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Abstract

Document image parsing is challenging due
to its complexly intertwined elements such as
text paragraphs, figures, formulas, and tables.
Current approaches either assemble special-
ized expert models or directly generate page-
level content autoregressively, facing integra-
tion overhead, efficiency bottlenecks, and lay-
out structure degradation despite their decent
performance. To address these issues, we
present Dolphin (Document Image Parsing via
Heterogeneous Anchor Prompting), a novel
multimodal document image parsing model fol-
lowing an analyze-then-parse paradigm. In the
first stage, Dolphin generates a sequence of lay-
out elements in reading order. These heteroge-
neous elements, serving as anchors and coupled
with task-specific prompts, are fed back to Dol-
phin for parallel content parsing in the second
stage. To train Dolphin, we construct a large-
scale dataset of over 30 million samples, cov-
ering multi-granularity parsing tasks. Through
comprehensive evaluations on both prevalent
benchmarks and self-constructed ones, Dolphin
achieves state-of-the-art performance across
diverse page-level and element-level settings,
while ensuring superior efficiency through its
lightweight architecture and parallel parsing
mechanism. The code and pre-trained models
will be made publicly available.

1 Introduction

Document image parsing (Blecher et al.) aims to
extract structured contents from images with in-
tertwined elements like text paragraphs, figures,
tables, and formulas. As a foundation capabil-
ity for downstream content analysis (Wang et al.,
2024c), it bridges the gap between visual content
and machine-readable formats. With the exponen-
tial growth of digital documents across domains
like academic papers, business reports, and techni-
cal documentation, robust document parsing capa-
bilities have become increasingly critical.
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Figure 1: Comparison of Dolphin with advanced VLMs
across benchmarks: page-level parsing (plain and com-
plex documents), element-level parsing (text paragraph,
table, and formula), and running efficiency (FPS). The
outer area represents better performance. Dolphin ex-
hibits the best performance in most evaluations.

Current document image parsing solutions have
evolved along two distinct trajectories. The first
one (Wang et al., 2024b) integrates specialized
models for different OCR tasks (e.g., layout detec-
tion, reading order prediction, and recognition for
textlines, formulas, tables). These solutions demon-
strate strong performance through dedicated ex-
pertise, while requiring independent optimization
of each model and facing coordination challenges
across models. To address these challenges, recent
works leverage general or expert vision-language
models (VLMs) (Liu et al., 2024b) to directly gener-
ate page-level content autoregressively, benefiting
from end-to-end training and effective multimodal
feature fusion. These methods (Blecher et al.; Kim
et al., 2022; Wei et al., 2024b) show impressive
results in capturing page-level semantics. However,
they also encounter layout structure degradation
and efficiency bottlenecks when handling long doc-
uments with complex layout.



To synergize the advantages of both approaches
while addressing their limitations, we present Dol-
phin (Document Image Parsing via Heterogeneous
Anchor Prompting), a novel vision-language model
following an analyze-then-parse paradigm. Rather
than relying on multiple expert models or purely au-
toregressive generation, Dolphin decomposes doc-
ument parsing into two strategic stages. In the first
stage, Dolphin performs comprehensive page-level
layout analysis by generating element sequence in
natural reading order, while preserving rich struc-
tural relationships (e.g., figure-caption pairs, table-
caption associations, and section title-paragraph
hierarchies). These analyzed elements then serve
as anchors for the second stage, where element-
specific prompts enable efficient parallel parsing
of multiple elements. The focused context within
each element allows the vision-language model to
effectively recognize the document contents.

To train Dolphin on different granularities of
tasks, we construct a large-scale dataset of 30 mil-
lion samples containing both page-level documents
and element-level blocks. Note that Dolphin’s
element-decoupled parsing strategy offers unique
advantages in data collection, as acquiring isolated
element images (e.g., tables, formulas) and their
annotations is more feasible than collecting full
document pages with diverse elements.

Comprehensive evaluations are conducted on
prevalent benchmarks and self-constructed ones.
The results show that Dolphin achieves state-of-
the-art performance across diverse page-level and
element-level parsing tasks (Figure 1). Moreover,
benefiting from its lightweight architecture and ele-
ment parallel parsing mechanism, Dolphin exhibits
considerable advantages in running efficiency.

2 Related Work

Document image parsing enables robust content
extraction from rendered document images without
relying on source file formats or parsing libraries
(e.g., PyMuPDF). Existing solutions can be catego-
rized into two streams: integration-based methods
that assemble multiple expert models in a pipeline,
and end-to-end approaches that leverage vision-
language models to directly generate structured
results via autoregressive decoding.

2.1 Integration-based Document Parsing

Traditional document parsing solutions rely on inte-
grating multiple specialized models in a multi-stage

pipeline (Xu et al., 2020; Herzig et al., 2020; Zhang
et al., 2017). These approaches typically start with
layout detection to identify different types of el-
ements (e.g., tables, formulas), followed by dedi-
cated recognizers for each element type. Recent
commercial and academic solutions such as Math-
pixl, TextIn?, and MinerU (Wang et al., 2024b)
follow this integration-based paradigm. Notably,
MinerU advances this direction by introducing
sophisticated content filtering and segmentation
strategies. These methods demonstrate strong per-
formance through specialized expertise and have
shown great potential in high-precision content ex-
traction. However, they face challenges in system
complexity, cross-model coordination, and limited
understanding of complex document layouts com-
pared to end-to-end approaches.

2.2 Autoregressive Document Parsing

Recent advances in vision-language models have
enabled a new paradigm of end-to-end document
image parsing, categorized into two streams.
General VLMs. With the rapid development of
large vision-language models, recent works explore
applying general-purpose VLMs (Liu et al., 2024b)
to document parsing tasks. Models like GPT-
4V (Yang et al., 2023), Gemini 1.5 (Team et al.,
2024), Qwen2-VL (Wang et al., 2024d), MiniCPM-
V2.6 (Yao et al., 2024), DeepSeek-VL2 (Wu et al.,
2024), and Step-1V show promising results in doc-
ument understanding without task-specific train-
ing. These models benefit from their large-scale
pre-training on diverse visual data, showing strong
zero-shot capabilities in document understanding.
However, they often face challenges in process-
ing efficiency, specialized element recognition, and
layout structure preservation, especially when han-
dling long documents with complex layouts.
Expert VLMs. These models are specifically
designed and trained for document parsing or un-
derstanding tasks. Nougat (Blecher et al.) pioneers
this direction by introducing a encoder-decoder
model that converts documents into markup lan-
guage. GOT (Wei et al., 2024b) introduces an
innovative unified model that processes various
elements of documents. Other representative
works such as Donut (Kim et al., 2022), Wukong-
Reader (Bai et al., 2023), KOSMOS (Lv et al.,
2023), Vary (Wei et al., 2024a), Fox (Liu et al.,
2024a), Monkey (Li et al., 2024), TextHawk (Yu
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Figure 2: An overview of Dolphin’s two-stage document image parsing framework. Left: The parsing pipeline
consists of Stage 1 for page-level layout analysis that generates structured layout sequences in reading order, and
Stage 2 for element-level content parsing. Right: Examples of input-output pairs, including page-level layout
analysis and element-level content parsing for text paragraphs, tables, and formulas.

et al., 2024), mPLUG-DocOwl (Hu et al., 2024),
and PlatPus (Wang et al., 2024¢) have been pro-
posed. Despite their impressive performance, they
face similar challenges as general VLMs.

3 Approach

In this section, we present our Dolphin in detail.
We first provide an overview of our analyze-then-
parse architecture, followed by detailed descrip-
tions of the page-level layout analysis stage and
element-level content parsing stage.

3.1 Overview

Dolphin follows an analyze-then-parse paradigm
built upon an encoder-decoder transformer frame-
work. As shown in Figure 2 (left), given an input
document image I, the first stage performs page-
level layout analysis to extract elements in reading
order. These elements then serve as anchors for the
second stage, where type-specific prompts guide
parallel parsing of individual elements. The core
of both stages is a unified vision-language model,
which shares the same parameters but operates on
different input granularities with distinct prompting
strategies, as presented in Figure 2 (right).

3.2 Page-level Layout Analysis

This stage aims to identify the layout elements and
their reading order by the following steps.

Page Image Encoding. We employ Swin Trans-
former (Liu et al., 2021) as our visual encoder,

which takes the page image I as input and outputs
a sequence of visual embeddings z € RN where
d is the embedding dimension and NV is the number
of image patches. The hierarchical design of Swin
enables capturing both global layout patterns and
local textual details. Note that the input image is
resized and padded to a fixed size of H x W while
preserving its aspect ratio to avoid text distortion.

Layout Sequence Generation. Taking the lay-
out analysis prompt P,y 0¢ as a guide, the decoder
attends to the encoded visual features through the
cross-attention mechanism (Vaswani et al., 2017).
We adopt mBart (Lewis, 2019) as the decoder. With
the prompt "Parse the reading order of this doc-
ument.", the model identifies and arranges docu-
ment elements sequentially, while preserving struc-
tural relationships (e.g., figure-caption pairs, table-
caption associations, and section title-paragraph
hierarchies). As shown in Figure 2, it generates
a sequence of layout elements L = {ly,la, ..., 1},
where element [; specifies its type (e.g., figure, cap-
tion, table, paragraph) and bounding box. This
structured layout sequence provides anchors for
the subsequent element-level parsing stage.

3.3 Element-level Content Parsing

The second stage leverages the analyzed layout ele-
ments as anchors for parallel element parsing. This
design marks a key departure from purely autore-
gressive approaches, enabling efficient processing
while maintaining element-specific expertise. We



Plain Doc (ED |)

Category Method Model Size Complex Doc (ED |) . gD FPS 4
Fox-Page-EN Fox-Page-ZH Dolphin-Page

Integration-based Miner[_J 1.2B 0.0684 0.07018 0.2813 0.1753  0.0350
Mathpix - 0.0125 0.0412 0.1635 0.0952 0.0944
Nougat 320M 0.1046 0.9918 0.7054 0.6268 0.0673
Vary-toy 7B 0.082* - - - -

Expert VLMs Fox 1.8B 0.046" - - - -
Kosmos-2.5 1.3B 0.0263 0.2932 0.3920 0.2758 0.0841
GOT 580M 0.035" 0.038~ 0.2497 0.1431 0.0604
InternVL-2.5 8B 0.3000 0.4521 0.4348 0.4054 0.0444
MiniCPM-o 2.6 8B 0.1590 0.3018 0.3626 0.2965 0.0494
GLM4v-plus 9B 0.0814 0.1561 0.3826 0.2507 0.0427

General VLMs Qwen2-VL-7B 7B 0.1232 0.1638 0.3722 0.2578 0.0315
Gemini-1.5 pro - 0.0996 0.0529 0.1958 0.1360 0.0376
Claude3.5-Sonnet - 0.0316 0.1327 0.1961 0.1391 0.0320
GPT-40-202408 - 0.0585 0.3580 0.2941 0.2512 0.0368
Step-1v-8k - 0.0248 0.0401 0.2171 0.1248 0.0417

Ours Dolphin 322M 0.0153 0.0342 0.1283 0.0765 0.1729

Table 1: Performance comparison of page-level document parsing. “Plain Doc” represents documents containing
only text content, while “Complex Doc” includes documents with mixed elements (tables, formulas, and figures).
Arrow “1/]” indicate whether higher/lower values are better. Results marked with “*” are reported by GOT.

achieve this through two steps:

Element Image Encoding. For each layout el-
ement [; identified in the first stage, we crop its
corresponding region from the original image to
create a local view I;. These local views are en-
coded in parallel using the same Swin Transformer,
producing element-specific visual features.

Parallel Content Parsing. With the encoded
element features, we employ type-specific prompts
to guide the parsing of different elements. As
shown in Figure 2 (right), tables employ dedicated
prompts P;qp to parse their HTML format, while
formulas share the same prompt Ppqragraph as text
paragraphs since they frequently appear both in-
line and in display mode within paragraph context,
despite their LaTeX markup format. Given the vi-
sual feature of the local view I; and its correspond-
ing prompt p;, the decoder generates the parsed
content in parallel. This parallel processing strat-
egy, combined with element-specific prompting,
ensures computational efficiency while maintain-
ing accurate content recognition.

4 Dataset

To enable comprehensive training and evaluation,
we construct large-scale datasets spanning multiple
document granularities and parsing tasks.

4.1 Training

For training, we collect over 30 million samples
covering both page-level documents and element-
level components. A comprehensive breakdown of
our training dataset, including data sources, gran-

Source Granularity #Samples Task Types
Mixed Documents Page 0.12M Layout
HTML Page 4.37TM Parsing
LaTeX Page 0.5M Parsing
Markdown Page 0.71M Parsing
Table Element 1.57TM Parsing
Formula Element 23M Parsing
Total - 30.27M -

Table 2: Overview of our training data. Note that page-
level documents are also decomposed into individual
elements for element-specific training.

ularities, and task, is shown in Table 2. In the fol-
lowing, we describe the preparation and collection
of data for different training objectives.

Mixed Documents. We collect 0.12M docu-
ments from diverse sources, including HR mate-
rials from HRDoc (Ma et al., 2023), educational
materials (exam papers and textbooks), publica-
tions (magazines and newspapers), and business
documents (presentations and industry reports). All
documents are annotated with element-level bound-
aries and their reading order, enabling training for
both layout analysis and order prediction.

HTML. For documents from the HTML source,
we utilize dumps from Chinese and English
Wikipedia articles to generate synthetic training
data through web rendering (Kim et al., 2023). We
process HTML content by adding span tags for
character-level annotation, and apply random font
selection to enhance visual diversity. Through this
pipeline, we generate 4.37M page-level samples
with comprehensive bounding box annotations at
character, word, line and paragraph levels.
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Figure 3: Visualization of Dolphin’s page-level parsing results. Left: Layout analysis form Stage 1 with predicted
element boundaries and reading order. Middle: Element-specific parsing outputs from Stage 2. Right: Final
rendered document in markdown format. More cases are shown in the supplementary material.

LaTeX. We collect 0.5M documents from the
arXiv database and process them using LaTeX
Rainbow (Duan and Bartsch), a specialized ren-
dering framework that preserves document hierar-
chical structure. This tool renders different element
(e.g., formulas, figures) with distinct colors while
maintaining the reading order. The rendered docu-
ments are then automatically parsed to extract ele-
ment types, hierarchical relationships, and spatial
locations at block, line, and word levels.

Markdown. We collect 0.71M markdown docu-
ments from GitHub pages and process them using
Pandoc (MacFarlane, 2013) for PDF rendering with
several customized templates. Through PyMuPDF-
based parsing and content alignment with source
markdown, we obtain hierarchical text annotations

at paragraph, line, and word levels, as well as some
specific element types like tables. Furthermore, we
render the formula in different colors and find all
formula blocks based on pixel matching.

Tables. For table parsing, we utilize PubTab-
Net (Zhong et al., 2020) and PubTab1M (Smock
et al., 2022), two large-scale datasets of tables
extracted from scientific publications. PubTab-
Net contains 568K tables with HTML annotations,
while PubTab1M provides 1M tables with more
fine-grained structure annotations.

Formulas. We collect 23M formula expressions
in LaTeX format from arXiv sources, including
in-line formulas, single-line formulas, and multi-
line formulas. The expressions are then rendered
formula images using the XeTeX tool. Various



Text Paragraph (ED |) Formula (CDM 1) Table (TEDS 1)
Category  Method Fox-Block  poiphin-Block SPE ~ SCE ~ CPE  PubTabNet PubTabIM
EN ZH
UnimerNet-base - - 0.9914" 0.94" 0.9595* - -

Expert Models Mathpix - -

0.9729* 0.9318* 0.9671" - -

Pix2tex - - 0.9619* 0.2453* 0.6489" - -
Expert VLMs TabPedia - - - - - - 0.9541 0.9511
GOT 0.0181 0.0452 0.0931 0.8501 0.7369 0.7197  0.3684 0.3269
GLM-4v-plus 0.0170 0.0400 0.1786 0.9651 0.9585 0.7055 0.5462 0.6018
Qwen2-VL-7B 0.0910 0.1374 0.1012 0.5339 0.6797 0.1220  0.3973 0.5101
General VLMs Gemini-1.5 pro  0.0108 0.0461 0.0857 0.9572 09469 0.7171 0.7571 0.7776
Claude3.5-Sonnet 0.0375 0.1177 0.0746 0.8995 0.9464 0.7543 0.5431 0.7127
GPT-40-202408 0.0170 0.1019 0.0489 0.9570 09402 0.7722  0.6692 0.7243
Step-1v-8k 0.0098 0.0175 0.0252 0.9526 09336 0.7519  0.6808 0.6588
Ours Dolphin 0.0177 0.0143 0.0224 0.9850 0.9685 0.8739  0.9515 0.9625

Table 3: Performance comparison of element-level parsing across text paragraphs, formulas, and tables. Arrows
“/{” indicate whether higher/lower values are better. Results marked with “*” are reported by UnimerNet.

backgrounds and fonts are used in the rendering
process to enhance the richness of the images.

4.2 Evaluation

The evaluation is conducted at both page and ele-
ment levels. At the page level, we evaluate on two
distinct benchmarks: Fox-Page (Liu et al., 2024a),
which consists of pure text documents, and our
constructed Dolphin-Page containing complex doc-
uments with interleaved figures, tables, and mathe-
matical formulas. At the element level, we evaluate
fine-grained parsing capabilities for text-paragraph,
formulas, and tables through the public test sets.

Page-level Evaluation:

(a) Fox-Page. Fox-Page is a bilingual bench-
mark containing 212 document pages (112 in En-
glish and 100 in Chinese) including both single-
column and multi-column formats. Each page con-
tains over 1,000 words, making it a challenging
testbed for document image parsing.

(b) Dolphin-Page. Our Dolphin-Page is a bilin-
gual benchmark of 211 document pages designed
for complex document parsing. It consists of 112
pure text documents and 99 challenging samples
with interleaved tables, mathematical formulas, and
figures in both single-column and multi-column
layouts. All documents are manually annotated
with precise transcriptions following the natural
reading order, making it a rigorous testbed for eval-
uating document parsing capabilities.

Element-level Evaluation:

(a) Text Paragraph. For pure text recognition
evaluation, we utilize two test sets. The first set
follows the official block-level evaluation protocol
of Fox-Page (Liu et al., 2024a), containing 424 text
paragraph images. The second set is constructed by

extracting 1,856 text paragraphs from our Dolphin-
Page. Unlike page-level evaluation which consid-
ers both reading order prediction and content recog-
nition, this element-level evaluation focuses solely
on fundamental text recognition capability.

(b) Formula. For formula recognition evalua-
tion, we utilize three public benchmarks (Wang
et al., 2024a) with different complexity levels: SPE
with 6,762 simple printed expressions, SCE con-
taining 4,742 screen capture formulas, and CPE
consisting of 5,921 complex mathematical expres-
sions. We adopt Character Difference Metric
(CDM), which measures the character-level edit
distance between predictions and ground truth.

(c) Table. The table recognition evaluation is
conducted on two widely-used benchmarks: Pub-
TabNet (Zhong et al., 2020) and PubTab1M (Smock
et al., 2022). The test set of PubTabNet contains
7,904 table images from scientific papers, while
PubTab1M’s test set consists of 10,000 more chal-
lenging samples. Both benchmarks evaluate the
model’s capability in understanding table struc-
tures and recognizing cell contents using TEDS
(Tree-Edit-Distance-based Similarity) as the met-
ric, which computes the similarity between the pre-
dicted and ground-truth HTML table structure.

S Experiment

5.1 Implementation Details

In the proposed Dolphin, the encoder uses a Swin
Transformer with a window size of 7 and hierarchi-
cal structure ([2, 2, 14, 2] encoder layers with [4,
8, 16, 32] attention heads). The decoder contains
10 Transformer layers with a hidden dimension of
1024. We train the model using AdamW optimizer



UMANS are naturally capable of imaging a scene ac-| !

I l cording to a piece of visual, text or audio description. | |
However, the intuitive processes are less straightforward | |
for deep neural networks, primarily due to an inherent| 1
modality gap. This modality gap for visual perception can| |
be boiled down to intra-modal gap between visual clues and | 1
real images, and cross-modal gap between non-visual clues|
and real images. Targeting to mimic human imaginationand | |
creativity in the real world, the tasks of Multimodal Image | 1
Synthesis and Editing (MISE) provide profound insights | |
about how deep neural networks correlate multimodal in-| 1
formation with image attributes. |
'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

HUMANS are naturally capable of imaging a scene ac-
cording to a piece of visual, text or audio description.
However, the intuitive processes are less straightforward
for deep neural networks, primarily due to an inherent
modality gap. This modality gap for visual perception can
be boiled down to intra-modal gap between visual clues and
real images, and cross-modal gap between non-visual clues
and real images. Targeting to mimic human imagination and

HEEAR

[aia] 5 fase

Guideline for primary care of chest pain(2019)

creativity in the real world, the tasks of Multimodal Image
Synthesis and Editing (MISE) provide profound insights
about how deep neural networks correlate multi in-
formation with image attributes.

China,

Tt PREFREREFS S PEEYS (RESH

3 RORRARLITIENAE ERA

VLT, F B A EE B AR, JE3R 100029, Email: yihongsun72@163.com;
HA—, ERAFEARER O M ERHHZFT 100044, Email: dayi.hu@china-heart.org

DOI:10.3760/cma.j.issn.1671-7368.2019.10.004

Chinese Medical Association, Chinese Medical Journals Publishing House, Chinese Society of General Practice,
Editorial Board of Chinese Journal of General Practitioners of Chinese Medical Association, Expert Group of
Guidelines for Primary Care of Cardiovascular Disease

Corresponding author: Sun Yihong, Department of Cardiology,China-Japan Fiendship Hospital, Beijing 100029,
2@163.com; Hu Dayi Institute of Cardiovascular Disease, Peking University People's
Hospital, Beijing 100044, China,Email:dayi.hu@china-heart.org

100-class | 1000-class
(top-1 acc.) | (top-1acc.)
4096-d (float) 77.1£ 1.5 65.0
BP 29%13 | 581
1024 bits CBE 730413 59.2
P 738+13 | 601
threshold [1] | 735£ 14 | 591
BP 760 £ 1.5 63.2
4096 bits CBE 75914 | 630
Sp 763+ 15 633
78192 bits SP 76.8 + 14 64.2
| 16384 bits SP 77.1 £ 1.6 64.5

100-class (top-1acc.)  1000-class (top-1 acc.)

4096-d (foat) 71215 650

0 729113 581
1024bits  cE 730413 592
s 738113 601
735114 501
760115 632
2006 bits

cee 789114 630

s 763115 633

so2bits  SP 768114 642

t638abits P 71218 645

Figure 4: Demonstration of Dolphin’s element-level parsing across diverse scenarios. Input images are shown in
the top row, with corresponding recognition results in the bottom row. Left: Text paragraph parsing in complex
layouts. Middle: Bilingual text paragraph recognition. Right: Complex table parsing (rendered results shown).

with a learning rate of Se-5 and cosine decay sched-
ule. The training is conducted on 32 A100 GPUs
for 2 epochs, using a batch size of 16 per device
through gradient accumulation.

5.2 Comparison with Existing Methods

Comprehensive evaluations are conducted on both
full-page document parsing (plain and complex
documents) and individual element recognition
tasks (text paragraphs, tables, and formulas).
Page-level Parsing. We evaluate Dolphin’s per-
formance on Fox-Page (English and Chinese) and
Dolphin-Page benchmarks. As shown in Table 1,
despite its lightweight architecture (322M parame-
ters), Dolphin achieves superior performance com-
pared to both integration-based methods and larger
VLMs. For pure text documents, Dolphin achieves
an edit distances of 0.0153 and 0.0342 on English
and Chinese test sets respectively, outperforming
specialized VLMs like GOT (with edit distances of
0.035 and 0.038) and general VLMs like GPT-40
(with edit distances of 0.0585 and 0.3580). The
advantage becomes more evident on Dolphin-Page,
where Dolphin achieves an edit distance of 0.1283,
outperforming all baselines in handling documents
with mixed elements like tables and formulas. Fur-
thermore, with parallel parsing design, Dolphin
demonstrates considerable efficiency gains, achiev-
ing 0.1729 FPS, which is nearly 2x faster than the
most efficient baseline (Mathpix at 0.0944 FPS).
We visualize three representative cases in Fig-
ure 3, showing the complete pipeline from lay-
out analysis (Stage 1) to element-specific parsing
(Stage 2), and finally to the rendered document.
As demonstrated, Dolphin accurately captures both
layout structure and textual content. As shown in

Figure 5 (left), Dolphin also exhibits strong text ex-
traction capabilities by accurately parsing content
from specified bounding box regions.

Element-level Parsing. Beyond page-level pars-
ing, we conduct extensive experiments to evalu-
ate Dolphin’s performance on individual elements,
as shown in Table 3. For text paragraph parsing,
Dolphin achieves competitive results on both Fox-
Block and Dolphin-Block test sets. In formula
recognition, Dolphin demonstrates strong capabili-
ties across different complexity levels (SPE, SCE,
and CPE), achieving competitive CDM scores com-
parable to specialized formula recognition methods.
For table parsing, our approach shows promising
results on both PubTabNet and PubTab1M bench-
marks, effectively capturing both structural rela-
tionships and cell contents. These consistent strong
results across text paragraphs, formulas, and tables
demonstrate Dolphin’s competitive performance in
fundamental recognition tasks.

We further show Dolphin’s robustness in Fig-
ure 4 through three scenarios: text paragraphs with
complex layouts, bilingual text recognition, and
structured tables with intricate formats. As shown
in Figure 5 (right), Dolphin also supports text spot-
ting by detecting and parsing text lines.

5.3 Ablation Studies

We conduct extensive experiments to validate the
effectiveness of the core components in Dolphin.
Parallel Decoding. To investigate the efficiency
gains from our parallel decoding strategy in stage
2, we compare our approach with a sequential de-
coding baseline. As present in Table 4, parallel de-
coding achieves a 1.8x speedup (0.1729 vs. 0.0971
FPS) while maintaining the same recognition accu-
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Figure 5: Additional capabilities of Dolphin. Left: Parsing the text content from a given bounding box region.
Right: Text spotting results showing detected text lines (visualized in the image) and their content.

Method ED | FPS 1
Dolphin 0.1283  0.1729
Parallel — Sequential Decoding - 0.0971
Type-specific — Generic Prompts ~ 0.1613 -
Element Cropping — Box Query 0.1849 -

Table 4: Ablation studies on Dolphin. The first row
shows the performance of our full model. The evalua-
tion is conducted on Dolphin-Page dataset.

racy. The speedup is bounded by two factors: (a)
the preprocessing overhead for each element before
network inference, and (b) the batch size constraint
(maximum 16 elements per batch) due to GPU
memory limitations, requiring multiple inference
passes for documents with numerous elements.

Type-specific vs. Generic Prompts. To inves-
tigate the effectiveness of type-specific prompting
in the second stage, we compare Dolphin with a
baseline variant that uses a generic prompt "Read
the text in the image." for all element parsing tasks.
As shown in Table 4, our type-specific prompt-
ing strategy significantly outperforms the generic
baseline (0.1283 vs. 0.1613 in ED). A representa-
tive case is shown in Figure 6, where the generic
prompt misidentifies a table as a LaTeX formula,
while our type-specific prompt successfully parses
and renders it. These results demonstrate that in-
corporating prior knowledge through type-specific
prompting effectively improves the model’s ability
to handle different document elements.

Element Cropping vs. Box Query. To vali-
date our element cropping strategy in the second
stage, we compare it with an alternative box query
approach that directly prompts the model to recog-
nize elements at specific box (see Figure 5 (left)).
As shown in Table 4, our cropping strategy achieves
better performance than the box query method.
This is likely because cropping provides the model
with a focused view of each element, following
a “what you see is what you get” principle, while

encoder dec. depth  ftacc hours  speedup
ViT-L 8 849 15.4 2.8%
Input Table Image ViT-L 1 84.8 11.6 3.7x
ViT-H 8 85.8 345 3.5x%x
ViT-H 1 859 293 4.1x

$S\begin{array}H{llli\\text { encoder } & \text { dec. depth } & \text { ft
acc } & \text { hours } & \text { speedup }\\ \hline \mathrm{ViT}-
\mathrm{L}, \mathrm{w} /[\mathrm{M}] & 8 & 84.2 & 42.4 & \text {- }
\\ \mathrm{ViT}-\mathrm{L} & 8 & 84.9 & 15.4 & 2.8 \times \\
\mathrm{ViT}-\mathrm{L} & 1 & 84.8 & 11.6 & \mathbf{3. 7} \times
\\ \hline \mathrm{ViT}-\mathrm{H}, \mathrm{w} /[\mathrm{M}] & 8
& \text {- } & 119.6”{\dagger} & \text {- } \\ \mathrm{ViT}-\mathrm{H}
& 8 & 85.8 & 34.5 & \mathbf{3. 5} \times \\ \mathrm{ViT}-
\mathrm{H} & 1 & 85.9 & 29.3 & \mathbf{4. 1} \times\end{array}$$

Generic Prompt:
Misidentified as
formula

encoder dec.depth ftacc hours  speedup

VIT-L,w/[M] 8 842 424 -
Type-specific Prompt: VIT-L 8 849 154  2.8x
Correctly parsed as Vit . eas s 27
iT- X X 7%
HTML table and
successfully rendered ViT-H, w/ [M] 8 19.6%
ViT-H 8 858 345  35x
ViT-H 1 859 293  4ix

Figure 6: A case study demonstrating the effectiveness
of type-specific prompts. The generic prompt misidenti-
fies the table as a formula, while our approach correctly
parses and renders the table in HTML format.

the box query approach increases task complexity
by requiring the model to simultaneously handle
location understanding and content recognition.

6 Conclusion

We present Dolphin, a novel document image pars-
ing model that leverages an analyze-then-parse
paradigm to address the challenges in document
parsing. Our approach first performs page-level lay-
out analysis to generate structured layout elements
in reading order, then enables parallel element pars-
ing through heterogeneous anchor prompting. This
two-stage design effectively balances efficiency
and accuracy, while maintaining a lightweight ar-
chitecture. Through extensive experiments, we
demonstrate Dolphin’s strong performance in both
page-level and element-level parsing tasks, partic-
ularly excelling in handling complex documents
with interleaved tables, formulas, and rich format-
ting in both Chinese and English.



Limitations

Despite Dolphin’s promising performance, there
are several limitations worth noting. First, our
model primarily supports documents with standard
horizontal text layout, showing limited capability
in parsing vertical text arrangements like ancient
manuscripts and rotated tables. Second, while Dol-
phin handles both Chinese and English documents
effectively, its multilingual capacity needs to be
expanded. Third, although we achieve efficiency
gains through parallel element parsing, there is
potential for further optimization through parallel
processing of text lines and table cells.
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In this supplementary material, we provide ad-
ditional experimental results and implementation
details to complement our main paper. Specifically,
we present more qualitative results demonstrating
Dolphin’s parsing capabilities, elaborate on the sup-
ported element types, detail our training process,
and showcase our synthetic data.

A Qualitative Results

To further demonstrate the superior capabilities of
Dolphin, we present comprehensive page-level and
element-level parsing results.

Page-level. First, the examples in Figure 8 cover
diverse document scenarios, including textbook
pages with dense formulas, triple-column English
academic papers, and double-column Chinese pa-
pers with tables. The results demonstrate that Dol-
phin can effectively handle documents with differ-
ent languages, layouts, and element types, main-
taining high parsing quality.

Furthermore, we showcase Dolphin’s versatility
in other text-rich scenarios through Figure 9, where
we test the model on mobile phone screenshots,
shopping receipts, and webpage captures. These
results indicate that Dolphin can accurately capture
both the structural layout and textual content in
these everyday scenarios.

Element-level. For fine-grained parsing capabil-
ities, we first demonstrate Dolphin’s formula recog-
nition in Figure 10, where we evaluate three types
of formulas: inline formulas, single-line block for-
mulas, and multi-line block formulas. The results
show that Dolphin can accurately parse formulas
of varying complexity and layout formats.

We further evaluate Dolphin’s table parsing abil-
ity in Figure 11, where we test the model on a
challenging case containing hundreds of cells. As
shown, Dolphin successfully handles this large-
scale structured table with precise content recogni-
tion and layout preservation.

B Element Design

In this section, we elaborate on Dolphin’s sup-
ported element types and element-specific parsing
strategies through heterogeneous prompting.
Element Types. Our Dolphin supports 16 dif-
ferent types of elements commonly found in doc-
ument images. Table 5 provides a comprehensive
overview of these elements, covering various com-
ponents from headers to specialized content blocks.

11

No. Element Description
1 title Paper/document title
2 author Author names
3 sec First-level section headings
4 sub_sec Second-level section headings
5 para Paragraphs
6 header Page headers
7 foot Page footers
8 fnote Footnotes
9 watermark ~ Non-content watermarks
10 fig Figures and images
11 tab Tables
12 cap Figure/table captions
13 anno Figure/table annotations
14 alg Code blocks/pseudocode
15 list List-type content
16 reference References and citations

Table 5: An overview of element types supported by
Dolphin. These elements cover the majority of content
structures found in documents.

Note that in Stage 1 (page-level layout analysis),
we intentionally avoid treating formulas as inde-
pendent elements. This design choice allows Stage
2 (element-level parsing) to leverage broader con-
textual information when recognizing mathemati-
cal expressions, as formulas are often semantically
connected with their surrounding text.

Heterogeneous Anchor Prompting. We sum-
marize the prompts used in Dolphin in Table 6. The
first three prompts (page-level layout analysis, text
paragraph parsing, and table parsing) are designed
for full-page document image parsing, while the
latter two (text spotting and text box query) enable
additional capabilities for flexible text recognition
tasks. Additionally, our Dolphin can also serve as
a formula recognition expert model using the text
paragraph parsing prompt.

In Stage 2, tables are processed with a dedicated
table-specific prompt for structured HTML parsing,
while all other elements are treated as text para-
graphs and parsed using a unified prompt. This di-
chotomous design distinguishes structured HTML
content from plain text, while also providing robust-
ness against potential element misclassification, as
parsing accuracy remains high regardless of ele-
ment type classification errors.

C Training Details

In this section, we provide more details about Dol-
phin’s training process, including multi-task train-
ing strategy, model initialization, and other imple-
mentation considerations.

Instruction Tuning. During training phase, we
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Figure 7: Examples of synthetic training data generated from different source formats. Top: rendered document
images from HTML (left), LaTeX (middle), and Markdown (right) sources. Bottom: corresponding paragraph-level

annotations visualized with colored regions.

Task

Prompt

Page-level Layout Analysis

Parse the reading order of this document.

Text Paragraph/Formula Parsing

Read the text in the image.

Table Parsing Parse the table in the image.
Text Spotting Detect and recognize all the text lines in the image.
Text Box Query Read the text in the image within the specified box [x1,y1,x2,y2].

Table 6: Different types of prompts used in Dolphin for document parsing tasks.

adopt a dynamic task selection strategy for our
instruction-based framework. Specifically, given a
training sample, we randomly select an applicable
task from the above five tasks based on its available
annotations. This selection is used to construct
question-answer pairs. For instance, given a page
image with only paragraph-level bounding boxes
and content annotations, the available tasks for this
sample would include element-level text paragraph
parsing and page-level box query parsing.

Model Initialization. We initialize Dolphin
with the pretrained weights from Nougat (Blecher

et al.), which lacks instruction-following abilities.

Then, through our instruction tuning, we extend
the model’s capabilities to understand and execute
diverse prompts, enabling analysis of document
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layout, reading order, and various textual elements
including text paragraphs, tables, and formulas.
Training Loss. Following standard practice in
autoregressive language models, we optimize Dol-
phin using the cross-entropy loss between the pre-
dicted token distributions and ground truth ones.

D Synthetic Data Examples

To enrich training data diversity, we synthesize
document images from different source formats, in-
cluding HTML, LaTeX, and Markdown documents.
Figure 7 shows three representative examples of
our synthetic data. For each format, we show the
rendered document (top row) and its corresponding
paragraph-level annotations (bottom row).
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e .

Figure 9: Visualization of Dolphin’s page-level parsing results. Left: Input text-rich images including mobile
phone screenshots, shopping receipts, and webpage captures. Middle: Layout analysis form Stage 1 with predicted
element boundaries and reading order. Right: Final rendered document in markdown format for the first row, and
element-specific parsing outputs from Stage 2 for the second and third rows.
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is normalized by EII':I Eszl Apugr = 1. Here, we use normalized coordinates i)q € o, 1]2 for

qg(mt_1|mt,m0) =N (,/at_lwg +4/1 -1 — Ut \/%mo,a-t I) .
$8

q_{\sigma}\left(\boldsymbol{x} {t-1} \mid \boldsymbol{x} {t},

\boldsymbol{x} {0}\right)=\mathcal{N}\left(\sqrt{\alpha {t-1}}

\boldsymbol{x} {0}+\sqrt{l-\alpha {t-1}-\sigma {t}"{2}} \cdot \frac{\boldsymbol{x} {t}-
\sqrt{\alpha_{t}} \boldsymbol{x} {0}}{\sqrt{l1-\alpha {t}}}, \sigma {t}"{2}

\boldsymbol {I}\right).

$$

T, — Jauxg
g (Tt-1 | Tty o) = N (Mat,lmo +4/l -1 —0?- %,031) .

E[VoL(O)I] =Yo7 Lty E[(VENG;8) —fxi)2] + 3 Tily E [Ny - gv;))?]]
= Vo |3 Tt Jo(VENGG0) = f)) 21 () dx + 1 Tl o N(38) = g (30))2va(3) dy |
= Vo [Jo (VPN (;0,) = f(x))?v1 () dx + [56,(N(y; 0,) = 8(9))?v2(y) dy]
= Vo J(N(;6))

\begin{array} {rl} {\mathbb { E } [ \nabla _{ \theta } \mathcal { L } (\theta {t})]|
\theta {t}]} & {=\nabla _{\theta } \left[ \frac {1} {M }\sum_{i=1}"{M}
\mathbb { E } \left[ (\nabla ~ { 2 } \mathcal { N } (\mathbf {x} {i};\theta {t})-f
(\mathbf {x} {i}))" {2} \right]+\frac {1} {N}\sum {j=1}"{N } \mathbb

{ E } \left[ (\mathcal { N } (\mathbf {y } {j};\theta {t})-g(\mathbf{y} {j}))
A {2} \right] \right] } \ & {=\nabla _ { \theta } \left[ \frac {1 } {M }\sum _{i=1}"
{M }\int _{\Omega } (\nabla” {2 } \mathcal { N } (\mathbf { x } ;\theta {t})-f
(\mathbf {x }))~ {2} \nu_ {1} (\mathbf {x } )\, d\mathbf { x } +\frac {1} { N}
\sum _{j=1}"{N}\int_{\partial \Omega } (\mathcal { N } (\mathbf {y } ; \theta _
{t})-g(\mathbf {y }))" {2} \nu_ {2} (\mathbf {y } )\, d\mathbf {y } \right] } \ &
{=\nabla _ {\theta } \left[ \int _{\Omega } (\nabla* { 2 } \mathcal { N } (\mathbf {x } ;
\theta {t})-f(\mathbf {x}))"{2}\nu_ {1} (\mathbf {x} )\, d\mathbf { x } +\int
_ {\partial \Omega } (\mathcal { N } (\mathbf {y } ;\theta {t})-g(\mathbf{y}))"
{2}\nu_ {2} (\mathbf {y } )\, d \mathbf { y } \right] } \ & { =\nabla _ { \theta }
\mathcal {J } (\mathcal { N } (\cdot;\theta {t}))} \end{array}

E[VoL(6)10) = Vo[ 4 S E[(VIN (xis00) — 1)) + 4 S0 E[W (3530 — 9(3,))?]]
= Vo[ T [o(VAN (xi60) = F0)1i(x) dx+ & S ooV (3300) — 9(3))Pwa(y) dy

= Vo[ [o(V2N (x;0,) — £(x))*1(x) dx + [50(N (33 6:) — 9(y))*r(y) dy]
= VeI (N(56:))

Figure 10: Visualization of Dolphin’s formula parsing results. From top to bottom, we show three formula types:
inline formula, single-line block formula, and multi-line block formula. For each case, we visualize the complete
parsing pipeline: input formula image (top), LaTeX parsing output (middle), and rendered formula (bottom). These
results demonstrate Dolphin’s capability to accurately parse formulas of varying complexity.
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Shots | Method | AR BG DE EL EN ES FR HI RU SW TH TR UR VI ZH | Avg.

FT 332 333 333 331 333 332 328 330 333 330 333 329 329 332 332 | 331

1 SP 354 364 364 366 365 376 379 360 375 341 359 347 350 355 367 | 361

PCT 332 354 348 351 359 353 357 346 362 338 346 343 331 349 350 | 348

MPT 370 385 378 381 386 381 387 372 385 365 371 376 373 379 357 | 376

FT 335 333 337 333 341 335 337 332 335 333 338 336 335 340 333 | 335

2 Sp 366 379 380 382 380 380 383 362 389 343 375 346 352 372 367 | 370

PCT 341 390 391 382 399 406 405 379 399 365 372 369 347 379 371 38.0

MPT 416 428 408 432 432 425 428 404 433 368 405 41.0 411 414 382 | 413

FT 342 345 341 343 341 341 345 340 343 337 340 340 341 342 342 | 341

4 SP 374 397 392 397 402 389 405 371 406 353 381 353 369 372 389 | 383

PCT 339 372 370 362 370 377 375 364 374 342 347 347 335 350 356 | 359

MPT 429 436 443 436 455 442 441 428 441 402 434 427 424 438 431 | 434

FT 328 327 328 329 327 326 330 333 327 330 332 330 331 325 324 | 328

8 SP 374 396 381 391 400 388 392 365 403 356 385 353 365 378 371 38.0

PCT 402 406 409 417 419 417 416 410 406 392 414 414 384 413 412 | 409

MPT 427 430 419 424 431 423 421 408 426 394 419 401 407 422 402 | 417

FT 336 334 333 335 341 334 333 334 334 336 336 334 335 333 335 | 335

16 Sp 395 399 391 404 411 402 404 374 407 371 393 365 360 382 383 | 389

PCT 436 408 369 457 465 415 443 448 424 401 439 437 425 447 48 | 431

MPT 435 438 440 439 452 442 443 429 434 402 425 418 420 434 422 | 431

FT 36.1 363 357 357 365 362 360 355 359 350 356 360 354 361 363 | 359

1 SP 417 434 428 423 449 429 433 392 435 377 402 411 398 430 398 | 417
PCT 457 454 444 474 496 455 488 467 455 403 416 443 429 467 456 | 454

MPT 471 476 479 471 499 491 482 463 473 433 472 472 453 490 471 | 473

FT 414 412 415 407 426 414 408 412 402 406 407 414 405 417 410 | 411

64 SP 439 442 475 451 505 479 486 418 437 413 459 453 426 476 451 454
PCT 48.1 502 493 506 51.1 509 513 476 49.1 446 473 474 440 497 482 | 486

MPT 507 527 531 522 554 538 531 502 510 462 515 504 491 530 523 | 517

FT 439 444 444 437 463 446 445 429 427 41T 430 432 427 449 438 | 438

128 SP 462 468 478 476 53.0 485 496 473 455 417 475 464 445 456 487 | 471
PCT 504 519 528 534 550 538 533 515 517 470 500 509 479 517 512 | 515

MPT 532 561 560 554 574 564 566 535 548 486 540 531 518 552 554 | 545

FT 533 556 565 550 588 569 564 525 536 505 526 538 513 550 530 | 543

256 SP 527 552 496 537 595 550 553 506 514 465 534 461 449 528 515 | 519
PCT 547 567 563 579 603 583 583 546 552 51,6 556 546 526 574 558 | 560

MPT 590 611 609 606 658 630 619 576 606 507 592 578 561 60.7 608 | 59.7

Shots  Method AR BG DE EL EN ES FR HI RU SW TH TR UR 4 ZH Avg.

FT 332 333 333 331 333 332 328 330 333 330 333 329 329 332 332 331
SP 354 364 364 366 365 376 379 360 375 341 359 347 350 355 367 361
! PCT 332 354 348 351 359 353 357 346 362 338 346 343 331 349 350 348
MPT 370 385 378 381 386 381 387 372 385 365 371 376 373 379 357 376
FT 335 333 337 333 341 335 337 332 335 333 338 336 335 340 333 335
SP 36.6 379 380 382 380 380 383 36.2 389 343 375 346 352 372 367 370
z PCT 341 390 391 382 399 406 405 379 399 365 372 369 347 379 371 380
MPT 416 428 408 432 432 425 428 404 433 368 405 410 411 414 382 413
FT 342 345 341 343 341 341 345 340 343 337 340 340 341 342 342 341
SP 374 397 392 397 402 389 405 371 406 353 381 353 369 372 389 383
¢ PCT 339 372 370 362 370 377 375 364 374 342 347 347 335 350 356 359
MPT 429 436 443 436 455 442 441 428 441 402 434 427 424 438 431 434
FT 328 327 328 329 327 326 330 333 327 330 332 330 331 325 324 328
SP 374 396 381 391 400 388 392 365 403 356 385 353 365 378 371 380
¢ PCT 40.2 406 409 417 419 417 416 410 406 392 414 414 384 413 412 409
MPT 427 430 419 424 431 423 421 408 426 394 419 401 407 422 402 417
FT 336 334 333 335 341 334 333 334 334 336 336 334 335 333 335 335
SP 395 399 391 404 411 402 404 374 407 371 393 365 360 382 383 389
1 PCT 43.6 408 369 457 465 415 443 448 424 401 439 437 425 447 448 431
MPT 435 438 440 439 452 442 443 429 434 402 425 418 420 434 422 431
FT 36.1 363 357 357 365 362 360 355 359 350 356 36.0 354 361 363 359
SP 417 434 428 423 449 429 433 392 435 377 402 411 398 430 398 417
* PCT 457 454 444 474 496 455 488 467 455 403 416 443 429 467 456 454
MPT 471 476 479 471 499 491 482 463 473 433 472 472 453 490 471 473
FT 414 412 415 407 426 414 408 412 402 406 407 414 405 417 410 411
SP 439 442 475 451 505 479 486 418 437 413 459 453 426 476 451 454
o PCT 48.1 502 493 506 511 509 513 476 491 446 473 474 440 497 482 486
MPT 507 527 531 522 554 538 531 502 51.0 462 515 504 491 530 523 517
FT 439 444 444 437 463 446 445 429 427 417 430 432 427 449 438 438
SP 46.2 468 478 476 53.0 485 496 473 455 417 475 464 445 456 487 471
12 PCT 50.4 519 528 534 550 538 533 515 517 470 500 509 479 517 512 515
MPT 532 561 ©56.0 554 574 564 566 535 548 486 540 531 518 552 554 545
FT 533 556 565 550 588 569 564 525 536 505 526 538 513 550 530 543
256 SP 52,7 552 496 537 595 550 553 506 514 465 534 461 449 528 515 519

PCT 547 567 563 579 603 583 583 546 552 516 556 546 526 574 558 56.0

MPT 59.0 611 609 606 658 630 619 576 606 507 592 578 561 607 608 59.7

Figure 11: Visualization of Dolphin’s table parsing capability. Top: Input large-scale table image containing
hundreds of cells. Bottom: Rendered HTML table based on Dolphin’s parsing result. This example demonstrates
Dolphin’s strong ability in handling large-scale structured table images.
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