DIMENSION DOMAIN CO-DECOMPOSITION: SOLVING PDES WITH INTERPRETABILITY

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028029030

031

033

034

035

037

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Physics-informed neural networks (PINNs) have shown promise for solving partial differential equations (PDEs), but they face significant challenges in highdimensional settings and when modeling solutions with sharp features. Existing approaches also lack interpretable per-dimension representations and depend on manually defined domain partitions. To address these challenges, we propose a unified Dimension Domain Co-Decomposition (3D) framework that integrates dimension decomposition with a Mixture-of-Experts (MoE) based domain decomposition. Our approach achieves three key innovations. First, we introduce an interpretable dimension decomposition strategy that decouples individual coordinate inputs within each expert using a single shared MLP with indexed inputs, significantly reducing the model size. Second, we propose a novel metric, Variable Interpretability (VI), that quantifies the alignment between the learned latent representations of each input dimension and their corresponding exact solution components. Third, we present an MoE-driven domain decomposition architecture that automatically partitions the solution space without requiring predefined regions or interface conditions. Extensive experiments demonstrate that our approach improves both computational efficiency and solution accuracy across a range of high-dimensional PDE benchmarks, with interpretable and scalable performance.

1 Introduction

Partial differential equations (PDEs) provide the mathematical foundation for describing a wide range of physical and engineering phenomena, including fluid dynamics Anderson, 1995, wave propagation (Strauss, 2007), and quantum mechanics (Griffiths & Schroeter, 2018). Classical numerical solvers such as the finite element method (FEM) (Zienkiewicz et al., 2005; Babuška, 1971), the finite difference method (FDM) (LeVeque, 2007; Lax & Richtmyer, 1956), and the spectral method (SM) (Trefethen, 2000; Boyd, 2001) have long been the standard tools for approximating PDE solutions. FEM is flexible for handling irregular domains, FDM is simple and efficient on structured grids, while SM achieves spectral (fast) convergence but is restricted to periodic boundary conditions. Despite their success, both methods suffer from rapidly increasing computational cost when dealing with high-dimensional problems, complex nonlinearities, or solutions with sharp local features, which often makes them impractical for large-scale applications.

In recent years, neural networks have emerged as promising alternatives for PDE solving, either by directly approximating solutions from data or by embedding the governing equations into the training objective through physics-informed neural networks (PINNs) (Raissi et al., 2019). PINNs offers clear advantages in high-dimensional settings where traditional numerical solvers become infeasible. Building on this flexibility, two major lines of decomposition-based methods have been explored to further enhance scalability and adaptivity. Dimension decomposition improves scalability by factorizing solutions along coordinates (Cho et al., 2023; Liu et al., 2024). This strategy simplifies optimization in high-dimensional settings and further mitigates the curse of dimensionality. However, existing approaches lack interpretability measurement. In contrast, domain decomposition (Jagtap et al., 2020a; Shukla et al., 2021; Hu et al., 2023) focuses on local adaptivity by dividing the computational domain into smaller subdomains, with each subdomain handled by a specialized model. This enables better approximation of both smooth and discontinuous solutions. Nevertheless, such methods typically rely on manually pre-defining the subdomains. When

the subdomains overlap, one must introduce extra loss terms to ensure the predictions agree in the overlapping regions; when the subdomains are non-overlapping, additional conditions are required to enforce continuity across the shared boundaries. These constraints make the training procedure more complicated and problem-dependent.

To overcome these limitations, we propose Dimension Domain Co-Decomposition (3D), a unified framework that combines both decomposition strategies in a scalable, interpretable, and fully automatic manner. At the dimension level, each variable is modeled separately, which improves scalability in high dimensions. In practice, these dimension components are processed through a shared MLP, ensuring parameter efficiency across coordinates. At the domain level, 3D employs Mixture of Experts (MoE) (Jacobs et al., 1991). It contains multiple experts, and a router assigning soft weights to combine their outputs. This mechanism encourages each expert to specialize in certain subregions, so that domain decomposition emerges adaptively during training. As a result, 3D can effectively capture solutions with sharp local features without requiring pre-defined regions or explicit interface conditions. An illustration of 3D with two experts on input [t,x] is shown in Figure 1. In addition, we propose Variable Interpretability (VI), a quantitative metric that matches predicted per-dimension components to ground-truth factors. VI takes values in [0,1], with 1 indicating perfect alignment across variables.

We summarize our contribution as follows:

- We propose Dimension Domain Co-Decomposition (3D), a unified framework integrating dimension decomposition with adaptive domain decomposition for solving high-dimensional PDEs.
- Within 3D, we design a lightweight shared-MLP architecture that processes dimension-index pairs, enabling reduced model size while capturing coordinate-wise features.
- We introduce Variable Interpretability (VI), a novel, quantitative, scale-invariant metric to evaluate dimension-wise interpretability. It evaluates the alignment between the learned latent representation of each input dimension and the ground-truth components, thereby serving as a direct measure of interpretability.
- We employ MoE to induce an adaptive and automatic domain decomposition capturing sharp features without requiring predefined subdomains or explicit interface conditions.

2 RELATED WORK

108

109 110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130 131

132 133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150 151

152 153

154

155

156

157

158

159

160

161

2.1 DIMENSION DECOMPOSITION AND INTERPRETABILITY

High-dimensional PDEs pose significant challenges for neural network-based solvers. Building on the PINNs framework, several recent works (Cho et al., 2023; Liu et al., 2024; Vemuri et al., 2024; Liu et al., 2022) introduce dimension-wise decomposition strategies to mitigate the curse of dimensionality. Most of these approaches rely on classical tensor decomposition techniques (Tucker, 1966; Carroll & Chang, 1970), which improve efficiency by reducing the representation complexity, but still assign a separate neural network to each dimension, leading to suboptimal efficiency. At the same time, these methods offer little interpretability measurements of the learned components. In parallel, the interpretable machine learning community has developed models such as GAMs, NAMs, and self-explaining networks (Hastie & Tibshirani, 1990; Wood, 2017; Agarwal et al., 2021; Alvarez-Melis & Jaakkola, 2018; Lou et al., 2013), which represent the target function as a sum of univariate functions, each depending on a single variable. These models offer intuitive per-variable explanations, but their additive structure struggles to capture higher-order interactions, which are often intrinsic to PDE solutions. Beyond additive models, sparse regression-based methods such as SINDy and its variants (Brunton et al., 2016; Kaiser et al., 2018) provide another line of interpretability by discovering governing equations from data. Unlike variable-wise interpretability, these methods explain the underlying physical laws by identifying symbolic equations, rather than uncovering the structures of PDE solutions themselves. To fill in these gaps, We propose a shared-MLP dimension decomposition that removes redundant per-dimension networks for greater efficiency, and introduce Variable Interpretability (VI), a metric quantifying the alignment between learned components and ground-truth factors.

2.2 Domain Decomposition of PINNs

Domain decomposition has been widely adopted to improve PINNs for solving complex PDEs. The XPINNs framework (Jagtap et al., 2020c) pioneered this idea by partitioning the computational domain into multiple subdomains and training a separate PINN in each region; to ensure consistency, XPINNs enforces continuity of the solution across subdomain interfaces through additional interface losses. Subsequent works have refined this approach: Shukla et al. (Shukla et al., 2021) introduced parallel implementations combining cPINNs (Jagtap et al., 2020b) and XPINNs, exploiting overlapping Schwarz-type decompositions to better handle multi-scale problems. Hu et al. (2023) proposed APINNs, which use soft gating mechanisms to allow more flexible domain decomposition. Dolean et al. (Dolean et al., 2024) developed multilevel decomposition architectures to improve accuracy for large or highly heterogeneous domains. More recently, the approach named BPINN (Vicens Figueres et al., 2025) integrates Bayesian PINNs with domain decomposition, computing local uncertainties concurrently and enforcing interface flux continuity among subdomains. There are also specialized applications, such as domain decomposition PINNs for incompressible Navier-Stokes equations (Gu et al., 2024). Despite these advances, a common limitation is that all existing approaches require predefined partitions of the computational domain. Moreover, additional conditions must be imposed at the subdomain interfaces to guarantee continuity of the solution. These requirements restrict adaptivity and limit the flexibility of domain decomposition when applied to PDEs with unknown or heterogeneous solution structures. In contrast, our framework enables automatic and adaptive domain decomposition during training.

3 DIMENSION DOMAIN CO-DECOMPOSITION

Existing PINNs-based methods for high-dimensional PDEs suffer from three obstacles: (i) high computational cost due to the need for dense collocation sampling; (ii) a lack of principled interpretability metric for dimension-wise factorizations, where scaling, permutation, and cross-dimension mixing obscure whether learned components reflect the underlying physics; and (iii) brittle domain decomposition that depends on predefined subdomains and delicately tuned interface penalties, making performance sensitive to the chosen partition and enforcement strength. To address these issues, we adopt a dimension decomposition that reduces computation-graph complexity by combining them in a low-rank manner; we introduce Variable Interpretability (VI) to quantify alignment between learned per-dimension components and reference factors; and we develop MoE-driven domain decomposition that maps the input coordinates to soft expert assignments, avoiding

manual region design and explicit interface enforcement. In combination, the dimension decomposition lowers training cost, VI provides quantitative interpretability, and the MoE router delivers robust, automatic domain partitioning. Given input $\mathbf{x} = [x_1, x_2, \cdots, x_d]$, the predicted solution \hat{u} takes the form:

$$\hat{u}(x_1, x_2, \dots, x_d) = \sum_{i=1}^K G^{(i)}(\mathbf{x}) E_i(\mathbf{x}), \ E_i(\mathbf{x}) = E_i(f_1(x_1), f_2(x_2), \dots, f_d(x_d))$$
(1)

where f_j for $j=1,2,\cdots,d$ stands for the Multilayer Perceptron (MLP) processing each dimension component. E_i for $i=1,2,\cdots,K$ represents expert while $G(\mathbf{x})\in\mathbb{R}^K$ is a router assigning weights for experts.

In section 3.1, we present the structure of a single expert and explain its role in achieving dimension decomposition. Section 3.2 introduces the VI for assessing dimension interpretability. Section 3.3 describes the overall MoE-driven domain decomposition framework.

3.1 DIMENSION DECOMPOSITION IN 3D FRAMEWORK

Conventional methods mix all dimensions in a single network. For high-dimension problems, large number of data complicates the computation graph, making both forward and, more severely, backward propagation expensive. We adopt dimension decomposition in single expert to decouple coordinates and simplify both forward propagation and derivative computation. Our domain decomposition design is similar in form to the Canonical Polyadic Decomposition (CP-decomposition) (Carroll & Chang, 1970; Harshman, 1970). Conventionally, for *d*-dimensional input, the output can be written as follows:

$$\hat{u}(x_1, \dots x_d) = \sum_{i=1}^r f_1^{(i)}(x_1) f_2^{(i)}(x_2) \cdots f_d^{(i)}(x_d)$$
(2)

where $\hat{u}:\mathbb{R}^d\to\mathbb{R}$ is the predicted solution, $x_j\in\mathbb{R}$ is a coordinate of j-th component including temporal coordinates if exist. $f_j(x_j):\mathbb{R}\to\mathbb{R}^r$ represents independent MLP processing x_j . r is comparable to the rank in CP-decomposition. In our settings, r impacts more on Variable Interpretability (VI) than accuracy. Modest r are sufficient-typically $r\in\{4,\cdots,16\}$ achieving good interpretability while maintaining satisfactory accuracy, see section 4.

However, independent per-axis processing introduces a large number of parameters. We address this issue by using a single shared MLP to model all dimension components within each expert. Specifically, each component is represented by a two-dimensional input vector consisting of the coordinate value and its index. For the j-th dimension component, the corresponding output is given by $f(x_j, j-1)$. For example, for 3d PDE problem, outputs of dimension components are $f(x_1, 0), f(x_2, 1), f(x_3, 2)$. We treat temporal coordinate t as part of the physical vector coordinates. Therefore, equation 2 can be rewritten into:

$$\hat{u}(x_1, \dots x_d) = \sum_{i=1}^r f^{(i)}(x_1, 0) f^{(i)}(x_2, 1) \cdots f^{(i)}(x_d, d-1)$$
(3)

Our framework bases on PINNs. Therefore, the loss function can be written as follows:

$$Loss = w_{pde}Loss_{pde} + w_{ic}Loss_{ic} + w_{bc}Loss_{bc}$$

$$\tag{4}$$

where $Loss_{pde}$ is the PDE residual loss, which penalizes the discrepancy between the neural network prediction substituted into the PDE and the equation's right-hand side at sampled collocation points. $Loss_{ic}$ and $Loss_{bc}$ represent initial-condition loss (for time dependent problems) and boundary-condition loss, respectively. More information is included in Appendix B.

The proposed architecture is related to Separable Physics-Informed Neural Networks (SPINNs) (Cho et al., 2023), but it differs in several key aspects that bring advantages: First, we use single MLP processing each dimension component with an additional index as input, saving the memory when handling high-dimensional problems, see section 4.2 for more information. Second, our framework naturally integrates with a MoE structure. While SPINNs rely on forward-mode automatic differentiation (AD), this is not directly compatible with MoE because the router breaks the

separable structure. Instead, we adopt reverse-mode AD which allows the decomposition to remain effective while benefiting from adaptive domain specialization. Lastly, the dimension decomposition design enables us to bypass meshgrid collocation points. Instead of constructing a full grid, we independently sample training points for each dimension component and then combine them, which drastically reduces the number of collocation points required and improves training efficiency.

3.2 VARIABLE INTERPRETABILITY (VI)

Previous dimension decomposition techniques lack quantitative interpretability for dimension component. To address this gap, we propose a new metric that evaluates each dimension component by comparing it against the reference target (either analytical or high-accuracy numerical). Concretely, for j-th dimension component, we obtain $f(x_j, j-1) \in \mathbb{R}^r$ from dimension decomposition. Evaluating this function on n_j sampled points produces n_j row vectors in \mathbb{R}^r , which we stack to form a matrix $F_j \in \mathbb{M}^{n_j \times r}$. In parallel, we construct the ground-truth matrix $G_j \in \mathbb{M}^{n_j \times s}$ by evaluating the exact j-th factor at the same points. For example, in the 5D Poisson equation with solution $u(x) = \prod_{j=1}^5 \sin(\pi x_j)$, the predicted x_j -component is represented as $F_j \in \mathbb{M}^{n_j \times r}$, while the ground-truth factor is $g_j(x) = \sin(\pi x_j)$, evaluated on n_j points to form $G_j \in \mathbb{M}^{n_j \times 1}$. For simplicity, we use F and G in the remainder of this section.

Before computing the metric, both F and G are normalized. Take F as an example:

$$\tilde{F}_{ik} = \frac{F_{ik} - \mu_k}{\max(\sqrt{\sum_{q=1}^n (F_{qk} - \mu_k)^2}, \epsilon)}, i = 1, ..., n, k = 1, ..., r$$
(5)

where $\mu_k = \frac{1}{n} \sum_{q=1}^n F_{qk}, \epsilon = 10^{-12}$ to avoid denominator is 0.

Then we apply the QR decomposition to \tilde{F} and \tilde{G} to obtain the reduced orthonormal bases $Q_{\tilde{F}}$ and $Q_{\tilde{G}}$. We then compute the singular values $\{\sigma_i\}_{i=1}^m$ of $Q_{\tilde{F}}^{\top}Q_{\tilde{G}}$, where $m=\min(\operatorname{rank}(Q_{\tilde{F}}),\operatorname{rank}(Q_{\tilde{G}}))$. The VI of the j-th component is defined as:

$$VI_j = \frac{1}{m} \sum_{i=1}^m \sigma_i^2. \tag{6}$$

 VI_j takes values in the range [0,1] with values closer to 1 indicating a better fit to the exact terms. For each problem, we then take the mean of VI_j across j to get final VI.

Notably, this metric evaluates all-rank representation features as a whole, testing how well the subspace spanned by the exact basis Q_G is aligned with (and contained in) the subspace spanned by the predicted basis Q_F . In practice, the exact matrix G often has shape (n,s) with $s \leq r$, where r is the decomposition rank. Thus, the number of exact basis vectors can be smaller than the number of predicted ones. Only when s=r, VI=1 means the predicted subspace and the exact subspace are identical. For example, $G_x \in \mathbb{M}^{n \times 1}$ in 5d Poisson equation while we use r>1 in section 4.2. In this way, VI=1 means that the exact one-dimensional subspace is fully contained in the predicted subspace. In short, when s< r, VI measures whether the predicted subspace totally covers the exact subspace instead of testing if two subspaces are identical. This case is particularly relevant in practice, since r can be chosen arbitrarily large while the number of exact basis vectors s is often much smaller.

3.3 Moe-driven Domain Decomposition

Partitioning the solution domain into subdomains enables local specialization of the underlying physics, improving accuracy and stability. Previous domain decomposition methods require manually pre-defined regions and interface conditions. To achieve automatic and adaptive domain decomposition, we adopt a Dense MoE model (Jacobs et al., 1991). Compared with Sparse MoE (Shazeer et al., 2017), dense MoE avoids expert collapse and provides more stable training. This is important in problems with shocks where top-k gating may cause instability near shocks. Router is a MLP $G: \mathbb{R}^d \to \mathbb{R}^K$ taking only $\mathbf{x} \in \mathbb{R}^d$ (including temporal and spatial coordinates) as input. It produces logits which are then converted into mixture weights via a softmax. The weight assignment serves as a soft partition indicator – large weight marks the region where expert is responsible for. Each

expert E_i for $i=1,2,\cdots,K$ specializes in local regions. It remains smooth within its responsible region while differing from other experts to cover complementary behaviors. Together, they provide global approximation by $\sum_{i=1}^K G(\mathbf{x}) E_i(\mathbf{x})$.

Since the predicted solution is the weighted sum of experts' outputs, the overall loss function follows equation 4, except for the computation of \hat{u} . All experts share same architectures and inputs with separate parameters. End-to-end training is performed. Both the router and experts are updated via gradient descent optimization. Our experiment results demonstrate that increasing the number of experts K initially leads to significant error reduction and reflects finer domain decomposition. However, beyond a certain number $K_{optimal}$, additional experts yield similar errors and no more new information about domain decomposition. In practice, we select $K_{optimal}$ as best number of experts.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate our framework on two settings: (i) Dimension decomposition (mainly Poisson and Wave equations), and (ii) MoE-driven domain decomposition in which each expert uses the same dimension decomposition architecture (Viscous Burgers and Linear Transport equations). In our experiments, training is first performed with the Adam optimizer for fast convergence and followed by LBFGS for refinement. A cosine-annealing scheduler is applied to adjust the learning rate. Training performances are measured by the relative ℓ_2 error. All experiments are trained on a single NVIDIA RTX 5090 GPU.

Dimension Decomposition and Interpretability. Our framework is built on a unified expert design, where each expert employs a shared MLP for dimension decomposition. These experts are either combined under a MoE structure (Viscous Burgers and Linear Transport) or used as a single module (Poisson and Wave equations). To evaluate the scalability and efficiency of this shared MLP design, we first conduct a parameter count comparison across all four PDE benchmarks. In the subsequent studies, we focus on Poisson and Wave equations with a single expert module to highlight the effect of dimension decomposition and quantify interpretability using the proposed VI. The shared MLP within each expert module consists of two hidden layers of width 64 with Tanh activation by default.

Domain Decomposition. Viscous Burgers equation and Linear Transport equation (Appendix A) employ MoE-driven domain decomposition while keeping dimension decomposition inside each expert, showing not only domain decomposition but also comprehensive test of 3D framework. Dense MoE with multiple experts are applied. The router was set to be a 5-layer MLP with width 64 per layer and Tanh activation.

4.2 DIMENSION DECOMPOSITION AND INTERPRETABILITY

Benefit of Shared MLP. We first demonstrate the benefit of the shared MLP inside each expert module. Table 1 compares the number of trainable parameters across different PDE problems. We fix r=16 for this parameter test. For Poisson, Wave equations, we adopt a single expert. For the Linear Transport and Viscous Burgers equation, we use 3 experts and 2 experts, respectively. Across all settings, the shared MLP design significantly reduces the number of trainable parameters compared with independent MLPs design. The advantage enlarges as the input dimension grows, highlighting the scalability of our approach. In the context of a single expert module, the parameter count of a shared MLP is independent of the input dimension, whereas it grows with the dimension for independent MLPs. When extended to a MoE framework, the shared MLP architecture reduces the overall number of parameters by sharing them across the experts.

Shared MLP architecture also leads to reduced memory. Generally, the shared design requires on average 77.8% of the memory compared to independent MLPs. The efficiency gain scales with dimensionality: in the 5d Poisson problem, the shared MLP reduces memory consumption to 50.0%, and in the 10d Poisson problem, the shared design achieves an even greater reduction, using only 30.4% of the memory.

Table 1: Comparison of number of trainable parameters between shared MLP and independent MLPs design.

Туре	5d Poisson	10d Poisson	1d Wave	2d Wave	Burgers	Transport
Shared MLP	5392	5392	5392	5392	23586	29043
Independent MLPs	26640	53280	10656	15984	34114	44835

Table 2: Mean VI over dimension components for different values of r across the PDE examples.

PDE examples	r=1	r=2	r=3	r=4	r=5
5d Poisson	0.0411	0.9815	0.9956	0.9999	1.0000
10d Poisson	0.0849	0.9958	0.9969	1.0000	1.0000
1d Wave $c=2$	1.0000	1.0000	1.0000	1.0000	1.0000
1d Wave $c=5$	0.4991	0.8036	0.9924	0.9958	1.0000
1d Wave $c = 10$	0.4295	0.7833	0.9334	0.9971	0.9998
2d Wave $c=2$	0.6624	0.9125	0.9997	0.9999	1.0000

The training performance of the shared MLP is comparable to that of independent MLPs with far fewer parameters, and both clearly outperform vanilla PINNs (Figure 2). For vanilla PINNs, we adopt a 10-layer MLP with width 64 and Tanh activation. We report results on the 5d Poisson equation. Since training stops once the convergence condition is met, the total number of training steps varies across models. For comparison, we truncate at the smallest step count, 11,400, which corresponds to the termination of both the shared and independent MLPs. By contrast, vanilla PINNs stop at 23,400 steps. At termination, the shared MLP, independent MLPs, and vanilla PINNs achieve ℓ_2 errors of 1.8430×10^{-4} , 3.2620×10^{-4} , and 7.5451×10^{-3} , respectively.

Interpretability. We train the Poisson equation with 8192 collocation points and 2048 boundary points using an expert module. The values in Table 2 represent the mean VI across all dimension components. From the analytical solution u = $\prod_{i=1}^{5} \sin(\pi x_i)$ (Appendix A), one might expect that r = 1 would suffice for interpretability compared to equation 3. However, our experiments demonstrate that r = 1 is insufficient. By increasing rto 4, we obtain $VI \approx 1$, as reported in Table 2. For higher dimensions, we further test the 10d Poisson problem. Even in this case, full interpretability (VI = 1) is achieved with r = 5, and the model also attains a satisfactory accuracy with ℓ_2 er $ror = 1.4475 \times 10^{-3}$. These results confirm that a small value of r ensures good interpretability while maintaining strong learning performance.

For the Wave equation, we use 8192 collocation points, 1024 initial points, and 1024 boundary points, again with a single expert

Figure 2: Comparison of relative ℓ_2 error (log scale) for 5d Poisson between shared MLP, independent MLPs and vanilla PINNs. Training is displayed up to 11,400 steps, where both the shared MLP and independent MLPs converge. The final ℓ_2 errors are 1.8430×10^{-4} (shared MLP), 3.2620×10^{-4} (independent MLPs), and 7.5451×10^{-3} (vanilla PINNs).

module. In this setting, r=1 is sufficient to achieve full interpretability with VI=1, consistent with the analytical solution $u(t,x)=\sin(\pi x)\cos(c\pi t)$ (Appendix A). We first examine the 1d case with c=2. Figure 3 compares the predicted and exact components $f_t(t)=\cos(c\pi t)$ and $f_x(x)=\sin(\pi x)$ at training steps 1000, 2000, 3000, and 4000. As suggested by the analytical solution, the t-component has a higher frequency than the x-component. Accordingly, the model learns $f_x(x)$ within the first 1000 steps but requires up to 4000 steps to accurately capture $f_t(t)$. We then test cases with c=5 and c=10, where the solution includes higher-frequency terms $\cos(c\pi t)$. In these settings, r=1 is no longer sufficient for full interpretability. Nevertheless, VI improves as r increases, reaching VI=1 for c=5 and approximately 1 for c=10 when r=5. Finally, we con-

sider the 2d Wave equation with analytical solution $u(t, x_1, x_2) = \sin(\pi x_1)\sin(\pi x_2)\cos(\sqrt{2}c\pi t)$ and c=2.0. The additional spatial dimension increases the learning difficulty, as reflected in Table 2. Still, the model achieves VI=1 at r=5, underscoring that small values of r suffice to ensure strong interpretability.

Figure 3: Components' interpretability of 1d Wave equation when c=2. The first row represents comparison of t-component while the second row represents comparison of x-component. Here "pred f_x " and "pred f_t " in the figure refers to the shared MLP processing x and t respectively. The black dotted line stands for true value from analytical solution and the blue solid line stands for predicted value. From left to right, the columns represent the 1000th, 2000th, 3000th, and 4000th training steps, respectively.

Figure 4: Ground truth and domain decomposition results of Viscous Burger for K=2 and K=3. The left panel in the first row shows the ground truth solution. The remaining two panels in the first row display the decomposition results with K=2, indicating obvious boundary of x=0. Three figures in the second row correspond to K=3, which shows little new decomposition information. For $K=1,2,3,\,\ell_2$ error achieves $2.1587\times 10^{-2}, 1.2694\times 10^{-3}, 1.7170\times 10^{-3},$ showing effectiveness of MoE structure.

4.3 Domain Decomposition

Multiple experts and a router are employed for automatic domain decomposition for Viscous Burgers. Within each expert, dimension decomposition is applied. The shared MLP consists of two hidden layers of width 32 with r=16. The training data consists of 10,000 randomly sampled collocation points, 256 initial points, and 200 boundary points. For testing, we adopt high-accuracy dataset generated in MATLAB, as in PINNs (Raissi et al., 2019).

Figure 5: Results of domain decomposition of Linear Transport for K=3,4. The left panel in the first row shows the ground truth solution. The remaining three panels illustrate weight assignments of experts when K=3, demonstrating clear cut-off lines same as the ground truth. Four panels in the second row are domain decomposition results of K=4, displaying more detailed partition.

For the tested viscosity $\nu=\frac{0.01}{\pi}$ (see Appendix A), the shock at x=0 represents the solution's main discontinuity. It is, therefore, the natural choice for the splitting boundary in domain decomposition (see Figure 4). Although the number of experts affects the precise partitioning, this critical shock location can be consistently identified. We visualize the router assignments for each expert. Figure 4 shows the domain decomposition results for Viscous Burgers with different numbers of experts K. It is evident that for K=2, the model achieves domain decomposition, mainly separated by shock at x=0. Increasing the number of experts to K=3 does not introduce new meaningful subdomains since the additional expert tends to receive small weights. For K=1,2,3, ℓ_2 error achieves $2.1587 \times 10^{-2}, 1.2694 \times 10^{-3}, 1.7170 \times 10^{-3}$, showing effectiveness of MoE structure. Appendix C provides additional visualizations for K=4 and K=5 and an ablation analysis of how r affects the error.

We further evaluate the 1d Linear Transport equation. In the main paper, we present results for the case with clearly separable regions (Appendix A), while the case with smooth transitions is deferred to Appendix C. For both settings, we use 8192 collocation points along with 1024 initial points and 1024 boundary points.

For MoE-driven domain decomposition, we find that using three experts (K=3) yields a reasonable decomposition. In this case, we set r=4. The learned partition successfully captures the diagonal stripe structures observed in the ground truth (Figure 5), with the predicted stripe locations closely matching those of the exact solution. Results with four experts (K=4) are shown in the second row of Figure 5, where we use r=8. The additional expert produces a more detailed partition. Further results for other values of K are provided in Appendix C, demonstrating that too few experts lead to unclear decompositions, while larger K do not yield additional structural information.

5 CONCLUSION

In this paper, we propose Dimension Domain Co-Decomposition (3D), a PINNs-based framework that unifies dimension decomposition and MoE-driven domain decomposition. Within each expert, a shared MLP processes coordinate—index pairs to produce dimension-wise functions. To quantify the alignment between predicted dimension component and ground truth component, we introduce Variable Interpretability (VI). At the MoE level, the router adaptively partitions the domain so that experts specialize in local regions without requiring predefined subdomains or explicit interface conditions. Through experiments on PDE benchmarks, we show that 3D not only achieves good accuracy but also produces interpretable decompositions across dimensions according to VI. Nevertheless, our study has limitations. VI relies on reference solutions that are dimension-separable. For non-separable solutions, we must construct separable approximations, for example using truncated Fourier series, and compare the predicted components against these numerical factors. Future work should explore more general interpretability metrics that extend beyond separable settings.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code for our framework (training, evaluation, and visualization) is attached as supplementary material. For clarity, each PDE example (Poisson, Wave, Burgers, Transport) is implemented in a separate code file named after the corresponding PDE problem, making it straightforward to reproduce individual experiments. PDE datasets are generated from analytic or high-accurate numerical solutions as described in Section 4.2. We provide all hyperparameter settings in Appendix B, together with fixed random seeds for PyTorch and NumPy.

REFERENCES

- Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey Hinton. Neural additive models: Interpretable machine learning with neural nets. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.
- David Alvarez-Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 31, pp. 7775–7784, 2018.
- John D. Anderson. *Computational Fluid Dynamics: The Basics with Applications*. McGraw-Hill, 1995. Covers PDE formulations for fluid dynamics problems.
- Ivo Babuška. Error-bounds for finite element method. *Numerische Mathematik*, 16:322–333, 1971. doi: 10.1007/BF02165003.
- Claude Basdevant, Michel Deville, Pierre Haldenwang, J.-M. Lacroix, Jalil Ouazzani, Roger Peyret, Paolo Orlandi, and Anthony T. Patera. Spectral and finite difference solutions of the burgers equation. *Computers & Fluids*, 14(1):23–41, 1986. doi: 10.1016/0045-7930(86)90036-8.
- John P. Boyd. *Chebyshev and Fourier Spectral Methods*. Dover Publications, 2nd edition, 2001. Comprehensive treatment of spectral methods using Chebyshev and Fourier bases.
- Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proceedings of the National Academy of Sciences*, 113(15):3932–3937, 2016.
- J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckart–young" decomposition. *Psychometrika*, 35(3):283–319, 1970. doi: 10.1007/BF02310791.
- Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park. Separable physics-informed neural networks. In *Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023)*, 2023.
- Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley. Multilevel domain decomposition-based architectures for physics-informed neural networks. *Computer Methods in Applied Mechanics and Engineering*, (submitted / arXiv preprint), 2024. arXiv:2306.05486.
- David J. Griffiths and Darrell F. Schroeter. *Introduction to Quantum Mechanics*. Cambridge University Press, 3rd edition, 2018. Discusses Schrödinger equation as a PDE in quantum mechanics.
- Linyan Gu, Shanlin Qin, Lei Xu, and Rongliang Chen. Physics-informed neural networks with domain decomposition for the incompressible navier–stokes equations. *Physics of Fluids*, 36 (b1914), 2024.
 - Richard A. Harshman. Foundations of the parafac procedure: Models and conditions for an "explanatory" multimodal factor analysis. Technical Report 16, UCLA Working Papers in Phonetics, 1970.
 - Trevor J. Hastie and Robert J. Tibshirani. *Generalized Additive Models*. Chapman and Hall/CRC, 1990.

Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji Kawaguchi. Augmented physics-informed neural networks (apinns): A gating network-based soft domain decomposition methodology. *Engineering Applications of Artificial Intelligence*, 113:107183, 2023.

- Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of local experts. *Neural Computation*, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.
- Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. *Communications in Computational Physics*, 28(5):2002–2041, 2020a.
- Ameya D. Jagtap, Kentaro Kawaguchi, and George Em Karniadakis. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. *Computer Methods in Applied Mechanics and Engineering*, 365:113028, 2020b.
- Ameya D. Jagtap, Kentaro Kawaguchi, and George Em Karniadakis. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. *Communications in Computational Physics*, 28(5):2002–2041, 2020c.
- Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. *Proceedings of the Royal Society A*, 474(2219): 20180335, 2018.
- Peter D. Lax and Robert D. Richtmyer. Survey of the stability of linear finite difference equations. *Communications on Pure and Applied Mathematics*, 9(2):267–293, 1956. doi: 10.1002/cpa.3160090206.
- Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2007.
- Youqiong Liu, Li Cai, and Yaping Chen. Variable separated physics-informed neural networks based on adaptive weighted loss functions for blood flow model. *Computers & Mathematics with Applications*, 153, 2024. doi: 10.1016/j.camwa.2023.11.018.
- Ziyue Liu, Xinling Yu, and Zheng Zhang. Tt-pinn: A tensor-compressed neural pde solver for edge computing. arXiv preprint arXiv:2207.01751, 2022. URL https://arxiv.org/abs/2207.01751.
- Yin Lou, Rich Caruana, and Johannes Gehrke. Accurate intelligible models with pairwise interactions. *Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 623–631, 2013.
- Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, 2019.
- Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*, 2017. URL https://arxiv.org/abs/1701.06538. Introduced top-k gating for Mixture-of-Experts, establishing the Sparse MoE framework.
- Khemraj Shukla, Ameya D. Jagtap, and George Em Karniadakis. Parallel physics-informed neural networks via domain decomposition. *Journal of Computational Physics*, 447:110683, 2021.
- Walter A. Strauss. *Partial Differential Equations: An Introduction*. John Wiley & Sons, 2nd edition, 2007. Includes classical PDE models for wave propagation.
- Lloyd N. Trefethen. *Spectral Methods in MATLAB*. Society for Industrial and Applied Mathematics, 2000. doi: 10.1137/1.9780898719598. Classic reference on spectral methods and their convergence properties.

Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31(3): 279–311, 1966. doi: 10.1007/BF02289464.

Sai Karthikeya Vemuri, Tim Büchner, Julia Niebling, and Joachim Denzler. Functional tensor decompositions for physics-informed neural networks. In *Proceedings of the 13th International Conference on Pattern Recognition (ICPR)*. Springer, 2024. doi: 10.1007/978-3-031-78389-0_3. URL https://arxiv.org/abs/2408.13101.

Júlia Vicens Figueres, Juliette Vanderhaeghen, Federica Bragone, Kateryna Morozovska, and Khemraj Shukla. \$pinn – a domain decomposition method for bayesian physics-informed neural networks. arXiv preprint arXiv:2504.19013, 2025.

Simon N. Wood. Generalized additive models: An introduction with r. *Chapman and Hall/CRC*, 2017.

Olek C. Zienkiewicz, Robert Leroy Taylor, and Jian Z. Zhu. *The Finite Element Method: Its Basis and Fundamentals*. Elsevier, Oxford, UK, 2005.

A DETAILS OF PDE EXAMPLES

In this appendix, we detail the PDE setups used in the main paper: Poisson, Wave, Viscous Burgers, and Linear Transport.

A.1 POISSON EQUATION

We consider the Poisson problem with homogeneous Dirichlet boundary conditions:

$$\begin{cases}
-\Delta u(\mathbf{x}) = f(\mathbf{x}) & \mathbf{x} \in \Omega, \\
u(\mathbf{x}) = 0 & \mathbf{x} \in \partial\Omega.
\end{cases}$$
(7)

where $\Omega = [0,1]^d$ and $\mathbf{x} = (x_1, \dots, x_d)$. We use the manufactured solution

$$u(\boldsymbol{x}) = \prod_{i=1}^{d} \sin(\pi x_i), \tag{8}$$

for which

$$-\Delta u = d\pi^2 \prod_{i=1}^{d} \sin(\pi x_i) = f(\boldsymbol{x}). \tag{9}$$

In the main experiments, we test 5d Poisson and 10d Poisson. Figure 6 shows a 2D slice of 5d Poisson u with respect to (x_1, x_2) while fixing $(x_3, x_4, x_5) = (0.5, 0.5, 0.5)$.

A.2 WAVE EQUATION

Wave equation is a time-dependent PDE that takes the form:

$$\begin{cases} u_{tt}(t, \mathbf{x}) = c^{2} \Delta u & \mathbf{x} \in (0, 1)^{d}, t \in [0, 1] \\ u(0, t) = u(1, t) = 0 & t \in [0, 1] \\ u(\mathbf{x}, 0) = \prod_{i=1}^{d} \sin(\pi x_{i}), u_{t}(\mathbf{x}, 0) = 0 & \mathbf{x} \in [0, 1]^{d} \end{cases}$$
(10)

where c is the wave speed. In our experiments, we test 1d with c=2.0, 5.0, 10.0 and 2d with c=2.0. The analytical form of Wave equation is $u(t,\mathbf{x})=\prod_{i=1}^d\sin(\pi x_i)\cos(\sqrt{d\pi}ct)$. Figure 6 shows the ground truth figure of 1d Wave equation when c=2.0.

Figure 6: Ground truths for 5d Poisson and Wave examples. The left figure is the ground truth of 5d Poisson slice at $(x_3, x_4, x_5) = (0.5, 0.5, 0.5)$. The right one is the ground truth of 1d wave equation when c = 2.0.

A.3 VISCOUS BURGERS

The Burgers equation is a fundamental nonlinear PDE combining advection and diffusion, used as a prototype for shock formation and turbulence modeling. We consider the following Viscous Burgers:

$$\begin{cases} u_t + uu_x = \nu u_{xx} & x \in [-1, 1], t > 0 \\ u(-1, t) = 0, u(1, t) = 0 & t \ge 0 \\ u(x, 0) = -\sin(\pi x) & x \in [-1, 1] \end{cases}$$
(11)

where viscosity $\nu=\frac{0.01}{\pi}$. With such small viscosity, the solution behaves almost inviscid: gradients steepen rapidly and form very thin viscous layers (shock transitions). Similarly, we set T=1 and $t\in[0,1]$. Analytical solution is introduced in (Basdevant et al., 1986). Gound truth figure is shown in main text, see Figure 4.

A.4 LINEAR TRANSPORT

Linear Transport (advection—equation) describes a profile being carried along characteristics at velocity without changing shape. The 1d example we use in the main paper takes form as:

$$\begin{cases} u_t + cu_x = 0 & x \in \Omega, t > 0 \\ u(0, t) = u(4, t) = 0 & t \ge 0 \\ u(x, 0) = u_0(x) & x \in \Omega \end{cases}$$
(12)

where we consider $c=10, \Omega=[0,4],$ $T=1,t\in[0,1]$ and initial condition $u_0(x)$ as:

$$u_0(x) = \begin{cases} 2, & 1 \le x < 3, \\ 1, & \text{otherwise.} \end{cases}$$

The piecewise constant profile induces discontinuities. Given the initial condition, the analytical solution is $u=u_0((x-$

Figure 7: 1d Linear Transport solution profiles when t = 0, 0.2, 0.5, 1.0s.

 $ct) \mod 4$). That is, the initial profile simply translates to the right at constant speed c without deformation. We show the solution profiles with respect to t=0,0.2,0.5,1.0s in Figure 7 We also test another form of 1d Linear Transport, see details in Section C.

B TRAINING DETAILS

Data and seed. For each PDE, we randomly sample according to Gaussian distribution N_f collocation points in the interior domain and N_b points on the boundary. For time-dependent PDEs, we additionally sample N_{ic} points from the initial condition. Values of N_f , N_b and N_{ic} have been shown in main text. For Poisson and Linear Transport problems, we normalize data into [-1,1] before sending into the model.

$$\tilde{x} = 2\left(\frac{x - x_{\min}}{x_{\max} - x_{\min}}\right) - 1$$

We ensured reproducibility by fixing the random seeds of both NumPy and PyTorch. In particular, np.random.seed(1234) and torch.manual_seed(1234) were used to control randomness in CPU and single-GPU computations. This setup guarantees that data sampling, weight initialization, and training outcomes remain consistent across repeated runs.

Router outputs. For dense MoE structure, the router outputs mixture weights via a softmax (see equantion 13) with temperature $\tau > 0$. As $\tau \to 0^+$, the distribution becomes more peaked (approaching a one-hot assignment), while $\tau \to \infty$ yields a uniform distribution. In our experiments, for Poisson and Viscous Burgers, we set $\tau = 1.0$ while for Wave and Transport, we set $\tau = 0.5$.

$$\operatorname{softmax}_{\tau}(z_{i}) = \frac{\exp\left(\frac{z_{i}}{\tau}\right)}{\sum_{i=1}^{K} \exp\left(\frac{z_{i}}{\tau}\right)}, \quad i = 1, \dots, K$$
(13)

where z_i is the original output of the router and K is the number of experts.

Loss function. We consider a generic time-dependent PDE written implicitly as

$$\begin{cases}
\mathcal{F}(x,t,u,\nabla u,\nabla^2 u) = 0, & (x,t) \in \Omega \times (0,T], \\
\mathcal{B}[u](x,t) = 0, & (x,t) \in \partial\Omega \times (0,T], \\
u(x,0) = u_0(x), & x \in \Omega,
\end{cases} \tag{14}$$

where \mathcal{F} encodes the governing PDE, \mathcal{B} specifies the boundary condition (Dirichlet/Neumann/periodic), and u_0 is the initial condition.

A PINN u_{θ} minimizes the composite loss

$$\mathcal{L}(\theta) = w_f \, \mathcal{L}_{PDE} + w_{bc} \, \mathcal{L}_{BC} + w_{ic} \, \mathcal{L}_{IC}, \tag{15}$$

Here $w_f, w_{bc}, w_{ic} > 0$ are scalar weights that balance the PDE residual, boundary, and initial terms, controlling the trade-off among them. The loss is obtained with collocation points $\{(x_f^{(i)}, t_f^{(i)})\}_{i=1}^{N_f}$, boundary points $\{(x_f^{(j)}, t_b^{(j)})\}_{i=1}^{N_{bc}}$, and initial points $\{x_{ic}^{(k)}\}_{k=1}^{N_{ic}}$:

$$\mathcal{L}_{\text{PDE}} = \frac{1}{N_f} \sum_{i=1}^{N_f} \left(\mathcal{F}(x, t, u_\theta, \nabla u_\theta, \nabla^2 u_\theta) \right)^2 \Big|_{(x_f^{(i)}, t_f^{(i)})}, \tag{16}$$

$$\mathcal{L}_{BC} = \frac{1}{N_{bc}} \sum_{j=1}^{N_{bc}} \left(\mathcal{B}[u_{\theta}] \right)^2 \Big|_{(x_{bc}^{(j)}, t_{bc}^{(j)})}, \tag{17}$$

$$\mathcal{L}_{IC} = \frac{1}{N_{ic}} \sum_{k=1}^{N_{ic}} \left(u_{\theta}(x_{ic}^{(k)}, 0) - u_{0}(x_{ic}^{(k)}) \right)^{2}.$$
(18)

All derivatives are obtained via automatic differentiation.

Table 3: ℓ_2 errors of 5d Poisson with different r = 1, 2, 3, 4, 5.

Type	r = 1	r=2	r = 3	r=4	r = 5
5d Poisson	7.1881×10^{-4}	2.6559×10^{-4}	1.8219×10^{-4}	1.5252×10^{-4}	3.1061×10^{-4}

Two-stage optimization. We adopt a two-stage scheme: Adam warm-up followed by L–BFGS refinement. We first optimize the network parameters with Adam ($1r = 10^{-6}, 5 \times 10^{-4}, 10^{-4}, 10^{-3}$ for Viscous Burger, Poisson, Transport and Wave respectively), updating at each training step:

$$\mathcal{L} = w_f \mathcal{L}_{PDE} + w_{bc} \mathcal{L}_{BC} + w_{ic} \mathcal{L}_{IC}.$$

In our implementation, w_{bc} and w_{ic} is fixed during this phase but w_f is dependent on experiments. For Viscous Burgers, we set $w_{ic}=10.0$ wile fix the rest weights to 1.0. For Poisson, $w_{bc}=5000.0$ and fix $w_f=1.0$. For Wave, we fix $w_f=1.0$ while fix others equal to 100.0. Lastly, for Linear Transport, we fix $w_{ic}=100.0, w_{bc}=10.0$. We linearly anneal the PDE residual weight from $w_f^{\rm init}=0.01$ to $w_f^{\rm final}=1.0$.

$$w_f(e) = w_f^{ ext{init}} + \left(w_f^{ ext{final}} - w_f^{ ext{init}}\right) \, \min\!\left(rac{e}{T_{ ext{anneal}}},\, 1
ight),$$

where e is the current Adam step and $T_{\rm anneal}=0.75\,n_{\rm Adam}$. Thus w_f increases linearly from 0.01 at e=0 to 1.0 at $e\geq T_{\rm anneal}$, after which it remains at 1.0.

We employ cosine annealing for the learning rate with CosineAnnealingLR (T_max = 20,000, eta_min = 10^{-6}), calling the scheduler at every step. Training steps $n_{\rm Adam}$ varies as experiments. For Viscous Burgers, Wave and Poisson, we set $n_{\rm Adam} = 10,000$ while for Linear Transport, we set $n_{\rm Adam} = 15,000$.

After the Adam warm-up, we switch to torch.optim.LBFGS with settings: max_iter = 20,000, tolerance_grad = 10^{-9} , tolerance_change = 10^{-12} , history_size = 100, and strong-Wolfe line search (line_search_fn = "strong_wolfe"). Following standard practice, we define a closure that recomputes the loss and its gradients; the PDE and boundary point sets are fixed once at the start of this phase (20,000 interior collocation points, 5,000 boundary points and 5,000 initial points) except for Viscous Burgers example where same sampling points are used as Adam. We use the same loss weighting as in Adam.

Unlike the Adam stage (which runs for a fixed number of steps), the L-BFGS stage proceeds until the optimizer's internal convergence criteria are met or $\mathtt{max_iter}$ is reached. Concretely, L-BFGS terminates early when the gradient norm falls below $\mathtt{tolerance_grad}$ (10^{-9}) or when the change in the objective is smaller than $\mathtt{tolerance_change}$ (10^{-12}), as determined by the strong-Wolfe line search and quasi-Newton updates. Therefore, the number of effective L-BFGS steps is not fixed across runs or PDEs.

C ADDITIONAL RESULTS AND EXPERIMENTS

C.1 EXTENDED RESULTS FOR MAIN EXPERIMENTS

Poisson and Wave. ℓ_2 relative errors about Poisson experiments are shown here. The Figure 8 demonstrates predicted solution, absolute error and ℓ_2 relative error about 5d Poisson with single expert module and r=4. The ℓ_2 errors of 5d Poisson with different r=1,2,3,4,5 are recorded in Table 3. For 10d Poisson, ℓ_2 relative error achieve 10^{-3} on average. Even when r=1, it obtains 1.0487×10^{-2} . For Wave equation, Figure 9 shows predicted solutions, absolute errors and relative ℓ_2 error plots for 1d Wave when c=2.0. Given this setting, ℓ_2 relative error achieves 2.3779×10^{-4} . For 2d Wave, an error of 2.4697×10^{-2} can be obtained.

Viscous Burgers. We first present domain decomposition results for K=4 and K=5. As shown in Figure 11 and Figure 12, introducing additional experts brings only limited new information to the decomposition. However, the experts attempt to further partition the small triangular area when $t \in [0,0.3]$, with Expert 5 in the K=5 case showing the most evident specialization. Overall, 3D

Figure 8: Predicted solutions and error plots for 5d Poisson with single expert module and r = 4.

Figure 9: Predicted solutions and error plots for 1d Wave when c = 2.0

achieves an ℓ_2 relative error of approximately 4.33×10^{-4} , which remains nearly unchanged across different numbers of experts.

Then we provide abalation analysis of how r affects the ℓ_2 relative error. Figure 10 shows the ℓ_2 error change as training steps up to 15,000 steps for r=[1,4,8,16]. Due to the inconsistent of the total training steps, we truncate at the smallest step. For r=[1,4,8,16], the total training steps are 16500,15200,15000,16800 and the final ℓ_2 errors are $8.5854\times 10^{-3},1.3682\times 10^{-3},3.3278\times 10^{-3},1.0079\times 10^{-3}$ respectively. This experiment demonstrates that generally ℓ_2 error decreases as r increases. However, when it increases to a certain value, its impact on ℓ_2 error is not that obvious.

Linear Transport. Here we present additional domain decomposition results of case in main text for K=2 and K=5. For K=2 (Figure 13), the solution is roughly split into two subdomains, but compared with the clearer partition when K=3 (Figure 5), the separation is less

Figure 10: ℓ_2 error change as training steps up to 15,000 steps for r=[1,4,8,16]. For r=[1,4,8,16], the total training steps are 16500,15200,15000,16800 and the final ℓ_2 errors are $8.5854\times 10^{-3},1.3682\times 10^{-3},3.3278\times 10^{-3},1.0079\times 10^{-3}$ respectively.

distinct. When K=5 (Figure 14), a new subdomain emerges, but the fact that Expert 2 consistently receives zero weight indicates that setting K=5 is redundant. Thus, for this example, $K_{optimal}=4$.

Figure 11: Domain decomposition of Viscous Burgers by K=4.

Figure 12: **Domain decomposition of Viscous Burgers by** K=5. The top left one is the ground truth figure. The remaining five are domain decomposition for each expert.

C.2 NEW EXPERIMENTS

Poisson. The Poisson example tested in main text is simply the production, we trained the following 5d case with complexity:

$$\begin{cases}
-\Delta u(\mathbf{x}) = f(\mathbf{x}) & \mathbf{x} \in \Omega, \\
u(\mathbf{x}) = 0 & \mathbf{x} \in \partial\Omega.
\end{cases}$$
(19)

where $\Omega = [0,1]^5$ and $\mathbf{x} = (x_1, \dots, x_5)$. We use the manufactured solution

$$u(\boldsymbol{x}) = \sum_{i=1}^{5} \sin(\frac{\pi}{2}x_i)$$

for which

$$-\Delta u = \frac{\pi^2}{4} \sum_{i=1}^{5} \sin(\frac{\pi}{2} x_i) = f(\mathbf{x}).$$
 (20)

Same as before, we also use single expert module to test VI. The exact solution of this case is the sum of dimension components, which is consistent with r=5, according to equation 3. Same as our discovery that when r=5, full interpretability is achieved. And the ℓ_2 relative error is 5.7608×10^{-4} given this setting. Figure 15 shows the ground truth, predicted solution and ℓ_2 relative error plots for r=5.

Figure 13: Domain decomposition of Linear Transport with K=2.

Figure 14: **Domain decomposition of 1d Linear Transport by** K=5**.** The top left one is the ground truth figure. The remaining five are domain decomposition for each expert.

Linear Transport. We consider another form of 1d Linear Transport with smooth domain. The PDE form is as follow:

Figure 15: Ground truth, predicted solution and ℓ_2 relative error plots for 5d Poisson with r=5

Figure 16: Domain decomposition of 1d Linear Transport with smooth domain by K=3.

$$\begin{cases} u_t + cu_x = 0 & x \in [0, 2\pi], t \in [0, 1] \\ u(0, t) = u(2\pi, t) & t \in [0, 1] \\ u(x, 0) = u_0(x) = \sin(x) & x \in [0, 2\pi] \end{cases}$$
(21)

The analytical solution is $u(t,x)=\sin(x-ct)=\sin(x)\cos(ct)-\cos(x)\sin(ct)$. Using single expert module with r=5, we get L_2 error 1.5159×10^{-3} . We obtain error 1.3409×10^{-3} when using three experts with r=5. Though with smooth region, 3D partitions the domain into subdomains separated by diagonal stripes similar to that in the ground truth. The Figure 16 shows the domain decomposition results when K=3. In this experiment, we find $K_{optimal}=3$. We also test VI of this example. When r=1,2,3,4,5,VI=0.8955,0.8614,0.9242,0.9887,0.9950, further indicating good interpretability even for small r.

D USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we made limited use of Large Language Models (LLMs) as auxiliary tools. Specifically:

- Editing and Polishing We used an LLM (ChatGPT) to polish the language of the paper, including improving grammar, readability, and stylistic clarity. The scientific content, arguments, and conclusions were entirely authored by us.
- Literature search assistance We used the LLM to help identify relevant references and related work. All final references were cross-checked and selected manually by the authors.
- Coding assistance For certain implementation details, we consulted the LLM to generate small code snippets (e.g., plotting utilities, debugging suggestions). The core research code, experimental design, and implementation were created and validated by the authors. The LLM was not involved in the generation of research ideas, methodological design, experimental analysis, or the writing of scientific contributions. Its role was strictly supportive, and final decisions on wording, citations, and code were made by the authors.