

000 001 002 003 004 005 006 007 008 009 010 DIMENSION DOMAIN CO-DECOMPOSITION: SOLVING PDES WITH INTERPRETABILITY

005
006
Anonymous authors
Paper under double-blind review

009 010 ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Physics-informed neural networks (PINNs) have shown promise for solving partial differential equations (PDEs), but they face significant challenges in high-dimensional settings and when modeling solutions with sharp features. Existing approaches also lack interpretable per-dimension representations and depend on manually defined domain partitions. To address these challenges, we propose a unified Dimension Domain Co-Decomposition (3D) framework that integrates dimension decomposition with a Mixture-of-Experts (MoE) based domain decomposition. Our approach achieves three key innovations. First, we introduce an interpretable dimension decomposition strategy that decouples individual coordinate inputs within each expert using a single shared MLP with indexed inputs, significantly reducing the model size. Second, we propose a novel metric, Variable Interpretability (VI), that quantifies the alignment between the learned latent representations of each input dimension and their corresponding exact solution components. Third, we present an MoE-driven domain decomposition architecture that automatically partitions the solution space without requiring predefined regions or interface conditions. Extensive experiments demonstrate that our approach improves both computational efficiency and solution accuracy across a range of high-dimensional PDE benchmarks, with interpretable and scalable performance.

030 031 1 INTRODUCTION

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Partial differential equations (PDEs) provide the mathematical foundation for describing a wide range of physical and engineering phenomena, including fluid dynamics Anderson, 1995, wave propagation (Strauss, 2007), and quantum mechanics (Griffiths & Schroeter, 2018). Classical numerical solvers such as the finite element method (FEM) (Zienkiewicz et al., 2005; Babuška, 1971), the finite difference method (FDM) (LeVeque, 2007; Lax & Richtmyer, 1956), and the spectral method (SM) (Trefethen, 2000; Boyd, 2001) have long been the standard tools for approximating PDE solutions. FEM is flexible for handling irregular domains, FDM is simple and efficient on structured grids, while SM achieves spectral (fast) convergence but is restricted to periodic boundary conditions. Despite their success, both methods suffer from rapidly increasing computational cost when dealing with high-dimensional problems, complex nonlinearities, or solutions with sharp local features, which often makes them impractical for large-scale applications.

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
In recent years, neural networks have emerged as promising alternatives for PDE solving, either by directly approximating solutions from data or by embedding the governing equations into the training objective through physics-informed neural networks (PINNs) (Raissi et al., 2019). PINNs offers clear advantages in high-dimensional settings where traditional numerical solvers become infeasible. Building on this flexibility, two major lines of decomposition-based methods have been explored to further enhance scalability and adaptivity. Dimension decomposition improves scalability by factorizing solutions along coordinates (Cho et al., 2023; Liu et al., 2024). This strategy simplifies optimization in high-dimensional settings and further mitigates the curse of dimensionality. However, existing approaches lack interpretability measurement. In contrast, domain decomposition (Jagtap et al., 2020a; Shukla et al., 2021; Hu et al., 2023) focuses on local adaptivity by dividing the computational domain into smaller subdomains, with each subdomain handled by a specialized model. This enables better approximation of both smooth and discontinuous solutions. Nevertheless, such methods typically rely on manually pre-defining the subdomains. When

the subdomains overlap, one must introduce extra loss terms to ensure the predictions agree in the overlapping regions; when the subdomains are non-overlapping, additional conditions are required to enforce continuity across the shared boundaries. These constraints make the training procedure more complicated and problem-dependent.

To overcome these limitations, we propose Dimension Domain Co-Decomposition (3D), a unified framework that combines both decomposition strategies in a scalable, interpretable, and fully automatic manner. At the dimension level, each variable is modeled separately, which improves scalability in high dimensions. In practice, these dimension components are processed through a shared MLP, ensuring parameter efficiency across coordinates. At the domain level, 3D employs Mixture of Experts (MoE) (Jacobs et al., 1991). It contains multiple experts, and a router assigning soft weights to combine their outputs. This mechanism encourages each expert to specialize in certain subregions, so that domain decomposition emerges adaptively during training. As a result, 3D can effectively capture solutions with sharp local features without requiring pre-defined regions or explicit interface conditions. An illustration of 3D with two experts on input $[t, x]$ is shown in Figure 1. In addition, we propose Variable Interpretability (VI), a quantitative metric that matches predicted per-dimension components to ground-truth factors. VI takes values in $[0, 1]$, with 1 indicating perfect alignment across variables.

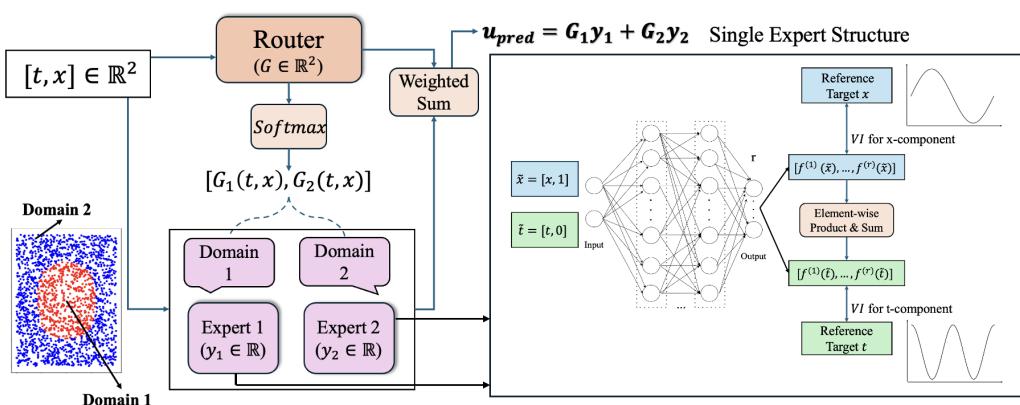


Figure 1: **Structure of 3D (Dimension Domain Co-Decomposition) with two experts.** *Left (Mixture-of-Experts).* The router takes the spatiotemporal input $[t, x]$ and produces two gating weights after a softmax. These weights induce an automatic partition of the domain (illustrated by the red/blue subdomains). The model’s prediction is obtained as a weighted sum of the two expert outputs y_1, y_2 . *Right (Expert structure).* Each expert takes the same input $[t, x]$ and feeds two indexed streams (one for x and one for t) into a shared MLP, which produces r latent components for each. The $x-t$ component pairs are combined by element-wise multiplication, and then summed over the r pairs to yield the expert’s output. Reference Target x and Reference Target t is used to compute VI by comparing them with the learned x and t components. Together, the router and experts realize domain decomposition and dimension decommposition within each subdomain.

We summarize our contribution as follows:

- We propose Dimension Domain Co-Decomposition (3D), a unified framework integrating dimension decomposition with adaptive domain decomposition for solving high-dimensional PDEs.
- Within 3D, we design a lightweight shared-MLP architecture that processes dimension-index pairs, enabling reduced model size while capturing coordinate-wise features.
- We introduce Variable Interpretability (VI), a novel, quantitative, scale-invariant metric to evaluate dimension-wise interpretability. It evaluates the alignment between the learned latent representation of each input dimension and the ground-truth components, thereby serving as a direct measure of interpretability.
- We employ MoE to induce an adaptive and automatic domain decomposition capturing sharp features without requiring predefined subdomains or explicit interface conditions.

108 **2 RELATED WORK**
109110 **2.1 DIMENSION DECOMPOSITION AND INTERPRETABILITY**
111

112 High-dimensional PDEs pose significant challenges for neural network-based solvers. Building on
113 the PINNs framework, several recent works (Cho et al., 2023; Liu et al., 2024; Vemuri et al., 2024;
114 Liu et al., 2022) introduce dimension-wise decomposition strategies to mitigate the curse of di-
115 mensionality. Most of these approaches rely on classical tensor decomposition techniques (Tucker,
116 1966; Carroll & Chang, 1970), which improve efficiency by reducing the representation complex-
117 ity, but still assign a separate neural network to each dimension, leading to suboptimal efficiency.
118 At the same time, these methods offer little interpretability measurements of the learned compo-
119 nents. In parallel, the interpretable machine learning community has developed models such as
120 GAMs, NAMs, and self-explaining networks (Hastie & Tibshirani, 1990; Wood, 2017; Agarwal
121 et al., 2021; Alvarez-Melis & Jaakkola, 2018; Lou et al., 2013), which represent the target function
122 as a sum of univariate functions, each depending on a single variable. These models offer intuitive
123 per-variable explanations, but their additive structure struggles to capture higher-order interactions,
124 which are often intrinsic to PDE solutions. Beyond additive models, sparse regression-based meth-
125 ods such as SINDy and its variants (Brunton et al., 2016; Kaiser et al., 2018) provide another line
126 of interpretability by discovering governing equations from data. Unlike variable-wise interpretabil-
127 ity, these methods explain the underlying physical laws by identifying symbolic equations, rather
128 than uncovering the structures of PDE solutions themselves. To fill in these gaps, We propose a
129 shared-MLP dimension decomposition that removes redundant per-dimension networks for greater
130 efficiency, and introduce Variable Interpretability (*VI*), a metric quantifying the alignment between
131 learned components and ground-truth factors.

132 **2.2 DOMAIN DECOMPOSITION OF PINNs**
133

134 Domain decomposition has been widely adopted to improve PINNs for solving complex PDEs.
135 The XPINNs framework (Jagtap et al., 2020c) pioneered this idea by partitioning the computational
136 domain into multiple subdomains and training a separate PINN in each region; to ensure consis-
137 tency, XPINNs enforces continuity of the solution across subdomain interfaces through additional
138 interface losses. Subsequent works have refined this approach: Shukla et al. (Shukla et al., 2021)
139 introduced parallel implementations combining cPINNs (Jagtap et al., 2020b) and XPINNs, exploit-
140 ing overlapping Schwarz-type decompositions to better handle multi-scale problems. Hu et al.
141 (2023) proposed APINNs, which use soft gating mechanisms to allow more flexible domain decom-
142 position. Dolean et al. (Dolean et al., 2024) developed multilevel decomposition architectures to
143 improve accuracy for large or highly heterogeneous domains. More recently, the approach named
144 BPINN (Vicens Figueiras et al., 2025) integrates Bayesian PINNs with domain decomposition, com-
145 puting local uncertainties concurrently and enforcing interface flux continuity among subdomains.
146 There are also specialized applications, such as domain decomposition PINNs for incompressible
147 Navier–Stokes equations (Gu et al., 2024). Despite these advances, a common limitation is that
148 all existing approaches require predefined partitions of the computational domain. Moreover, addi-
149 tional conditions must be imposed at the subdomain interfaces to guarantee continuity of the solu-
150 tion. These requirements restrict adaptivity and limit the flexibility of domain decomposition when
151 applied to PDEs with unknown or heterogeneous solution structures. In contrast, our framework
152 enables automatic and adaptive domain decomposition during training.

153 **3 DIMENSION DOMAIN CO-DECOMPOSITION**
154

155 Existing PINNs-based methods for high-dimensional PDEs suffer from three obstacles: (i) high
156 computational cost due to the need for dense collocation sampling; (ii) a lack of principled in-
157 terpretability metric for dimension-wise factorizations, where scaling, permutation, and cross-
158 dimension mixing obscure whether learned components reflect the underlying physics; and (iii)
159 brittle domain decomposition that depends on predefined subdomains and delicately tuned interface
160 penalties, making performance sensitive to the chosen partition and enforcement strength. To ad-
161 dress these issues, we adopt a dimension decomposition that reduces computation-graph complexity
162 by combining them in a low-rank manner; we introduce Variable Interpretability (*VI*) to quantify
163 alignment between learned per-dimension components and reference factors; and we develop MoE-
164 driven domain decomposition that maps the input coordinates to soft expert assignments, avoiding

162 manual region design and explicit interface enforcement. In combination, the dimension decom-
 163 position lowers training cost, *VI* provides quantitative interpretability, and the MoE router delivers
 164 robust, automatic domain partitioning. Given input $\mathbf{x} = [x_1, x_2, \dots, x_d]$, the predicted solution \hat{u}
 165 takes the form:

$$166 \quad \hat{u}(x_1, x_2, \dots, x_d) = \sum_{i=1}^K G^{(i)}(\mathbf{x}) E_i(\mathbf{x}), \quad E_i(\mathbf{x}) = E_i(f_1(x_1), f_2(x_2), \dots, f_d(x_d)) \quad (1)$$

169 where f_j for $j = 1, 2, \dots, d$ stands for the Multilayer Perceptron (MLP) processing each dimension
 170 component. E_i for $i = 1, 2, \dots, K$ represents expert while $G(\mathbf{x}) \in \mathbb{R}^K$ is a router assigning
 171 weights for experts.

173 In section 3.1, we present the structure of a single expert and explain its role in achieving dimension
 174 decomposition. Section 3.2 introduces the *VI* for assessing dimension interpretability. Section 3.3
 175 describes the overall MoE-driven domain decomposition framework.

177 3.1 DIMENSION DECOMPOSITION IN 3D FRAMEWORK

179 Conventional methods mix all dimensions in a single network. For high-dimension problems, large
 180 number of data complicates the computation graph, making both forward and, more severely, back-
 181 ward propagation expensive. We adopt dimension decomposition in single expert to decouple coor-
 182 dinates and simplify both forward propagation and derivative computation. Our domain decomposi-
 183 tion design is similar in form to the Canonical Polyadic Decomposition (CP-decomposition) (Carroll
 184 & Chang, 1970; Harshman, 1970). Conventionally, for d -dimensional input, the output can be writ-
 185 ten as follows:

$$186 \quad \hat{u}(x_1, \dots, x_d) = \sum_{i=1}^r f_1^{(i)}(x_1) f_2^{(i)}(x_2) \cdots f_d^{(i)}(x_d) \quad (2)$$

188 where $\hat{u} : \mathbb{R}^d \rightarrow \mathbb{R}$ is the predicted solution, $x_j \in \mathbb{R}$ is a coordinate of j -th component including
 189 temporal coordinates if exist. $f_j(x_j) : \mathbb{R} \rightarrow \mathbb{R}^r$ represents independent MLP processing x_j . r is
 190 comparable to the rank in CP-decomposition. In our settings, r impacts more on Variable Inter-
 191 pretability (*VI*) than accuracy. Modest r are sufficient-typically $r \in \{4, \dots, 16\}$ achieving good
 192 interpretability while maintaining satisfactory accuracy, see section 4.

193 However, independent per-axis processing introduces a large number of parameters. We address
 194 this issue by using a single shared MLP to model all dimension components within each expert.
 195 Specifically, each component is represented by a two-dimensional input vector consisting of the
 196 coordinate value and its index. For the j -th dimension component, the corresponding output is
 197 given by $f(x_j, j-1)$. For example, for 3d PDE problem, outputs of dimension components are
 198 $f(x_1, 0), f(x_2, 1), f(x_3, 2)$. We treat temporal coordinate t as part of the physical vector coordi-
 199 nates. Therefore, equation 2 can be rewritten into:

$$201 \quad \hat{u}(x_1, \dots, x_d) = \sum_{i=1}^r f^{(i)}(x_1, 0) f^{(i)}(x_2, 1) \cdots f^{(i)}(x_d, d-1) \quad (3)$$

204 Our framework bases on PINNs. Therefore, the loss function can be written as follows:

$$205 \quad Loss = w_{pde} Loss_{pde} + w_{ic} Loss_{ic} + w_{bc} Loss_{bc} \quad (4)$$

207 where $Loss_{pde}$ is the PDE residual loss, which penalizes the discrepancy between the neural network
 208 prediction substituted into the PDE and the equation’s right-hand side at sampled collocation points.
 209 $Loss_{ic}$ and $Loss_{bc}$ represent initial-condition loss (for time dependent problems) and boundary-
 210 condition loss, respectively. More information is included in Appendix B.

211 The proposed architecture is related to Separable Physics-Informed Neural Networks
 212 (SPINNs) (Cho et al., 2023), but it differs in several key aspects that bring advantages: First, we
 213 use single MLP processing each dimension component with an additional index as input, saving the
 214 memory when handling high-dimensional problems, see section 4.2 for more information. Second,
 215 our framework naturally integrates with a MoE structure. While SPINNs rely on forward-mode au-
 216 tomatic differentiation (AD), this is not directly compatible with MoE because the router breaks the

separable structure. Instead, we adopt reverse-mode AD which allows the decomposition to remain effective while benefiting from adaptive domain specialization. Lastly, the dimension decomposition design enables us to bypass meshgrid collocation points. Instead of constructing a full grid, we independently sample training points for each dimension component and then combine them, which drastically reduces the number of collocation points required and improves training efficiency.

3.2 VARIABLE INTERPRETABILITY (VI)

Previous dimension decomposition techniques lack quantitative interpretability for dimension component. To address this gap, we propose a new metric that evaluates each dimension component by comparing it against the reference target (either analytical or high-accuracy numerical). Concretely, for j -th dimension component, we obtain $f(x_j, j - 1) \in \mathbb{R}^r$ from dimension decomposition. Evaluating this function on n_j sampled points produces n_j row vectors in \mathbb{R}^r , which we stack to form a matrix $F_j \in \mathbb{M}^{n_j \times r}$. In parallel, we construct the ground-truth matrix $G_j \in \mathbb{M}^{n_j \times s}$ by evaluating the exact j -th factor at the same points. For example, in the 5D Poisson equation with solution $u(x) = \prod_{j=1}^5 \sin(\pi x_j)$, the predicted x_j -component is represented as $F_j \in \mathbb{M}^{n_j \times r}$, while the ground-truth factor is $g_j(x) = \sin(\pi x_j)$, evaluated on n_j points to form $G_j \in \mathbb{M}^{n_j \times 1}$. For simplicity, we use F and G in the remainder of this section.

Before computing the metric, both F and G are normalized. Take F as an example:

$$\tilde{F}_{ik} = \frac{F_{ik} - \mu_k}{\max(\sqrt{\sum_{q=1}^n (F_{qk} - \mu_k)^2}, \epsilon)}, i = 1, \dots, n, k = 1, \dots, r \quad (5)$$

where $\mu_k = \frac{1}{n} \sum_{q=1}^n F_{qk}$, $\epsilon = 10^{-12}$ to avoid denominator is 0.

Then we apply the QR decomposition to \tilde{F} and \tilde{G} to obtain the reduced orthonormal bases $Q_{\tilde{F}}$ and $Q_{\tilde{G}}$. We then compute the singular values $\{\sigma_i\}_{i=1}^m$ of $Q_{\tilde{F}}^\top Q_{\tilde{G}}$, where $m = \min(\text{rank}(Q_{\tilde{F}}), \text{rank}(Q_{\tilde{G}}))$. The VI of the j -th component is defined as:

$$VI_j = \frac{1}{m} \sum_{i=1}^m \sigma_i^2. \quad (6)$$

VI_j takes values in the range $[0, 1]$ with values closer to 1 indicating a better fit to the exact terms. For each problem, we then take the mean of VI_j across j to get final VI .

Notably, this metric evaluates all-rank representation features as a whole, testing how well the subspace spanned by the exact basis Q_G is aligned with (and contained in) the subspace spanned by the predicted basis Q_F . In practice, the exact matrix G often has shape (n, s) with $s \leq r$, where r is the decomposition rank. Thus, the number of exact basis vectors can be smaller than the number of predicted ones. Only when $s = r$, $VI = 1$ means the predicted subspace and the exact subspace are identical. For example, $G_x \in \mathbb{M}^{n \times 1}$ in 5d Poisson equation while we use $r > 1$ in section 4.2. In this way, $VI = 1$ means that the exact one-dimensional subspace is fully contained in the predicted subspace. In short, when $s < r$, VI measures whether the predicted subspace totally covers the exact subspace instead of testing if two subspaces are identical. This case is particularly relevant in practice, since r can be chosen arbitrarily large while the number of exact basis vectors s is often much smaller.

3.3 MOE-DRIVEN DOMAIN DECOMPOSITION

Partitioning the solution domain into subdomains enables local specialization of the underlying physics, improving accuracy and stability. Previous domain decomposition methods require manually pre-defined regions and interface conditions. To achieve automatic and adaptive domain decomposition, we adopt a Dense MoE model (Jacobs et al., 1991). Compared with Sparse MoE (Shazeer et al., 2017), dense MoE avoids expert collapse and provides more stable training. This is important in problems with shocks where top- k gating may cause instability near shocks. Router is a MLP $G : \mathbb{R}^d \rightarrow \mathbb{R}^K$ taking only $\mathbf{x} \in \mathbb{R}^d$ (including temporal and spatial coordinates) as input. It produces logits which are then converted into mixture weights via a softmax. The weight assignment serves as a soft partition indicator – large weight marks the region where expert is responsible for. Each

270 expert E_i for $i = 1, 2, \dots, K$ specializes in local regions. It remains smooth within its responsible
 271 region while differing from other experts to cover complementary behaviors. Together, they provide
 272 global approximation by $\sum_{i=1}^K G(\mathbf{x})E_i(\mathbf{x})$.
 273

274 Since the predicted solution is the weighted sum of experts' outputs, the overall loss function follows
 275 equation 4, except for the computation of \hat{u} . All experts share same architectures and inputs with
 276 separate parameters. End-to-end training is performed. Both the router and experts are updated
 277 via gradient descent optimization. Our experiment results demonstrate that increasing the number
 278 of experts K initially leads to significant error reduction and reflects finer domain decomposition.
 279 However, beyond a certain number $K_{optimal}$, additional experts yield similar errors and no more
 280 new information about domain decomposition. In practice, we select $K_{optimal}$ as best number of
 281 experts.
 282

283 4 EXPERIMENTS

284 4.1 EXPERIMENT SETUP

285 We evaluate our framework on two settings: (i) Dimension decomposition (mainly Poisson and
 286 Wave equations), and (ii) MoE-driven domain decomposition in which each expert uses the same
 287 dimension decomposition architecture (Viscous Burgers and Linear Transport equations). In our ex-
 288 periments, training is first performed with the Adam optimizer for fast convergence and followed by
 289 LBFGS for refinement. A cosine-annealing scheduler is applied to adjust the learning rate. Training
 290 performances are measured by the relative ℓ_2 error. All experiments are trained on a single NVIDIA
 291 RTX 5090 GPU.
 292

293 **Dimension Decomposition and Interpretability.** Our framework is built on a unified expert de-
 294 sign, where each expert employs a shared MLP for dimension decomposition. These experts are
 295 either combined under a MoE structure (Viscous Burgers and Linear Transport) or used as a sin-
 296 gle module (Poisson and Wave equations). To evaluate the scalability and efficiency of this shared
 297 MLP design, we first conduct a parameter count comparison across all four PDE benchmarks. In the
 298 subsequent studies, we focus on Poisson and Wave equations with a single expert module to high-
 299 light the effect of dimension decomposition and quantify interpretability using the proposed *VI*.
 300 The shared MLP within each expert module consists of two hidden layers of width 64 with Tanh
 301 activation by default.
 302

303 **Domain Decomposition.** Viscous Burgers equation and Linear Transport equation (Appendix A)
 304 employ MoE-driven domain decomposition while keeping dimension decomposition inside each
 305 expert, showing not only domain decomposition but also comprehensive test of 3D framework.
 306 Dense MoE with multiple experts are applied. The router was set to be a 5-layer MLP with width
 307 64 per layer and Tanh activation.
 308

309 4.2 DIMENSION DECOMPOSITION AND INTERPRETABILITY

310 **Benefit of Shared MLP.** We first demonstrate the benefit of the shared MLP inside each expert
 311 module. Table 1 compares the number of trainable parameters across different PDE problems. We
 312 fix $r = 16$ for this parameter test. For Poisson, Wave equations, we adopt a single expert. For
 313 the Linear Transport and Viscous Burgers equation, we use 3 experts and 2 experts, respectively.
 314 Across all settings, the shared MLP design significantly reduces the number of trainable parameters
 315 compared with independent MLPs design. The advantage enlarges as the input dimension grows,
 316 highlighting the scalability of our approach. In the context of a single expert module, the parameter
 317 count of a shared MLP is independent of the input dimension, whereas it grows with the dimension
 318 for independent MLPs. When extended to a MoE framework, the shared MLP architecture reduces
 319 the overall number of parameters by sharing them across the experts.
 320

321 Shared MLP architecture also leads to reduced memory. Generally, the shared design requires on
 322 average 77.8% of the memory compared to independent MLPs. The efficiency gain scales with
 323 dimensionality: in the 5d Poisson problem, the shared MLP reduces memory consumption to 50.0%,
 324 and in the 10d Poisson problem, the shared design achieves an even greater reduction, using only
 325 30.4% of the memory.
 326

324
325
Table 1: Comparison of number of trainable parameters between shared MLP and independent
MLPs design.

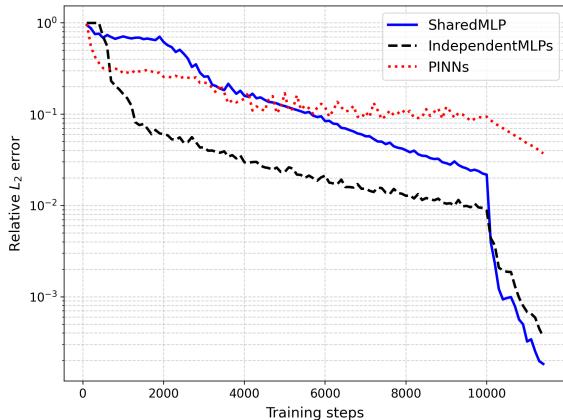
Type	5d Poisson	10d Poisson	1d Wave	2d Wave	Burgers	Transport
Shared MLP	5392	5392	5392	5392	23586	29043
Independent MLPs	26640	53280	10656	15984	34114	44835

326
327
328
329
330
331
The training performance of the shared MLP is comparable to that of independent MLPs with far
332 fewer parameters, and both clearly outperform vanilla PINNs (Figure 2). For vanilla PINNs, we
333 adopt a 10-layer MLP with width 64 and Tanh activation. We report results on the 5d Poisson
334 equation. Since training stops once the convergence condition is met, the total number of training
335 steps varies across models. For comparison, we truncate at the smallest step count, 11,400, which
336 corresponds to the termination of both the shared and independent MLPs. By contrast, vanilla PINNs
337 stop at 23,400 steps. At termination, the shared MLP, independent MLPs, and vanilla PINNs achieve
338 ℓ_2 errors of 1.8430×10^{-4} , 3.2620×10^{-4} , and 7.5451×10^{-3} , respectively.

339
340
341
342
343
344
345
346
347
348
Furthermore, we evaluated the training performance on the 10d Poisson problem. For fairness, the
baseline PINNs uses a single MLP with four hidden layers and width 64, identical to the shared MLP
configuration. With a comparable number of parameters (5392 for the shared MLP versus 4929 for
the baseline PINNs), the shared MLP with rank $r = 16$ achieves a relative ℓ_2 error of 1.25×10^{-3}
after only 11,500 epochs. In contrast, the standard PINN requires 31,500 epochs yet converges to a
much worse error of 1.29×10^{-1} . Although the shared-MLP requires a bit higher per-epoch cost,
resulting in a total training time of 1579 s versus 1184 s, the substantial gain in accuracy outweighs
this moderate runtime trade-off. These results indicate that the shared-MLP provides a far more
expressive representation for high-dimensional Poisson problems, even under comparable model
capacity.

349
350
351
352
353
Moreover, the separable parameterization supports dimension expansion: a model trained in a lower-
dimensional setting can be directly fine-tuned to higher-dimensional problems, whereas standard
MLP-based PINNs cannot be reused due to mismatched input dimensionality. We fine-tuned a
5D model on the 8D Poisson problem, accelerating convergence and achieving better accuracy.
Complete fine-tuning details and results are provided in the [Appendix C](#).

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Interpretability. We train the Poisson
equation with 8192 collocation points and
2048 boundary points using an expert
module. The values in Table 2 represent
the mean VI averaged over five in-
dependent random seeds in all the dimen-
sions. From the analytical solution $u =$
 $\prod_{i=1}^5 \sin(\pi x_i)$ (Appendix A), one might
expect that $r = 1$ would suffice for inter-
pretability compared to equation 3. How-
ever, our experiments demonstrate that
 $r = 1$ is insufficient. By increasing r
to 4, we obtain $VI \approx 1$, as reported in
Table 2. For higher dimensions, we fur-
ther test the 10d Poisson problem. Even in
this case, full interpretability ($VI = 1$) is
achieved with $r = 5$, and the model also
attains a satisfactory accuracy with ℓ_2 er-
ror 0.0025 ± 0.0028 . These results confirm
that a small value of r ensures good inter-
pretability while maintaining strong learn-
ing performance. For completeness, we
further evaluate our framework on a 2d
Poisson equation defined on an L-shaped
domain, demonstrating that the method extends
naturally to irregular geometries. The full setup and
results are provided in [Appendix C](#).

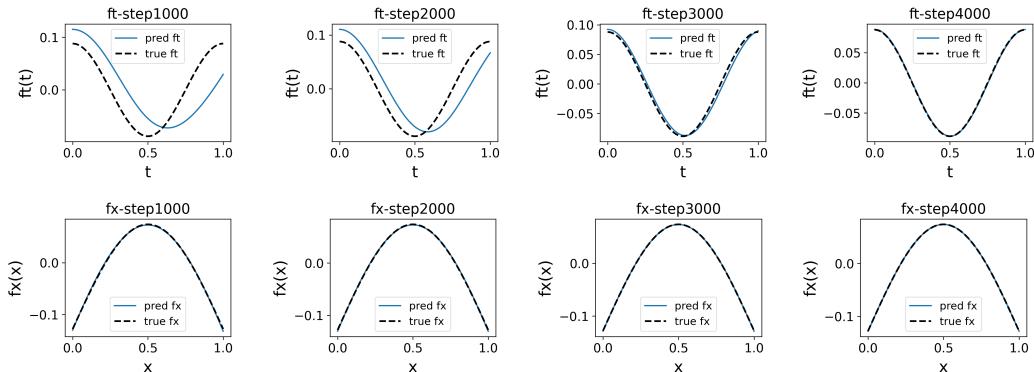


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562
70563
70564
70565
70566
70567
70568
70569
70570
70571
70572
70573
70574
70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640
70641
70642
70643
70644
70645
70646
70647
70648
70649
70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
70668
70669
70670
70671
70672
70673
70674
70675
70676
70677
70678
70679
70680
70681
70682
70683
70684
70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
70705
70706
70707
70708
70709
70710
70711
70712
70713
70714
70715
70716
70717
70718
70719
70720
70721
70722
70723
70724
70725
70726
70727
70728
70729
70730
70731
70732
70733
70734
70735
70736
70737
70738
70739
70740
70741
70742
70743
70744
70745
70746
70747
70748
70749
70750
70751
70752
70753
70754
70755
70756
70757
70758
70759
70760
70761
70762
70763
70764
70765
70766
70767
70768
70769
70770
70771
70772
70773
70774
70775
70776
70777
70778
70779
70780
70781
70782
70783
70784
70785
70786
70787
70788
70789
70790
70791
70792
70793
70794
70795
70796
70797
70798
70799
70800
70801
70802
70803
70804
70805
70806
70807
70808
70809
70810
70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
70844
70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
70860
70861
70862
70863
70864
70865
70866
70867
70868
70869
70870
70871
70872
70873
70874
70875
70876
70877
70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006
71007
71008
71009
71010
71011
71012
71013
71014
71015
71016
71017
71018
71019
71020
71021
71022
71023
71024
71025
71026
71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
71039
71040
71041
71042
71043
71044
71045
71046
71047
71048
71049
71050
71051
71052
71053
71054
71055
71056
71057
71058
71059
71060
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
71091
71092
71093
71094
71095
71096
71097
71098
71099
71100
71101
71102
71103
71104
711

378 Table 2: Mean VI over dimension components for different values of r across the PDE examples.
379 All values are averaged over five independent random seeds and are reported in percentage form
380 (i.e., multiplied by 100).

PDE examples	r=1	r=2	r=3	r=4	r=5
5d Poisson	4.11 ± 0.00	91.21 ± 12.66	99.72 ± 0.14	99.99 ± 0.01	100.00 ± 0.00
10d Poisson	4.82 ± 1.10	87.48 ± 7.49	99.46 ± 0.06	99.99 ± 0.01	100.00 ± 0.00
1d Wave $c = 2$	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.000	100.00 ± 0.00	100.00 ± 0.00
1d Wave $c = 5$	49.26 ± 1.04	83.09 ± 2.82	90.65 ± 6.78	90.72 ± 6.64	99.40 ± 0.10
1d Wave $c = 10$	41.71 ± 8.02	54.71 ± 10.56	58.39 ± 3.58	59.23 ± 2.83	84.59 ± 3.42
2d Wave $c = 2$	67.56 ± 1.34	94.53 ± 3.10	99.74 ± 0.19	99.97 ± 0.02	100.00 ± 0.00

389 For the Wave equation, we use 8192 collocation points, 1024 initial points, and 1024 boundary
390 points, again with a single expert module. In this setting, $r = 1$ is sufficient to achieve full in-
391 terpretability with $VI = 1$, consistent with the analytical solution $u(t, x) = \sin(\pi x) \cos(c\pi t)$ (Ap-
392 pendix A). We first examine the 1d case with $c = 2$. Figure 3 compares the predicted and exact com-
393 ponents $f_t(t) = \cos(c\pi t)$ and $f_x(x) = \sin(\pi x)$ at training steps 1000, 2000, 3000, and 4000. As
394 suggested by the analytical solution, the t -component has a higher frequency than the x -component.
395 Accordingly, the model learns $f_x(x)$ within the first 1000 steps but requires up to 4000 steps to accu-
396 rately capture $f_t(t)$. This behavior is fully consistent with a well-known limitation of PINNs: higher-
397 frequency structures are intrinsically harder for PINNs to learn, often requiring more optimiza-
398 tion steps and finer resolution. We then test cases with $c = 5$ and $c = 10$, where the solution includes
399 higher-frequency terms $\cos(c\pi t)$. In these settings, $r = 1$ is no longer sufficient for full interpretabil-
400 ity. Nevertheless, VI improves as r increases, reaching $VI \approx 1$ for $c = 5$. Finally, we consider
401 the 2d Wave equation with analytical solution $u(t, x_1, x_2) = \sin(\pi x_1) \sin(\pi x_2) \cos(\sqrt{2}c\pi t)$ and
402 $c = 2.0$. The additional spatial dimension increases the learning difficulty, as reflected in Table 2.
403 Still, the model achieves $VI = 1$ at $r = 5$, underscoring that small values of r suffice to ensure
404 strong interpretability.



418 Figure 3: **Components’ interpretability of 1d Wave equation when $c = 2$.** The first row represents
419 comparison of t -component while the second row represents comparison of x -component. Here
420 “pred f_x ” and “pred f_t ” in the figure refers to the shared MLP processing x and t respectively. The
421 black dotted line stands for true value from analytical solution and the blue solid line stands for
422 predicted value. From left to right, the columns represent the 1000th, 2000th, 3000th, and 4000th
423 training steps, respectively.

4.3 DOMAIN DECOMPOSITION

425 Multiple experts and a router are employed for automatic domain decomposition for Viscous Burg-
426 ers. Within each expert, dimension decomposition is applied. The shared MLP consists of two
427 hidden layers of width 32 with $r = 16$. The training data consists of 10,000 randomly sampled
428 collocation points, 256 initial points, and 200 boundary points. For testing, we adopt high-accuracy
429 dataset generated in MATLAB, as in PINNs (Raissi et al., 2019).

431 For the tested viscosity $\nu = \frac{0.01}{\pi}$ (see Appendix A), the shock at $x = 0$ represents the solution’s
432 main discontinuity. It is, therefore, the natural choice for the splitting boundary in domain decom-

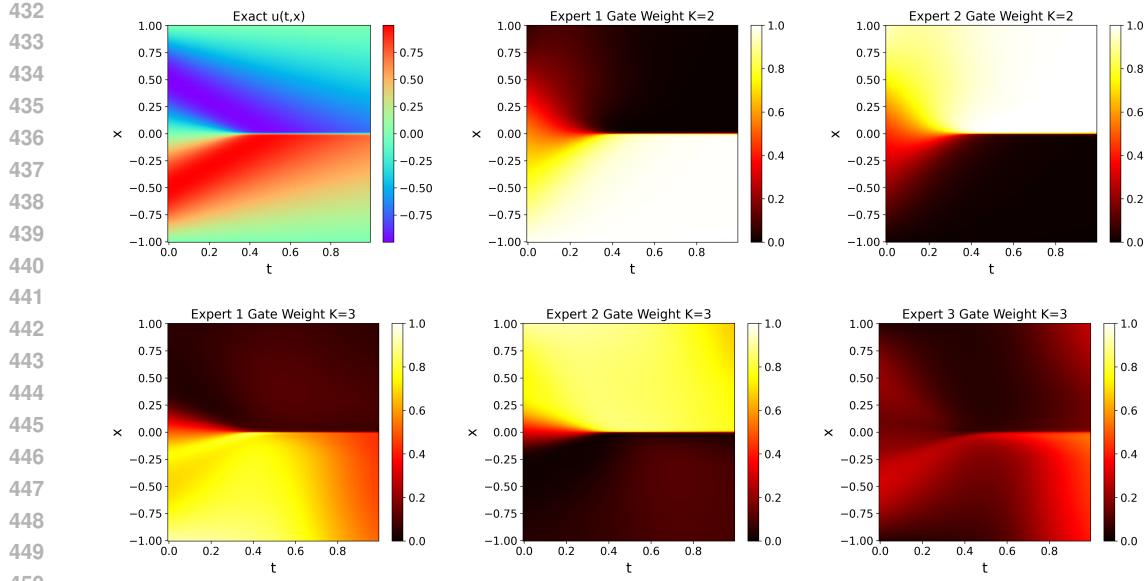


Figure 4: **Ground truth and domain decomposition results of Viscous Burger for $K = 2$ and $K = 3$.** The left panel in the first row shows the ground truth solution. The remaining two panels in the first row display the decomposition results with $K = 2$, indicating obvious boundary of $x = 0$. Three figures in the second row correspond to $K = 3$, which shows little new decomposition information. For $K = 1, 2, 3$, ℓ_2 error achieves 0.2108 ± 0.1252 , 0.0011 ± 0.0005 , 0.0008 ± 0.0004 , showing effectiveness of MoE structure.

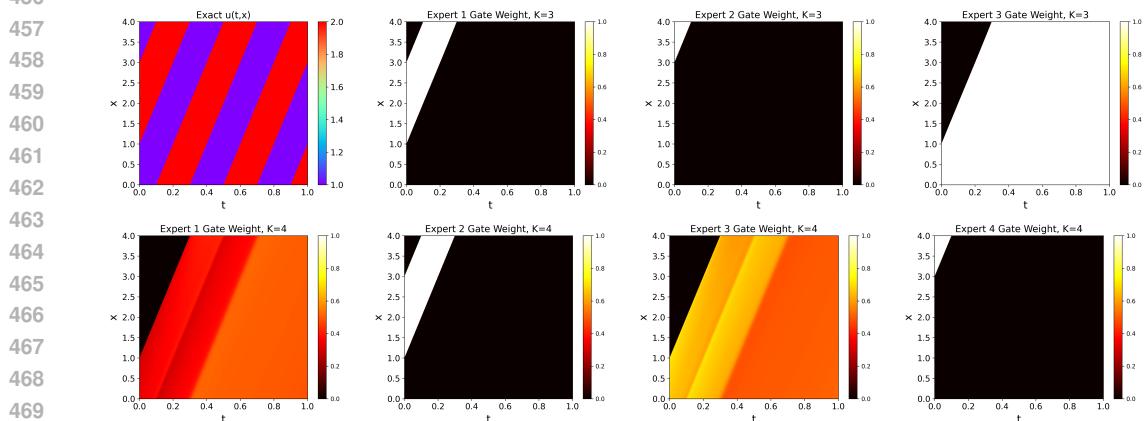


Figure 5: **Results of domain decomposition of Linear Transport for $K = 3, 4$.** The left panel in the first row shows the ground truth solution. The remaining three panels illustrate weight assignments of experts when $K = 3$, demonstrating clear cut-off lines same as the ground truth. Four panels in the second row are domain decomposition results of $K = 4$, displaying more detailed partition.

position (see Figure 4). Although the number of experts affects the precise partitioning, this critical shock location can be consistently identified. We visualize the router assignments for each expert. Figure 4 shows the domain decomposition results for Viscous Burgers with different numbers of experts K . It is evident that for $K = 2$, the model achieves domain decomposition, mainly separated by shock at $x = 0$. Increasing the number of experts to $K = 3$ does not introduce new meaningful subdomains since the additional expert tends to receive small weights. For $K = 1, 2, 3$, ℓ_2 error achieves 0.2108 ± 0.1252 , 0.0011 ± 0.0005 , 0.0008 ± 0.0004 , showing effectiveness of MoE structure. Appendix C provides additional visualizations for $K = 4$ and $K = 5$ and an ablation analysis of how r affects the error.

We further evaluate the 1d Linear Transport equation. In the main paper, we present results for the case with clearly separable regions (Appendix A), while the case with smooth transitions is deferred

486 to Appendix C. For both settings, we use 8192 collocation points along with 1024 initial points and
 487 1024 boundary points.
 488

489 For MoE-driven domain decomposition, we find that using three experts ($K = 3$) yields a reasonable
 490 decomposition. In this case, we set $r = 4$. The learned partition successfully captures the diagonal
 491 stripe structures observed in the ground truth (Figure 5), with the predicted stripe locations closely
 492 matching those of the exact solution. Results with four experts ($K = 4$) are shown in the second row
 493 of Figure 5, where we use $r = 8$. The additional expert produces a more detailed partition. Further
 494 results for other values of K are provided in Appendix C, demonstrating that too few experts lead to
 495 unclear decompositions, while larger K do not yield additional structural information.
 496

497 **Consistency.** To evaluate the consistency of the learned domain decompositions, we repeat the
 498 Viscous Burgers and Linear Transport problems under five different random seeds that control the
 499 random initialization of all network parameters. We fix collocation points across runs. Across
 500 different seeds, the MoE-based domain decompositions recover the prominent structures: in Viscous
 501 Burgers, the shock location at $x = 0$ is consistently distinguished, while in the Linear Transport
 502 problem, different experts align with the diagonal stripe patterns. Representative visualizations
 503 under different seeds are provided in Appendix C. This shows that the domain decomposition is
 504 driven by intrinsic geometric features of the PDE solutions.
 505

506 **Robustness.** We further test robustness by adding relative Gaussian noise up to 5% to the initial
 507 and boundary conditions. The resulting MoE-based domain decompositions remain stable. Visual-
 508 izations comparing the noise-free and noisy settings are provided in Appendix C.
 509

5 CONCLUSION

510 In this paper, we propose Dimension Domain Co-Decomposition (3D), a PINNs-based framework
 511 that unifies dimension decomposition and MoE-driven domain decomposition. Within each expert,
 512 a shared MLP processes coordinate–index pairs to produce dimension-wise functions. To quantify
 513 the alignment between predicted dimension component and ground truth component, we introduce
 514 Variable Interpretability (VI). At the MoE level, the router adaptively partitions the domain so
 515 that experts specialize in local regions without requiring predefined subdomains or explicit interface
 516 conditions. Through experiments on PDE benchmarks, we show that 3D not only achieves good
 517 accuracy but also produces interpretable decompositions across dimensions according to VI . Nev-
 518 ertheless, our study has limitations. VI relies on reference solutions that are dimension-separable.
 519 For non-separable solutions, we must construct separable approximations, for example using trun-
 520 cated Fourier series, and compare the predicted components against these numerical factors. Future
 521 work should explore more general interpretability metrics that extend beyond separable settings.
 522

523 REPRODUCIBILITY STATEMENT

524 We are committed to ensuring the reproducibility of our results. All code for our framework (train-
 525 ing, evaluation, and visualization) is attached as supplementary material. For clarity, each PDE
 526 example (Poisson, Wave, Burgers, Transport) is implemented in a separate code file named after
 527 the corresponding PDE problem, making it straightforward to reproduce individual experiments.
 528 PDE datasets are generated from analytic or high-accurate numerical solutions as described in Sec-
 529 tion 4.2. We provide all hyperparameter settings in Appendix B, together with fixed random seeds
 530 for PyTorch and NumPy.
 531

532 REFERENCES

533 Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey Hinton. Neural
 534 additive models: Interpretable machine learning with neural nets. In *Advances in Neural Infor-
 535 mation Processing Systems (NeurIPS)*, 2021.
 536

537 David Alvarez-Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
 538 neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 31,
 539 pp. 7775–7784, 2018.

540 John D. Anderson. *Computational Fluid Dynamics: The Basics with Applications*. McGraw-Hill,
 541 1995. Covers PDE formulations for fluid dynamics problems.
 542

543 Ivo Babuška. Error-bounds for finite element method. *Numerische Mathematik*, 16:322–333, 1971.
 544 doi: 10.1007/BF02165003.

545 Claude Basdevant, Michel Deville, Pierre Haldenwang, J.-M. Lacroix, Jalil Ouazzani, Roger Peyret,
 546 Paolo Orlandi, and Anthony T. Patera. Spectral and finite difference solutions of the burgers
 547 equation. *Computers & Fluids*, 14(1):23–41, 1986. doi: 10.1016/0045-7930(86)90036-8.
 548

549 John P. Boyd. *Chebyshev and Fourier Spectral Methods*. Dover Publications, 2nd edition, 2001.
 550 Comprehensive treatment of spectral methods using Chebyshev and Fourier bases.

551 Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
 552 from data by sparse identification of nonlinear dynamical systems. *Proceedings of the National
 553 Academy of Sciences*, 113(15):3932–3937, 2016.

554 J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling
 555 via an n-way generalization of “eckart–young” decomposition. *Psychometrika*, 35(3):283–319,
 556 1970. doi: 10.1007/BF02310791.

558 Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
 559 Separable physics-informed neural networks. In *Thirty-seventh Conference on Neural Infor-
 560 mation Processing Systems (NeurIPS 2023)*, 2023.

561 Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley. Multilevel domain
 562 decomposition-based architectures for physics-informed neural networks. *Computer Methods in
 563 Applied Mechanics and Engineering*, (submitted / arXiv preprint), 2024. arXiv:2306.05486.

565 David J. Griffiths and Darrell F. Schroeter. *Introduction to Quantum Mechanics*. Cambridge Univer-
 566 sity Press, 3rd edition, 2018. Discusses Schrödinger equation as a PDE in quantum mechanics.

568 Linyan Gu, Shanlin Qin, Lei Xu, and Rongliang Chen. Physics-informed neural networks with
 569 domain decomposition for the incompressible navier–stokes equations. *Physics of Fluids*, 36
 570 (b1914), 2024.

571 Richard A. Harshman. Foundations of the parafac procedure: Models and conditions for an “ex-
 572 planatory” multimodal factor analysis. Technical Report 16, UCLA Working Papers in Phonetics,
 573 1970.

574 Trevor J. Hastie and Robert J. Tibshirani. *Generalized Additive Models*. Chapman and Hall/CRC,
 575 1990.

577 Zheyuan Hu, Ameya D. Jagtap, George Em Karniadakis, and Kenji Kawaguchi. Augmented
 578 physics-informed neural networks (apinns): A gating network-based soft domain decomposi-
 579 tion methodology. *Engineering Applications of Artificial Intelligence*, 113:107183, 2023.

580 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
 581 of local experts. *Neural Computation*, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

583 Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Extended physics-informed
 584 neural networks (xpinns): A generalized space-time domain decomposition based deep learn-
 585 ing framework for nonlinear partial differential equations. *Communications in Computational
 586 Physics*, 28(5):2002–2041, 2020a.

587 Ameya D. Jagtap, Kentaro Kawaguchi, and George Em Karniadakis. Conservative physics-informed
 588 neural networks on discrete domains for conservation laws: Applications to forward and inverse
 589 problems. *Computer Methods in Applied Mechanics and Engineering*, 365:113028, 2020b.

591 Ameya D. Jagtap, Kentaro Kawaguchi, and George Em Karniadakis. Extended physics-informed
 592 neural networks (xpinns): A generalized space-time domain decomposition based deep learn-
 593 ing framework for nonlinear partial differential equations. *Communications in Computational
 594 Physics*, 28(5):2002–2041, 2020c.

594 Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identification of nonlinear dynamics
 595 for model predictive control in the low-data limit. *Proceedings of the Royal Society A*, 474(2219):
 596 20180335, 2018.

597

598 Peter D. Lax and Robert D. Richtmyer. Survey of the stability of linear finite difference equa-
 599 tions. *Communications on Pure and Applied Mathematics*, 9(2):267–293, 1956. doi: 10.1002/
 600 cpa.3160090206.

601

602 Randall J. LeVeque. *Finite Difference Methods for Ordinary and Partial Differential Equations:*
 603 *Steady-State and Time-Dependent Problems*. Society for Industrial and Applied Mathematics,
 604 Philadelphia, PA, 2007.

605

606 Youqiong Liu, Li Cai, and Yaping Chen. Variable separated physics-informed neural networks
 607 based on adaptive weighted loss functions for blood flow model. *Computers & Mathematics with*
 608 *Applications*, 153, 2024. doi: 10.1016/j.camwa.2023.11.018.

609

610 Ziyue Liu, Xinling Yu, and Zheng Zhang. Tt-pinn: A tensor-compressed neural pde solver for
 611 edge computing. *arXiv preprint arXiv:2207.01751*, 2022. URL <https://arxiv.org/abs/2207.01751>.

612

613 Yin Lou, Rich Caruana, and Johannes Gehrke. Accurate intelligible models with pairwise interac-
 614 tions. *Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery*
 615 *and Data Mining (KDD)*, pp. 623–631, 2013.

616

617 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 618 deep learning framework for solving forward and inverse problems involving nonlinear partial
 619 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

620

621 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 622 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 623 *arXiv preprint arXiv:1701.06538*, 2017. URL <https://arxiv.org/abs/1701.06538>.
 624 Introduced top- k gating for Mixture-of-Experts, establishing the Sparse MoE framework.

625

626 Khemraj Shukla, Ameya D. Jagtap, and George Em Karniadakis. Parallel physics-informed neural
 627 networks via domain decomposition. *Journal of Computational Physics*, 447:110683, 2021.

628

629 Walter A. Strauss. *Partial Differential Equations: An Introduction*. John Wiley & Sons, 2nd edition,
 630 2007. Includes classical PDE models for wave propagation.

631

632 Lloyd N. Trefethen. *Spectral Methods in MATLAB*. Society for Industrial and Applied Mathe-
 633 matics, 2000. doi: 10.1137/1.9780898719598. Classic reference on spectral methods and their
 634 convergence properties.

635

636 Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31(3):
 637 279–311, 1966. doi: 10.1007/BF02289464.

638

639 Sai Karthikeya Vemuri, Tim Büchner, Julia Niebling, and Joachim Denzler. Functional tensor de-
 640 compositions for physics-informed neural networks. In *Proceedings of the 13th International*
 641 *Conference on Pattern Recognition (ICPR)*. Springer, 2024. doi: 10.1007/978-3-031-78389-0_3.
 642 URL <https://arxiv.org/abs/2408.13101>.

643

644 Júlia Vicens Figueres, Juliette Vanderhaeghen, Federica Bragone, Kateryna Morozovska, and Khem-
 645 raj Shukla. Spinn – a domain decomposition method for bayesian physics-informed neural net-
 646 works. *arXiv preprint arXiv:2504.19013*, 2025.

647

648 Simon N. Wood. Generalized additive models: An introduction with r. *Chapman and Hall/CRC*,
 649 2017.

650

651 Olek C. Zienkiewicz, Robert Leroy Taylor, and Jian Z. Zhu. *The Finite Element Method: Its Basis*
 652 *and Fundamentals*. Elsevier, Oxford, UK, 2005.

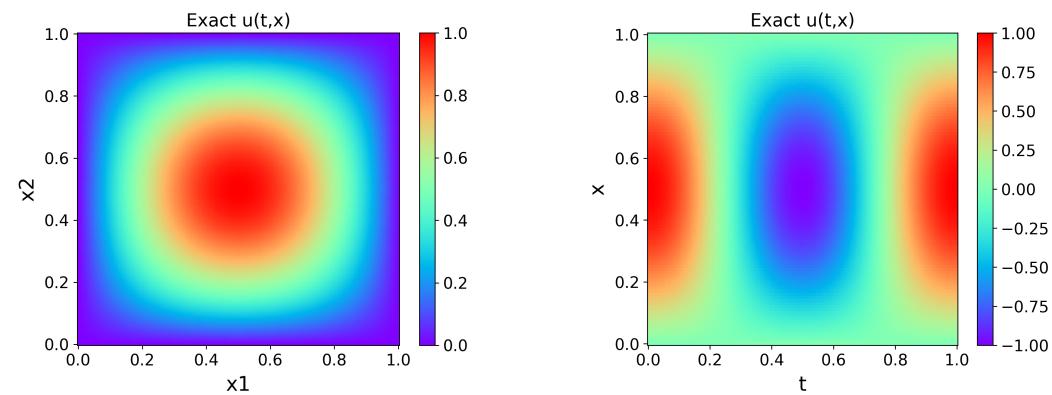


Figure 6: **Ground truths for 5d Poisson and Wave examples.** The left figure is the ground truth of 5d Poisson slice at $(x_3, x_4, x_5) = (0.5, 0.5, 0.5)$. The right one is the ground truth of 1d wave equation when $c = 2.0$.

A DETAILS OF PDE EXAMPLES

In this appendix, we detail the PDE setups used in the main paper: Poisson, Wave, Viscous Burgers, and Linear Transport.

A.1 POISSON EQUATION

We consider the Poisson problem with homogeneous Dirichlet boundary conditions:

$$\begin{cases} -\Delta u(\mathbf{x}) = f(\mathbf{x}) & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = 0 & \mathbf{x} \in \partial\Omega. \end{cases} \quad (7)$$

where $\Omega = [0, 1]^d$ and $\mathbf{x} = (x_1, \dots, x_d)$. We use the manufactured solution

$$u(\mathbf{x}) = \prod_{i=1}^d \sin(\pi x_i), \quad (8)$$

for which

$$-\Delta u = d\pi^2 \prod_{i=1}^d \sin(\pi x_i) = f(\mathbf{x}). \quad (9)$$

In the main experiments, we test 5d Poisson and 10d Poisson. Figure 6 shows a 2D slice of 5d Poisson u with respect to (x_1, x_2) while fixing $(x_3, x_4, x_5) = (0.5, 0.5, 0.5)$.

A.2 WAVE EQUATION

Wave equation is a time-dependent PDE that takes the form:

$$\begin{cases} u_{tt}(t, \mathbf{x}) = c^2 \Delta u & \mathbf{x} \in (0, 1)^d, t \in [0, 1] \\ u(0, t) = u(1, t) = 0 & t \in [0, 1] \\ u(\mathbf{x}, 0) = \prod_{i=1}^d \sin(\pi x_i), u_t(\mathbf{x}, 0) = 0 & \mathbf{x} \in [0, 1]^d \end{cases} \quad (10)$$

where c is the wave speed. In our experiments, we test 1d with $c = 2.0, 5.0, 10.0$ and 2d with $c = 2.0$. The analytical form of Wave equation is $u(t, \mathbf{x}) = \prod_{i=1}^d \sin(\pi x_i) \cos(\sqrt{d}\pi c t)$. Figure 6 shows the ground truth figure of 1d Wave equation when $c = 2.0$.

702 A.3 VISCOUS BURGERS
703

704 The Burgers equation is a fundamental nonlinear PDE combining advection and diffusion, used
705 as a prototype for shock formation and turbulence modeling. We consider the following Viscous
706 Burgers:
707

$$\begin{cases} u_t + uu_x = \nu u_{xx} & x \in [-1, 1], t > 0 \\ u(-1, t) = 0, u(1, t) = 0 & t \geq 0 \\ u(x, 0) = -\sin(\pi x) & x \in [-1, 1] \end{cases} \quad (11)$$

712 where viscosity $\nu = \frac{0.01}{\pi}$. With such small viscosity, the solution behaves almost inviscid: gradients
713 steepen rapidly and form very thin viscous layers (shock transitions). Similarly, we set $T = 1$ and
714 $t \in [0, 1]$. Analytical solution is introduced in (Basdevant et al., 1986). Ground truth figure is shown
715 in main text, see Figure 4.

716 A.4 LINEAR TRANSPORT
717

718 Linear Transport (advection—equation)
719 describes a profile being carried along
720 characteristics at velocity without changing
721 shape. The 1d example we use in the
722 main paper takes form as:
723

$$\begin{cases} u_t + cu_x = 0 & x \in \Omega, t > 0 \\ u(0, t) = u(4, t) = 0 & t \geq 0 \\ u(x, 0) = u_0(x) & x \in \Omega \end{cases} \quad (12)$$

724 where we consider $c = 10$, $\Omega = [0, 4]$,
725 $T = 1$, $t \in [0, 1]$ and initial condition
726 $u_0(x)$ as:
727

$$u_0(x) = \begin{cases} 2, & 1 \leq x < 3, \\ 1, & \text{otherwise.} \end{cases}$$

728 The piecewise constant profile induces
729 discontinuities. Given the initial condition,
730 the analytical solution is $u = u_0((x - ct) \bmod 4)$. That is, the initial profile
731 simply translates to the right at constant speed c without deformation. We show the solution profiles
732 with respect to $t = 0, 0.2, 0.5, 1.0$ s in Figure 7. We also test another form of 1d Linear Transport,
733 see details in Section C.

744 B TRAINING DETAILS
745

746 **Data and seed.** For each PDE, we randomly sample according to Gaussian distribution N_f col-
747 location points in the interior domain and N_b points on the boundary. For time-dependent PDEs,
748 we additionally sample N_{ic} points from the initial condition. Values of N_f , N_b and N_{ic} have been
749 shown in main text. For Poisson and Linear Transport problems, we normalize data into $[-1, 1]$
750 before sending into the model.

$$\tilde{x} = 2\left(\frac{x - x_{\min}}{x_{\max} - x_{\min}}\right) - 1$$

751
752 We ensured reproducibility by fixing the random seeds of both NumPy and PyTorch. In particu-
753 lar, `np.random.seed(1234)` and `torch.manual_seed(1234)` were used to control ran-
754

domness in CPU and single-GPU computations. This setup guarantees that data sampling, weight initialization, and training outcomes remain consistent across repeated runs.

Router outputs. For dense MoE structure, the router outputs mixture weights via a softmax (see equation 13) with temperature $\tau > 0$. As $\tau \rightarrow 0^+$, the distribution becomes more peaked (approaching a one-hot assignment), while $\tau \rightarrow \infty$ yields a uniform distribution. In our experiments, for Poisson and Viscous Burgers, we set $\tau = 1.0$ while for Wave and Transport, we set $\tau = 0.5$.

$$\text{softmax}_\tau(z_i) = \frac{\exp\left(\frac{z_i}{\tau}\right)}{\sum_{j=1}^K \exp\left(\frac{z_j}{\tau}\right)}, \quad i = 1, \dots, K \quad (13)$$

where z_i is the original output of the router and K is the number of experts.

Loss function. We consider a generic time-dependent PDE written implicitly as

$$\begin{cases} \mathcal{F}(x, t, u, \nabla u, \nabla^2 u) = 0, & (x, t) \in \Omega \times (0, T], \\ \mathcal{B}[u](x, t) = 0, & (x, t) \in \partial\Omega \times (0, T], \\ u(x, 0) = u_0(x), & x \in \Omega, \end{cases} \quad (14)$$

where \mathcal{F} encodes the governing PDE, \mathcal{B} specifies the boundary condition (Dirichlet/Neumann/periodic), and u_0 is the initial condition.

A PINN u_θ minimizes the composite loss

$$\mathcal{L}(\theta) = w_f \mathcal{L}_{\text{PDE}} + w_{bc} \mathcal{L}_{\text{BC}} + w_{ic} \mathcal{L}_{\text{IC}}, \quad (15)$$

Here $w_f, w_{bc}, w_{ic} > 0$ are scalar weights that balance the PDE residual, boundary, and initial terms, controlling the trade-off among them. The loss is obtained with collocation points $\{(x_f^{(i)}, t_f^{(i)})\}_{i=1}^{N_f}$, boundary points $\{(x_{bc}^{(j)}, t_{bc}^{(j)})\}_{j=1}^{N_{bc}}$, and initial points $\{x_{ic}^{(k)}\}_{k=1}^{N_{ic}}$:

$$\mathcal{L}_{\text{PDE}} = \frac{1}{N_f} \sum_{i=1}^{N_f} \left(\mathcal{F}(x, t, u_\theta, \nabla u_\theta, \nabla^2 u_\theta) \right)^2 \Big|_{(x_f^{(i)}, t_f^{(i)})}, \quad (16)$$

$$\mathcal{L}_{\text{BC}} = \frac{1}{N_{bc}} \sum_{j=1}^{N_{bc}} \left(\mathcal{B}[u_\theta] \right)^2 \Big|_{(x_{bc}^{(j)}, t_{bc}^{(j)})}, \quad (17)$$

$$\mathcal{L}_{\text{IC}} = \frac{1}{N_{ic}} \sum_{k=1}^{N_{ic}} (u_\theta(x_{ic}^{(k)}, 0) - u_0(x_{ic}^{(k)}))^2. \quad (18)$$

All derivatives are obtained via automatic differentiation.

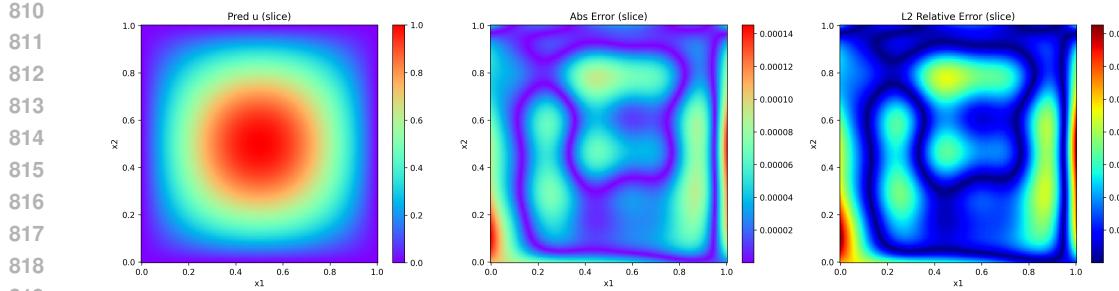
Two-stage optimization. We adopt a two-stage scheme: Adam warm-up followed by L-BFGS refinement. We first optimize the network parameters with Adam ($\text{lr} = 10^{-6}, 5 \times 10^{-4}, 10^{-4}, 10^{-3}$ for Viscous Burger, Poisson, Transport and Wave respectively), updating at each training step:

$$\mathcal{L} = w_f \mathcal{L}_{\text{PDE}} + w_{bc} \mathcal{L}_{\text{BC}} + w_{ic} \mathcal{L}_{\text{IC}}.$$

In our implementation, w_{bc} and w_{ic} is fixed during this phase but w_f is dependent on experiments. For Viscous Burgers, we set $w_{ic} = 10.0$ while fix the rest weights to 1.0. For Poisson, $w_{bc} = 5000.0$ and fix $w_f = 1.0$. For Wave, we fix $w_f = 1.0$ while fix others equal to 100.0. Lastly, for Linear Transport, we fix $w_{ic} = 100.0, w_{bc} = 10.0$. We linearly anneal the PDE residual weight from $w_f^{\text{init}} = 0.01$ to $w_f^{\text{final}} = 1.0$.

$$w_f(e) = w_f^{\text{init}} + (w_f^{\text{final}} - w_f^{\text{init}}) \min\left(\frac{e}{T_{\text{anneal}}}, 1\right),$$

where e is the current Adam step and $T_{\text{anneal}} = 0.75 n_{\text{Adam}}$. Thus w_f increases linearly from 0.01 at $e = 0$ to 1.0 at $e \geq T_{\text{anneal}}$, after which it remains at 1.0.

820 Figure 8: Predicted solutions and error plots for 5d Poisson with single expert module and $r = 4$.
821822 Table 3: ℓ_2 errors of 5d Poisson with different $r = 1, 2, 3, 4, 5$.
823

Type	$r = 1$	$r = 2$	$r = 3$	$r = 4$	$r = 5$
5d Poisson	7.1881×10^{-4}	2.6559×10^{-4}	1.8219×10^{-4}	1.5252×10^{-4}	3.1061×10^{-4}

824
825
826
827
828
829 We employ cosine annealing for the learning rate with `CosineAnnealingLR` ($T_{\text{max}} = 20,000$,
830 $\text{eta}_{\text{min}} = 10^{-6}$), calling the scheduler at every step. Training steps n_{Adam} varies as experiments.
831 For Viscous Burgers, Wave and Poisson, we set $n_{\text{Adam}} = 10,000$ while for Linear Transport, we set
832 $n_{\text{Adam}} = 15,000$.

833 After the Adam warm-up, we switch to `torch.optim.LBFGS` with settings: `max_iter =`
834 $20,000$, `tolerance_grad = 10^{-9}` , `tolerance_change = 10^{-12}` , `history_size = 100`,
835 and strong-Wolfe line search (`line_search_fn = "strong_wolfe"`). Following standard practice,
836 we define a closure that recomputes the loss and its gradients; the PDE and boundary point sets are
837 *fixed once* at the start of this phase (20,000 interior collocation points, 5,000 boundary points and
838 5,000 initial points) except for Viscous Burgers example where same sampling points are used as
839 Adam. We use the same loss weighting as in Adam.

840 Unlike the Adam stage (which runs for a fixed number of steps), the L-BFGS stage proceeds until
841 the optimizer's internal convergence criteria are met or `max_iter` is reached. Concretely, L-BFGS
842 terminates early when the gradient norm falls below `tolerance_grad` (10^{-9}) or when the change
843 in the objective is smaller than `tolerance_change` (10^{-12}), as determined by the strong-Wolfe
844 line search and quasi-Newton updates. Therefore, the number of effective L-BFGS steps is not fixed
845 across runs or PDEs.

846
847

C ADDITIONAL RESULTS AND EXPERIMENTS

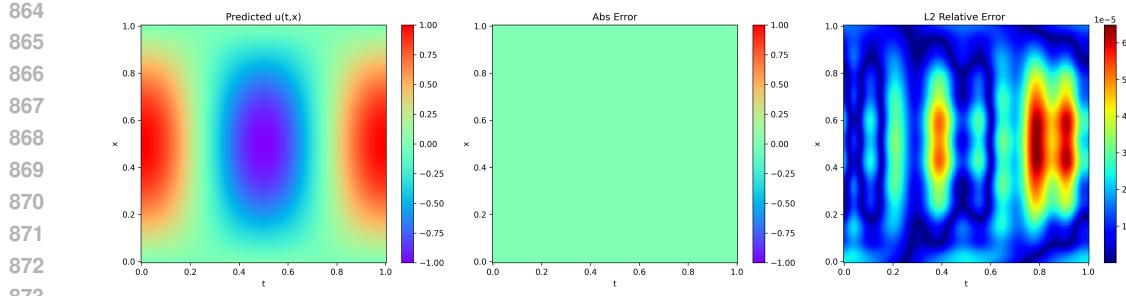
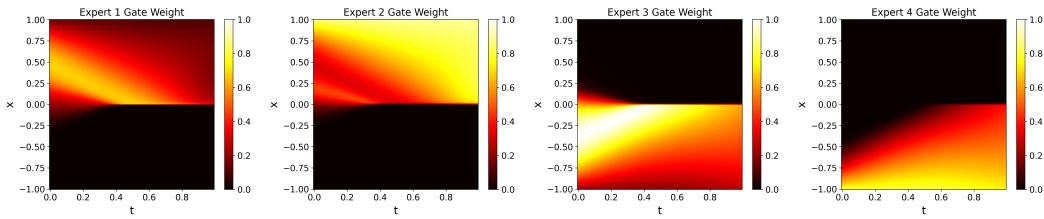
848849

C.1 EXTENDED RESULTS FOR MAIN EXPERIMENTS

850

851 **Poisson and Wave.** ℓ_2 relative errors about Poisson experiments are shown here. The Figure 8
852 demonstrates predicted solution, absolute error and ℓ_2 relative error about 5d Poisson with single
853 expert module and $r = 4$. The ℓ_2 errors of 5d Poisson with different $r = 1, 2, 3, 4, 5$ are recorded in
854 Table 3. For 10d Poisson, ℓ_2 relative error achieve 10^{-3} on average. Even when $r = 1$, it obtains
855 1.0487×10^{-2} . For Wave equation, Figure 9 shows predicted solutions, absolute errors and relative
856 ℓ_2 error plots for 1d Wave when $c = 2.0$. Given this setting, ℓ_2 relative error achieves 2.3779×10^{-4} .
857 For 2d Wave, an error of 2.4697×10^{-2} can be obtained.

858
859 **Viscous Burgers.** We first present domain decomposition results for $K = 4$ and $K = 5$. As shown
860 in Figure 11 and Figure 12, introducing additional experts brings only limited new information to
861 the decomposition. However, the experts attempt to further partition the small triangular area when
862 $t \in [0, 0.3]$, with Expert 5 in the $K = 5$ case showing the most evident specialization. Overall, 3D
863 achieves an ℓ_2 relative error of approximately 4.33×10^{-4} , which remains nearly unchanged across
864 different numbers of experts.

Figure 9: Predicted solutions and error plots for 1d Wave when $c = 2.0$ Figure 11: Domain decomposition of Viscous Burgers by $K = 4$.

Then we provide ablation analysis of how r affects the ℓ_2 relative error. Figure 10 shows the ℓ_2 error change as training steps up to 15,000 steps for $r = [1, 4, 8, 16]$. Due to the inconsistent of the total training steps, we truncate at the smallest step. For $r = [1, 4, 8, 16]$, the total training steps are 16500, 15200, 15000, 16800 and the final ℓ_2 errors are 8.5854×10^{-3} , 1.3682×10^{-3} , 3.3278×10^{-3} , 1.0079×10^{-3} respectively. This experiment demonstrates that generally ℓ_2 error decreases as r increases. However, when it increases to a certain value, its impact on ℓ_2 error is not that obvious.

Linear Transport. Here we present additional domain decomposition results of case in main text for $K = 2$ and $K = 5$. For $K = 2$ (Figure 15), the solution is roughly split into two subdomains, but compared with the clearer partition when $K = 3$ (Figure 5), the separation is less distinct. When $K = 5$ (Figure 16), a new subdomain emerges, but the fact that Expert 2 consistently receives zero weight indicates that setting $K = 5$ is redundant. Thus, for this example, $K_{optimal} = 4$.

Figure 13 and Figure 14 summarize the consistency and robustness experiments for Burgers and Transport equations. The first two rows of Figure 13 show the Burgers domain decomposition obtained with 2 experts under two representative seeds (2 and 2025), and both clearly align with the shock at $x = 0$ across seeds. Similarly, the first row of Figure 14 shows the Transport results with 3 experts for seed 2025, where the diagonal stripe patterns remain well captured. To further assess robustness, we inject 5% relative Gaussian noise into both the initial and boundary conditions. The bottom row of Figure 13 and the second row of Figure 14 show the corresponding noisy cases for Burgers and Transport, respectively. In both PDEs, the domain decomposition patterns remain

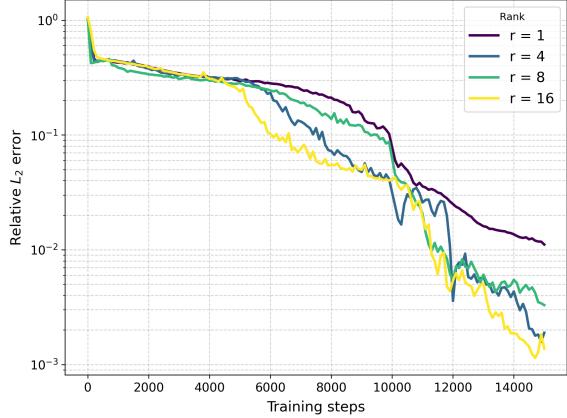


Figure 10: ℓ_2 error change as training steps up to 15,000 steps for $r = [1, 4, 8, 16]$. For $r = [1, 4, 8, 16]$, the total training steps are 16500, 15200, 15000, 16800 and the final ℓ_2 errors are 8.5854×10^{-3} , 1.3682×10^{-3} , 3.3278×10^{-3} , 1.0079×10^{-3} respectively.

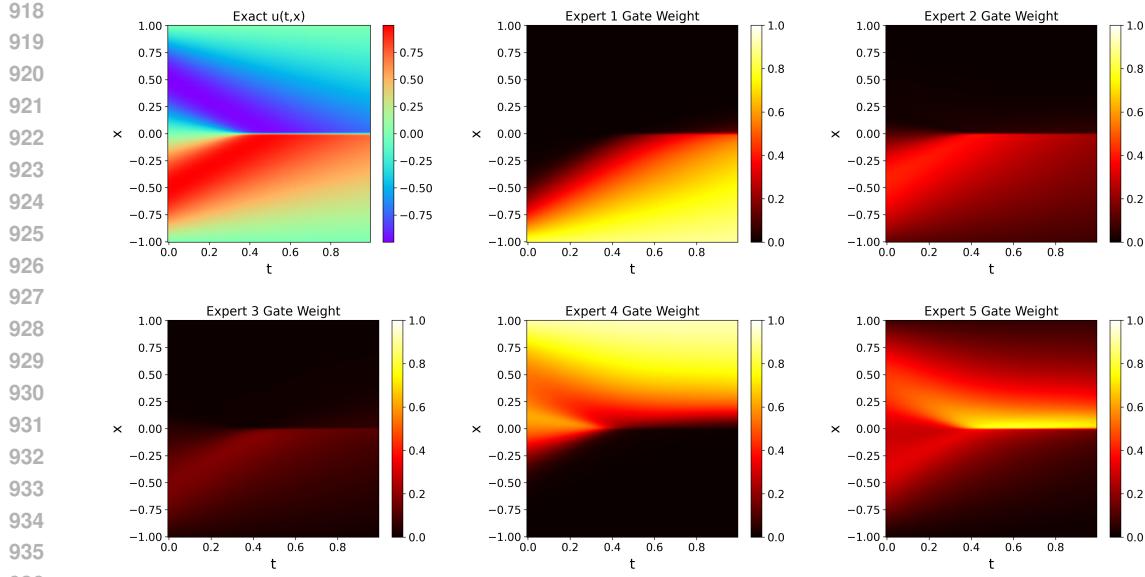


Figure 12: **Domain decomposition of Viscous Burgers by $K = 5$.** The top left one is the ground truth figure. The remaining five are domain decomposition for each expert.

stable and nearly identical to the noiseless counterparts, demonstrating strong robustness to data perturbations.

C.2 NEW EXPERIMENTS

5d Complex Poisson. The Poisson example tested in main text is simply the production, we trained the following 5d case with complexity:

$$\begin{cases} -\Delta u(\mathbf{x}) = f(\mathbf{x}) & \mathbf{x} \in \Omega, \\ u(\mathbf{x}) = 0 & \mathbf{x} \in \partial\Omega. \end{cases} \quad (19)$$

where $\Omega = [0, 1]^5$ and $\mathbf{x} = (x_1, \dots, x_5)$. We use the manufactured solution

$$u(\mathbf{x}) = \sum_{i=1}^5 \sin\left(\frac{\pi}{2}x_i\right)$$

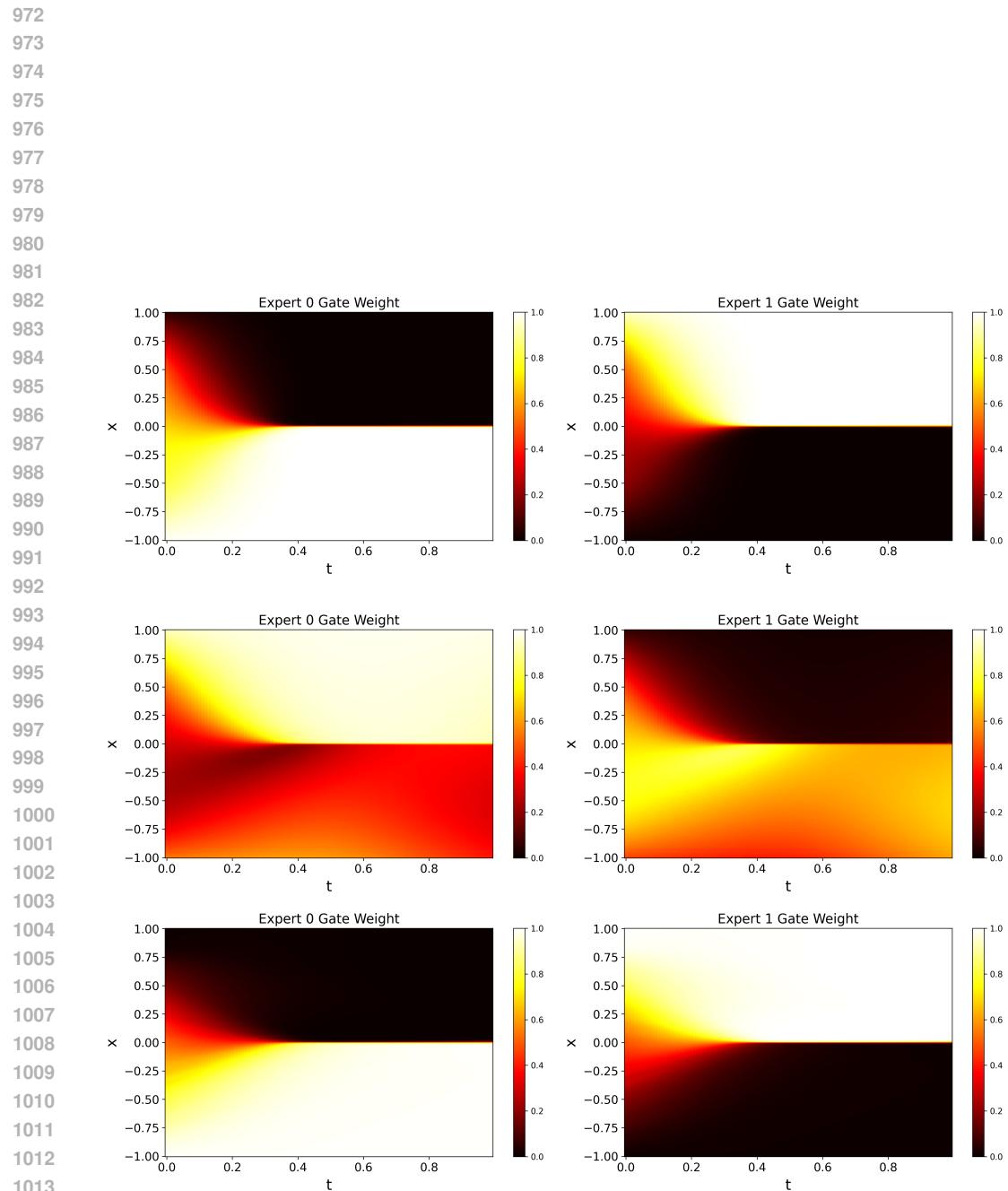
for which

$$-\Delta u = \frac{\pi^2}{4} \sum_{i=1}^5 \sin\left(\frac{\pi}{2}x_i\right) = f(\mathbf{x}). \quad (20)$$

Same as before, we also use single expert module to test VI. The exact solution of this case is the sum of dimension components, which is consistent with $r = 5$, according to equation 3. Same as our discovery that when $r = 5$, full interpretability is achieved. And the ℓ_2 relative error is 5.7608×10^{-4} given this setting. Figure 17 shows the ground truth, predicted solution and ℓ_2 relative error plots for $r = 5$.

2d Poisson with L-shape domain. To further show the generality of our framework, we test our method on the 2d Poisson on an L-shaped domain following the settings used in SPINNs (Cho et al., 2023):

$$\begin{cases} -\Delta u(x, y) = 1 & \mathbf{x} \in \Omega, \\ u(x, y) = 0 & \mathbf{x} \in \partial\Omega. \end{cases} \quad (21)$$



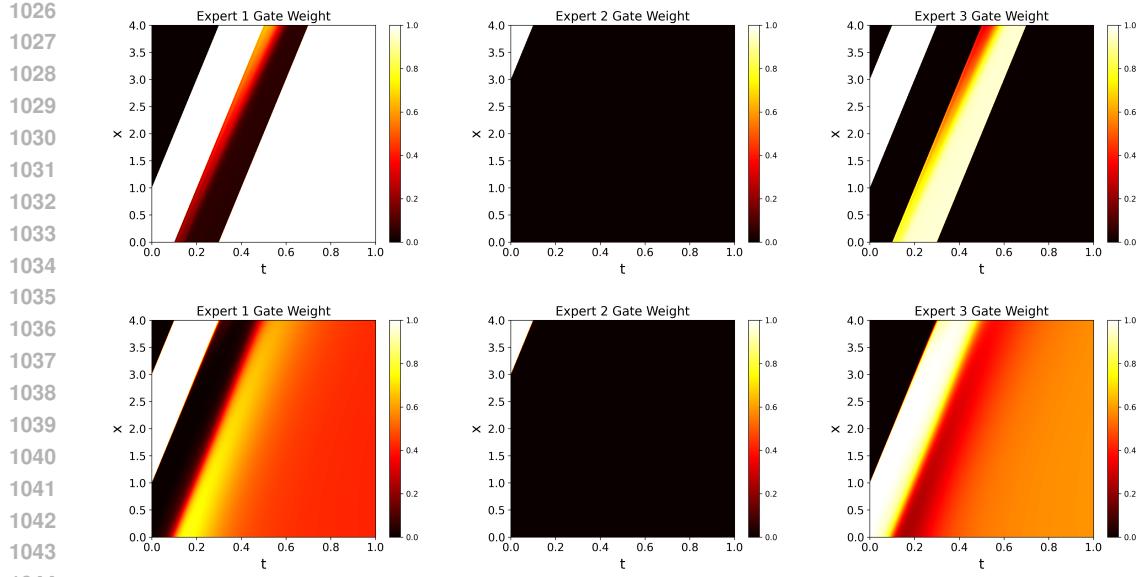


Figure 14: Domain decomposition of the Linear Transport equation with 3 experts across different conditions: seed 2025 (top) and 5% noise (bottom).

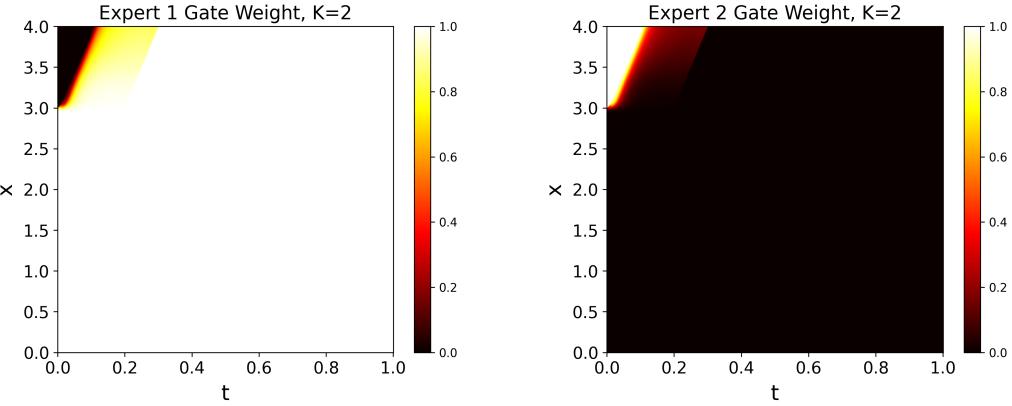


Figure 15: Domain decomposition of Linear Transport with $K = 2$.

where $\Omega = [-1, 1]^2 \setminus [0, 1]^2$. We use high-accuracy finite difference method for solving reference true solutions. Specifically, only $N_{\text{int}} = 10,000$ interior collocation points are drawn from the two disjoint rectangles $[-1, 1] \times [-1, 0]$ and $[-1, 0] \times [0, 1]$, using power-law sampling ($|x| \sim U[0, 1]^\beta$, $\beta = 2.5$) to concentrate points near the re-entrant corner. Boundary points are generated uniformly along the polygonal boundary of the L-shape with $N_{\text{bc}} = 200$ points per edge. The model uses a shared MLP with four hidden layers of width 64 and rank $r = 32$. Under this setting, our model achieves the relative ℓ_2 error of 2.5520×10^{-2} while SPINNs achieves the relative ℓ_2 error of 2.9121×10^{-2} . The result of 3D is shown in Figure 18

Fine-tuning Across Dimensions To evaluate the transferability of our model, we test fine-tuning a 5d model on the 8d Poisson problem. A model is first trained on the 5d Poisson equation using the same settings in Appendix B. The learned parameters are then used to initialize a model for the 8D Poisson problem. For comparison, we also train an 8d Poisson model from scratch under identical settings.

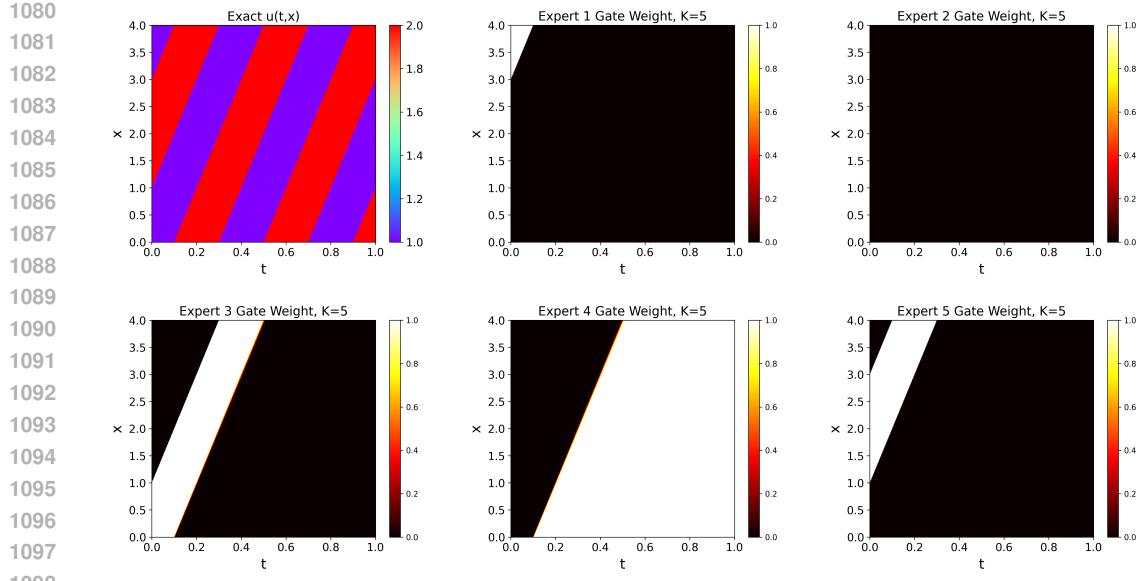


Figure 16: **Domain decomposition of 1d Linear Transport by $K = 5$.** The top left one is the ground truth figure. The remaining five are domain decomposition for each expert.

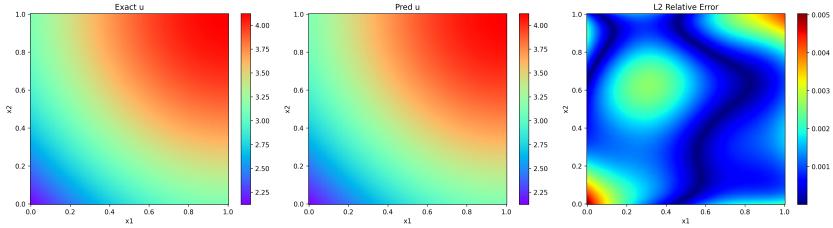


Figure 17: Ground truth, predicted solution and ℓ_2 relative error plots for 5d Poisson with $r = 5$

Table 4 summarizes the results. Fine-tuning reduces the optimization cost: the fine-tuned 8d model converges in fewer epochs and requires less training time. At the same time, this model achieving a better relative ℓ_2 error than the model trained from scratch. This confirms that the shared-MLP structure captures reusable low-dimensional patterns that remain meaningful when the dimensionality increases.

Linear Transport. We consider another form of 1d Linear Transport with smooth domain. The PDE form is as follow:

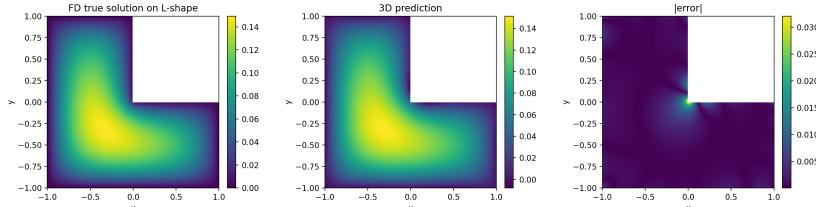


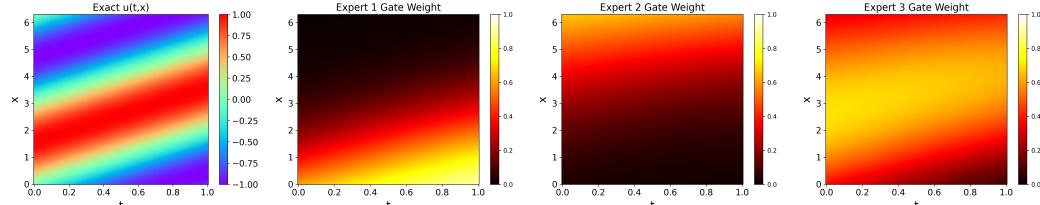
Figure 18: **Ground truth, predicted solution and absolute error plots for 2d Poisson with L-shape domain.**

1134 Table 4: Fine-tuning from 5d to 8d Poisson. The separable structure allows cross-dimensional
 1135 transfer, resulting in faster convergence and better accuracy.

1136

Model	Epochs	Adam Time (s)	Total Time (s)	ℓ_2 Error (10^{-4})
8d (from scratch)	11900	1486.75	1793.56	8.9426
8d (fine-tuned)	11300	1397.22	1599.84	5.7450

1141



1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

Figure 19: Domain decomposition of 1d Linear Transport with smooth domain by $K = 3$.

$$\begin{cases} u_t + cu_x = 0 & x \in [0, 2\pi], t \in [0, 1] \\ u(0, t) = u(2\pi, t) & t \in [0, 1] \\ u(x, 0) = u_0(x) = \sin(x) & x \in [0, 2\pi] \end{cases} \quad (22)$$

1166

1167

1168

The analytical solution is $u(t, x) = \sin(x - ct) = \sin(x) \cos(ct) - \cos(x) \sin(ct)$. Using single expert module with $r = 5$, we get L_2 error 1.5159×10^{-3} . We obtain error 1.3409×10^{-3} when using three experts with $r = 5$. Though with smooth region, 3D partitions the domain into subdomains separated by diagonal stripes similar to that in the ground truth. The Figure 19 shows the domain decomposition results when $K = 3$. In this experiment, we find $K_{optimal} = 3$. We also test VI of this example. When $r = 1, 2, 3, 4, 5$, $VI = 0.8955, 0.8614, 0.9242, 0.9887, 0.9950$, further indicating good interpretability even for small r .

D USE OF LARGE LANGUAGE MODELS (LLMs)

1166

1167

1168

In preparing this work, we made limited use of Large Language Models (LLMs) as auxiliary tools. Specifically:

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

- **Editing and Polishing** We used an LLM (ChatGPT) to polish the language of the paper, including improving grammar, readability, and stylistic clarity. The scientific content, arguments, and conclusions were entirely authored by us.
- **Literature search assistance** We used the LLM to help identify relevant references and related work. All final references were cross-checked and selected manually by the authors.
- **Coding assistance** For certain implementation details, we consulted the LLM to generate small code snippets (e.g., plotting utilities, debugging suggestions). The core research code, experimental design, and implementation were created and validated by the authors. The LLM was not involved in the generation of research ideas, methodological design, experimental analysis, or the writing of scientific contributions. Its role was strictly supportive, and final decisions on wording, citations, and code were made by the authors.