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ABSTRACT

Physics-informed neural networks (PINNs) have shown promise for solving par-
tial differential equations (PDEs), but they face significant challenges in high-
dimensional settings and when modeling solutions with sharp features. Existing
approaches also lack interpretable per-dimension representations and depend on
manually defined domain partitions. To address these challenges, we propose a
unified Dimension Domain Co-Decomposition (3D) framework that integrates di-
mension decomposition with a Mixture-of-Experts (MoE) based domain decom-
position. Our approach achieves three key innovations. First, we introduce an
interpretable dimension decomposition strategy that decouples individual coordi-
nate inputs within each expert using a single shared MLP with indexed inputs,
significantly reducing the model size. Second, we propose a novel metric, Vari-
able Interpretability (V' I), that quantifies the alignment between the learned latent
representations of each input dimension and their corresponding exact solution
components. Third, we present an MoE-driven domain decomposition architec-
ture that automatically partitions the solution space without requiring predefined
regions or interface conditions. Extensive experiments demonstrate that our ap-
proach improves both computational efficiency and solution accuracy across a
range of high-dimensional PDE benchmarks, with interpretable and scalable per-
formance.

1 INTRODUCTION

Partial differential equations (PDEs) provide the mathematical foundation for describing a wide
range of physical and engineering phenomena, including fluid dynamics |Anderson, [1995, wave
propagation (Strauss} 2007), and quantum mechanics (Griffiths & Schroeter, [2018). Classical nu-
merical solvers such as the finite element method (FEM) (Zienkiewicz et al., 2005} [Babuskal [1971),
the finite difference method (FDM) (LeVequel |2007; [Lax & Richtmyer, |1956), and the spectral
method (SM) (Trefethen, [2000; Boyd, [2001)) have long been the standard tools for approximating
PDE solutions. FEM is flexible for handling irregular domains, FDM is simple and efficient on
structured grids, while SM achieves spectral (fast) convergence but is restricted to periodic bound-
ary conditions. Despite their success, both methods suffer from rapidly increasing computational
cost when dealing with high-dimensional problems, complex nonlinearities, or solutions with sharp
local features, which often makes them impractical for large-scale applications.

In recent years, neural networks have emerged as promising alternatives for PDE solving, either
by directly approximating solutions from data or by embedding the governing equations into the
training objective through physics-informed neural networks (PINNs) (Raissi et al., [2019). PINNs
offers clear advantages in high-dimensional settings where traditional numerical solvers become in-
feasible. Building on this flexibility, two major lines of decomposition-based methods have been
explored to further enhance scalability and adaptivity. Dimension decomposition improves scala-
bility by factorizing solutions along coordinates (Cho et al., 2023 |Liu et al., 2024). This strategy
simplifies optimization in high-dimensional settings and further mitigates the curse of dimension-
ality. However, existing approaches lack interpretability measurement. In contrast, domain de-
composition (Jagtap et al., 2020a; [Shukla et al., 2021; |Hu et al.| [2023) focuses on local adaptivity
by dividing the computational domain into smaller subdomains, with each subdomain handled by
a specialized model. This enables better approximation of both smooth and discontinuous solu-
tions. Nevertheless, such methods typically rely on manually pre-defining the subdomains. When
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the subdomains overlap, one must introduce extra loss terms to ensure the predictions agree in the
overlapping regions; when the subdomains are non-overlapping, additional conditions are required
to enforce continuity across the shared boundaries. These constraints make the training procedure
more complicated and problem-dependent.

To overcome these limitations, we propose Dimension Domain Co-Decomposition (3D), a unified
framework that combines both decomposition strategies in a scalable, interpretable, and fully auto-
matic manner. At the dimension level, each variable is modeled separately, which improves scala-
bility in high dimensions. In practice, these dimension components are processed through a shared
MLP, ensuring parameter efficiency across coordinates. At the domain level, 3D employs Mixture
of Experts (MoE) (Jacobs et al) [1991). It contains multiple experts, and a router assigning soft
weights to combine their outputs. This mechanism encourages each expert to specialize in certain
subregions, so that domain decomposition emerges adaptively during training. As a result, 3D can
effectively capture solutions with sharp local features without requiring pre-defined regions or ex-
plicit interface conditions. An illustration of 3D with two experts on input [, z] is shown in Figure
In addition, we propose Variable Interpretability (V' I), a quantitative metric that matches predicted
per-dimension components to ground-truth factors. VI takes values in [0, 1], with 1 indicating per-
fect alignment across variables.
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Figure 1: Structure of 3D (Dimension Domain Co-Decomposition) with two experts. Left
(Mixture-of-Experts). The router takes the spatiotemporal input [¢, 2] and produces two gating
weights after a softmax. These weights induce an automatic partition of the domain (illustrated
by the red/blue subdomains). The model’s prediction is obtained as a weighted sum of the two ex-
pert outputs yi, yo. Right (Expert structure). Each expert takes the same input [¢, ] and feeds two
indexed streams (one for x and one for ¢) into a shared MLP, which produces r latent components
for each. The x-t component pairs are combined by element-wise multiplication, and then summed
over the r pairs to yield the expert’s output. Reference Target = and Reference Target ¢ is used to
compute V' I by comparing them with the learned x and ¢t components. Together, the router and
experts realize domain decomposition and dimension decommposition within each subdomain.

‘We summarize our contribution as follows:

* We propose Dimension Domain Co-Decomposition (3D), a unified framework integrat-
ing dimension decomposition with adaptive domain decomposition for solving high-
dimensional PDEs.

* Within 3D, we design a lightweight shared-MLP architecture that processes dimension-
index pairs, enabling reduced model size while capturing coordinate-wise features.

* We introduce Variable Interpretability (V' 1), a novel, quantitative, scale-invariant metric to
evaluate dimension-wise interpretability. It evaluates the alignment between the learned
latent representation of each input dimension and the ground-truth components, thereby
serving as a direct measure of interpretability.

* We employ MoE to induce an adaptive and automatic domain decomposition capturing
sharp features without requiring predefined subdomains or explicit interface conditions.
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2 RELATED WORK

2.1 DIMENSION DECOMPOSITION AND INTERPRETABILITY

High-dimensional PDEs pose significant challenges for neural network-based solvers. Building on
the PINNs framework, several recent works (Cho et al., 2023} [Liu et al.| [2024; [Vemuri et al., 2024}
Liu et al., 2022) introduce dimension-wise decomposition strategies to mitigate the curse of di-
mensionality. Most of these approaches rely on classical tensor decomposition techniques (Tucker,
1966; |Carroll & Chang| [1970), which improve efficiency by reducing the representation complex-
ity, but still assign a separate neural network to each dimension, leading to suboptimal efficiency.
At the same time, these methods offer little interpretability measurements of the learned compo-
nents. In parallel, the interpretable machine learning community has developed models such as
GAMs, NAMs, and self-explaining networks (Hastie & Tibshirani, {1990; Wood, 2017; |Agarwal
et al., 2021} |Alvarez-Melis & Jaakkolal 2018 Lou et al.,|2013)), which represent the target function
as a sum of univariate functions, each depending on a single variable. These models offer intuitive
per-variable explanations, but their additive structure struggles to capture higher-order interactions,
which are often intrinsic to PDE solutions. Beyond additive models, sparse regression—based meth-
ods such as SINDy and its variants (Brunton et al.| 2016} Kaiser et al.| [2018)) provide another line
of interpretability by discovering governing equations from data. Unlike variable-wise interpretabil-
ity, these methods explain the underlying physical laws by identifying symbolic equations, rather
than uncovering the structures of PDE solutions themselves. To fill in these gaps, We propose a
shared-MLP dimension decomposition that removes redundant per-dimension networks for greater
efficiency, and introduce Variable Interpretability (V' I), a metric quantifying the alignment between
learned components and ground-truth factors.

2.2 DOMAIN DECOMPOSITION OF PINNS

Domain decomposition has been widely adopted to improve PINNs for solving complex PDEs.
The XPINNs framework (Jagtap et al.,|2020c)) pioneered this idea by partitioning the computational
domain into multiple subdomains and training a separate PINN in each region; to ensure consis-
tency, XPINNs enforces continuity of the solution across subdomain interfaces through additional
interface losses. Subsequent works have refined this approach: Shukla et al. (Shukla et al., 2021}
introduced parallel implementations combining cPINNs (Jagtap et al.|[2020b)) and XPINNs, exploit-
ing overlapping Schwarz-type decompositions to better handle multi-scale problems. [Hu et al.
(2023)) proposed APINNSs, which use soft gating mechanisms to allow more flexible domain decom-
position. Dolean et al. (Dolean et al., [2024) developed multilevel decomposition architectures to
improve accuracy for large or highly heterogeneous domains. More recently, the approach named
BPINN (Vicens Figueres et al.|[2025) integrates Bayesian PINNs with domain decomposition, com-
puting local uncertainties concurrently and enforcing interface flux continuity among subdomains.
There are also specialized applications, such as domain decomposition PINNs for incompressible
Navier—Stokes equations (Gu et al. |2024). Despite these advances, a common limitation is that
all existing approaches require predefined partitions of the computational domain. Moreover, addi-
tional conditions must be imposed at the subdomain interfaces to guarantee continuity of the solu-
tion. These requirements restrict adaptivity and limit the flexibility of domain decomposition when
applied to PDEs with unknown or heterogeneous solution structures. In contrast, our framework
enables automatic and adaptive domain decomposition during training.

3 DIMENSION DOMAIN CO-DECOMPOSITION

Existing PINNs-based methods for high-dimensional PDEs suffer from three obstacles: (i) high
computational cost due to the need for dense collocation sampling; (ii) a lack of principled in-
terpretability metric for dimension-wise factorizations, where scaling, permutation, and cross-
dimension mixing obscure whether learned components reflect the underlying physics; and (iii)
brittle domain decomposition that depends on predefined subdomains and delicately tuned interface
penalties, making performance sensitive to the chosen partition and enforcement strength. To ad-
dress these issues, we adopt a dimension decomposition that reduces computation-graph complexity
by combining them in a low-rank manner; we introduce Variable Interpretability (V') to quantify
alignment between learned per-dimension components and reference factors; and we develop MoE-
driven domain decomposition that maps the input coordinates to soft expert assignments, avoiding
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manual region design and explicit interface enforcement. In combination, the dimension decom-
position lowers training cost, V' I provides quantitative interpretability, and the MoE router delivers
robust, automatic domain partitioning. Given input x = [z, x2, - , 24|, the predicted solution @
takes the form:

ﬁ(xlv'x% T 7Id) = ZG(Z)(X)Ez(X), Et(x) = Ei(fl(x1)7f2(x2)7 T afd(zd)) (1)

where f; forj = 1,2, -, d stands for the Multilayer Perceptron (MLP) processing each dimension
component. F; fori = 1,2,---, K represents expert while G(x) € RX is a router assigning
weights for experts.

In section[3.1} we present the structure of a single expert and explain its role in achieving dimension
decomposition. Section [3.2]introduces the VI for assessing dimension interpretability. Section [3.3]
describes the overall MoE-driven domain decomposition framework.

3.1 DIMENSION DECOMPOSITION IN 3D FRAMEWORK

Conventional methods mix all dimensions in a single network. For high-dimension problems, large
number of data complicates the computation graph, making both forward and, more severely, back-
ward propagation expensive. We adopt dimension decomposition in single expert to decouple coor-
dinates and simplify both forward propagation and derivative computation. Our domain decomposi-
tion design is similar in form to the Canonical Polyadic Decomposition (CP-decomposition) (Carroll
& Changl |1970; Harshman, |1970). Conventionally, for d-dimensional input, the output can be writ-
ten as follows:

where 7 : RY — R is the predicted solutlon, 2; € R is a coordinate of j-th component including
temporal coordinates if exist. f;(x;) : R — R” represents independent MLP processing x;. r is
comparable to the rank in CP-decomposition. In our settings, r impacts more on Variable Inter-
pretability (V' I) than accuracy. Modest r are sufficient-typically € {4,---,16} achieving good
interpretability while maintaining satisfactory accuracy, see section

However, independent per-axis processing introduces a large number of parameters. We address
this issue by using a single shared MLP to model all dimension components within each expert.
Specifically, each component is represented by a two-dimensional input vector consisting of the
coordinate value and its index. For the j-th dimension component, the corresponding output is
given by f(z;,,j — 1). For example, for 3d PDE problem, outputs of dimension components are
f(z1,0), f(x2,1), f(x3,2). We treat temporal coordinate ¢ as part of the physical vector coordi-
nates. Therefore, equation[Z]can be rewritten into:

xla"' Z.f(l 1’1, (x27 )f(l)(xdadfl) (3)

Our framework bases on PINNs. Therefore, the loss function can be written as follows:
Loss = wpge Losspde + WicLossic + wycLossy. @)

where Losspqe is the PDE residual loss, which penalizes the discrepancy between the neural network
prediction substituted into the PDE and the equation’s right-hand side at sampled collocation points.
Loss;. and Lossy. represent initial-condition loss (for time dependent problems) and boundary-
condition loss, respectively. More information is included in Appendix [B]

The proposed architecture is related to Separable Physics-Informed Neural Networks
(SPINNSs) (Cho et al.l 2023), but it differs in several key aspects that bring advantages: First, we
use single MLP processing each dimension component with an additional index as input, saving the
memory when handling high-dimensional problems, see section .2] for more information. Second,
our framework naturally integrates with a MoE structure. While SPINNs rely on forward-mode au-
tomatic differentiation (AD), this is not directly compatible with MoE because the router breaks the
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separable structure. Instead, we adopt reverse-mode AD which allows the decomposition to remain
effective while benefiting from adaptive domain specialization. Lastly, the dimension decomposi-
tion design enables us to bypass meshgrid collocation points. Instead of constructing a full grid, we
independently sample training points for each dimension component and then combine them, which
drastically reduces the number of collocation points required and improves training efficiency.

3.2 VARIABLE INTERPRETABILITY (VI)

Previous dimension decomposition techniques lack quantitative interpretability for dimension com-
ponent. To address this gap, we propose a new metric that evaluates each dimension component by
comparing it against the reference target (either analytical or high-accuracy numerical). Concretely,
for j-th dimension component, we obtain f(x;,j — 1) € R" from dimension decomposition. Eval-
uating this function on n; sampled points produces n; row vectors in R", which we stack to form a
matrix F; € M™*". In parallel, we construct the ground-truth matrix G; € M"™ *° by evaluating
the exact j-th factor at the same points. For example, in the 5D Poisson equation with solution
u(z) = H?Zl sin(mx;), the predicted x;-component is represented as F; € M" %", while the
ground-truth factor is g;(z) = sin(7z;), evaluated on n; points to form G; € M™ **. For simplic-
ity, we use F' and G in the remainder of this section.

Before computing the metric, both F' and G are normalized. Take F' as an example:
~ Fy —
Fyp = ik — Hk

max(y /S0, (Fye = )2, )

where p, = % 22:1 Fuk, € = 1072 to avoid denominator is 0.

i=1,..,nk=1,..,r )

Then we apply the QR decomposition to F and G to obtain the reduced orthonormal bases
Qp and Q5. We then compute the singular values {o;};”; of Q;Qé, where m =
min(rank(Q ), rank(Qs)). The VI of the j-th component is defined as:

1 m
VI =— > o7 (6)
=1

V'I; takes values in the range [0, 1] with values closer to 1 indicating a better fit to the exact terms.
For each problem, we then take the mean of V' I; across j to get final V1.

Notably, this metric evaluates all-rank representation features as a whole, testing how well the sub-
space spanned by the exact basis () is aligned with (and contained in) the subspace spanned by the
predicted basis @ . In practice, the exact matrix G often has shape (n, s) with s < r, where 7 is
the decomposition rank. Thus, the number of exact basis vectors can be smaller than the number of
predicted ones. Only when s = r, VI = 1 means the predicted subspace and the exact subspace are
identical. For example, G, € M"™*! in 5d Poisson equation while we use 7 > 1 in section In
this way, VI = 1 means that the exact one-dimensional subspace is fully contained in the predicted
subspace. In short, when s < 7, VI measures whether the predicted subspace totally covers the
exact subspace instead of testing if two subspaces are identical. This case is particularly relevant in
practice, since r can be chosen arbitrarily large while the number of exact basis vectors s is often
much smaller.

3.3 MOE-DRIVEN DOMAIN DECOMPOSITION

Partitioning the solution domain into subdomains enables local specialization of the underlying
physics, improving accuracy and stability. Previous domain decomposition methods require manu-
ally pre-defined regions and interface conditions. To achieve automatic and adaptive domain decom-
position, we adopt a Dense MoE model (Jacobs et al.,[1991). Compared with Sparse MoE (Shazeer
et al.,2017), dense MoE avoids expert collapse and provides more stable training. This is impor-
tant in problems with shocks where top-k gating may cause instability near shocks. Router is a MLP
G : RY — RX taking only x € R? (including temporal and spatial coordinates) as input. It produces
logits which are then converted into mixture weights via a softmax. The weight assignment serves
as a soft partition indicator — large weight marks the region where expert is responsible for. Each
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expert F; fort = 1,2,--- , K specializes in local regions. It remains smooth within its responsible
region while differing from other experts to cover complementary behaviors. Together, they provide

global approximation by Zfil G(x)E;(x).

Since the predicted solution is the weighted sum of experts’ outputs, the overall loss function follows
equation |4} except for the computation of u. All experts share same architectures and inputs with
separate parameters. End-to-end training is performed. Both the router and experts are updated
via gradient descent optimization. Our experiment results demonstrate that increasing the number
of experts K initially leads to significant error reduction and reflects finer domain decomposition.
However, beyond a certain number K)imqi, additional experts yield similar errors and no more
new information about domain decomposition. In practice, we select K,ptimar as best number of
experts.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate our framework on two settings: (i) Dimension decomposition (mainly Poisson and
Wave equations), and (ii) MoE-driven domain decomposition in which each expert uses the same
dimension decomposition architecture (Viscous Burgers and Linear Transport equations). In our ex-
periments, training is first performed with the Adam optimizer for fast convergence and followed by
LBFGS for refinement. A cosine-annealing scheduler is applied to adjust the learning rate. Training
performances are measured by the relative ¢ error. All experiments are trained on a single NVIDIA
RTX 5090 GPU.

Dimension Decomposition and Interpretability. Our framework is built on a unified expert de-
sign, where each expert employs a shared MLP for dimension decomposition. These experts are
either combined under a MoE structure (Viscous Burgers and Linear Transport) or used as a sin-
gle module (Poisson and Wave equations). To evaluate the scalability and efficiency of this shared
MLP design, we first conduct a parameter count comparison across all four PDE benchmarks. In the
subsequent studies, we focus on Poisson and Wave equations with a single expert module to high-
light the effect of dimension decomposition and quantify interpretability using the proposed V' I.
The shared MLP within each expert module consists of two hidden layers of width 64 with Tanh
activation by default.

Domain Decomposition. Viscous Burgers equation and Linear Transport equation (Appendix [A)
employ MoE-driven domain decomposition while keeping dimension decomposition inside each
expert, showing not only domain decomposition but also comprehensive test of 3D framework.
Dense MoE with multiple experts are applied. The router was set to be a 5-layer MLP with width
64 per layer and Tanh activation.

4.2 DIMENSION DECOMPOSITION AND INTERPRETABILITY

Benefit of Shared MLP. We first demonstrate the benefit of the shared MLP inside each expert
module. Table [T]compares the number of trainable parameters across different PDE problems. We
fix » = 16 for this parameter test. For Poisson, Wave equations, we adopt a single expert. For
the Linear Transport and Viscous Burgers equation, we use 3 experts and 2 experts, respectively.
Across all settings, the shared MLP design significantly reduces the number of trainable parameters
compared with independent MLPs design. The advantage enlarges as the input dimension grows,
highlighting the scalability of our approach. In the context of a single expert module, the parameter
count of a shared MLP is independent of the input dimension, whereas it grows with the dimension
for independent MLPs. When extended to a MoE framework, the shared MLP architecture reduces
the overall number of parameters by sharing them across the experts.

Shared MLP architecture also leads to reduced memory. Generally, the shared design requires on
average 77.8% of the memory compared to independent MLPs. The efficiency gain scales with
dimensionality: in the 5d Poisson problem, the shared MLP reduces memory consumption to 50.0%,
and in the 10d Poisson problem, the shared design achieves an even greater reduction, using only
30.4% of the memory.
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Table 1: Comparison of number of trainable parameters between shared MLP and independent
MLPs design.

Type 5d Poisson 10d Poisson 1d Wave 2d Wave Burgers Transport
Shared MLP 5392 5392 5392 5392 23586 29043
Independent MLPs 26640 53280 10656 15984 34114 44835

The training performance of the shared MLP is comparable to that of independent MLPs with far
fewer parameters, and both clearly outperform vanilla PINNs (Figure [2). For vanilla PINNs, we
adopt a 10-layer MLP with width 64 and Tanh activation. We report results on the 5d Poisson
equation. Since training stops once the convergence condition is met, the total number of training
steps varies across models. For comparison, we truncate at the smallest step count, 11,400, which
corresponds to the termination of both the shared and independent MLPs. By contrast, vanilla PINNs
stop at 23,400 steps. At termination, the shared MLP, independent MLPs, and vanilla PINNs achieve
o errors of 1.8430 x 1074, 3.2620 x 104, and 7.5451 x 1073, respectively.

Furthermore, we evaluated the training performance on the 10d Poisson problem. For fairness, the
baseline PINNs uses a single MLP with four hidden layers and width 64, identical to the shared MLP
configuration. With a comparable number of parameters (5392 for the shared MLP versus 4929 for
the baseline PINNSs), the shared MLP with rank r = 16 achieves a relative /5 error of 1.25 x 1073
after only 11,500 epochs. In contrast, the standard PINN requires 31,500 epochs yet converges to a
much worse error of 1.29 x 10~!. Although the shared-MLP requires a bit higher per-epoch cost,
resulting in a total training time of 1579 s versus 1184 s, the substantial gain in accuracy outweighs
this moderate runtime trade-off. These results indicate that the shared-MLP provides a far more
expressive representation for high-dimensional Poisson problems, even under comparable model
capacity.

Moreover, the separable parameterization supports dimension expansion: a model trained in a lower-
dimensional setting can be directly fine-tuned to higher-dimensional problems, whereas standard
MLP-based PINNs cannot be reused due to mismatched input dimensionality. We fine-tuned a
5D model on the 8D Poisson problem, accelerating convergence and achieving better accuracy.
Complete fine-tuning details and results are provided in the Appendix[C]

Interpretability. We train the Poisson
equation with 8192 collocation points and 1073 5 — SharedMLP
2048 boundary points using an expert : == IndependenthLPs
module. The values in Table [2] repre-

sent the mean VI averaged over five in- 10
dependent random seeds in all the dimen-
sions. From the analytical solution u =
H?:l sin(mx;) (Appendix @, one might
expect that r = 1 would suffice for inter-
pretability compared to equation [3] How-
ever, our experiments demonstrate that 10-2
r = 1 is insufficient. By increasing r

to 4, we obtain VI ~ 1, as reported in

Table 2] For higher dimensions, we fur- : 50 s v v Tovoo

ther test the 10d Poisson problem. Even in Training steps

this case, full interpretability (VI = 1) is

achieved with r = 5, and the model also  Figure 2: Comparison of relative /5 error (log scale)
attains a satisfactory accuracy with /5 er- for 5d Poisson between shared MLP, independent
ror 0.0025+0.0028. These results confirm  MLPs and vanilla PINNs. Training is displayed up
that a small value of r ensures good inter- to 11,400 steps, where both the shared MLP and in-
pretability while maintaining strong learn-  dependent MLPs converge. The final £ errors are
ing performance. For completeness, we 1.8430 x 10~* (shared MLP), 3.2620 x 10~ (inde-
further evaluate our framework on a 2d  pendent MLPs), and 7.5451 x 10~3 (vanilla PINNSs).
Poisson equation defined on an L-shaped

domain, demonstrating that the method extends naturally to irregular geometries. The full setup and
results are provided in Appendix [}

Relative L; error
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Table 2:
PDE examples r=1 r=2 r=3 r=4 r=5
5d Poisson 4.114+0.00 91.214+12.66 99.72+0.14 99.99+0.01 100.00 + 0.00
10d Poisson 4.824+1.10 87.48+£749 99.46+£0.06 99.99+0.01 100.00+ 0.00

1d Wave ¢ =2 100.00 £ 0.00 100.00 4+ 0.00 100.00 £ 0.000 100.00 £ 0.00 100.00 % 0.00
IdWavec=5 49.26+1.04 83.09+282 90.65+£6.78 90.72+6.64 99.40£0.10
Id Wave c =10 41.71+£8.02 54.71£10.56 58.39+£3.58 59.23£2.83 84.59+£3.42
2dWavec=2 67.56+1.34 9453+£3.10 99.74+0.19 99.97+0.02 100.00 £ 0.00

For the Wave equation, we use 8192 collocation points, 1024 initial points, and 1024 boundary
points, again with a single expert module. In this setting, » = 1 is sufficient to achieve full in-
terpretability with VI = 1, consistent with the analytical solution u(t, x) = sin(wz) cos(cnt) (Ap-
pendix[A). We first examine the 1d case with ¢ = 2. Figure[3|compares the predicted and exact com-
ponents f:(t) = cos(cnt) and f(x) = sin(7z) at training steps 1000, 2000, 3000, and 4000. As
suggested by the analytical solution, the t-component has a higher frequency than the x-component.
Accordingly, the model learns f, (x) within the first 1000 steps but requires up to 4000 steps to accu-
rately capture f3(t).

We then test cases with ¢ = 5 and ¢ = 10, where the solution includes
higher-frequency terms cos(crt). In these settings, » = 1 is no longer sufficient for full interpretabil-
ity. Nevertheless, V' I improves as r increases, reaching VI ~ 1 for ¢ = 5. Finally, we consider
the 2d Wave equation with analytical solution u(t, 1, z3) = sin(mxz) sin(mzy) cos(v/2ert) and
¢ = 2.0. The additional spatial dimension increases the learning difficulty, as reflected in Table [2]
Still, the model achieves VI = 1 at » = 5, underscoring that small values of r suffice to ensure
strong interpretability.

ft-step1000 ft-step2000 ft-step3000 ft-step4000

0.10
0.1 —— pred ft . 0.1 —— pred ft —— pred ft —— pred ft
O\ et ’ -+ trueft 0.05 - trueft )/ 0.05 -+ trueft
—_ —_ —_ 7/ —
= = = =
E 0.0 E 0.0 g 000 g oo
-0.05 -0.05
7
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Figure 3: Components’ interpretability of 1d Wave equation when c = 2. The first row represents
comparison of ¢-component while the second row represents comparison of x-component. Here
“pred f.” and “pred f;” in the figure refers to the shared MLP processing x and ¢ respectively. The
black dotted line stands for true value from analytical solution and the blue solid line stands for
predicted value. From left to right, the columns represent the 1000th, 2000th, 3000th, and 4000th
training steps, respectively.

4.3 DOMAIN DECOMPOSITION

Multiple experts and a router are employed for automatic domain decomposition for Viscous Burg-
ers. Within each expert, dimension decomposition is applied. The shared MLP consists of two
hidden layers of width 32 with » = 16. The training data consists of 10,000 randomly sampled
collocation points, 256 initial points, and 200 boundary points. For testing, we adopt high-accuracy
dataset generated in MATLAB, as in PINNs (Raissi et al.,[2019).

For the tested viscosity v = 2(see Appendix [A), the shock at z = 0 represents the solution’s
main discontinuity. It is, therefore, the natural choice for the splitting boundary in domain decom-
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Figure 4: Ground truth and domain decomposition results of Viscous Burger for X' = 2 and
K = 3. The left panel in the first row shows the ground truth solution. The remaining two panels
in the first row display the decomposition results with K = 2, indicating obvious boundary of
x = 0. Three figures in the second row correspond to K = 3, which shows little new decomposition
information. For K = 1, 2, 3, /5 error achieves R
showing effectiveness of MoE structure.
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Figure 5: Results of domain decomposition of Linear Transport for KX = 3, 4. The left panel in
the first row shows the ground truth solution. The remaining three panels illustrate weight assign-
ments of experts when K = 3, demonstrating clear cut-off lines same as the ground truth. Four
panels in the second row are domain decomposition results of K = 4, displaying more detailed
partition.

position (see Figure ). Although the number of experts affects the precise partitioning, this critical
shock location can be consistently identified. We visualize the router assignments for each expert.
Figure ] shows the domain decomposition results for Viscous Burgers with different numbers of ex-
perts K. It is evident that for K = 2, the model achieves domain decomposition, mainly separated
by shock at x = 0. Increasing the number of experts to K = 3 does not introduce new meaningful
subdomains since the additional expert tends to receive small weights.

Appendix [C| provides additional visualizations for K = 4 and K = 5 and an ablation analysis
of how r affects the error.

We further evaluate the 1d Linear Transport equation. In the main paper, we present results for the
case with clearly separable regions (Appendix [A)), while the case with smooth transitions is deferred
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to Appendix [C} For both settings, we use 8192 collocation points along with 1024 initial points and
1024 boundary points.

For MoE-driven domain decomposition, we find that using three experts (X = 3) yields a reasonable
decomposition. In this case, we set » = 4. The learned partition successfully captures the diagonal
stripe structures observed in the ground truth (Figure[5), with the predicted stripe locations closely
matching those of the exact solution. Results with four experts (KX = 4) are shown in the second row
of Figure[5] where we use » = 8. The additional expert produces a more detailed partition. Further
results for other values of K are provided in Appendix [C} demonstrating that too few experts lead to
unclear decompositions, while larger K do not yield additional structural information.

5 CONCLUSION

In this paper, we propose Dimension Domain Co-Decomposition (3D), a PINNs-based framework
that unifies dimension decomposition and MoE-driven domain decomposition. Within each expert,
a shared MLP processes coordinate—index pairs to produce dimension-wise functions. To quantify
the alignment between predicted dimension component and ground truth component, we introduce
Variable Interpretability (VI). At the MoE level, the router adaptively partitions the domain so
that experts specialize in local regions without requiring predefined subdomains or explicit interface
conditions. Through experiments on PDE benchmarks, we show that 3D not only achieves good
accuracy but also produces interpretable decompositions across dimensions according to V' I. Nev-
ertheless, our study has limitations. VI relies on reference solutions that are dimension-separable.
For non-separable solutions, we must construct separable approximations, for example using trun-
cated Fourier series, and compare the predicted components against these numerical factors. Future
work should explore more general interpretability metrics that extend beyond separable settings.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code for our framework (train-
ing, evaluation, and visualization) is attached as supplementary material. For clarity, each PDE
example (Poisson, Wave, Burgers, Transport) is implemented in a separate code file named after
the corresponding PDE problem, making it straightforward to reproduce individual experiments.
PDE datasets are generated from analytic or high-accurate numerical solutions as described in Sec-
tion We provide all hyperparameter settings in Appendix |B} together with fixed random seeds
for PyTorch and NumPy.
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Figure 6: Ground truths for 5d Poisson and Wave examples. The left figure is the ground truth
of 5d Poisson slice at (x3,z4,25) = (0.5,0.5,0.5). The right one is the ground truth of 1d wave
equation when ¢ = 2.0.

A DETAILS OF PDE EXAMPLES

In this appendix, we detail the PDE setups used in the main paper: Poisson, Wave, Viscous Burgers,
and Linear Transport.

A.1 POISSON EQUATION

We consider the Poisson problem with homogeneous Dirichlet boundary conditions:

—Au(x) = f(x) x€Q, o
u(x) =0 x € 092.
where Q = [0,1]% and x = (1, ..., 24). We use the manufactured solution
d
u(x) = H sin(mx;), (8)
i=1
for which
d
—Au = dn* H sin(rx;) = f(x). )
i=1

In the main experiments, we test 5d Poisson and 10d Poisson. Figure [§] shows a 2D slice of 5d
Poisson v with respect to (1, x2) while fixing (3, x4, x5) = (0.5,0.5,0.5).

A.2 WAVE EQUATION

Wave equation is a time-dependent PDE that takes the form:

ug(t,x) = 2 Au x € (0,1)% ¢t € [0,1]
uw(0,t) = u(1,t) =0 t e 0,1]
d (10)

u(x,0) = Hsin(ﬂxi),ut(x,O) =0 xe[0,1)¢
=1

where c is the wave speed. In our experiments, we test 1d with ¢ = 2.0,5.0,10.0 and 2d with
¢ = 2.0. The analytical form of Wave equation is u(t,x) = Hle sin(mz;) cos(vVdmet). FigureEI
shows the ground truth figure of 1d Wave equation when ¢ = 2.0.
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A.3 Viscous BURGERS

The Burgers equation is a fundamental nonlinear PDE combining advection and diffusion, used
as a prototype for shock formation and turbulence modeling. We consider the following Viscous
Burgers:

Up + Uy = VUgy ze[-1,1,t>0
w(=1,8) = 0,u(l,t) =0 t>0 (11)
u(zx,0) = —sin(7x) x € [-1,1]

where viscosity v = %. With such small viscosity, the solution behaves almost inviscid: gradients
steepen rapidly and form very thin viscous layers (shock transitions). Similarly, we set 7" = 1 and
t € [0,1]. Analytical solution is introduced in (Basdevant et al.,|1986). Gound truth figure is shown
in main text, see Figure @]

A.4 LINEAR TRANSPORT

Linear Transport (advection—equation)
describes a profile being carried along t=0.0 t=0.2

characteristics at velocity without chang- : :
ing shape. The 1d example we use in the .
main paper takes form as: ES ES
ut"'cu(z;:o CCEQ7t>O 1Ou 1 2 3 4 10o 1 2 3 4

u(0,t) =u(4,t) =0 t>0 =05 =10
u(z, 0) = uo(z) x € - N
(12) 18 18
where we consider ¢ = 10, Q = [0,4], = =
T = 1,t € [0,1] and initial condition 1 12
UO((L‘) as: 10{ —— 10

2, 1<z<3, . . .
ug(x) = 1 therwi Figure 7: 1d Linear Transport solution profiles when
»  otherwise. t=0,0.2,0.5,1.0s.

The piecewise constant profile induces

discontinuities. Given the initial condi-

tion, the analytical solution is u = ug((z—

ct) mod 4). That is, the initial profile

simply translates to the right at constant speed ¢ without deformation. We show the solution profiles
with respect to ¢t = 0,0.2,0.5,1.0s in Figure [7] We also test another form of 1d Linear Transport,
see details in Section[Cl

B TRAINING DETAILS

Data and seed. For each PDE, we randomly sample according to Gaussian distribution Ny col-
location points in the interior domain and NN;, points on the boundary. For time-dependent PDEs,
we additionally sample N;. points from the initial condition. Values of N, NV}, and IV;. have been
shown in main text. For Poisson and Linear Transport problems, we normalize data into [—1, 1]
before sending into the model.

~ LT — Tmin
§ = 9(———Tmin
Tmax — LTmin

We ensured reproducibility by fixing the random seeds of both NumPy and PyTorch. In particu-
lar, np.random.seed (1234) and torch.manual_seed(1234) were used to control ran-
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domness in CPU and single-GPU computations. This setup guarantees that data sampling, weight
initialization, and training outcomes remain consistent across repeated runs.

Router outputs. For dense MoE structure, the router outputs mixture weights via a softmax (see
equantion with temperature 7 > 0. As 7 — 0T, the distribution becomes more peaked (ap-
proaching a one-hot assignment), while 7 — oo yields a uniform distribution. In our experiments,
for Poisson and Viscous Burgers, we set 7 = 1.0 while for Wave and Transport, we set 7 = 0.5.

exp($) -
=K 1= 17...,
21 exp(Z)

where z; is the original output of the router and K is the number of experts.

softmax,(z;) = K (13)

Loss function. We consider a generic time-dependent PDE written implicitly as
F(z,t,u,Vu, V2u) =0, (z,t) € Qx (0,7,
Blu](z,t) = 0, (x,t) € 002 x (0,71, (14)
U(ZC,O) = UO(‘r)a LS Qa

where F encodes the governing PDE, B specifies the boundary condition (Dirich-
let/Neumann/periodic), and w is the initial condition.

A PINN ug minimizes the composite loss

L(0) = ws LppE + Whe LBC + Wic Lic, (15)
Here wy, wpe, wic > 0 are scalar weights that balance the PDE residual, boundary, and initial terms,
controlling the trade-off among them. The loss is obtained with collocation points {(;L'Sf), t(fi))}gvzfl,
boundary points {(xl(fc), téi))}éy:b"i, and initial points {mgf) Nie
1 2 )2
LppE = N—f ; (F(m,t,ue,Vug,V ue)> ‘(x(f’iﬂt;i))’ (16)
1 2
Loo = 5= >0 (Blual)’| L, (17)
= < it
e (k) (F)))2
Lic = N ; (ug(z;,,0) — uo(z;)) " (18)

All derivatives are obtained via automatic differentiation.

Two-stage optimization. We adopt a two-stage scheme: Adam warm-up followed by L-BFGS
refinement. We first optimize the network parameters with Adam (1r = 1076, 5x 107,107,103
for Viscous Burger, Poisson, Transport and Wave respectively), updating at each training step:

L = wyLppg + wie Lc + wic Lic.

In our implementation, wy,. and wj, is fixed during this phase but w; is dependent on experiments.
For Viscous Burgers, we set w;. = 10.0 wile fix the rest weights to 1.0. For Poisson, wy. = 5000.0
and fix wy = 1.0. For Wave, we fix wy = 1.0 while fix others equal to 100.0. Lastly, for Linear
Transport, we fix w;. = 100.0,w,. = 10.0. We linearly anneal the PDE residual weight from
wi}?i‘ = 0.01to w?nal =1.0.

wp(e) = wi' + (Wi —wi") min<e, 1) ’
Tanneal

where e is the current Adam step and Tineat = 0.75 nadam. Thus wy increases linearly from 0.01 at
e =010 1.0 at e > Tjpneal, after which it remains at 1.0.
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Figure 8: Predicted solutions and error plots for 5d Poisson with single expert module and r = 4.

Table 3: /5 errors of 5d Poisson with different r = 1, 2, 3,4, 5.

Type r=1 r=2 r=3 r=4 r=>5

5d Poisson  7.1881 x 10~% 2.6559 x 10~% 1.8219 x 10~% 1.5252 x 10~% 3.1061 x 10~*

We employ cosine annealing for the learning rate with CosineAnnealingLR (T-max = 20,000,
eta_min = 1079), calling the scheduler at every step. Training steps nag.m varies as experiments.
For Viscous Burgers, Wave and Poisson, we set nagam = 10,000 while for Linear Transport, we set
NAdam — 15,000.

After the Adam warm-up, we switch to torch.optim.LBFGS with settings: max_iter =
20,000, tolerance_grad = 1079, tolerance_change = 10712, history_size = 100,
and strong-Wolfe line search (1ine_search_fn = “strong_wolfe”). Following standard practice,
we define a closure that recomputes the loss and its gradients; the PDE and boundary point sets are
fixed once at the start of this phase (20,000 interior collocation points, 5,000 boundary points and
5,000 initial points) except for Viscous Burgers example where same sampling points are used as
Adam. We use the same loss weighting as in Adam.

Unlike the Adam stage (which runs for a fixed number of steps), the L-BFGS stage proceeds until
the optimizer’s internal convergence criteria are met or max_iter is reached. Concretely, L-BFGS
terminates early when the gradient norm falls below t olerance_grad (10~?) or when the change
in the objective is smaller than t olerance_change (107!2), as determined by the strong-Wolfe
line search and quasi-Newton updates. Therefore, the number of effective L-BFGS steps is not fixed
across runs or PDEs.

C ADDITIONAL RESULTS AND EXPERIMENTS

C.1 EXTENDED RESULTS FOR MAIN EXPERIMENTS

Poisson and Wave. / relative errors about Poisson experiments are shown here. The Figure [§]
demonstrates predicted solution, absolute error and /5 relative error about 5d Poisson with single
expert module and r = 4. The #5 errors of 5d Poisson with different » = 1, 2, 3,4, 5 are recorded in
Table For 10d Poisson, ¢, relative error achieve 10~ on average. Even when r» = 1, it obtains
1.0487 x 10~2. For Wave equation, FigureEl shows predicted solutions, absolute errors and relative
{5 error plots for 1d Wave when ¢ = 2.0. Given this setting, ¢, relative error achieves 2.3779 x 1074,
For 2d Wave, an error of 2.4697 x 10~2 can be obtained.

Viscous Burgers. We first present domain decomposition results for K = 4 and K = 5. As shown
in Figure [T1] and Figure introducing additional experts brings only limited new information to
the decomposition. However, the experts attempt to further partition the small triangular area when
t € [0,0.3], with Expert 5 in the ' = 5 case showing the most evident specialization. Overall, 3D
achieves an /5 relative error of approximately 4.33 x 10—, which remains nearly unchanged across
different numbers of experts.
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Figure 9: Predicted solutions and error plots for 1d Wave when ¢ = 2.0
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Figure 11: Domain decomposition of Viscous Burgers by K = 4.

Then we provide abalation analysis of how
r affects the (5 relative error. Figure [T0] k
shows the /5 error change as training steps -
up to 15,000 steps for r = [1,4,8,16].
Due to the inconsistent of the total train-
ing steps, we truncate at the smallest step.
For r = [1, 4, 8, 16], the total traning steps
are 16500, 15200, 15000, 16800 and the fi-
nal ¢, errors are 8.5854 x 1073, 1.3682 x
1072,3.3278 x 1073,1.0079 x 1073 re-
spectively. This experiment demonstrates
that generally /5 error decreases as r in-
creases. However, when it increases to a
certain value, its impact on {3 error is not 0 2000 4000 6000 8000 10000 12000 14000
that obvious. Training steps

100 Rank

Relative L; error

. Figure 10: /5 error change as training steps up to
Linear Transport. Here we present ad- 1570 steps for r = [1, 4, 8, 16]. For r = [1, 4,8, 16],
ditional domain decomposition results of . to1a] traning steps are 16500, 15200, 15000, 16800
case in main text for X = 2 and K = ,,4 the final /5 errors are 8.5854 x 10~3,1.3682 x

5. For K = 2 (Figure [I3), the solution  1=3 3 3978 x 10—3,1.0079 x 103 respectively.
is roughly split into two subdomains, but

compared with the clearer partition when

K = 3 (Figure [3), the separation is less distinct. When K = 5 (Figure [I6)), a new subdomain
emerges, but the fact that Expert 2 consistently receives zero weight indicates that setting K = 5 is
redundant. Thus, for this example, Koptimar = 4.

Figure and Figure [[4] summarize the consistency and robustness experiments for Burgers and
Transport equations. The first two rows of Figure show the Burgers domain decomposition
obtained with 2 experts under two representative seeds (2 and 2025), and both clearly align with
the shock at z = 0 across seeds. Similarly, the first row of Figure [T4] shows the Transport results
with 3 experts for seed 2025, where the diagonal stripe patterns remain well captured. To further
assess robustness, we inject 5% relative Gaussian noise into both the initial and boundary conditions.
The bottom row of Figure[[3]and the second row of Figure [[4] show the corresponding noisy cases
for Burgers and Transport, respectively. In both PDEs, the domain decomposition patterns remain
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Figure 12: Domain decomposition of Viscous Burgers by K = 5. The top left one is the ground
truth figure. The remaining five are domain decomposition for each expert.

C.2 NEW EXPERIMENTS

5d Complex Poisson. The Poisson example tested in main text is simply the production, we
trained the following 5d case with complexity:

{Au(x) = f(x) xeQ, (19)

u(x) =0 x € 09.

where Q = [0,1]% and x = (21, ..., 25). We use the manufactured solution
5
u(x) = Esin(gmi)

for which
2

5
—Au = Zsin(%xi) = f(x). (20)
i=1

Same as before, we also use single expert module to test V' I. The exact solution of this case is the
sum of dimension compoenents, which is consistent with r = 5, according to equation [3] Same
as our discovery that when r = 5, full interpretability is achieved. And the /5 relative error is
5.7608 x 10~* given this setting. Figure shows the ground truth, predicted solution and ¢
relative error plots for r = 5.

{—Au(aj,y) =1 xeqQ, 2

u(z,y) =0 x € IN.
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Figure 15: Domain decomposition of Linear Transport with K = 2.
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Figure 16: Domain decomposition of 1d Linear Transport by K = 5. The top left one is the
ground truth figure. The remaining five are domain decomposition for each expert.
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Figure 17: Ground truth, predicted solution and /5 relative error plots for 5d Poisson with r = 5

Linear Transport. We consider another form of 1d Linear Transport with smooth domain. The
PDE form is as follow:

FD true solution on L-shape 3D prediction Jerror|
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Table 4: Fine-tuning from 5d to 8d Poisson. The separable structure allows cross-dimensional
transfer, resulting in faster convergence and better accuracy.

Model Epochs Adam Time (s) Total Time (s) /o Error (10~%)
8d (from scratch) 11900 1486.75 1793.56 8.9426
8d (fine-tuned) 11300 1397.22 1599.84 5.7450
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Figure 19: Domain decomposition of 1d Linear Transport with smooth domain by K = 3.
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up + cuy =0 x €10, 27],t € [0,1]
w(0,t) = u(2m, t) telo,1] (22)
u(z,0) = up(z) =sin(x) =z € [0, 2]

The analytical solution is u(t,x) = sin(z — c¢t) = sin(z) cos(ct) — cos(z) sin(ct). Using single
expert module with 7 = 5, we get Ly error 1.5159x 10~3. We obtain error 1.3409 x 10~3 when using
three experts with » = 5. Though with smooth region, 3D partitions the domain into subdomains
separated by diagonal stripes similar to that in the ground truth. The Figure [T9] shows the domain
decomposition results when K = 3. In this experiment, we find Koptimar = 3 . We also test
VI of this example. When r = 1,2,3,4,5, VI = 0.8955,0.8614,0.9242,0.9887, 0.9950, further
indicating good interpretability even for small 7.

D USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we made limited use of Large Language Models (LLMs) as auxiliary tools.
Specifically:

» Editing and Polishing We used an LLM (ChatGPT) to polish the language of the paper,
including improving grammar, readability, and stylistic clarity. The scientific content, ar-
guments, and conclusions were entirely authored by us.

* Literature search assistance We used the LLM to help identify relevant references and
related work. All final references were cross-checked and selected manually by the authors.

* Coding assistance For certain implementation details, we consulted the LLM to generate
small code snippets (e.g., plotting utilities, debugging suggestions). The core research
code, experimental design, and implementation were created and validated by the authors.
The LLM was not involved in the generation of research ideas, methodological design,
experimental analysis, or the writing of scientific contributions. Its role was strictly sup-
portive, and final decisions on wording, citations, and code were made by the authors.
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