
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIMENSION DOMAIN CO-DECOMPOSITION: SOLVING
PDES WITH INTERPRETABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed neural networks (PINNs) have shown promise for solving par-
tial differential equations (PDEs), but they face significant challenges in high-
dimensional settings and when modeling solutions with sharp features. Existing
approaches also lack interpretable per-dimension representations and depend on
manually defined domain partitions. To address these challenges, we propose a
unified Dimension Domain Co-Decomposition (3D) framework that integrates di-
mension decomposition with a Mixture-of-Experts (MoE) based domain decom-
position. Our approach achieves three key innovations. First, we introduce an
interpretable dimension decomposition strategy that decouples individual coordi-
nate inputs within each expert using a single shared MLP with indexed inputs,
significantly reducing the model size. Second, we propose a novel metric, Vari-
able Interpretability (V I), that quantifies the alignment between the learned latent
representations of each input dimension and their corresponding exact solution
components. Third, we present an MoE-driven domain decomposition architec-
ture that automatically partitions the solution space without requiring predefined
regions or interface conditions. Extensive experiments demonstrate that our ap-
proach improves both computational efficiency and solution accuracy across a
range of high-dimensional PDE benchmarks, with interpretable and scalable per-
formance.

1 INTRODUCTION

Partial differential equations (PDEs) provide the mathematical foundation for describing a wide
range of physical and engineering phenomena, including fluid dynamics Anderson, 1995, wave
propagation (Strauss, 2007), and quantum mechanics (Griffiths & Schroeter, 2018). Classical nu-
merical solvers such as the finite element method (FEM) (Zienkiewicz et al., 2005; Babuška, 1971),
the finite difference method (FDM) (LeVeque, 2007; Lax & Richtmyer, 1956), and the spectral
method (SM) (Trefethen, 2000; Boyd, 2001) have long been the standard tools for approximating
PDE solutions. FEM is flexible for handling irregular domains, FDM is simple and efficient on
structured grids, while SM achieves spectral (fast) convergence but is restricted to periodic bound-
ary conditions. Despite their success, both methods suffer from rapidly increasing computational
cost when dealing with high-dimensional problems, complex nonlinearities, or solutions with sharp
local features, which often makes them impractical for large-scale applications.

In recent years, neural networks have emerged as promising alternatives for PDE solving, either
by directly approximating solutions from data or by embedding the governing equations into the
training objective through physics-informed neural networks (PINNs) (Raissi et al., 2019). PINNs
offers clear advantages in high-dimensional settings where traditional numerical solvers become in-
feasible. Building on this flexibility, two major lines of decomposition-based methods have been
explored to further enhance scalability and adaptivity. Dimension decomposition improves scala-
bility by factorizing solutions along coordinates (Cho et al., 2023; Liu et al., 2024). This strategy
simplifies optimization in high-dimensional settings and further mitigates the curse of dimension-
ality. However, existing approaches lack interpretability measurement. In contrast, domain de-
composition (Jagtap et al., 2020a; Shukla et al., 2021; Hu et al., 2023) focuses on local adaptivity
by dividing the computational domain into smaller subdomains, with each subdomain handled by
a specialized model. This enables better approximation of both smooth and discontinuous solu-
tions. Nevertheless, such methods typically rely on manually pre-defining the subdomains. When

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the subdomains overlap, one must introduce extra loss terms to ensure the predictions agree in the
overlapping regions; when the subdomains are non-overlapping, additional conditions are required
to enforce continuity across the shared boundaries. These constraints make the training procedure
more complicated and problem-dependent.

To overcome these limitations, we propose Dimension Domain Co-Decomposition (3D), a unified
framework that combines both decomposition strategies in a scalable, interpretable, and fully auto-
matic manner. At the dimension level, each variable is modeled separately, which improves scala-
bility in high dimensions. In practice, these dimension components are processed through a shared
MLP, ensuring parameter efficiency across coordinates. At the domain level, 3D employs Mixture
of Experts (MoE) (Jacobs et al., 1991). It contains multiple experts, and a router assigning soft
weights to combine their outputs. This mechanism encourages each expert to specialize in certain
subregions, so that domain decomposition emerges adaptively during training. As a result, 3D can
effectively capture solutions with sharp local features without requiring pre-defined regions or ex-
plicit interface conditions. An illustration of 3D with two experts on input [t, x] is shown in Figure 1.
In addition, we propose Variable Interpretability (V I), a quantitative metric that matches predicted
per-dimension components to ground-truth factors. V I takes values in [0, 1], with 1 indicating per-
fect alignment across variables.

Figure 1: Structure of 3D (Dimension Domain Co-Decomposition) with two experts. Left
(Mixture-of-Experts). The router takes the spatiotemporal input [t, x] and produces two gating
weights after a softmax. These weights induce an automatic partition of the domain (illustrated
by the red/blue subdomains). The model’s prediction is obtained as a weighted sum of the two ex-
pert outputs y1, y2. Right (Expert structure). Each expert takes the same input [t, x] and feeds two
indexed streams (one for x and one for t) into a shared MLP, which produces r latent components
for each. The x-t component pairs are combined by element-wise multiplication, and then summed
over the r pairs to yield the expert’s output. Reference Target x and Reference Target t is used to
compute V I by comparing them with the learned x and t components. Together, the router and
experts realize domain decomposition and dimension decommposition within each subdomain.

We summarize our contribution as follows:

• We propose Dimension Domain Co-Decomposition (3D), a unified framework integrat-
ing dimension decomposition with adaptive domain decomposition for solving high-
dimensional PDEs.

• Within 3D, we design a lightweight shared-MLP architecture that processes dimension-
index pairs, enabling reduced model size while capturing coordinate-wise features.

• We introduce Variable Interpretability (V I), a novel, quantitative, scale-invariant metric to
evaluate dimension-wise interpretability. It evaluates the alignment between the learned
latent representation of each input dimension and the ground-truth components, thereby
serving as a direct measure of interpretability.

• We employ MoE to induce an adaptive and automatic domain decomposition capturing
sharp features without requiring predefined subdomains or explicit interface conditions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 DIMENSION DECOMPOSITION AND INTERPRETABILITY

High-dimensional PDEs pose significant challenges for neural network-based solvers. Building on
the PINNs framework, several recent works (Cho et al., 2023; Liu et al., 2024; Vemuri et al., 2024;
Liu et al., 2022) introduce dimension-wise decomposition strategies to mitigate the curse of di-
mensionality. Most of these approaches rely on classical tensor decomposition techniques (Tucker,
1966; Carroll & Chang, 1970), which improve efficiency by reducing the representation complex-
ity, but still assign a separate neural network to each dimension, leading to suboptimal efficiency.
At the same time, these methods offer little interpretability measurements of the learned compo-
nents. In parallel, the interpretable machine learning community has developed models such as
GAMs, NAMs, and self-explaining networks (Hastie & Tibshirani, 1990; Wood, 2017; Agarwal
et al., 2021; Alvarez-Melis & Jaakkola, 2018; Lou et al., 2013), which represent the target function
as a sum of univariate functions, each depending on a single variable. These models offer intuitive
per-variable explanations, but their additive structure struggles to capture higher-order interactions,
which are often intrinsic to PDE solutions. Beyond additive models, sparse regression–based meth-
ods such as SINDy and its variants (Brunton et al., 2016; Kaiser et al., 2018) provide another line
of interpretability by discovering governing equations from data. Unlike variable-wise interpretabil-
ity, these methods explain the underlying physical laws by identifying symbolic equations, rather
than uncovering the structures of PDE solutions themselves. To fill in these gaps, We propose a
shared-MLP dimension decomposition that removes redundant per-dimension networks for greater
efficiency, and introduce Variable Interpretability (V I), a metric quantifying the alignment between
learned components and ground-truth factors.

2.2 DOMAIN DECOMPOSITION OF PINNS

Domain decomposition has been widely adopted to improve PINNs for solving complex PDEs.
The XPINNs framework (Jagtap et al., 2020c) pioneered this idea by partitioning the computational
domain into multiple subdomains and training a separate PINN in each region; to ensure consis-
tency, XPINNs enforces continuity of the solution across subdomain interfaces through additional
interface losses. Subsequent works have refined this approach: Shukla et al. (Shukla et al., 2021)
introduced parallel implementations combining cPINNs (Jagtap et al., 2020b) and XPINNs, exploit-
ing overlapping Schwarz-type decompositions to better handle multi-scale problems. Hu et al.
(2023) proposed APINNs, which use soft gating mechanisms to allow more flexible domain decom-
position. Dolean et al. (Dolean et al., 2024) developed multilevel decomposition architectures to
improve accuracy for large or highly heterogeneous domains. More recently, the approach named
BPINN (Vicens Figueres et al., 2025) integrates Bayesian PINNs with domain decomposition, com-
puting local uncertainties concurrently and enforcing interface flux continuity among subdomains.
There are also specialized applications, such as domain decomposition PINNs for incompressible
Navier–Stokes equations (Gu et al., 2024). Despite these advances, a common limitation is that
all existing approaches require predefined partitions of the computational domain. Moreover, addi-
tional conditions must be imposed at the subdomain interfaces to guarantee continuity of the solu-
tion. These requirements restrict adaptivity and limit the flexibility of domain decomposition when
applied to PDEs with unknown or heterogeneous solution structures. In contrast, our framework
enables automatic and adaptive domain decomposition during training.

3 DIMENSION DOMAIN CO-DECOMPOSITION

Existing PINNs-based methods for high-dimensional PDEs suffer from three obstacles: (i) high
computational cost due to the need for dense collocation sampling; (ii) a lack of principled in-
terpretability metric for dimension-wise factorizations, where scaling, permutation, and cross-
dimension mixing obscure whether learned components reflect the underlying physics; and (iii)
brittle domain decomposition that depends on predefined subdomains and delicately tuned interface
penalties, making performance sensitive to the chosen partition and enforcement strength. To ad-
dress these issues, we adopt a dimension decomposition that reduces computation-graph complexity
by combining them in a low-rank manner; we introduce Variable Interpretability (V I) to quantify
alignment between learned per-dimension components and reference factors; and we develop MoE-
driven domain decomposition that maps the input coordinates to soft expert assignments, avoiding

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

manual region design and explicit interface enforcement. In combination, the dimension decom-
position lowers training cost, V I provides quantitative interpretability, and the MoE router delivers
robust, automatic domain partitioning. Given input x = [x1, x2, · · · , xd], the predicted solution û
takes the form:

û(x1, x2, · · · , xd) =

K∑
i=1

G(i)(x)Ei(x), Ei(x) = Ei(f1(x1), f2(x2), · · · , fd(xd)) (1)

where fj for j = 1, 2, · · · , d stands for the Multilayer Perceptron (MLP) processing each dimension
component. Ei for i = 1, 2, · · · ,K represents expert while G(x) ∈ RK is a router assigning
weights for experts.

In section 3.1, we present the structure of a single expert and explain its role in achieving dimension
decomposition. Section 3.2 introduces the V I for assessing dimension interpretability. Section 3.3
describes the overall MoE-driven domain decomposition framework.

3.1 DIMENSION DECOMPOSITION IN 3D FRAMEWORK

Conventional methods mix all dimensions in a single network. For high-dimension problems, large
number of data complicates the computation graph, making both forward and, more severely, back-
ward propagation expensive. We adopt dimension decomposition in single expert to decouple coor-
dinates and simplify both forward propagation and derivative computation. Our domain decomposi-
tion design is similar in form to the Canonical Polyadic Decomposition (CP-decomposition) (Carroll
& Chang, 1970; Harshman, 1970). Conventionally, for d-dimensional input, the output can be writ-
ten as follows:

û(x1, ...xd) =

r∑
i=1

f
(i)
1 (x1)f

(i)
2 (x2) · · · f (i)

d (xd) (2)

where û : Rd → R is the predicted solution, xj ∈ R is a coordinate of j-th component including
temporal coordinates if exist. fj(xj) : R → Rr represents independent MLP processing xj . r is
comparable to the rank in CP-decomposition. In our settings, r impacts more on Variable Inter-
pretability (V I) than accuracy. Modest r are sufficient-typically r ∈ {4, · · · , 16} achieving good
interpretability while maintaining satisfactory accuracy, see section 4.

However, independent per-axis processing introduces a large number of parameters. We address
this issue by using a single shared MLP to model all dimension components within each expert.
Specifically, each component is represented by a two-dimensional input vector consisting of the
coordinate value and its index. For the j-th dimension component, the corresponding output is
given by f(xj , , j − 1). For example, for 3d PDE problem, outputs of dimension components are
f(x1, 0), f(x2, 1), f(x3, 2). We treat temporal coordinate t as part of the physical vector coordi-
nates. Therefore, equation 2 can be rewritten into:

û(x1, ...xd) =

r∑
i=1

f (i)(x1, 0)f
(i)(x2, 1) · · · f (i)(xd, d− 1) (3)

Our framework bases on PINNs. Therefore, the loss function can be written as follows:

Loss = wpdeLosspde + wicLossic + wbcLossbc (4)

where Losspde is the PDE residual loss, which penalizes the discrepancy between the neural network
prediction substituted into the PDE and the equation’s right-hand side at sampled collocation points.
Lossic and Lossbc represent initial-condition loss (for time dependent problems) and boundary-
condition loss, respectively. More information is included in Appendix B.

The proposed architecture is related to Separable Physics-Informed Neural Networks
(SPINNs) (Cho et al., 2023), but it differs in several key aspects that bring advantages: First, we
use single MLP processing each dimension component with an additional index as input, saving the
memory when handling high-dimensional problems, see section 4.2 for more information. Second,
our framework naturally integrates with a MoE structure. While SPINNs rely on forward-mode au-
tomatic differentiation (AD), this is not directly compatible with MoE because the router breaks the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

separable structure. Instead, we adopt reverse-mode AD which allows the decomposition to remain
effective while benefiting from adaptive domain specialization. Lastly, the dimension decomposi-
tion design enables us to bypass meshgrid collocation points. Instead of constructing a full grid, we
independently sample training points for each dimension component and then combine them, which
drastically reduces the number of collocation points required and improves training efficiency.

3.2 VARIABLE INTERPRETABILITY (VI)

Previous dimension decomposition techniques lack quantitative interpretability for dimension com-
ponent. To address this gap, we propose a new metric that evaluates each dimension component by
comparing it against the reference target (either analytical or high-accuracy numerical). Concretely,
for j-th dimension component, we obtain f(xj , j − 1) ∈ Rr from dimension decomposition. Eval-
uating this function on nj sampled points produces nj row vectors in Rr, which we stack to form a
matrix Fj ∈ Mnj×r. In parallel, we construct the ground-truth matrix Gj ∈ Mnj×s by evaluating
the exact j-th factor at the same points. For example, in the 5D Poisson equation with solution
u(x) =

∏5
j=1 sin(πxj), the predicted xj-component is represented as Fj ∈ Mnj×r, while the

ground-truth factor is gj(x) = sin(πxj), evaluated on nj points to form Gj ∈ Mnj×1. For simplic-
ity, we use F and G in the remainder of this section.

Before computing the metric, both F and G are normalized. Take F as an example:

F̃ik =
Fik − µk

max(
√∑n

q=1(Fqk − µk)2, ϵ)
, i = 1, ..., n, k = 1, ..., r (5)

where µk = 1
n

∑n
q=1 Fqk, ϵ = 10−12 to avoid denominator is 0.

Then we apply the QR decomposition to F̃ and G̃ to obtain the reduced orthonormal bases
QF̃ and QG̃. We then compute the singular values {σi}mi=1 of Q⊤

F̃
QG̃, where m =

min(rank(QF̃), rank(QG̃)). The V I of the j-th component is defined as:

V Ij =
1

m

m∑
i=1

σ2
i . (6)

V Ij takes values in the range [0, 1] with values closer to 1 indicating a better fit to the exact terms.
For each problem, we then take the mean of V Ij across j to get final V I .

Notably, this metric evaluates all-rank representation features as a whole, testing how well the sub-
space spanned by the exact basis QG is aligned with (and contained in) the subspace spanned by the
predicted basis QF . In practice, the exact matrix G often has shape (n, s) with s ≤ r, where r is
the decomposition rank. Thus, the number of exact basis vectors can be smaller than the number of
predicted ones. Only when s = r, V I = 1 means the predicted subspace and the exact subspace are
identical. For example, Gx ∈ Mn×1 in 5d Poisson equation while we use r > 1 in section 4.2. In
this way, V I = 1 means that the exact one-dimensional subspace is fully contained in the predicted
subspace. In short, when s < r, V I measures whether the predicted subspace totally covers the
exact subspace instead of testing if two subspaces are identical. This case is particularly relevant in
practice, since r can be chosen arbitrarily large while the number of exact basis vectors s is often
much smaller.

3.3 MOE-DRIVEN DOMAIN DECOMPOSITION

Partitioning the solution domain into subdomains enables local specialization of the underlying
physics, improving accuracy and stability. Previous domain decomposition methods require manu-
ally pre-defined regions and interface conditions. To achieve automatic and adaptive domain decom-
position, we adopt a Dense MoE model (Jacobs et al., 1991). Compared with Sparse MoE (Shazeer
et al., 2017), dense MoE avoids expert collapse and provides more stable training. This is impor-
tant in problems with shocks where top-k gating may cause instability near shocks. Router is a MLP
G : Rd → RK taking only x ∈ Rd (including temporal and spatial coordinates) as input. It produces
logits which are then converted into mixture weights via a softmax. The weight assignment serves
as a soft partition indicator – large weight marks the region where expert is responsible for. Each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

expert Ei for i = 1, 2, · · · ,K specializes in local regions. It remains smooth within its responsible
region while differing from other experts to cover complementary behaviors. Together, they provide
global approximation by

∑K
i=1 G(x)Ei(x).

Since the predicted solution is the weighted sum of experts’ outputs, the overall loss function follows
equation 4, except for the computation of û. All experts share same architectures and inputs with
separate parameters. End-to-end training is performed. Both the router and experts are updated
via gradient descent optimization. Our experiment results demonstrate that increasing the number
of experts K initially leads to significant error reduction and reflects finer domain decomposition.
However, beyond a certain number Koptimal, additional experts yield similar errors and no more
new information about domain decomposition. In practice, we select Koptimal as best number of
experts.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We evaluate our framework on two settings: (i) Dimension decomposition (mainly Poisson and
Wave equations), and (ii) MoE-driven domain decomposition in which each expert uses the same
dimension decomposition architecture (Viscous Burgers and Linear Transport equations). In our ex-
periments, training is first performed with the Adam optimizer for fast convergence and followed by
LBFGS for refinement. A cosine-annealing scheduler is applied to adjust the learning rate. Training
performances are measured by the relative ℓ2 error. All experiments are trained on a single NVIDIA
RTX 5090 GPU.

Dimension Decomposition and Interpretability. Our framework is built on a unified expert de-
sign, where each expert employs a shared MLP for dimension decomposition. These experts are
either combined under a MoE structure (Viscous Burgers and Linear Transport) or used as a sin-
gle module (Poisson and Wave equations). To evaluate the scalability and efficiency of this shared
MLP design, we first conduct a parameter count comparison across all four PDE benchmarks. In the
subsequent studies, we focus on Poisson and Wave equations with a single expert module to high-
light the effect of dimension decomposition and quantify interpretability using the proposed V I .
The shared MLP within each expert module consists of two hidden layers of width 64 with Tanh
activation by default.

Domain Decomposition. Viscous Burgers equation and Linear Transport equation (Appendix A)
employ MoE-driven domain decomposition while keeping dimension decomposition inside each
expert, showing not only domain decomposition but also comprehensive test of 3D framework.
Dense MoE with multiple experts are applied. The router was set to be a 5-layer MLP with width
64 per layer and Tanh activation.

4.2 DIMENSION DECOMPOSITION AND INTERPRETABILITY

Benefit of Shared MLP. We first demonstrate the benefit of the shared MLP inside each expert
module. Table 1 compares the number of trainable parameters across different PDE problems. We
fix r = 16 for this parameter test. For Poisson, Wave equations, we adopt a single expert. For
the Linear Transport and Viscous Burgers equation, we use 3 experts and 2 experts, respectively.
Across all settings, the shared MLP design significantly reduces the number of trainable parameters
compared with independent MLPs design. The advantage enlarges as the input dimension grows,
highlighting the scalability of our approach. In the context of a single expert module, the parameter
count of a shared MLP is independent of the input dimension, whereas it grows with the dimension
for independent MLPs. When extended to a MoE framework, the shared MLP architecture reduces
the overall number of parameters by sharing them across the experts.

Shared MLP architecture also leads to reduced memory. Generally, the shared design requires on
average 77.8% of the memory compared to independent MLPs. The efficiency gain scales with
dimensionality: in the 5d Poisson problem, the shared MLP reduces memory consumption to 50.0%,
and in the 10d Poisson problem, the shared design achieves an even greater reduction, using only
30.4% of the memory.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of number of trainable parameters between shared MLP and independent
MLPs design.

Type 5d Poisson 10d Poisson 1d Wave 2d Wave Burgers Transport
Shared MLP 5392 5392 5392 5392 23586 29043
Independent MLPs 26640 53280 10656 15984 34114 44835

Table 2: Mean V I over dimension components for different values of r across the PDE examples.

PDE examples r=1 r=2 r=3 r=4 r=5
5d Poisson 0.0411 0.9815 0.9956 0.9999 1.0000
10d Poisson 0.0849 0.9958 0.9969 1.0000 1.0000
1d Wave c = 2 1.0000 1.0000 1.0000 1.0000 1.0000
1d Wave c = 5 0.4991 0.8036 0.9924 0.9958 1.0000
1d Wave c = 10 0.4295 0.7833 0.9334 0.9971 0.9998
2d Wave c = 2 0.6624 0.9125 0.9997 0.9999 1.0000

The training performance of the shared MLP is comparable to that of independent MLPs with far
fewer parameters, and both clearly outperform vanilla PINNs (Figure 2). For vanilla PINNs, we
adopt a 10-layer MLP with width 64 and Tanh activation. We report results on the 5d Poisson
equation. Since training stops once the convergence condition is met, the total number of training
steps varies across models. For comparison, we truncate at the smallest step count, 11,400, which
corresponds to the termination of both the shared and independent MLPs. By contrast, vanilla PINNs
stop at 23,400 steps. At termination, the shared MLP, independent MLPs, and vanilla PINNs achieve
ℓ2 errors of 1.8430× 10−4, 3.2620× 10−4, and 7.5451× 10−3, respectively.

Figure 2: Comparison of relative ℓ2 error (log scale)
for 5d Poisson between shared MLP, independent
MLPs and vanilla PINNs. Training is displayed up
to 11,400 steps, where both the shared MLP and in-
dependent MLPs converge. The final ℓ2 errors are
1.8430 × 10−4 (shared MLP), 3.2620 × 10−4 (inde-
pendent MLPs), and 7.5451× 10−3 (vanilla PINNs).

Interpretability. We train the Poisson
equation with 8192 collocation points and
2048 boundary points using an expert
module. The values in Table 2 represent
the mean V I across all dimension compo-
nents. From the analytical solution u =∏5

i=1 sin(πxi) (Appendix A), one might
expect that r = 1 would suffice for inter-
pretability compared to equation 3. How-
ever, our experiments demonstrate that
r = 1 is insufficient. By increasing r
to 4, we obtain V I ≈ 1, as reported in
Table 2. For higher dimensions, we fur-
ther test the 10d Poisson problem. Even in
this case, full interpretability (V I = 1) is
achieved with r = 5, and the model also
attains a satisfactory accuracy with ℓ2 er-
ror = 1.4475 × 10−3. These results con-
firm that a small value of r ensures good
interpretability while maintaining strong
learning performance.

For the Wave equation, we use 8192 collo-
cation points, 1024 initial points, and 1024
boundary points, again with a single expert
module. In this setting, r = 1 is sufficient to achieve full interpretability with V I = 1, consistent
with the analytical solution u(t, x) = sin(πx) cos(cπt) (Appendix A). We first examine the 1d
case with c = 2. Figure 3 compares the predicted and exact components ft(t) = cos(cπt) and
fx(x) = sin(πx) at training steps 1000, 2000, 3000, and 4000. As suggested by the analytical solu-
tion, the t-component has a higher frequency than the x-component. Accordingly, the model learns
fx(x) within the first 1000 steps but requires up to 4000 steps to accurately capture ft(t). We then
test cases with c = 5 and c = 10, where the solution includes higher-frequency terms cos(cπt). In
these settings, r = 1 is no longer sufficient for full interpretability. Nevertheless, V I improves as r
increases, reaching V I = 1 for c = 5 and approximately 1 for c = 10 when r = 5. Finally, we con-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

sider the 2d Wave equation with analytical solution u(t, x1, x2) = sin(πx1) sin(πx2) cos(
√
2cπt)

and c = 2.0. The additional spatial dimension increases the learning difficulty, as reflected in Ta-
ble 2. Still, the model achieves V I = 1 at r = 5, underscoring that small values of r suffice to
ensure strong interpretability.

Figure 3: Components’ interpretability of 1d Wave equation when c = 2. The first row represents
comparison of t-component while the second row represents comparison of x-component. Here
“pred fx” and “pred ft” in the figure refers to the shared MLP processing x and t respectively. The
black dotted line stands for true value from analytical solution and the blue solid line stands for
predicted value. From left to right, the columns represent the 1000th, 2000th, 3000th, and 4000th
training steps, respectively.

Figure 4: Ground truth and domain decomposition results of Viscous Burger for K = 2 and
K = 3. The left panel in the first row shows the ground truth solution. The remaining two panels
in the first row display the decomposition results with K = 2, indicating obvious boundary of
x = 0. Three figures in the second row correspond to K = 3, which shows little new decomposition
information. For K = 1, 2, 3, ℓ2 error achieves 2.1587 × 10−2, 1.2694 × 10−3, 1.7170 × 10−3,
showing effectiveness of MoE structure.

4.3 DOMAIN DECOMPOSITION

Multiple experts and a router are employed for automatic domain decomposition for Viscous Burg-
ers. Within each expert, dimension decomposition is applied. The shared MLP consists of two
hidden layers of width 32 with r = 16. The training data consists of 10,000 randomly sampled
collocation points, 256 initial points, and 200 boundary points. For testing, we adopt high-accuracy
dataset generated in MATLAB, as in PINNs (Raissi et al., 2019).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Results of domain decomposition of Linear Transport for K = 3, 4. The left panel in
the first row shows the ground truth solution. The remaining three panels illustrate weight assign-
ments of experts when K = 3, demonstrating clear cut-off lines same as the ground truth. Four
panels in the second row are domain decomposition results of K = 4, displaying more detailed
partition.

For the tested viscosity ν = 0.01
π (see Appendix A), the shock at x = 0 represents the solution’s main

discontinuity. It is, therefore, the natural choice for the splitting boundary in domain decomposition
(see Figure 4). Although the number of experts affects the precise partitioning, this critical shock
location can be consistently identified. We visualize the router assignments for each expert. Figure 4
shows the domain decomposition results for Viscous Burgers with different numbers of experts
K. It is evident that for K = 2, the model achieves domain decomposition, mainly separated by
shock at x = 0. Increasing the number of experts to K = 3 does not introduce new meaningful
subdomains since the additional expert tends to receive small weights. For K = 1, 2, 3, ℓ2 error
achieves 2.1587 × 10−2, 1.2694 × 10−3, 1.7170 × 10−3, showing effectiveness of MoE structure.
Appendix C provides additional visualizations for K = 4 and K = 5 and an ablation analysis of
how r affects the error.

We further evaluate the 1d Linear Transport equation. In the main paper, we present results for the
case with clearly separable regions (Appendix A), while the case with smooth transitions is deferred
to Appendix C. For both settings, we use 8192 collocation points along with 1024 initial points and
1024 boundary points.

For MoE-driven domain decomposition, we find that using three experts (K = 3) yields a reasonable
decomposition. In this case, we set r = 4. The learned partition successfully captures the diagonal
stripe structures observed in the ground truth (Figure 5), with the predicted stripe locations closely
matching those of the exact solution. Results with four experts (K = 4) are shown in the second row
of Figure 5, where we use r = 8. The additional expert produces a more detailed partition. Further
results for other values of K are provided in Appendix C, demonstrating that too few experts lead to
unclear decompositions, while larger K do not yield additional structural information.

5 CONCLUSION

In this paper, we propose Dimension Domain Co-Decomposition (3D), a PINNs-based framework
that unifies dimension decomposition and MoE-driven domain decomposition. Within each expert,
a shared MLP processes coordinate–index pairs to produce dimension-wise functions. To quantify
the alignment between predicted dimension component and ground truth component, we introduce
Variable Interpretability (V I). At the MoE level, the router adaptively partitions the domain so
that experts specialize in local regions without requiring predefined subdomains or explicit interface
conditions. Through experiments on PDE benchmarks, we show that 3D not only achieves good
accuracy but also produces interpretable decompositions across dimensions according to V I . Nev-
ertheless, our study has limitations. V I relies on reference solutions that are dimension-separable.
For non-separable solutions, we must construct separable approximations, for example using trun-
cated Fourier series, and compare the predicted components against these numerical factors. Future
work should explore more general interpretability metrics that extend beyond separable settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All code for our framework (train-
ing, evaluation, and visualization) is attached as supplementary material. For clarity, each PDE
example (Poisson, Wave, Burgers, Transport) is implemented in a separate code file named after
the corresponding PDE problem, making it straightforward to reproduce individual experiments.
PDE datasets are generated from analytic or high-accurate numerical solutions as described in Sec-
tion 4.2. We provide all hyperparameter settings in Appendix B, together with fixed random seeds
for PyTorch and NumPy.

REFERENCES

Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey Hinton. Neural
additive models: Interpretable machine learning with neural nets. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

David Alvarez-Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 31,
pp. 7775–7784, 2018.

John D. Anderson. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill,
1995. Covers PDE formulations for fluid dynamics problems.

Ivo Babuška. Error-bounds for finite element method. Numerische Mathematik, 16:322–333, 1971.
doi: 10.1007/BF02165003.

Claude Basdevant, Michel Deville, Pierre Haldenwang, J.-M. Lacroix, Jalil Ouazzani, Roger Peyret,
Paolo Orlandi, and Anthony T. Patera. Spectral and finite difference solutions of the burgers
equation. Computers & Fluids, 14(1):23–41, 1986. doi: 10.1016/0045-7930(86)90036-8.

John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, 2nd edition, 2001.
Comprehensive treatment of spectral methods using Chebyshev and Fourier bases.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016.

J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “eckart–young” decomposition. Psychometrika, 35(3):283–319,
1970. doi: 10.1007/BF02310791.

Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable physics-informed neural networks. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems (NeurIPS 2023), 2023.

Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley. Multilevel domain
decomposition-based architectures for physics-informed neural networks. Computer Methods in
Applied Mechanics and Engineering, (submitted / arXiv preprint), 2024. arXiv:2306.05486.

David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics. Cambridge Univer-
sity Press, 3rd edition, 2018. Discusses Schrödinger equation as a PDE in quantum mechanics.

Linyan Gu, Shanlin Qin, Lei Xu, and Rongliang Chen. Physics-informed neural networks with
domain decomposition for the incompressible navier–stokes equations. Physics of Fluids, 36
(b1914), 2024.

Richard A. Harshman. Foundations of the parafac procedure: Models and conditions for an “ex-
planatory” multimodal factor analysis. Technical Report 16, UCLA Working Papers in Phonetics,
1970.

Trevor J. Hastie and Robert J. Tibshirani. Generalized Additive Models. Chapman and Hall/CRC,
1990.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji Kawaguchi. Augmented
physics-informed neural networks (apinns): A gating network-based soft domain decomposition
methodology. Engineering Applications of Artificial Intelligence, 113:107183, 2023.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Extended physics-informed
neural networks (xpinns): A generalized space-time domain decomposition based deep learn-
ing framework for nonlinear partial differential equations. Communications in Computational
Physics, 28(5):2002–2041, 2020a.

Ameya D. Jagtap, Kentaro Kawaguchi, and George Em Karniadakis. Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems. Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020b.

Ameya D. Jagtap, Kentaro Kawaguchi, and George Em Karniadakis. Extended physics-informed
neural networks (xpinns): A generalized space-time domain decomposition based deep learn-
ing framework for nonlinear partial differential equations. Communications in Computational
Physics, 28(5):2002–2041, 2020c.

Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identification of nonlinear dynamics
for model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):
20180335, 2018.

Peter D. Lax and Robert D. Richtmyer. Survey of the stability of linear finite difference equa-
tions. Communications on Pure and Applied Mathematics, 9(2):267–293, 1956. doi: 10.1002/
cpa.3160090206.

Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2007.

Youqiong Liu, Li Cai, and Yaping Chen. Variable separated physics-informed neural networks
based on adaptive weighted loss functions for blood flow model. Computers & Mathematics with
Applications, 153, 2024. doi: 10.1016/j.camwa.2023.11.018.

Ziyue Liu, Xinling Yu, and Zheng Zhang. Tt-pinn: A tensor-compressed neural pde solver for
edge computing. arXiv preprint arXiv:2207.01751, 2022. URL https://arxiv.org/abs/
2207.01751.

Yin Lou, Rich Caruana, and Johannes Gehrke. Accurate intelligible models with pairwise interac-
tions. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 623–631, 2013.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017. URL https://arxiv.org/abs/1701.06538.
Introduced top-k gating for Mixture-of-Experts, establishing the Sparse MoE framework.

Khemraj Shukla, Ameya D. Jagtap, and George Em Karniadakis. Parallel physics-informed neural
networks via domain decomposition. Journal of Computational Physics, 447:110683, 2021.

Walter A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons, 2nd edition,
2007. Includes classical PDE models for wave propagation.

Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and Applied Mathe-
matics, 2000. doi: 10.1137/1.9780898719598. Classic reference on spectral methods and their
convergence properties.

11

https://arxiv.org/abs/2207.01751
https://arxiv.org/abs/2207.01751
https://arxiv.org/abs/1701.06538

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966. doi: 10.1007/BF02289464.

Sai Karthikeya Vemuri, Tim Büchner, Julia Niebling, and Joachim Denzler. Functional tensor de-
compositions for physics-informed neural networks. In Proceedings of the 13th International
Conference on Pattern Recognition (ICPR). Springer, 2024. doi: 10.1007/978-3-031-78389-0 3.
URL https://arxiv.org/abs/2408.13101.

Júlia Vicens Figueres, Juliette Vanderhaeghen, Federica Bragone, Kateryna Morozovska, and Khem-
raj Shukla. $pinn – a domain decomposition method for bayesian physics-informed neural net-
works. arXiv preprint arXiv:2504.19013, 2025.

Simon N. Wood. Generalized additive models: An introduction with r. Chapman and Hall/CRC,
2017.

Olek C. Zienkiewicz, Robert Leroy Taylor, and Jian Z. Zhu. The Finite Element Method: Its Basis
and Fundamentals. Elsevier, Oxford, UK, 2005.

A DETAILS OF PDE EXAMPLES

In this appendix, we detail the PDE setups used in the main paper: Poisson, Wave, Viscous Burgers,
and Linear Transport.

A.1 POISSON EQUATION

We consider the Poisson problem with homogeneous Dirichlet boundary conditions:

{−∆u(x) = f(x) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
(7)

where Ω = [0, 1]d and x = (x1, . . . , xd). We use the manufactured solution

u(x) =

d∏
i=1

sin(πxi), (8)

for which

−∆u = dπ2
d∏

i=1

sin(πxi) = f(x). (9)

In the main experiments, we test 5d Poisson and 10d Poisson. Figure 6 shows a 2D slice of 5d
Poisson u with respect to (x1, x2) while fixing (x3, x4, x5) = (0.5, 0.5, 0.5).

A.2 WAVE EQUATION

Wave equation is a time-dependent PDE that takes the form:


utt(t,x) = c2∆u x ∈ (0, 1)d, t ∈ [0, 1]

u(0, t) = u(1, t) = 0 t ∈ [0, 1]

u(x, 0) =

d∏
i=1

sin(πxi), ut(x, 0) = 0 x ∈ [0, 1]d
(10)

where c is the wave speed. In our experiments, we test 1d with c = 2.0, 5.0, 10.0 and 2d with
c = 2.0. The analytical form of Wave equation is u(t,x) =

∏d
i=1 sin(πxi) cos(

√
dπct). Figure 6

shows the ground truth figure of 1d Wave equation when c = 2.0.

12

https://arxiv.org/abs/2408.13101

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 6: Ground truths for 5d Poisson and Wave examples. The left figure is the ground truth
of 5d Poisson slice at (x3, x4, x5) = (0.5, 0.5, 0.5). The right one is the ground truth of 1d wave
equation when c = 2.0.

A.3 VISCOUS BURGERS

The Burgers equation is a fundamental nonlinear PDE combining advection and diffusion, used
as a prototype for shock formation and turbulence modeling. We consider the following Viscous
Burgers:


ut + uux = νuxx x ∈ [−1, 1], t > 0

u(−1, t) = 0, u(1, t) = 0 t ≥ 0

u(x, 0) = − sin(πx) x ∈ [−1, 1]

(11)

where viscosity ν = 0.01
π . With such small viscosity, the solution behaves almost inviscid: gradients

steepen rapidly and form very thin viscous layers (shock transitions). Similarly, we set T = 1 and
t ∈ [0, 1]. Analytical solution is introduced in (Basdevant et al., 1986). Gound truth figure is shown
in main text, see Figure 4.

A.4 LINEAR TRANSPORT

Figure 7: 1d Linear Transport solution profiles when
t = 0, 0.2, 0.5, 1.0s.

Linear Transport (advection—equation)
describes a profile being carried along
characteristics at velocity without chang-
ing shape. The 1d example we use in the
main paper takes form as:


ut + cux = 0 x ∈ Ω, t > 0

u(0, t) = u(4, t) = 0 t ≥ 0

u(x, 0) = u0(x) x ∈ Ω
(12)

where we consider c = 10, Ω = [0, 4],
T = 1, t ∈ [0, 1] and initial condition
u0(x) as:

u0(x) =

{
2, 1 ≤ x < 3,

1, otherwise.

The piecewise constant profile induces
discontinuities. Given the initial condi-
tion, the analytical solution is u = u0((x−

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ct) mod 4). That is, the initial profile
simply translates to the right at constant speed c without deformation. We show the solution profiles
with respect to t = 0, 0.2, 0.5, 1.0s in Figure 7 We also test another form of 1d Linear Transport,
see details in Section C.

B TRAINING DETAILS

Data and seed. For each PDE, we randomly sample according to Gaussian distribution Nf col-
location points in the interior domain and Nb points on the boundary. For time-dependent PDEs,
we additionally sample Nic points from the initial condition. Values of Nf , Nb and Nic have been
shown in main text. For Poisson and Linear Transport problems, we normalize data into [−1, 1]
before sending into the model.

x̃ = 2(
x− xmin

xmax − xmin
)− 1

We ensured reproducibility by fixing the random seeds of both NumPy and PyTorch. In particu-
lar, np.random.seed(1234) and torch.manual seed(1234) were used to control ran-
domness in CPU and single-GPU computations. This setup guarantees that data sampling, weight
initialization, and training outcomes remain consistent across repeated runs.

Router outputs. For dense MoE structure, the router outputs mixture weights via a softmax (see
equantion 13) with temperature τ > 0. As τ → 0+, the distribution becomes more peaked (ap-
proaching a one-hot assignment), while τ → ∞ yields a uniform distribution. In our experiments,
for Poisson and Viscous Burgers, we set τ = 1.0 while for Wave and Transport, we set τ = 0.5.

softmaxτ (zi) =
exp

(
zi
τ

)∑K
j=1 exp

(zj
τ

) , i = 1, . . . ,K (13)

where zi is the original output of the router and K is the number of experts.

Loss function. We consider a generic time-dependent PDE written implicitly as
F
(
x, t, u,∇u,∇2u

)
= 0, (x, t) ∈ Ω× (0, T],

B[u](x, t) = 0, (x, t) ∈ ∂Ω× (0, T],

u(x, 0) = u0(x), x ∈ Ω,

(14)

where F encodes the governing PDE, B specifies the boundary condition (Dirich-
let/Neumann/periodic), and u0 is the initial condition.

A PINN uθ minimizes the composite loss

L(θ) = wf LPDE + wbc LBC + wic LIC, (15)

Here wf , wbc, wic > 0 are scalar weights that balance the PDE residual, boundary, and initial terms,
controlling the trade-off among them. The loss is obtained with collocation points {(x(i)

f , t
(i)
f)}Nf

i=1,

boundary points {(x(j)
bc , t

(j)
bc)}

Nbc
j=1, and initial points {x(k)

ic }Nic

k=1:

LPDE =
1

Nf

Nf∑
i=1

(
F
(
x, t, uθ,∇uθ,∇2uθ

))2∣∣∣
(x

(i)
f ,t

(i)
f)

, (16)

LBC =
1

Nbc

Nbc∑
j=1

(
B[uθ]

)2∣∣∣
(x

(j)
bc ,t

(j)
bc)

, (17)

LIC =
1

Nic

Nic∑
k=1

(
uθ(x

(k)
ic , 0)− u0(x

(k)
ic)

)2
. (18)

All derivatives are obtained via automatic differentiation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: ℓ2 errors of 5d Poisson with different r = 1, 2, 3, 4, 5.

Type r = 1 r = 2 r = 3 r = 4 r = 5

5d Poisson 7.1881× 10−4 2.6559× 10−4 1.8219× 10−4 1.5252× 10−4 3.1061× 10−4

Two-stage optimization. We adopt a two-stage scheme: Adam warm-up followed by L–BFGS
refinement. We first optimize the network parameters with Adam (lr= 10−6, 5×10−4, 10−4, 10−3

for Viscous Burger, Poisson, Transport and Wave respectively), updating at each training step:

L = wf LPDE + wbc LBC + wic LIC.

In our implementation, wbc and wic is fixed during this phase but wf is dependent on experiments.
For Viscous Burgers, we set wic = 10.0 wile fix the rest weights to 1.0. For Poisson, wbc = 5000.0
and fix wf = 1.0. For Wave, we fix wf = 1.0 while fix others equal to 100.0. Lastly, for Linear
Transport, we fix wic = 100.0, wbc = 10.0. We linearly anneal the PDE residual weight from
winit

f = 0.01 to wfinal
f = 1.0.

wf (e) = winit
f +

(
wfinal

f − winit
f

)
min

(
e

Tanneal
, 1

)
,

where e is the current Adam step and Tanneal = 0.75nAdam. Thus wf increases linearly from 0.01 at
e = 0 to 1.0 at e ≥ Tanneal, after which it remains at 1.0.

We employ cosine annealing for the learning rate with CosineAnnealingLR (T max = 20,000,
eta min = 10−6), calling the scheduler at every step. Training steps nAdam varies as experiments.
For Viscous Burgers, Wave and Poisson, we set nAdam = 10,000 while for Linear Transport, we set
nAdam = 15,000.

After the Adam warm-up, we switch to torch.optim.LBFGS with settings: max iter =
20,000, tolerance grad = 10−9, tolerance change = 10−12, history size = 100,
and strong-Wolfe line search (line search fn = “strong wolfe”). Following standard practice,
we define a closure that recomputes the loss and its gradients; the PDE and boundary point sets are
fixed once at the start of this phase (20,000 interior collocation points, 5,000 boundary points and
5,000 initial points) except for Viscous Burgers example where same sampling points are used as
Adam. We use the same loss weighting as in Adam.

Unlike the Adam stage (which runs for a fixed number of steps), the L–BFGS stage proceeds until
the optimizer’s internal convergence criteria are met or max iter is reached. Concretely, L–BFGS
terminates early when the gradient norm falls below tolerance grad (10−9) or when the change
in the objective is smaller than tolerance change (10−12), as determined by the strong-Wolfe
line search and quasi-Newton updates. Therefore, the number of effective L–BFGS steps is not fixed
across runs or PDEs.

C ADDITIONAL RESULTS AND EXPERIMENTS

C.1 EXTENDED RESULTS FOR MAIN EXPERIMENTS

Poisson and Wave. ℓ2 relative errors about Poisson experiments are shown here. The Figure 8
demonstrates predicted solution, absolute error and ℓ2 relative error about 5d Poisson with single
expert module and r = 4. The ℓ2 errors of 5d Poisson with different r = 1, 2, 3, 4, 5 are recorded in
Table 3. For 10d Poisson, ℓ2 relative error achieve 10−3 on average. Even when r = 1, it obtains
1.0487× 10−2. For Wave equation, Figure 9 shows predicted solutions, absolute errors and relative
ℓ2 error plots for 1d Wave when c = 2.0. Given this setting, ℓ2 relative error achieves 2.3779×10−4.
For 2d Wave, an error of 2.4697× 10−2 can be obtained.

Viscous Burgers. We first present domain decomposition results for K = 4 and K = 5. As shown
in Figure 11 and Figure 12, introducing additional experts brings only limited new information to
the decomposition. However, the experts attempt to further partition the small triangular area when
t ∈ [0, 0.3], with Expert 5 in the K = 5 case showing the most evident specialization. Overall, 3D

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Predicted solutions and error plots for 5d Poisson with single expert module and r = 4.

Figure 9: Predicted solutions and error plots for 1d Wave when c = 2.0

achieves an ℓ2 relative error of approximately 4.33× 10−4, which remains nearly unchanged across
different numbers of experts.

Figure 10: ℓ2 error change as training steps up to
15,000 steps for r = [1, 4, 8, 16]. For r = [1, 4, 8, 16],
the total traning steps are 16500, 15200, 15000, 16800
and the final ℓ2 errors are 8.5854 × 10−3, 1.3682 ×
10−3, 3.3278× 10−3, 1.0079× 10−3 respectively.

Then we provide abalation analysis of how
r affects the ℓ2 relative error. Figure 10
shows the ℓ2 error change as training steps
up to 15,000 steps for r = [1, 4, 8, 16].
Due to the inconsistent of the total train-
ing steps, we truncate at the smallest step.
For r = [1, 4, 8, 16], the total traning steps
are 16500, 15200, 15000, 16800 and the fi-
nal ℓ2 errors are 8.5854× 10−3, 1.3682×
10−3, 3.3278 × 10−3, 1.0079 × 10−3 re-
spectively. This experiment demonstrates
that generally ℓ2 error decreases as r in-
creases. However, when it increases to a
certain value, its impact on ℓ2 error is not
that obvious.

Linear Transport. Here we present ad-
ditional domain decomposition results of
case in main text for K = 2 and K =
5. For K = 2 (Figure 13), the solution
is roughly split into two subdomains, but
compared with the clearer partition when
K = 3 (Figure 5), the separation is less
distinct. When K = 5 (Figure 14), a new subdomain emerges, but the fact that Expert 2 con-
sistently receives zero weight indicates that setting K = 5 is redundant. Thus, for this example,
Koptimal = 4.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 11: Domain decomposition of Viscous Burgers by K = 4.

Figure 12: Domain decomposition of Viscous Burgers by K = 5. The top left one is the ground
truth figure. The remaining five are domain decomposition for each expert.

C.2 NEW EXPERIMENTS

Poisson. The Poisson example tested in main text is simply the production, we trained the follow-
ing 5d case with complexity:

{−∆u(x) = f(x) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.
(19)

where Ω = [0, 1]5 and x = (x1, . . . , x5). We use the manufactured solution

u(x) =

5∑
i=1

sin(
π

2
xi)

for which

−∆u =
π2

4

5∑
i=1

sin(
π

2
xi) = f(x). (20)

Same as before, we also use single expert module to test V I . The exact solution of this case is the
sum of dimension compoenents, which is consistent with r = 5, according to equation 3. Same
as our discovery that when r = 5, full interpretability is achieved. And the ℓ2 relative error is
5.7608 × 10−4 given this setting. Figure 15 shows the ground truth, predicted solution and ℓ2
relative error plots for r = 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 13: Domain decomposition of Linear Transport with K = 2.

Figure 14: Domain decomposition of 1d Linear Transport by K = 5. The top left one is the
ground truth figure. The remaining five are domain decomposition for each expert.

Linear Transport. We consider another form of 1d Linear Transport with smooth domain. The
PDE form is as follow:

Figure 15: Ground truth, predicted solution and ℓ2 relative error plots for 5d Poisson with r = 5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 16: Domain decomposition of 1d Linear Transport with smooth domain by K = 3.


ut + cux = 0 x ∈ [0, 2π], t ∈ [0, 1]

u(0, t) = u(2π, t) t ∈ [0, 1]

u(x, 0) = u0(x) = sin(x) x ∈ [0, 2π]

(21)

The analytical solution is u(t, x) = sin(x − ct) = sin(x) cos(ct) − cos(x) sin(ct). Using single
expert module with r = 5, we get L2 error 1.5159×10−3. We obtain error 1.3409×10−3 when using
three experts with r = 5. Though with smooth region, 3D partitions the domain into subdomains
separated by diagonal stripes similar to that in the ground truth. The Figure 16 shows the domain
decomposition results when K = 3. In this experiment, we find Koptimal = 3 . We also test
V I of this example. When r = 1, 2, 3, 4, 5, V I = 0.8955, 0.8614, 0.9242, 0.9887, 0.9950, further
indicating good interpretability even for small r.

D USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we made limited use of Large Language Models (LLMs) as auxiliary tools.
Specifically:

• Editing and Polishing We used an LLM (ChatGPT) to polish the language of the paper,
including improving grammar, readability, and stylistic clarity. The scientific content, ar-
guments, and conclusions were entirely authored by us.

• Literature search assistance We used the LLM to help identify relevant references and
related work. All final references were cross-checked and selected manually by the authors.

• Coding assistance For certain implementation details, we consulted the LLM to generate
small code snippets (e.g., plotting utilities, debugging suggestions). The core research
code, experimental design, and implementation were created and validated by the authors.
The LLM was not involved in the generation of research ideas, methodological design,
experimental analysis, or the writing of scientific contributions. Its role was strictly sup-
portive, and final decisions on wording, citations, and code were made by the authors.

19

	Introduction
	Related Work
	Dimension Decomposition and Interpretability
	Domain Decomposition of PINNs

	Dimension Domain Co-Decomposition
	Dimension Decomposition in 3D Framework
	Variable Interpretability (VI)
	MoE-driven Domain Decomposition

	Experiments
	Experiment Setup
	Dimension Decomposition and Interpretability
	Domain Decomposition

	Conclusion
	Details of PDE Examples
	Poisson Equation
	Wave Equation
	Viscous Burgers
	Linear Transport

	Training Details
	Additional Results and Experiments
	Extended Results for Main Experiments
	New Experiments

	Use of Large Language Models (LLMs)

