, most existing approaches overlook the common issue of label imbalance
in the source domain, typically assuming a balanced label distribution that rarely
holds in practice. Moreover, they face challenges arising from biased knowledge in
the source graph and substantial domain distribution shifts. To remedy the above
challenges, we propose a dual-branch prototype-enhanced contrastive framework
for graph domain adaptation under a class-imbalanced scenario. Specifically, we
introduce a dual-branch graph encoder to capture both local and global information,
generating class-specific prototypes from a distilled anchor set. Then, a prototype-
enhanced contrastive learning framework is introduced. On the one hand, we en-
courage class alignment between the two branches based on constructed prototypes
to alleviate the bias introduced by class imbalance. On the other hand, we infer
the pseudo-labels for the target domain and align sample pairs across domains that
share similar semantics to reduce domain discrepancies. Experimental results show
that our InGDA outperforms the state-of-the-art methods across multiple datasets
and settings. The code is available at: https://github.com/maxin88scu/ImGDA.

1 Introduction

Graph serves as a versatile data structure to represent complex relationships [[12}47] in a number of
fields such as social networks [2]], molecular biology [13|55] and recommender systems [20, i44].
One fundamental task for graph-structured data is node classification, which endeavors to predict
the category of each node within the graph and is widely applied in various applications, i.e.,
community detection [S1]], smart city [S8] and knowledge graph [49]. Nevertheless, the effectiveness
of this task heavily relies on label information, which is time-consuming and costly [9]. Graph
transfer learning [19, 61]] has emerged as an effective framework for tackling this problem by
leveraging labeled information from a source graph to facilitate learning on an unlabeled target graph,
significantly enhancing the model’s ability to generalize on the target graph.

Actually, there are several approaches that apply graph transfer learning for domain adaptation in
the node classification task. Thanks to the powerful capabilities of graph neural networks (GNNs),
unsupervised graph domain adaptation focuses on reducing the distribution discrepancy between
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target and source graphs within the latent representation space induced by GNNs [23] 53] [56].
Distance-based methods minimize a divergence measure between their distributions to learn invariant
representations, such as maximum mean discrepancy [34] and graph subtree discrepancy [45] to
align domains. Adversarial-based methods incorporate a discriminator to distinguish between the
two domains and produce invariant features to confound the discriminator [4}, [32]].

Despite the promising performance of graph transfer learning, it often relies on the unrealistic
assumption that the source domain graph exhibits a balanced label distribution. In practice, however,
real-world graphs usually exhibit long-tailed structures, where most classes contain only a few
labeled nodes (tail classes) and a small number of classes dominate with many labeled samples (head
classes) [11}[14], resulting in severe class imbalance. For example, in the NCI dataset, which consists
of graphs of chemical compounds [40], only around 5% of compounds exhibit anti-cancer activity,
with the overwhelming remainder are labeled as inactive. Therefore, this class-imbalanced issue
inevitably leads to the knowledge extraction bias [59] in the source graph which in turn adversely
affects the graph domain adaptation. This naturally spurs a question: How can label semantics in the
target graph be effectively inferred under domain shifts and severe source imbalance?

However, designing an effective framework
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to make accurate predictions on the target graph? Since the target graph is entirely unlabeled,
existing methods primarily focus on entire domain alignment, overlooking class-level distributions.
Therefore, as the result shown in Figure [T} existing graph domain adaptation methods struggle to
transfer the correct semantic knowledge, leading to poor performance, particularly for tail classes.
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Towards this end, in this paper, we propose a holistic method termed ImGDA, a dual-branch prototype-
enhanced contrastive framework for class-Imbalanced Graph Domain Adaption, which facilitates the
transfer of class-imbalanced label information from the source graph to the unlabeled target graph.
Specifically, we develop a dual graph encoder that jointly captures local and global information to
learn generalized node representations. Building on this, a prototype for each class is generated from
a distilled anchor set. Then, we introduce a prototype-aware contrastive learning framework that
integrates cross-branch and cross-domain contrastive learning to enhance adaptation performance. To
rebalance the feature space, the cross-branch prototype contrast encourages class alignment between
the two branches. To further reduce domain discrepancy, we infer pseudo-labels of nodes from the
target domain graph in a non-parametric manner and align sample pairs across domains that exhibit
the same semantic meaning. Additionally, we treat temperature as a rebalancing parameter to mitigate
class imbalance during training. Extensive experimental results validate the effectiveness of our
proposed ImGDA for class-imbalanced graph domain adaptation.

2 Related Work

Unsupervised Domain Adaptation (UDA). UDA focuses on learning domain-invariant represen-
tations between a labeled source domain and an unlabeled target domain to transfer cross-domain
information [24} 26| |43]]. Recently, graph UDA methods have included adversarial learning and
reducing domain discrepancies based on certain metrics (e.g., MMD [7]], subtree discrepancy [43])).
Among adversarial methods, RNA [25] adversarially extracts domain-invariant subgraphs to address
domain shift, while leveraging spectral seriation for robust alignment under label scarcity. In the
metric-based category, GDASpecReg [53] leverages spectral smoothness and maximum frequency
response regularizations to enhance GNN transferability across node and link transfer scenarios,



while A2GNN [23]] improves cross-domain transfer by adjusting GNN propagation layers using
Lipschitz bounds. However, our InGDA studies a novel yet practical scenario of imbalanced source
data, and introduces a dual prototype-aware contrastive framework to reduce source graph bias and
align the semantic space between source and target for cross-domain knowledge transfer.

Class-Imbalanced Learning on Graphs. It is well recognized that class imbalance on graphs can
degrade classification performance. To address this problem, there are typically three approaches: (a)
Modifying the loss function to prioritize underrepresented classes [3}, 129,36, [50]. (b) Post-hoc correc-
tion to modify logits for the tail class [10,/16]. (c) Re-sampling techniques that augment or generate
tail class data [27,131} 142} 157]. For instance, GraphSHA [22] expands tail class decision boundaries by
creating more challenging samples, while InGCL [54] addresses class imbalance by employing bal-
anced sampling and explicitly accounting for node centrality within a contrastive learning paradigm.
Extending these strategies to graph-level tasks, C3GNN [[14] addresses class-imbalanced graph clas-
sification by clustering majority classes and applying Mixup to learn hierarchical representations,
while KDEX [28]] transfers head-to-tail knowledge and trains diverse experts that are adaptively
combined via a self-supervised router. Additionally, Qin et al. [33]] further propose a comprehensive
benchmark IGL-Bench for imbalanced graph learning, which evaluate the effectiveness, robustness,
and efficiency of various algorithms within a unified framework. However, distribution shifts in
graphs further complicate class-imbalanced learning on graphs. To address this, our proposed InGDA
introduces cross-branch prototype contrast to reduce class imbalance bias and cross-domain prototype
contrast to align domain discrepancies, effectively generating domain-invariant representations.

3 Notations and Problem Definition

Source Domain Graph. Denote G° = {V*,£%, X* Y *} the source domain graph with the labeled
node V* and edge sets £°. The node feature matrix can be represented as X° € RIV*X? where
entry «, € R is associated with a feature vector of node v with dimension d. We use the adjacency
matrix A° € RIV' XVl to describe the structure information of the graph, where Afj = 1if an edge
exists between v; and vy, i.e., (vi, vj) € &%, otherwise, Afj = 0. The degree matrix is denoted as

D = diag(D;, ..., Dy) with a degree of each node D; = le\fll Aj;. We denote the node label

matrix of the source domain graph as Y* € RIYV'1XC where C' corresponds to the total classes.

Target Domain Graph. The target domain graph is denoted as G* = {V!, €', X'} with unlabeled
node set V! and edge set £. Similarly, the adjacency matrix A* € RIY'XV' indicates the node
connectivity information in the target domain graph. And the feature matrix can be represented as
X', The attribute sets of the source and target domain graph could exhibit significant differences.
Here, we construct a unified attribute set across both domains to align the dimensions.

Problem Definition. We consider G* as a fully labeled source graph and G* as an unlabeled target
graph. Each c-th class in G° contains NN, nodes, ordered such that No > Ny > --- > N¢. The
source domain graph is assumed to be class-imbalanced, with the degree of imbalance quantified by
the factor N1 /N¢. The objective of the task is to mitigate this class imbalance while transferring
knowledge from the source graph to the target domain graph to achieve accurate node label prediction.
Figure[2] provides a schematic overview of our proposed framework in the following.

4 Methodology
4.1 Dual-Branch Embedding Generalization

Generalized node embeddings are crucial for effective graph domain adaptation. Therefore, we
introduce a dual-branch graph encoder to fully capture both local and global structure information of
the graph [30} 162].

Local Consistency Encoder. To capture local consistency knowledge (i.e., neighboring samples are
prone to share the same semantics), we directly utilize the Graph Convolutional Network (GCN) [18]]
as the encoder. Given the adjacency matrix A* and feature matrix X* (x € {s,t}) of both source
and target domain graphs, the output of the [-th layer is defined as:
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Figure 2: A schematic overview of our proposed InGDA framework.

where A* = T |v+| + A" is the adjacency matrix containing self-loop, D~ is the corresponding degree
matrix accordingly. W*() serves as the learnable filter in [-th layer and the initial feature matrix is
A

*,loca

the extracted local consistency knowledge can be expressed as Z} .., = Z

, = X*. Here o(-) denotes the activation function. By stacking L graph convolutional layers,
(L)

*,local”

Global Consistency Encoder. Furthermore, we utilize a graph encoding strategy based on positive
pointwise mutual information (PPMI) [46] 62]]. We represent the state at current time ¢ as s(t) = v;,
with the probability transit from the node v; to any of its neighbors v; expressed as:

P =p(s(t +1) = v;[s(t) = vi) = Aj;/D;. )
We apply the random walk guided by P* to generate a collection of node paths on A*. From these

paths, we construct co-occurrence frequency matrix F* € RV XIV'| where F; j records how often
node v; appears within a predefined window around v;. The PPMI between nodes is calculated as:

. P* . S OPE S P P
RL*' = ivﬂ* = jivafk = R, 3 Mz* = max{log(%)aoh (3)
’ Z” P;; Zu P;; ! Z” P[; ! P x PJ*

where 15;; is the probability that v; appears in the v;’s context, 1-:’1-* and 15]-* are the estimated proba-
bility of node v; and context v; respectively. M; captures the high-order topological relationship
between nodes. Thus, nodes that frequently co-occur at high frequency will have larger M values
compared to independent nodes. By treating the PPMI matrix M * as a new adjacency matrix, we
can effectively extract global consistency knowledge as:
l x—s K yE— 5 - *

Zi,)global =o(D* 2M*D""* Zi,gl}J)balW M), “
where D} = >, M; and W*() is shared learnable parameters used with the local consistency
encoder. Similarly, the global structural consistency can be also extracted by stacking L graph

: * _ (L)
convolutional layers, namely, Z global = Z*, global*

Attention-Based Consistency Fusion. To fuse the extracted local and global consistency knowledge,
we leverage the attention mechanism [38]] and the attention coefficients can be obtained as:

Gij = softmax(¢(W* 2/ 1,ca1; W7 2] giobar)); )

i,local’

where W* is the shared parameter matrix, ¢(z;, z;) = LeakyRelu(Wy ' [2i||z;]) denotes the
attention function with parameter W{J". The fused consistency knowledge of both domains can be:

zZ" = CiiZl*ocal + (1 - Cii)Z;;lobal' (6)

4.2 Anchor-Based Prototype Construction

In contrast to directly using cross-entropy loss on class-imbalanced data, supervised contrastive
learning (SCL) tends to achieve better results [[15 [17,60]. However, when the dataset is highly
imbalanced, the feature space remains dominated by head class. To avoid overemphasis on head



classes, a straightforward approach is to generate a set of uniformly distributed prototypes for all
classes, ensuring that each contributes approximately equally during optimization. The subsequent
analysis provides theoretical guarantees that this strategy can effectively alleviate the class imbalance.

Theorem 4.1. Let Z = {z1,...,zn},||2:i|| = 1 be the extracted consistency knowledge of N node
points with label Y = {y1,...,yn}. The supervised contrastive loss for a class c in a batch B is
bounded by:
LSCL(Z;Y7BC ZIOg |B|_1)+|B‘exp B Zzz 2k — |B|*1 Z Zi'Zj)), (7)
i€Bc | | kEB, JEB:N{3}
repulsion term attraction term

where B, represents the subset within B containing all samples of class ¢ and B, denotes its
complement set.

The lower bound of SCL above is derived from [6]] and comprises two terms. The attraction term
encourages intra-class instances to converge toward their prototypes regardless of the class distribution,
while the repulsion term enforces uniform inter-class separation and is dominated by head classes.

Theorem 4.2. Let C, |Cg| < C denotes the set of classes that appears in B. The supervised
contrastive loss for a class c after class averaging is bounded by:

LscL(Z;Y,B,c) > log(1+ (|Csl — 1) ®)
i€B.
1 1
X exp(m Z Z ZizZk — Bl Z zi- %)),
qECB\{c} kGB ]EBC\{i}
repulsion term attraction term

Therefore, head classes no longer dominate the repulsion term. To fully train all classes in B, we
learn the prototype of each class for prototype-aware contrastive learning. The proofs of the theorem
are in Appendix [A]

In practice, we distill the original graph to sample the anchor set consisting of the most important
nodes. Then, we calculate the prototype based on the anchor set to facilitate effective learning.
Specifically, for each class ¢ in the source domain graph, the top & nodes ranked by the degree are
selected to get the sub-graph of anchor nodes G. We calculate the prototype as the mean vector of

each class, namely, pc.q = 1 Zle 2z, yi = ¢, q € {local, global}.

4.3 Prototype-Enhanced Contrastive Learning

Given the prototype sets of two branches for both source and target domain graphs, we formalize a
prototype-aware contrastive learning framework, which integrates cross-branch and cross-domain
prototype contrastive learning to mitigate class imbalance and effective domain adaptation.

Cross-Branch Prototype Contrast. Considering that the model extracts both the local and global
consistency knowledge from both complementary branches, we contrast the consistency knowledge
of the source domain graph between the two branches in a prototype manner to mitigate the imbalance
effect [[1]. Specifically, we calculate the prototype of both local and global consistency knowledge
from two branches as {ftc jocar }$_ 1 and {uc,global}cc:l. For each query node v € V*, we use the
prototype with the same class label as the positive sample and the cross-branch prototype contrastive
loss can be defined as:
Hys global
Vs 23 qlobal y$ exp(z+ ] N+/T)

X X 1°g(exp<z+~u+/v>+zuepiexp<z+-u/7>)’ ®

i=1 z4 =27 Jlocal P+=Hy? local

cb

where P;~ denote the prototype set excluding w,: 4, € {local, global} in two branches respectively,
and 7 is the temperature parameter for contrastive learning.

Cross-Domain Prototype Contrast. To alleviate the domain shift in the graph space, we seek to
align the consistent knowledge of nodes in the source domain graph with nodes in the target domain
graph that share the same semantics. To achieve this, we infer pseudo-labels of nodes from the target



domain graph in a non-parametric manner and employ cross-domain prototype contrastive learning
between cross-domain pairs [52]]. The pseudo-label for node 1); in the target domain graph can be:

t. s
B= > =P H) ))Y (10)

(v3,ys)EGS Z(vmf)eg;ﬁ eXp(z;‘ 27T

where Y;® corresponds to the one-hot label of v;. The pseudo-label can be derived as g)j =

arg max(ﬁ';-). Then, for each query node v‘g € V!, we pull semantically similar prototypes close

compared to those with different semantics:
V']

Y

1 eXP(Z§ “Hgt)
Lea=7—=) log ( s ) ;
% |j§::1 exp(z} Kyt )+Z,LE7:; exp(z}-p)

where P;” denotes the prototype set of fused consistency knowledge excluding Pyt in the source

domain graph. Note that the cross-domain contrastive learning process can be interpreted as an
Expectation Maximization (EM) scheme, where the aligned semantics between the source and target
domain nodes are inferred in the E-step, and the log-likelihood of the nodes in the target domain
graph is maximized in the M-step. The proof can be seen in Appendix [B]

Adaptive Temperature Formulation. The temperature parameter 7 in contrastive learning controls
the penalty on hard negative samples [41]. However, for tail classes, where node samples are fewer,
increasing 7 has a negligible impact but reduces their gradients, worsening class imbalance. We
propose an adaptive mechanism in which the temperature for each class is adjusted according to the
number of samples within that class:

Te =7+ (1 —7)-Nc/N¢, (12)

where T, is the temperature of class ¢, and y here denotes the minimum value of temperature.

4.4 Overall Optimization

To further reduce the impact of class imbalance in the source domain graph, we employ a logit
compensation strategy to correct the consistency knowledge [26, 29| 59]], summarized as follows:

exp(py(2]) +9c)
S0 exp(pe(2f) + 6er)

where ¢(+) is the classification function that outputs the logit for each label, A\, represents the
contribution weight for class y;, and §. denotes the compensation value for class c. Here, we have
A = 1 and §. = log N, following the previous work [29]. Finally, the objective can be:

L=Lep+ Lea+ L. (14)

Typically, the dynamic weight hyperparameters can be used to balance these losses during training,
but we find in practice that a simple addition already yields effective results.

Elc = —)\c lo (13)

S Experiment

5.1 Experimental Settings

Benchmark Datasets. This study conducts experiments on three publicly accessible network datasets
from the ArnetMiner [37]]: ACMv9 (A), Citationvl (C), and DBLPv7 (D). These datasets are derived
from different sources and cover distinct time periods: ACM (post-2010), Microsoft Academic Graph
(pre-2008), and DBLP (2004-2008), resulting in diverse domain characteristics. All datasets model
academic papers as nodes and construct undirected edges to represent citation relationships. To
realistically simulate real-world class imbalance scenarios, we employ the operation proposed by
[31] for preprocessing source domain data. This involves iteratively adjusting the number of nodes
within classes in the source domain to achieve specified imbalance factors (IF). The imbalance factor
is defined as p = Ny /N¢, where class populations follow Ny > Ny > --- > N¢, with N, denoting
the node count for class c in the source graph. The experiments on more metrics of imbalanced
distribution can be found in Appendix



Table 1: Results of methods across varying imbalance factors (p). Here A=-C represents using
A as the source graph and C as the target graph. Scores are reported as micro-average (%) and
macro-average (%). The top-performing method is shown in bold with the runner-up is underlined.

Methods IF () A=C A=D C=A C=D D=A D=C
i # Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
10 [ 6601c10s 60901014 61201s05r 5320071 58251120 56524087 63394042 58381127 55474030 52801086 61.68501s 58351068
GeN 20 |6 55484170 60751060 51.60s14s 517505 43781150 59.00s0ss 4822415 50.93s970 45.12:441 5402027 4618405
50 42411330 56264201 4335.5353 44381102 3220405 53.064055 37.09411s 41864131 3111150 42284308 32.051330

58374074 61584075 S144iigo 55.004047 51541410 60874100 52994131 56084031 53.01igsy 61644003 58224053
50541370 61.0441gr 50101146 47.184108 37.301161 5595:106 43.324017 49084159 42204075 53.05.305 452949

20
GAT 50 2 42071764 53.671400 40361533 41.021099 26411108 49761063 3229415 40141146 28.89i185 45381790 34.77is31
10 | 62124060 55031084 60914079 54394148 54354175 49214131 60144100 54514016 52594067 49434242 59.89+142  54.681n08
GIN 20 | 60.031103 50984004 59124105 48271002 50384975 42801383 55.874047 46424471 47.79:140 41.021077 53474949 44.83i061

50 | 54391162 44.281169 54431160 41901209 41261037 29454051 47.051060 3157103 43.3811026 344li0os  48.59i035 39224999

10 51.27+186  39.29:043 53.691302 40871556 49.69+403 39.081751 57.41isas 45541435 52734320 47.071786 56371140 45.041346
20 | 49.68:1.42 36441170 51344370 35824500 48.01isor 38204683 51641106 35051340 43.84u579 31.89i372 44534648 3121460
50 49.8016.48 36.094763 47441458 29364649 47.641497 33871790 52.63i253 38464693 41954349 28284797 45631520 30.81ligss

10 | 61231093 54721023 59.001064 46.611106 51.294051 41701077 61.071032 50.09+106s 359.5410s3 5541i174 6032475  60.111230
20 | 35951099 25.28:145 49.06112s  35.01i101 46.09:009 33401030 5691021 42061038 4131i079 31.44n150 41001070 3144404

GDA-SpecReg

AGNN 50 | 3248:i162 17.61i17s 35224042 15104024 40261008 24094007 50.331000 31.0340a7 31274022 1429:048  27.794035  13.1940.72
10 70491063 64534133 66431140 58404360 632541111 62414009 674741037 63.8741235 58951064 58344107 65.504053 63.521065

GraphENS 20 57.59+113 6441070 53.09:101  59.61:130 S51.961131 65581102 57.3lizze 54721046 49.544189 Ol.1ligsg 52471199
P 50 51761079 61.01t166 47742404 54091151 45514174 60401000 478li920  50.6710.43 42181044 56261085 478l

10 67271056 67124060 61.521105 64494041 63404134 70101085 66.2041.02 59.171068 55364120 66.651039 63.1640.77

TAM 20 60.012125 66114000 56884185 61361070 57.64s019 68.11s065 62574105 53811105 46924105 61234100 53284142
50 55770471 61.632099 50231145 58.95:1e1 5099i505 64664110 S54Tliogs 5339i1 g 44934014 57881160 47524900

10 7043.114 61794000 56.091147 66.07+126 66241134 63.051093 56.69i464 63284055 64064054 TL1lliges  69.03:0.64

GraphSHA 20 64331055 5795:255 4737i516 O28Tiiri 604lisgr 6272075 5391iien 51561171 5322412 669i140 620341
P 50 53.9940149 65964141 54074101 56554075 49.19:155 56104505 44724620 50084095 41724942 57.894150 50.5242 06

10 7793103 73981074 71341061 66821150 67.79:1062 68221141 73.064216 69.621903 66.641133 6686175 74721055 72.86+114

ImGDA (Ours) 20 | 77304105 73924053 71231159 65.661125 67.281051 66.39:1335 68484151 6342.003 63921046 63451071 T1.99:115 68.38455

50 | 73.53:140 67421123 69141163 61271150 66.87i171 65.45:261 70571100 66324156 60.6740.08 58961175 66071006 62771111

Compared Baselines. For our study on graph domain adaptation under class-imbalanced scenario, we
employ three GNNSs as baselines: GCN [18]], GAT [39], and GIN [48]. Meanwhile, we incorporate two
baselines that are specifically developed for domain adaptation: GDA-SpecReg [53] and A2GNN [23]].
In addition, we include three methods recognized for their effectiveness in handling imbalanced graph
learning: GraphENS [31]], TAM [33]], and GraphSHA [22]].

Implementation Details. We conduct extensive experiments by alternately setting one domain
as the source and the other two as targets. The source imbalance factor p € {10, 20, 50} covers
mild to severe imbalance levels. For our InGDA, we adopt GCN [18] as the backbone with a
512-dimensional feature space. The hyperparameters are set as: v = 0.5, K =200, and o = 3 = 1.
For a fair comparison, all baselines employ the same GNN encoder and are fine-tuned for optimal
performance. Each method is evaluated on the target domain graph w.r.t. micro-F1 and macro-F1
scores, and the final results is averaged over five runs.

5.2 Performance Comparison

Table |1| presents our results for p = {10, — L e
20, 50}, while additional results for p = | oo oo | o
{5, 100} are provided in Appendix o I L0

From the table, our INnGDA consistently ~ § « = oo

achieves the best performance. And the &% - T
comparison shows that our approach sig- I DI T e
nificantly outperforms all other methods in frince feor Fpocts
class-imbalanced domain adaptation tasks. (a) Different p on A2C (b) Training loss (p = 50)

Additionally, when using DBLP dataset
as the source domain with fewer samples,
baseline methods generally perform worse
than with other datasets. However, our InGDA mitigates this issue by effectively capturing intrin-
sic semantics via a prototype-enhanced contrastive framework. Furthermore, Figure [3a]shows the
performance trend across different p values in the A=-C experiment, where p ranges from 5 to 100.
When p is small (e.g., 5), performance gaps between methods are minor. As p increases, all methods
degrade due to rising imbalance. However, our InGDA shows the smallest decline, maintaining
stable results even under severe imbalance. Notably, as p increases, domain adaptation-specific
methods (GDA-SpecReg, A2GNN) drop sharply, while imbalance-handling methods (GraphENS,
TAM, GraphSHA) outperform others. This indicates that addressing source-domain imbalance has
a greater impact than mitigating domain shifts. Figure [3b|also shows the rapid convergence of our
method within a few epochs.

Figure 3: Impact of p and convergence analysis.



5.3 Ablation study

To evaluate the contribution of each compo-
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nent in our method, we conduct an ablation 1000] o ey o global Moy 1000] o 20y o global Moy
study. We remove three loss terms (w/o Ly, % ... o = 809
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Micre

global, i.e., two branches are local branches), 422 L I | I
the local branch (w/o local, i.e., two branches “O , ,
are global branches), and the dynamic tem- - . e
perature (w/o ), and assess the performance Figure 4: Results of ablation study on all data pairs
under p = 50. The results for the Micro score (p = 50, Micro score (%) with standard deviation).
are shown in Figure[d] while the results for the

Macro score can be found in Appendix We can clearly see that excluding any component causes
the performance degradation, especially the removal of L, (cross-branch prototype contrastive loss).
This emphasizes the importance of addressing data imbalance in the source domain and enforcing
consistency. Also, eliminating L.y (cross-domain prototype contrastive loss) leads to some decline,
but the impact is less severe, supporting the argument that mitigating data imbalance is more crucial
than domain adaptation. Additionally, removing the £;., global and local branches or switching
to a fixed temperature reduces performance, particularly when DBLP is the source domain. The
macro score drops after fixing the temperature emphasizes the importance of dynamic temperature in
contrastive learning, where adjusting it based on class distribution alleviates data imbalance. These
results validate the necessity and effectiveness of each component within our framework.

5.4 Sensitivity Study

Effect of k. We here study the impact of
the number of anchor nodes k, where &k
takes values from {50, 100, 200, 300, 400,
500}, as shown in Figure Both small
and large values of k degrade performance,
with the impact more pronounced for small
k. A small k samples too few nodes, ig-
noring useful information and hindering
learning. On the other hand, for a large k, @k )

while the number of head class nodes sam- )

pled remains unaffected, the number of tail Figure 5: Impact of k£ and y (p = 50). The distance
class nodes sampled decreases due to the between the points on each line and the center point
limited number of such nodes, leading to a represents the magnitude of the Micro score (%).

data imbalance phenomenon similar to that

in the source domain, which also drops performance. Hence, selecting an appropriate number of
anchor nodes k is critical for effective prototype learning.

Effect of . We explore the impact of dynamic temperature v in Eq. (I2), where  represents the
minimum temperature associated with the tail class. It can be observed that as v decreases, the tail
temperature lowers and the gradients increase, making v a weight parameter related to the gradients.
We experiment with v in {0.25, 0.50, 0.75, 1.00}, as shown in Figure Compared to the default
v = 0.5, both high and low temperatures degrade performance, with lower temperatures slightly
better. This highlights that smaller temperatures help alleviate data imbalance, but overly small values
disproportionately increase the gradient of tail class, harming the training of other classes.

=0.25
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=0.75
-1.00

AZD .50 300
. +100+400
+200- 500
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5.5 Capability to Mitigate the Imbalance Issue

We evaluate our InGDA’s capability to handle data imbalance by examining cross-entropy loss and
accuracy across tail and head classes under p= 20. To enhance comparability, we normalize these
metrics for each method and visualize the results in Figure[6] The results show that for head classes,
all three methods achieve similar accuracy and cross-entropy loss ratios, indicating comparable
effectiveness when abundant training data is available. However, for tail classes, the other two
methods degrade significantly, revealing difficulty in handling imbalance. It can be observed that
GraphENS performs better than GDA-SpecReg, likely due to its design advantages in dealing with
imbalanced data. In comparison, our InGDA consistently performs well in both the head and tail
classes, underscoring its ability to mitigate class imbalance while ensuring robust generalization.
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Figure 6: Comparison of head and tail class performance in terms of accuracy and cross-entropy
(CE) loss. The horizontal axis here indicates the relative contribution of each compared method,
normalized across all the three methods.
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Figure 8: #-SNE visualization of node embeddings from the baseline GDA-SpecReg and our proposed
ImGDA. In each panel we sequentially present the balanced source domain graph, the imbalanced
source domain graph, and the target domain graph, respectively.

5.6 Visualization

To further evaluate our InGDA from a qualitative perspective, we compare its t-SNE visualizations
with GDA-SpecReg. With p=20, node features learned by the encoder are projected into a 2D space
to visualize three cases: a balanced source domain graph, an imbalanced source domain graph, and
a target domain graph (Figure [8). As for the baseline, we can find that class boundaries appear
blurred in both source domains, and the target domain shows a clear shift, indicating challenges
in transferring domain-invariant features. In contrast, our InGDA maintains well-separated class
boundaries even though the source domain suffers from severe imbalance, and its target domain
closely resembles that of the balanced source domain. This indicates that InGDA effectively learns
domain-invariant class structures and remains robust in the presence of imbalanced training data.

5.7 Different Sampling Strategies

To examine the impact of different anchor
node sampling strategies on prototype com- 100,07+ Deg. Inv. Rand. | 1000~ Deg. fnv. Racd.
putation, we compare three strategies: sam-
pling based on node degree (Deg.), sam-
pling based on inverse degree probability
(Inv.), and random sampling (Rand')‘ We 007A5CASD C3A C2D D3A D3C 00A5¢"ASD €A C3D D2A DIC
visualize the results for p = 50 in Figure

[7} with additional results available in the ~ Figure 7: Results of sampling strategies (p = 50).
Appendix [D4] From the figure, it can be

observed that random sampling performs worse compared to the graph-structure-based sampling
strategies, while the degree-based strategy employed by our method achieves the best performance.
Additionally, our experiments reveal that inverse degree sampling significantly reduces training speed,
further demonstrating the effectiveness of our selected sampling strategy.
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6 Conclusion

This paper tackles the challenge of class-imbalanced graphs by introducing a dual prototype-enhanced
contrastive framework for graph domain adaptation. We use a dual graph encoder to capture local and
global information and generate class-specific prototypes from a distilled anchor set. A prototype-
aware contrastive learning module is introduced, combining cross-branch and cross-domain contrast.
It mitigates source-domain imbalance via class alignment and reduces domain discrepancy by
generating pseudo-labels to align semantically similar cross-domain pairs. Extensive experiments
demonstrate the effectiveness of InGDA compared to state-of-the-art methods.
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A Proof of Theorem 4.2
The supervised contrastive loss for a class ¢ in a batch B can be re-written as the following form [60]:
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We divide the sum in the numerator into the positive and negative terms and since the exponential
function is convex, we apply Jensen’s inequality to get the lower bound of two terms as follows:
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And the lower bound of the numerator can be written as:
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Thus, the lower bound of supervised contrastive loss can be written as:
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Thus, the proof of Theorem 4.2 is complete.

B Proof of Expectation-Maximization Perspective

In unsupervised graph domain adaptation, we aim to learn the graph encoder with parameter 6 to
maximize the log-likelihood of nodes in target graph G with source graphs G*, written as:

0* = arg max > logz b, vg0). (19)
v; EVE v;=1

We introduce a surrogate function Q(vy) (Zyzl Q(vf) = 1) to estimate the lower-bound via Jensen’s
inequality [21}152]:
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Note that the equality holds when Q(v7) /p(v;, v%; 0) is constant. Thus, we have Q(vf) = p(v;v%, 6).
Since — > icgr Zle Q(v§) log Q(vf) does not influence the optimization process, we objective
J

can be re-written as:
cd> Z Zp U7,7U]70 logp(vj,vt,ﬁ) (21)
CH teyt i=1
Here we optimize the objective via an EM algorithm. In the E-step, we infer the posterior probability

p(vi; vk, 0) = mﬂ( %, vf) where indicator I(v}, v7) = 1 if they has the same label and [TI(j)| =

Zle (vt v}, v7). In the M-step, we aim to optimize the lower-bound, which can be defined as:
eXp(Z§ 'Ng;%)
0= arg max I(v%, v; log( ! ) (22)
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which is equivalent to our cross-domain contrastive learning objective in Eq.[T1]

C Complexity Analysis

For the time complexity, let N® and |£*| represent the number of nodes and edges in the source
domain graph, and | N| and |E?| represent the number of nodes and edges in the target domain graph.
Assuming an L-layer GCN encoder with a feature dimension of d, the computational complexity of
feature encoding is O(L|E|*d + LN*d?) for the source domain, and O(L|€|*d + LN*d?) for the
target domain. When |£]® > n, this simplifies to O(|€]*d) and O(|€|*d), respectively. For anchor
node sampling, we sort nodes based on their degree and select m nodes per class. Since m < N°?,
the complexity is O(N?log N*¢). For prototype computation, the Mean prototype computation per
class takes O(md), the Cross-branch prototype contrastive loss takes O(md), the Cross-domain
prototype contrastive loss takes O(N'd) and the Supervised loss computation in the source domain
takes O(N*d). Thus, the total time complexity is O(|E%|d+ |Ef|d+ N* log N* +md+ N'd+ N*d),
which can be approximated as: O(max(|€%| + |EF], N*log N*, Ntd)).

As for the space complexity: storing node features incurs a complexity of O(Nd); storing the sparse
adjacency matrix requires O(|£|); the PPMI matrix has a space complexity of O(N?); the model
parameters require O(D?); and storing the prototypes and pseudo-labels requires O(C'd) and O(NC)
respectively, and C denotes the number of classes. In summary, the main space cost of our method
arises from the PPMI matrix, which is O(N?).

D Supplement of Experiments

D.1 Performance Experiment

To provide a more comprehensive evaluation of our InGDA on class-imbalanced domain adaptation
tasks, we consider additional scenarios beyond the main experiments presented in the body of the
paper. Specifically, we explore more extreme settings with p values in {5,100}. All results are
presented in Table [T]in the Appendix. At p = 5, the source graph is relatively less imbalanced,
and the performance of all methods is similar, with generally good results. As p increases, the
advantages of our InGDA become more pronounced. Even when p = 100, where the data is highly
imbalanced, our ImGDA still maintains stable performance and significantly outperforms other
competitive baselines. This highlights the robustness and effectiveness of our proposed ImGDA in
addressing class-imbalanced domain adaptation tasks.

D.2 Ablation Study

To better validate which parts of our method ImGDA are effective and how much they contribute to the
improvement in model performance, we conduct ablation experiments based on the full experiments.
Specifically, we evaluate the effects of the three loss terms (L., Ly, Lcq), the two branches (local
and global), and the dynamic temperature (7). Figure [[|and Table[2]in the Appendix show the macro
score performance from the ablation study, which follows a trend similar to that of the micro scores.
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Table 1: The complete experiment results of approaches on class-imbalanced domain adaptation with
p range from 5 to 100. The best are highlighted in bold and the second-best are underlined.

Methods IF(p) ‘ A=C A=D C=A C=D D=A D=C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
5 69514051 66.6lig6s 64.531092 602010935 64.071036 64.651050 68524031 65564052 60.0410.47  60.101033 66.884020 65.1840.33
GCN 10 | 66.0114115 60.90+214 61.211057 53201071 5825:122 56.52:087 63.391032 58381197 55471030 52.80:086 61.68103s
20 | 62284117 5548:179 60.75:060 S51.60+148 51171058 43.78:151 59.0010s8 48221157 5093i070 45.012:444  54.0210027
50 | 53071550 424lig3 5626491 43354353 44384112 3220:051 53061055 37094118 A186e1s 3loliiso 4228108
100 | 4554100, 34201117 5134i04s 3695005 41541072 26751141 49761005 31255161 3637047 22725076 38404573
569961005 66171103 65531030 61431046 63341092 63.741102 67201001 64021153 60.671028 60741046 68.13+0.85
GAT 10 | 66481072 58374074 61584075 51444102 55104047 51544412 60.871100 52994134 56184031 53.114080 61.641023
20 | 61.631334 50.54:372 61.041187 50.101146 47181104 37301161 559511026 43321017 49.181150 42.201278  53.0513.095
50 | 53214762 42.07:761  53.671a00 40364533 41.021090 2641118 49761063 32294115 40141146 28.894185 45.3847.90
100 | 38.5244023 25134465 45194576 29491786 38351113 22454076 46251047 26891049 353ligse  20.88i0s2  31.91ii7s
5 63.3610.37 58321080 61114035 54.841067 58761047 57471076 64524030 60991045 56.69:036 55891053 64.514042
GIN 10 | 62121069 55.03:084 6091ip79 54391148 54351175 49.21:131 60.141100 54511016 52.59:067 49431242 59.891142
20 | 60.0341.03 50984004 59.124105 48274092 50381075 42.804385 55874047 46424471 47794140 41.024077 53474249
50 | 5439114 44281160 S5443i160 41.90.500 41261057 2945105 47050060 31571115 43381106 344lin0s 48594015
100 | 48.821259 37421098 50.15:120 35914219 36971024 22.75:045 43.65:043 25901158 37831004 24271450 40.011439
5 74431046 70854077 65.084050 59764150 64541112 64364142 69251071 65811107 68.82:035 7045i044 78.28.0021
A2GNN 10 | 61.2340.03 54724003 59.001064 46.614116 51291051 41.704077 61.074032 50.09106s8 59.54:083 55414174 60.3241 80
20 | 35954090 25284145 49.0614128 35.0111101 46.094019 33401039 56911024 42.06103s 4131070 31444120 41.0040.70
50 | 32481162 17.6li175 35224012 15104024 40264008 24.09:007 50331010 31031017 31274022 14294048 27.7910.35
100 | 28371061 12572081 34131008 12350017 38.582015 22084016 46.160062 25985040 29.79:00s 10452041 28314010
5 64511402 53231535 59491516 48.61ig3s  57.60:569 5546:739 64.041387 55301451 5342:448 45431685 61751205
ObASpeckeg 10 | 51276150 92900k S369uam 408Tass 0iim 908irm Tdlians 45Shiiw 2Biaa 4707irs 63T
20 | 49681140 3644ii70 5134is70 35821500 48.11i407 3820icss 51641105 35151340 43841570 31.894570
50 | 49.8016.48 36.09:1763 47441458 29.3616.40 47.641497 33871790 52631253 38461693 41951349 28281797 45.63i520 Ry
100 | 45354542 30.65:551 46441333 27.081521 44601265 3191i615 50.884i084 34101770 38934076 23.074425 42.881362 27.97:376
5 77014037 75264040 67364133 629041049 69155046 6991046 68.031026 65541034 656910109 66.614035 74104020
GraphSHA 10 7043.114 61791000 56.0941.47 66.07+126 66.24+131 63.051003 56.6914614 63284055 64061050 TL1liges
20 256 97954255 47.3743.16 871174 604Llingr 62724373 5391400 57564171 53.224420
50 | 64971930 53.99i049 65.9617.44 54.071191 56.55i073 49.19i158 56.1015025 44721629 50.0810.95 41.724342 57.89.4559
100 | 56.1314865 44731447 60.871326 47251379 51.82:313 42681095 56.631580 45.161g37 43471090 32.601418 47.841402
5 71264061 68.651059 67261079 63254086 65354055 65921053 69234042 66724074 6191i032 62924025 68.044051
GraphENS 10 | 7049106 64531145 66431140 58404360 63250111 6241an20 67471057 6387125 58951061 58341107 655010
20 | 68.124106 57.59+113 64414070 53.094101  59.611130 51.961131 65581102 57.3lizze 54721046 49.544180 61.11i0.49
50 | 62741081 S51.76:0.79 61.01i166 47741404 54.09:151 455li17q 60404090 478lin09 50671043 42.1840.44 56.2610.85
100 | 56881009 44330453 57124191 41541548 5212e406 43764510 57254197 43105101 4439:100 3231101 48914190 355041 41
5 74911025 7217+050 68204050 64.371046 67211031 67.78:032 71.831020 68921035 6339:012 63.194025 71451016 69.8320.23
TAM 10 | 72364050 67274056 67124060 61.524105 64494041 63404134 70. 66.2041.02 59174068 55364120 66.651039 63.1640.77
20 | 68904140 60.01s12; 66014000 56884181 61365070 57.64s010 68.1 62570105 538le10s 46924165 612341 ‘
50 | 64931374 55.77+474 61.63:1000 50231148 58954164 50.99:006 64661109 54Tlip03 5339:161 44934504 57.881167
100 | 59.08.3.61 598li1s3 47584218 55.544143 46824157 63.034005 SL54i1ss 46.92:300 36.331380 525liss7
5 78351148 75.024001 72084186 67731088 6749:019 67.661035 72144174 68.6601083 67.65:097 68434130 76.0640.47
ImGDA (Ours) 10 | 77931103 7398:074 71341261 66821180 67791062 68.22:1.41 73.061216 69.621208 66.64:)33 66.8611 75 74721055
: 20 | 77301105 73.92:083 71234150 65.66.105 67284081 66.39:133 68.48.15; 63421503 6392:045 6345:074 T1.99:115
50 | 73531140 67421195 691411gs 6127:150 6687i171 65454061 70574119 66324155 60.67:09s 58965175 66.0750.90
100 | 69.301320 58.80:;87 68.61i213 56791175 60.22+154 51791197 64741178 52821060 52.98:34 45.641263 58.791203

Generally, removing any part of the method leads to a certain degree of performance degradation.
However, removing L., leads to significant drops, which clearly demonstrates the importance of
utilizing source domain information and mitigating source domain data imbalance.
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Figure 1: The results of ablation study (p = 50,

Table 2: The complete results of ablation study (p = 50).

Macro score (%) with standard deviation).

Methods . A=C . A=sD . C=A . C=D .~ D=A . D=C
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

wio Lic | 66.281557 62171235 64.164250 58334935 62584235 580042092 6635:201 60894271 42794244 38884210 46274273 3823400
Wio Loy | 52635240 41844235 503349535 40361312 56124070 49234014 58.09:278 54561237 30.041096 10061186 33431190 26.5411.01
wio Log | 7081171 65874140 65444192 59271191 63.9010.87 64.501383 67.8li074 63541306 49.754101 44174953 52224906 44754253
wloglobal | 71931036 65341197 67964140 60841123 65301061 61.694293 64.84:1043 56304150 50264187 45274042 51.561160 43.001187
w/olocal | 72.69+1.17 65.631167 67404133 59.80i204 65151195 62304481 68.141096 63.601260 46.694143 39821108 4884415 3934419
w/o 7y 72.07+368 65.144306 67.591139 60.131178 65.154189 63344304 68.33:101 63851263 46.094216 39.164444 47364281 37374441
ImGDA | 73.53+1.40 67424103 69144163 61.27+150 66871171 6545:061 70571119 66321186 60.674008 58961175 66.0710.96 62.7741.11
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Figure 2: Visualization of the sensitivity analysis of (a) v and (b) k. (Macro score (%))

D.3 Sensitivity Study

In this section, we further present the sensitivity analysis results of two key hyperparameters con-
cerning the Macro score, along with the complete numerical results for both metrics, to provide a
clearer understanding of their impact on model performance. The experiments are conducted under
the setting of p = 50.

Table 3: The impact of different values of k& on performance.

A=C A=D C=A C=D D=A D=C

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

50 | 720111144 61404156 66381055 54641061 6442515 58.83i050 70451155 60.99:510 46004517 38971033 5434130 44394550
100 | 74181172 65364150 68.89:153 57771065 66104105 63.84205s 70791072 63231005 48.554076 42401007 50531055 41.50430s
200 | 73531140 67424105 69141165 61271150 66874171 6545:061 70571119 66324185 60.67100s 58961175 66071005 62774111
300 | 72444158 65634314 65351302 54081252 66.724123 62441524 70501100 64.624386 50.89i162 45241084 52.841170 45.001267
400 | 72334143 65454097 693240093 57781230 65934290 62.834209 7031ig77 63.704385 53181182 48451099 57244366 52.5642.11
500 | 72961202 65351078 68.641167 57.85:131 60.121165 62.68:237 69.92:0095 64.391344 55801244 52.32:377  60.591302  56.121274

Effect of k. To explore the impact of different values of k£ (the number of anchor nodes) for our
ImGDA, we conduct a sensitivity analysis of k. The results are shown in Table [3| and Figure
provides a visual analysis of the macro scores. It can be observed that both excessively small and
large values of k affect the model’s performance. As discussed in Section[5.4]in the body of the paper,
a too-small value of k results in insufficient utilization of node information from the source domain,
limiting the exploration of graph structural semantics. On the other hand, an excessively large k£ may
introduce data imbalance, leading to negative feedback that ultimately affects model performance.

Effect of v. As discussed in Section[5.4in the body of the paper, the hyperparameter ~ can be viewed
as a weight parameter associated with the gradient of the tail class. To evaluate the impact of different
values of v on model performance, we conduct a sensitivity analysis of 7. The results are shown
in Table [ in the Appendix, and Figure 2] provides a visual analysis of the macro scores. Both
excessively small and large values of -y lead to a decline in model performance, indicating that the
gradient of the tail class should maintain a moderate weight during model training (i.e., too small
a value affects the classification performance of other classes, while too large a value negatively
impacts the classification of the tail class itself).

D.4 Analysis of Different Sampling Strategies

Different sampling strategies affect the quality of the sampled anchor nodes. To investigate the
impact of different sampling strategies on model performance, we conduct a comparative analysis
of three different sampling strategies. Table[3]in the Appendix presents the experiment results with
p = {20,50,100}. It can be observed that graph-structure-based sampling strategies (Deg. and
Inv.) significantly outperform random sampling (Rand.), highlighting the importance of structural
information in learning meaningful node representations. Furthermore, compared to the inverse
degree-based strategy, our degree-based sampling approach achieves better performance, possibly
because a node’s local subgraph structure plays a crucial role in its representation within the entire
graph. While the inverse degree-based strategy balances sampling bias, it inevitably leads to greater
structural semantic loss by disregarding key graph information. Additionally, our experiments show
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Table 4: The impact of different values of v on performance.

A=C

Micro

Macro

A=D

Micro

Macro

C=A

Micro

Macro

C=
Micro

D
Macro

D=A

Micro

Macro

D=C

Micro

Macro

0.25
0.50
0.75
1.00

T4.47 1205
73.5311.40
72.06-3.40
63.7642.19

69.7041 58
67424123
63.59.13.07
61.46.12 23

68.59+1.59
69.14.41 63
67971331
64.76.13.17

60.9511.66
61.27 4150
58791252
55.37 4938

61.4613.43
66.87

53.64+2.06
65451264
59.1743.26
56.74.+3.06

68.3815 55
70.57+£1.19
67.60+1.68
67.1811.57

58341544
66.3241.56
61.2115.60
58.46.19.25

48.40+3.12
60.67 10,98
48.0512.90
46.55.49.33

43942575
58961175
41.01 4415
38921901

55.64+2.64
66.0710.96
5012422
49.28.3.50

50.2642.69
62771111
39.4243.41
40.73 1.3 52

that the inverse degree-based sampling strategy results in significantly longer training times. These
factors collectively justify our choice of the degree-based sampling strategy.

Table 5: The results of different sampling strategies.

Sampling Strategy A=C A=D C=A C=D D=A D=C
p=20 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
Deg. 77304105 73.921083 71234159 65.664125 67281081 60394133 68481151 63424003 63921046 63451074 71.99i115 68381250
Tnv. 77575117 74050115 71272056 65241007 6590r0s1 6114454 69801110 61281515 64474051 6426055 71402076 69.1840.04
Rand. 76.861039 72.71s067 71441057 65114067 606154100 61514377 609.671095 62131040 63.68115 63171184 71704111 68931050
sampling method A=C A=D C=A C=D D=A D=C
p =50 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
Deg. 73533140 674241023 69145163 61271150 66871171 65451261 70574119 66321186 60.674098 58961175 66.071096 62771111
Inv. 72404182 64911162 68.39:191 56994345 52 03814261 69.891101 62224224 57.094100 54461345 59.864207 53234337
Rand. 73154102 65.871007  68.04:10s  57.3811s6 a6 61.041003 7031i0s3 63.831305 56.65i151 534lipa0  60.68:266 55.124577
sampling method A=C A=D C=A C=D D=A D=C
p =100 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
Deg. 69.304320 58.804187 68.61i013 56791175 60224104 51791197 64741178 52821060 52981340 45641063 58791003 48521056
Tnv. 69254447 60361411 67381060 55.6lingg 58941100 48194055 64361191 50984500 54664171 4759142 58082411 48.2040.4
Rand. 69254408 ST.041545 67541900 56544011 5932106 486140 64824155 51931003 54884197 4761147 57304014 46.2340.40

D.5 Analysis of Different GNN Encoders

To explore the effect of different encoders in our method, we replace our encoder from GCN to
GraphSAGE [8]], a widely used classic GNN encoder, and conduct experiments under p = 50. The
results are shown in Table |§[ It can be observed that in our method, GCN outperforms GraphSAGE,
possibly because GraphSAGE samples only a subset of a target node’s neighbors, which limits the
exploration of local graph structures and leads to a performance drop. This highlights the importance
of selecting an appropriate backbone encoder.

Table 6: The results of different GNN encoders.

Encode A=C A=D C=A C=D D=A D=C
coder Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro
GCN 73531140 67424103 69.141163 61271150 66.871171 6545:964 70571109 66321186 60.671008 58964175 66.0710.06 6277111
GraphSAGE | 62.28.1 77  56.774212  60.1341921  50.03:214 53.064144 508040091 59.681136 50.61:i140 48224185 44.501003 52.591144 46.3841 98

Table 7: Detailed values of Standard Deviation, Mean/Median Ratio, Gini Coefficient with different
imbalance factors of different Datasets.

Methods  IF(p) | o € )
5 162879 1.17 031
10 | 71446 136 041
ACMvO 20 | 76239 1.66 0.49
50 | 798.08 225 057
100 | 81447 292 0.62
5 | 52518 1.17 031
Ciationv 10 | 59631 136 041
20 | 63640 1.66 0.39
S0 | 66623 225 057
100 | 679.81 292 0.62
5 | 42095 1.17 031
10 | 47126 136 041
DBLEVT 50 | 50200 166 0.49
50 | 52627 225 057
100 | 53729 292 0.62
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E Additional Metrics of Imbalanced Distributions
In our experiments, we employ the imbalance factor (p) to quantify the degree of class imbalance in
the dataset, defined as:

p=max{Ny, No,--+ , No}/min {Ny, No,--- , N¢}, (23)

where N; denotes the number of nodes belonging to class ¢ in the source graph. To provide a
more comprehensive assessment of imbalance across different datasets, we further introduce several
additional metrics to evaluate the distributional skewness of the data.

 Standard Deviation (o): It is widely used in probability and statistics to measure statistical disper-
sion, and in some cases it can reflect sampling uncertainty, which is defined as:

1 C
o= 6 ;(nl — ’Fli)Q, 24)

where C represents the number of classes, n; represents the instance number of class 4, and 72;
represents the average number of instances.

* Mean/Median Ratio (¢): The median is a fundamental statistical measure widely applied in fields
such as economics, sociology, and medicine. Unlike the mean, it is less sensitive to extreme
values and thus provides a more robust representation of the data distribution. Consequently, the
mean-to-median ratio serves as an indicator of data skewness, defined as:

mean(Ny, Na, -+, N¢)

_ , 25
©~ median(Ny, No, - -, Ne) 25)

* Gini Coefficient (§): It was originally introduced by Italian economist Gini [5]], measures distribu-
tional equality based on the Lorenz curve. Commonly used to quantify income or wealth inequality,
it can similarly be applied as a metric of imbalanced distribution, as class imbalance parallels
inequality across categories.

And we provide the corresponding Standard Deviation, Mean/Median Ratio, and Gini Coefficient
values for each dataset under different imbalance factors in Table

F Broader Impact and Limitations

Our method addresses class imbalance in graph domain adaptation and has the potential to benefit
various applications such as scientific discovery, recommender systems, and bioinformatics by
improving the representation of underrepresented classes. However, it also has limitations: the
performance depends on the quality of the selected anchor set, the dual-branch design introduces
additional computational overhead, and the pseudo-labeling process may suffer from noise under
large domain shifts. Moreover, the framework requires the same label space across source and target
domains, which could not be applied to open-set scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope by proposing a dual-branch prototype-enhanced contrastive frame-
work that effectively addresses class imbalance and domain shifts in graph transfer learning,
supported by extensive experiments across multiple datasets.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The appendix (Section [F) states that the performance depends on the quality of
the selected anchor set, the dual-branch design introduces additional computational overhead,
and the pseudo-labeling process may suffer from noise under large domain shifts. Moreover,
the framework assumes shared label space between source and target domains, which may
limit its applicability in open-set scenarios.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We have provided the theoretical proof in detail in the appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 5.1, “Experimental Settings”, we provide detailed explanations of
the datasets used and implementation details for our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: In the abstract, we provide a link to the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 5.1, “Experimental Settings”, we provide detailed explanations of
the datasets used and implementation details for our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We precisely defined and reported the error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 5.1, “Experimental Settings”, we provide detailed explanations of
the datasets used and implementation details for our experiments.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper complies with the NeurIPS Code of Ethics
in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses potential positive impacts such as improving fairness and
robustness in graph learning by addressing class imbalance and domain shifts, as well as
limitations that could lead to negative effects like noise from pseudo-labeling.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly cited the sources of the relevant data and other materials used in
the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The link provided in the abstract contains well-documented related materials.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not involve LLMs as a core component of its methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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