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Abstract001

Document image parsing is challenging due002
to its complexly intertwined elements such as003
text paragraphs, figures, formulas, and tables.004
Current approaches either assemble special-005
ized expert models or directly generate page-006
level content autoregressively, facing integra-007
tion overhead, efficiency bottlenecks, and lay-008
out structure degradation despite their decent009
performance. To address these issues, we010
present Dolphin (Document Image Parsing via011
Heterogeneous Anchor Prompting), a novel012
multimodal document image parsing model fol-013
lowing an analyze-then-parse paradigm. In the014
first stage, Dolphin generates a sequence of lay-015
out elements in reading order. These heteroge-016
neous elements, serving as anchors and coupled017
with task-specific prompts, are fed back to Dol-018
phin for parallel content parsing in the second019
stage. To train Dolphin, we construct a large-020
scale dataset of over 30 million samples, cov-021
ering multi-granularity parsing tasks. Through022
comprehensive evaluations on both prevalent023
benchmarks and self-constructed ones, Dolphin024
achieves state-of-the-art performance across025
diverse page-level and element-level settings,026
while ensuring superior efficiency through its027
lightweight architecture and parallel parsing028
mechanism. The code and pre-trained models029
will be made publicly available.030

1 Introduction031

Document image parsing (Blecher et al.) aims to032

extract structured contents from images with in-033

tertwined elements like text paragraphs, figures,034

tables, and formulas. As a foundation capabil-035

ity for downstream content analysis (Wang et al.,036

2024c), it bridges the gap between visual content037

and machine-readable formats. With the exponen-038

tial growth of digital documents across domains039

like academic papers, business reports, and techni-040

cal documentation, robust document parsing capa-041

bilities have become increasingly critical.042

FoxPage-EN (ED)

FoxPage-ZH (ED)

DolphinPage (ED)

FoxBlock-EN
(ED)

FoxBlock-ZH (ED)

DolphinBlock (ED)

Formula-SPE (CDM)

Formula-SCE (CDM)

Formula-CPE (CDM)

Table-PubTabNet
(TEDS)

Table-PubTab1M (TEDS)

FPS

0.0153
0.0342

0.1283

0.0177

0.0143

0.0224

0.9850

0.9685

0.8739

0.9515

0.9625

0.1729

Qwen2-VL-7B
GOT
GPT-4o
Claude3.5-Sonnet
Dolphin

Figure 1: Comparison of Dolphin with advanced VLMs
across benchmarks: page-level parsing (plain and com-
plex documents), element-level parsing (text paragraph,
table, and formula), and running efficiency (FPS). The
outer area represents better performance. Dolphin ex-
hibits the best performance in most evaluations.

Current document image parsing solutions have 043

evolved along two distinct trajectories. The first 044

one (Wang et al., 2024b) integrates specialized 045

models for different OCR tasks (e.g., layout detec- 046

tion, reading order prediction, and recognition for 047

textlines, formulas, tables). These solutions demon- 048

strate strong performance through dedicated ex- 049

pertise, while requiring independent optimization 050

of each model and facing coordination challenges 051

across models. To address these challenges, recent 052

works leverage general or expert vision-language 053

models (VLMs) (Liu et al., 2024b) to directly gener- 054

ate page-level content autoregressively, benefiting 055

from end-to-end training and effective multimodal 056

feature fusion. These methods (Blecher et al.; Kim 057

et al., 2022; Wei et al., 2024b) show impressive 058

results in capturing page-level semantics. However, 059

they also encounter layout structure degradation 060

and efficiency bottlenecks when handling long doc- 061

uments with complex layout. 062
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To synergize the advantages of both approaches063

while addressing their limitations, we present Dol-064

phin (Document Image Parsing via Heterogeneous065

Anchor Prompting), a novel vision-language model066

following an analyze-then-parse paradigm. Rather067

than relying on multiple expert models or purely au-068

toregressive generation, Dolphin decomposes doc-069

ument parsing into two strategic stages. In the first070

stage, Dolphin performs comprehensive page-level071

layout analysis by generating element sequence in072

natural reading order, while preserving rich struc-073

tural relationships (e.g., figure-caption pairs, table-074

caption associations, and section title-paragraph075

hierarchies). These analyzed elements then serve076

as anchors for the second stage, where element-077

specific prompts enable efficient parallel parsing078

of multiple elements. The focused context within079

each element allows the vision-language model to080

effectively recognize the document contents.081

To train Dolphin on different granularities of082

tasks, we construct a large-scale dataset of 30 mil-083

lion samples containing both page-level documents084

and element-level blocks. Note that Dolphin’s085

element-decoupled parsing strategy offers unique086

advantages in data collection, as acquiring isolated087

element images (e.g., tables, formulas) and their088

annotations is more feasible than collecting full089

document pages with diverse elements.090

Comprehensive evaluations are conducted on091

prevalent benchmarks and self-constructed ones.092

The results show that Dolphin achieves state-of-093

the-art performance across diverse page-level and094

element-level parsing tasks (Figure 1). Moreover,095

benefiting from its lightweight architecture and ele-096

ment parallel parsing mechanism, Dolphin exhibits097

considerable advantages in running efficiency.098

2 Related Work099

Document image parsing enables robust content100

extraction from rendered document images without101

relying on source file formats or parsing libraries102

(e.g., PyMuPDF). Existing solutions can be catego-103

rized into two streams: integration-based methods104

that assemble multiple expert models in a pipeline,105

and end-to-end approaches that leverage vision-106

language models to directly generate structured107

results via autoregressive decoding.108

2.1 Integration-based Document Parsing109

Traditional document parsing solutions rely on inte-110

grating multiple specialized models in a multi-stage111

pipeline (Xu et al., 2020; Herzig et al., 2020; Zhang 112

et al., 2017). These approaches typically start with 113

layout detection to identify different types of el- 114

ements (e.g., tables, formulas), followed by dedi- 115

cated recognizers for each element type. Recent 116

commercial and academic solutions such as Math- 117

pix1, TextIn2, and MinerU (Wang et al., 2024b) 118

follow this integration-based paradigm. Notably, 119

MinerU advances this direction by introducing 120

sophisticated content filtering and segmentation 121

strategies. These methods demonstrate strong per- 122

formance through specialized expertise and have 123

shown great potential in high-precision content ex- 124

traction. However, they face challenges in system 125

complexity, cross-model coordination, and limited 126

understanding of complex document layouts com- 127

pared to end-to-end approaches. 128

2.2 Autoregressive Document Parsing 129

Recent advances in vision-language models have 130

enabled a new paradigm of end-to-end document 131

image parsing, categorized into two streams. 132

General VLMs. With the rapid development of 133

large vision-language models, recent works explore 134

applying general-purpose VLMs (Liu et al., 2024b) 135

to document parsing tasks. Models like GPT- 136

4V (Yang et al., 2023), Gemini 1.5 (Team et al., 137

2024), Qwen2-VL (Wang et al., 2024d), MiniCPM- 138

V2.6 (Yao et al., 2024), DeepSeek-VL2 (Wu et al., 139

2024), and Step-1V show promising results in doc- 140

ument understanding without task-specific train- 141

ing. These models benefit from their large-scale 142

pre-training on diverse visual data, showing strong 143

zero-shot capabilities in document understanding. 144

However, they often face challenges in process- 145

ing efficiency, specialized element recognition, and 146

layout structure preservation, especially when han- 147

dling long documents with complex layouts. 148

Expert VLMs. These models are specifically 149

designed and trained for document parsing or un- 150

derstanding tasks. Nougat (Blecher et al.) pioneers 151

this direction by introducing a encoder-decoder 152

model that converts documents into markup lan- 153

guage. GOT (Wei et al., 2024b) introduces an 154

innovative unified model that processes various 155

elements of documents. Other representative 156

works such as Donut (Kim et al., 2022), Wukong- 157

Reader (Bai et al., 2023), KOSMOS (Lv et al., 158

2023), Vary (Wei et al., 2024a), Fox (Liu et al., 159

2024a), Monkey (Li et al., 2024), TextHawk (Yu 160

1https://mathpix.com/pdf-conversion/
2https://www.textin.ai/

2



Swin Transformer
Cross

Attention

Stage-1: Page-level Layout Analysis

Dolphin

Prompt

Layout Analysis

[0.18, 0.09, 0.48, 0.18] : Figure
[0.18, 0.19, 0.48, 0.31] : Caption

[0.51, 0.09, 0.80, 0.23] : Table
[0.50, 0.24, 0.80, 0.34] : Caption

[0.50, 0.37, 0.71, 0.38] : Sub-section
[0.50, 0.39, 0.80, 0.53] : paragraph
[0.50, 0.53, 0.80, 0.60] : paragraph

…

[0.49, 0.93, 0.51, 0.94] : Footnote

…

…

Layout Element Groups

Look up

…

Reading
Order

…

(2)

(10)

(11)

(18)

Dolphin

Prompt

Element-specific
Content Parsing

Parallel
Render

Stage-2: Element-level Content Parsing

𝑷𝒑𝒂𝒓𝒂𝒈𝒓𝒂𝒑𝒉	 	𝑷𝒕𝒂𝒃𝒍𝒆		 𝑷𝒑𝒂𝒓𝒂𝒈𝒓𝒂𝒑𝒉	

Page Text Paragraph Table Formula

$\hat{\sigma}=\underset{\s
igma \in 
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\hat{y}_{\sigma(i)}\right)$,

Figure 4. FPN for object segment proposals. The 
feature pyramid is constructed with identical 
structure as for object detection. We apply a 
small MLP on $5 \times 5$ windows to generate 
dense object segments with output dimension 
of $14 \times 14$. Shown in orange are the size 
of the image regions the mask corresponds to 
for each pyramid level (levels $P_{3-5}$ are 
shown here). Both the corresponding image 
region size (light orange) and canonical object 
size (dark orange) are shown. Half octaves are 
handled by an MLP on $7 x 7$ windows $(7 
\approx 5 \sqrt{2})$, not shown here. Details 
are in the appendix.

<table frame="hsides" rules="groups”
width="60%"><tr><td></td><td>imagepyramid</td><td
>AR</td><td>ARs</td><td>ARm</td><td>ARl</td><td>ti
me(s)</td></tr><tr><td>DeepMask[27]</td><td>✓</td>
<td>37.1</td><td>15.8</td><td>50.1</td><td>54.9</td
><td>0.49</td></tr><tr><td>SharpMask[28]</td><td>✓
</td><td>39.8</td><td>17.4</td><td>53.1</td><td>59.
1</td><td>0.77</td></tr><tr><td>InstanceFCN[4]</td><
td>✓</td><td>39.2</td><td>−</td><td>−</td><td>−</t
d><td>1.50†</td></tr><tr><td colspan="7">FPN Mask 
Results:</td></tr><tr><td>singleMLP[5×5]</td><td></td
><td>43.4</td><td>32.5</td><td>49.2</td><td>53.7</t
d><td>0.15</td><tr><td>+2xmaskresolution</td><td></
td><td>46.7</td><td>31.7</td><td>53.1</td><td>63.2<
/td><td>0.25</td></tr><tr><td>+2xtrainschedule</td><t
d></td><td>48.1</td><td>32.6</td><td>54.2</td><td>6
5.6</td><td>0.25</td></tr></table>
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Figure 2: An overview of Dolphin’s two-stage document image parsing framework. Left: The parsing pipeline
consists of Stage 1 for page-level layout analysis that generates structured layout sequences in reading order, and
Stage 2 for element-level content parsing. Right: Examples of input-output pairs, including page-level layout
analysis and element-level content parsing for text paragraphs, tables, and formulas.

et al., 2024), mPLUG-DocOwl (Hu et al., 2024),161

and PlatPus (Wang et al., 2024e) have been pro-162

posed. Despite their impressive performance, they163

face similar challenges as general VLMs.164

3 Approach165

In this section, we present our Dolphin in detail.166

We first provide an overview of our analyze-then-167

parse architecture, followed by detailed descrip-168

tions of the page-level layout analysis stage and169

element-level content parsing stage.170

3.1 Overview171

Dolphin follows an analyze-then-parse paradigm172

built upon an encoder-decoder transformer frame-173

work. As shown in Figure 2 (left), given an input174

document image I , the first stage performs page-175

level layout analysis to extract elements in reading176

order. These elements then serve as anchors for the177

second stage, where type-specific prompts guide178

parallel parsing of individual elements. The core179

of both stages is a unified vision-language model,180

which shares the same parameters but operates on181

different input granularities with distinct prompting182

strategies, as presented in Figure 2 (right).183

3.2 Page-level Layout Analysis184

This stage aims to identify the layout elements and185

their reading order by the following steps.186

Page Image Encoding. We employ Swin Trans-187

former (Liu et al., 2021) as our visual encoder,188

which takes the page image I as input and outputs 189

a sequence of visual embeddings z ∈ Rd×N , where 190

d is the embedding dimension and N is the number 191

of image patches. The hierarchical design of Swin 192

enables capturing both global layout patterns and 193

local textual details. Note that the input image is 194

resized and padded to a fixed size of H ×W while 195

preserving its aspect ratio to avoid text distortion. 196

Layout Sequence Generation. Taking the lay- 197

out analysis prompt Playout as a guide, the decoder 198

attends to the encoded visual features through the 199

cross-attention mechanism (Vaswani et al., 2017). 200

We adopt mBart (Lewis, 2019) as the decoder. With 201

the prompt "Parse the reading order of this doc- 202

ument.", the model identifies and arranges docu- 203

ment elements sequentially, while preserving struc- 204

tural relationships (e.g., figure-caption pairs, table- 205

caption associations, and section title-paragraph 206

hierarchies). As shown in Figure 2, it generates 207

a sequence of layout elements L = {l1, l2, ..., ln}, 208

where element li specifies its type (e.g., figure, cap- 209

tion, table, paragraph) and bounding box. This 210

structured layout sequence provides anchors for 211

the subsequent element-level parsing stage. 212

3.3 Element-level Content Parsing 213

The second stage leverages the analyzed layout ele- 214

ments as anchors for parallel element parsing. This 215

design marks a key departure from purely autore- 216

gressive approaches, enabling efficient processing 217

while maintaining element-specific expertise. We 218
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Category Method Model Size Plain Doc (ED ↓) Complex Doc (ED ↓) Avg. ED FPS ↑
Fox-Page-EN Fox-Page-ZH Dolphin-Page

Integration-based MinerU 1.2B 0.0684 0.07018 0.2813 0.1753 0.0350
Mathpix - 0.0125 0.0412 0.1635 0.0952 0.0944

Expert VLMs

Nougat 320M 0.1046 0.9918 0.7054 0.6268 0.0673
Vary-toy 7B 0.082∗ - - - -
Fox 1.8B 0.046∗ - - - -
Kosmos-2.5 1.3B 0.0263 0.2932 0.3920 0.2758 0.0841
GOT 580M 0.035∗ 0.038∗ 0.2497 0.1431 0.0604

General VLMs

InternVL-2.5 8B 0.3000 0.4521 0.4348 0.4054 0.0444
MiniCPM-o 2.6 8B 0.1590 0.3018 0.3626 0.2965 0.0494
GLM4v-plus 9B 0.0814 0.1561 0.3826 0.2507 0.0427
Qwen2-VL-7B 7B 0.1232 0.1638 0.3722 0.2578 0.0315
Gemini-1.5 pro - 0.0996 0.0529 0.1958 0.1360 0.0376
Claude3.5-Sonnet - 0.0316 0.1327 0.1961 0.1391 0.0320
GPT-4o-202408 - 0.0585 0.3580 0.2941 0.2512 0.0368
Step-1v-8k - 0.0248 0.0401 0.2171 0.1248 0.0417

Ours Dolphin 322M 0.0153 0.0342 0.1283 0.0765 0.1729

Table 1: Performance comparison of page-level document parsing. “Plain Doc” represents documents containing
only text content, while “Complex Doc” includes documents with mixed elements (tables, formulas, and figures).
Arrow “↑/↓” indicate whether higher/lower values are better. Results marked with “∗” are reported by GOT.

achieve this through two steps:219

Element Image Encoding. For each layout el-220

ement li identified in the first stage, we crop its221

corresponding region from the original image to222

create a local view Ii. These local views are en-223

coded in parallel using the same Swin Transformer,224

producing element-specific visual features.225

Parallel Content Parsing. With the encoded226

element features, we employ type-specific prompts227

to guide the parsing of different elements. As228

shown in Figure 2 (right), tables employ dedicated229

prompts Ptable to parse their HTML format, while230

formulas share the same prompt Pparagraph as text231

paragraphs since they frequently appear both in-232

line and in display mode within paragraph context,233

despite their LaTeX markup format. Given the vi-234

sual feature of the local view Ii and its correspond-235

ing prompt pi, the decoder generates the parsed236

content in parallel. This parallel processing strat-237

egy, combined with element-specific prompting,238

ensures computational efficiency while maintain-239

ing accurate content recognition.240

4 Dataset241

To enable comprehensive training and evaluation,242

we construct large-scale datasets spanning multiple243

document granularities and parsing tasks.244

4.1 Training245

For training, we collect over 30 million samples246

covering both page-level documents and element-247

level components. A comprehensive breakdown of248

our training dataset, including data sources, gran-249

Source Granularity #Samples Task Types
Mixed Documents Page 0.12M Layout
HTML Page 4.37M Parsing
LaTeX Page 0.5M Parsing
Markdown Page 0.71M Parsing
Table Element 1.57M Parsing
Formula Element 23M Parsing
Total - 30.27M -

Table 2: Overview of our training data. Note that page-
level documents are also decomposed into individual
elements for element-specific training.

ularities, and task, is shown in Table 2. In the fol- 250

lowing, we describe the preparation and collection 251

of data for different training objectives. 252

Mixed Documents. We collect 0.12M docu- 253

ments from diverse sources, including HR mate- 254

rials from HRDoc (Ma et al., 2023), educational 255

materials (exam papers and textbooks), publica- 256

tions (magazines and newspapers), and business 257

documents (presentations and industry reports). All 258

documents are annotated with element-level bound- 259

aries and their reading order, enabling training for 260

both layout analysis and order prediction. 261

HTML. For documents from the HTML source, 262

we utilize dumps from Chinese and English 263

Wikipedia articles to generate synthetic training 264

data through web rendering (Kim et al., 2023). We 265

process HTML content by adding span tags for 266

character-level annotation, and apply random font 267

selection to enhance visual diversity. Through this 268

pipeline, we generate 4.37M page-level samples 269

with comprehensive bounding box annotations at 270

character, word, line and paragraph levels. 271
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Figure 3: Visualization of Dolphin’s page-level parsing results. Left: Layout analysis form Stage 1 with predicted
element boundaries and reading order. Middle: Element-specific parsing outputs from Stage 2. Right: Final
rendered document in markdown format. More cases are shown in the supplementary material.

LaTeX. We collect 0.5M documents from the272

arXiv database and process them using LaTeX273

Rainbow (Duan and Bartsch), a specialized ren-274

dering framework that preserves document hierar-275

chical structure. This tool renders different element276

(e.g., formulas, figures) with distinct colors while277

maintaining the reading order. The rendered docu-278

ments are then automatically parsed to extract ele-279

ment types, hierarchical relationships, and spatial280

locations at block, line, and word levels.281

Markdown. We collect 0.71M markdown docu-282

ments from GitHub pages and process them using283

Pandoc (MacFarlane, 2013) for PDF rendering with284

several customized templates. Through PyMuPDF-285

based parsing and content alignment with source286

markdown, we obtain hierarchical text annotations287

at paragraph, line, and word levels, as well as some 288

specific element types like tables. Furthermore, we 289

render the formula in different colors and find all 290

formula blocks based on pixel matching. 291

Tables. For table parsing, we utilize PubTab- 292

Net (Zhong et al., 2020) and PubTab1M (Smock 293

et al., 2022), two large-scale datasets of tables 294

extracted from scientific publications. PubTab- 295

Net contains 568K tables with HTML annotations, 296

while PubTab1M provides 1M tables with more 297

fine-grained structure annotations. 298

Formulas. We collect 23M formula expressions 299

in LaTeX format from arXiv sources, including 300

in-line formulas, single-line formulas, and multi- 301

line formulas. The expressions are then rendered 302

formula images using the XeTeX tool. Various 303
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Category Method

Text Paragraph (ED ↓) Formula (CDM ↑) Table (TEDS ↑)

Fox-Block Dolphin-Block SPE SCE CPE PubTabNet PubTab1M
EN ZH

Expert Models
UnimerNet-base - - - 0.9914∗ 0.94∗ 0.9595∗ - -
Mathpix - - - 0.9729∗ 0.9318∗ 0.9671∗ - -
Pix2tex - - - 0.9619∗ 0.2453∗ 0.6489∗ - -

Expert VLMs TabPedia - - - - - - 0.9541 0.9511
GOT 0.0181 0.0452 0.0931 0.8501 0.7369 0.7197 0.3684 0.3269

General VLMs

GLM-4v-plus 0.0170 0.0400 0.1786 0.9651 0.9585 0.7055 0.5462 0.6018
Qwen2-VL-7B 0.0910 0.1374 0.1012 0.5339 0.6797 0.1220 0.3973 0.5101
Gemini-1.5 pro 0.0108 0.0461 0.0857 0.9572 0.9469 0.7171 0.7571 0.7776
Claude3.5-Sonnet 0.0375 0.1177 0.0746 0.8995 0.9464 0.7543 0.5431 0.7127
GPT-4o-202408 0.0170 0.1019 0.0489 0.9570 0.9402 0.7722 0.6692 0.7243
Step-1v-8k 0.0098 0.0175 0.0252 0.9526 0.9336 0.7519 0.6808 0.6588

Ours Dolphin 0.0177 0.0143 0.0224 0.9850 0.9685 0.8739 0.9515 0.9625

Table 3: Performance comparison of element-level parsing across text paragraphs, formulas, and tables. Arrows
“↑/↓” indicate whether higher/lower values are better. Results marked with “∗” are reported by UnimerNet.

backgrounds and fonts are used in the rendering304

process to enhance the richness of the images.305

4.2 Evaluation306

The evaluation is conducted at both page and ele-307

ment levels. At the page level, we evaluate on two308

distinct benchmarks: Fox-Page (Liu et al., 2024a),309

which consists of pure text documents, and our310

constructed Dolphin-Page containing complex doc-311

uments with interleaved figures, tables, and mathe-312

matical formulas. At the element level, we evaluate313

fine-grained parsing capabilities for text-paragraph,314

formulas, and tables through the public test sets.315

Page-level Evaluation:316

(a) Fox-Page. Fox-Page is a bilingual bench-317

mark containing 212 document pages (112 in En-318

glish and 100 in Chinese) including both single-319

column and multi-column formats. Each page con-320

tains over 1,000 words, making it a challenging321

testbed for document image parsing.322

(b) Dolphin-Page. Our Dolphin-Page is a bilin-323

gual benchmark of 211 document pages designed324

for complex document parsing. It consists of 112325

pure text documents and 99 challenging samples326

with interleaved tables, mathematical formulas, and327

figures in both single-column and multi-column328

layouts. All documents are manually annotated329

with precise transcriptions following the natural330

reading order, making it a rigorous testbed for eval-331

uating document parsing capabilities.332

Element-level Evaluation:333

(a) Text Paragraph. For pure text recognition334

evaluation, we utilize two test sets. The first set335

follows the official block-level evaluation protocol336

of Fox-Page (Liu et al., 2024a), containing 424 text337

paragraph images. The second set is constructed by338

extracting 1,856 text paragraphs from our Dolphin- 339

Page. Unlike page-level evaluation which consid- 340

ers both reading order prediction and content recog- 341

nition, this element-level evaluation focuses solely 342

on fundamental text recognition capability. 343

(b) Formula. For formula recognition evalua- 344

tion, we utilize three public benchmarks (Wang 345

et al., 2024a) with different complexity levels: SPE 346

with 6,762 simple printed expressions, SCE con- 347

taining 4,742 screen capture formulas, and CPE 348

consisting of 5,921 complex mathematical expres- 349

sions. We adopt Character Difference Metric 350

(CDM), which measures the character-level edit 351

distance between predictions and ground truth. 352

(c) Table. The table recognition evaluation is 353

conducted on two widely-used benchmarks: Pub- 354

TabNet (Zhong et al., 2020) and PubTab1M (Smock 355

et al., 2022). The test set of PubTabNet contains 356

7,904 table images from scientific papers, while 357

PubTab1M’s test set consists of 10,000 more chal- 358

lenging samples. Both benchmarks evaluate the 359

model’s capability in understanding table struc- 360

tures and recognizing cell contents using TEDS 361

(Tree-Edit-Distance-based Similarity) as the met- 362

ric, which computes the similarity between the pre- 363

dicted and ground-truth HTML table structure. 364

5 Experiment 365

5.1 Implementation Details 366

In the proposed Dolphin, the encoder uses a Swin 367

Transformer with a window size of 7 and hierarchi- 368

cal structure ([2, 2, 14, 2] encoder layers with [4, 369

8, 16, 32] attention heads). The decoder contains 370

10 Transformer layers with a hidden dimension of 371

1024. We train the model using AdamW optimizer 372
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HUMANS are naturally capable of imaging a scene ac-
cording to a piece of visual, text or audio description.
However, the intuitive processes are less straightforward
for deep neural networks, primarily due to an inherent
modality gap. This modality gap for visual perception can
be boiled down to intra-modal gap between visual clues and
real images, and cross-modal gap between non-visual clues
and real images. Targeting to mimic human imagination and
creativity in the real world, the tasks of Multimodal Image
Synthesis and Editing (MISE) provide profound insights
about how deep neural networks correlate multimodal in-
formation with image attributes.
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Figure 4: Demonstration of Dolphin’s element-level parsing across diverse scenarios. Input images are shown in
the top row, with corresponding recognition results in the bottom row. Left: Text paragraph parsing in complex
layouts. Middle: Bilingual text paragraph recognition. Right: Complex table parsing (rendered results shown).

with a learning rate of 5e-5 and cosine decay sched-373

ule. The training is conducted on 32 A100 GPUs374

for 2 epochs, using a batch size of 16 per device375

through gradient accumulation.376

5.2 Comparison with Existing Methods377

Comprehensive evaluations are conducted on both378

full-page document parsing (plain and complex379

documents) and individual element recognition380

tasks (text paragraphs, tables, and formulas).381

Page-level Parsing. We evaluate Dolphin’s per-382

formance on Fox-Page (English and Chinese) and383

Dolphin-Page benchmarks. As shown in Table 1,384

despite its lightweight architecture (322M parame-385

ters), Dolphin achieves superior performance com-386

pared to both integration-based methods and larger387

VLMs. For pure text documents, Dolphin achieves388

an edit distances of 0.0153 and 0.0342 on English389

and Chinese test sets respectively, outperforming390

specialized VLMs like GOT (with edit distances of391

0.035 and 0.038) and general VLMs like GPT-4o392

(with edit distances of 0.0585 and 0.3580). The393

advantage becomes more evident on Dolphin-Page,394

where Dolphin achieves an edit distance of 0.1283,395

outperforming all baselines in handling documents396

with mixed elements like tables and formulas. Fur-397

thermore, with parallel parsing design, Dolphin398

demonstrates considerable efficiency gains, achiev-399

ing 0.1729 FPS, which is nearly 2× faster than the400

most efficient baseline (Mathpix at 0.0944 FPS).401

We visualize three representative cases in Fig-402

ure 3, showing the complete pipeline from lay-403

out analysis (Stage 1) to element-specific parsing404

(Stage 2), and finally to the rendered document.405

As demonstrated, Dolphin accurately captures both406

layout structure and textual content. As shown in407

Figure 5 (left), Dolphin also exhibits strong text ex- 408

traction capabilities by accurately parsing content 409

from specified bounding box regions. 410

Element-level Parsing. Beyond page-level pars- 411

ing, we conduct extensive experiments to evalu- 412

ate Dolphin’s performance on individual elements, 413

as shown in Table 3. For text paragraph parsing, 414

Dolphin achieves competitive results on both Fox- 415

Block and Dolphin-Block test sets. In formula 416

recognition, Dolphin demonstrates strong capabili- 417

ties across different complexity levels (SPE, SCE, 418

and CPE), achieving competitive CDM scores com- 419

parable to specialized formula recognition methods. 420

For table parsing, our approach shows promising 421

results on both PubTabNet and PubTab1M bench- 422

marks, effectively capturing both structural rela- 423

tionships and cell contents. These consistent strong 424

results across text paragraphs, formulas, and tables 425

demonstrate Dolphin’s competitive performance in 426

fundamental recognition tasks. 427

We further show Dolphin’s robustness in Fig- 428

ure 4 through three scenarios: text paragraphs with 429

complex layouts, bilingual text recognition, and 430

structured tables with intricate formats. As shown 431

in Figure 5 (right), Dolphin also supports text spot- 432

ting by detecting and parsing text lines. 433

5.3 Ablation Studies 434

We conduct extensive experiments to validate the 435

effectiveness of the core components in Dolphin. 436

Parallel Decoding. To investigate the efficiency 437

gains from our parallel decoding strategy in stage 438

2, we compare our approach with a sequential de- 439

coding baseline. As present in Table 4, parallel de- 440

coding achieves a 1.8× speedup (0.1729 vs. 0.0971 441

FPS) while maintaining the same recognition accu- 442
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[0.01,0.11,0.99,0.14] The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
[0.01,0.14,0.99,0.17] connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
[0.01,0.17,0.13,0.19] respectively.
[0.01,0.23,0.37,0.25] 3.1 Encoder and Decoder Stacks
[0.01,0.28,0.99,0.30] Encoder: The encoder is composed of a stack of $N=6$ identical layers. Each layer has two
[0.01,0.30,0.99,0.33] sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
[0.01,0.33,0.99,0.36] wise fully connected feed-forward network. We employ a residual connection [ 11 ] around each of
[0.01,0.36,0.99,0.38] the two sub-layers, followed by layer normalization [ 1 ]. That is, the output of each sub-layer is
[0.01,0.38,0.99,0.41] $\mathrm{LayerNorm}(x+\mathrm{Sublayer}(x))$, where $\mathrm{Sublayer}(x)$ is the function

implemented by the sub-layer
[0.01,0.41,0.99,0.44] itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
[0.01,0.44,0.52,0.47] layers, produce outputs of dimension $d_\mathrm{model}=512$.
[0.01,0.50,0.99,0.52] The The decoder is also composed of a stack of $N=6$ identical layers. In addition to the two
[0.01,0.52,0.99,0.55] sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
[0.01,0.55,0.99,0.58] attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
[0.01,0.58,0.99,0.60] around each of the sub-layers, followed by layer normalization. We also modify the self-attention
[0.01,0.60,0.99,0.63] sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
[0.01,0.63,0.99,0.66] masking, combined with fact that the output embeddings are offset by one position, ensures that the
[0.01,0.66,0.87,0.68] predictions for position $i$ can depend only on the known outputs at positions less than $i$.
[0.01,0.72,0.17,0.74] 3.2 Attention
[0.01,0.77,0.99,0.79] An attention function can be described as mapping a query and a set of key-value pairs to an output,
[0.01,0.80,0.99,0.82] where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
[0.49,0.87,0.51,0.89] 3

Detect and recognize all the text lines in the image.
Read the text in the image within the specified 
box [0.50,0.43,0.81,0.53].

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches ( e.g., 75 % ) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

(b) Text spotting(a) Text box query

Figure 5: Additional capabilities of Dolphin. Left: Parsing the text content from a given bounding box region.
Right: Text spotting results showing detected text lines (visualized in the image) and their content.

Method ED ↓ FPS ↑
Dolphin 0.1283 0.1729
Parallel → Sequential Decoding - 0.0971
Type-specific → Generic Prompts 0.1613 -
Element Cropping → Box Query 0.1849 -

Table 4: Ablation studies on Dolphin. The first row
shows the performance of our full model. The evalua-
tion is conducted on Dolphin-Page dataset.

racy. The speedup is bounded by two factors: (a)443

the preprocessing overhead for each element before444

network inference, and (b) the batch size constraint445

(maximum 16 elements per batch) due to GPU446

memory limitations, requiring multiple inference447

passes for documents with numerous elements.448

Type-specific vs. Generic Prompts. To inves-449

tigate the effectiveness of type-specific prompting450

in the second stage, we compare Dolphin with a451

baseline variant that uses a generic prompt "Read452

the text in the image." for all element parsing tasks.453

As shown in Table 4, our type-specific prompt-454

ing strategy significantly outperforms the generic455

baseline (0.1283 vs. 0.1613 in ED). A representa-456

tive case is shown in Figure 6, where the generic457

prompt misidentifies a table as a LaTeX formula,458

while our type-specific prompt successfully parses459

and renders it. These results demonstrate that in-460

corporating prior knowledge through type-specific461

prompting effectively improves the model’s ability462

to handle different document elements.463

Element Cropping vs. Box Query. To vali-464

date our element cropping strategy in the second465

stage, we compare it with an alternative box query466

approach that directly prompts the model to recog-467

nize elements at specific box (see Figure 5 (left)).468

As shown in Table 4, our cropping strategy achieves469

better performance than the box query method.470

This is likely because cropping provides the model471

with a focused view of each element, following472

a “what you see is what you get” principle, while473

$$\begin{array}{llll}\text { encoder } & \text { dec. depth } & \text { ft 
acc } & \text { hours } & \text { speedup } \\ \hline \mathrm{ViT}-
\mathrm{L}, \mathrm{w} /[\mathrm{M}] & 8 & 84.2 & 42.4 & \text {- } 
\\ \mathrm{ViT}-\mathrm{L} & 8 & 84.9 & 15.4 & 2.8 \times \\
\mathrm{ViT}-\mathrm{L} & 1 & 84.8 & 11.6 & \mathbf{3. 7} \times 
\\ \hline \mathrm{ViT}-\mathrm{H}, \mathrm{w} /[\mathrm{M}] & 8 
& \text {- } & 119.6^{\dagger} & \text {- } \\ \mathrm{ViT}-\mathrm{H} 
& 8 & 85.8 & 34.5 & \mathbf{3. 5} \times \\ \mathrm{ViT}-
\mathrm{H} & 1 & 85.9 & 29.3 & \mathbf{4. 1} \times\end{array}$$

Input Table Image

Generic Prompt: 
Misidentified as 

formula

Type-specific Prompt: 
Correctly parsed as 

HTML table and 
successfully rendered

Figure 6: A case study demonstrating the effectiveness
of type-specific prompts. The generic prompt misidenti-
fies the table as a formula, while our approach correctly
parses and renders the table in HTML format.

the box query approach increases task complexity 474

by requiring the model to simultaneously handle 475

location understanding and content recognition. 476

6 Conclusion 477

We present Dolphin, a novel document image pars- 478

ing model that leverages an analyze-then-parse 479

paradigm to address the challenges in document 480

parsing. Our approach first performs page-level lay- 481

out analysis to generate structured layout elements 482

in reading order, then enables parallel element pars- 483

ing through heterogeneous anchor prompting. This 484

two-stage design effectively balances efficiency 485

and accuracy, while maintaining a lightweight ar- 486

chitecture. Through extensive experiments, we 487

demonstrate Dolphin’s strong performance in both 488

page-level and element-level parsing tasks, partic- 489

ularly excelling in handling complex documents 490

with interleaved tables, formulas, and rich format- 491

ting in both Chinese and English. 492
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Limitations493

Despite Dolphin’s promising performance, there494

are several limitations worth noting. First, our495

model primarily supports documents with standard496

horizontal text layout, showing limited capability497

in parsing vertical text arrangements like ancient498

manuscripts and rotated tables. Second, while Dol-499

phin handles both Chinese and English documents500

effectively, its multilingual capacity needs to be501

expanded. Third, although we achieve efficiency502

gains through parallel element parsing, there is503

potential for further optimization through parallel504

processing of text lines and table cells.505
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In this supplementary material, we provide ad-678

ditional experimental results and implementation679

details to complement our main paper. Specifically,680

we present more qualitative results demonstrating681

Dolphin’s parsing capabilities, elaborate on the sup-682

ported element types, detail our training process,683

and showcase our synthetic data.684

A Qualitative Results685

To further demonstrate the superior capabilities of686

Dolphin, we present comprehensive page-level and687

element-level parsing results.688

Page-level. First, the examples in Figure 8 cover689

diverse document scenarios, including textbook690

pages with dense formulas, triple-column English691

academic papers, and double-column Chinese pa-692

pers with tables. The results demonstrate that Dol-693

phin can effectively handle documents with differ-694

ent languages, layouts, and element types, main-695

taining high parsing quality.696

Furthermore, we showcase Dolphin’s versatility697

in other text-rich scenarios through Figure 9, where698

we test the model on mobile phone screenshots,699

shopping receipts, and webpage captures. These700

results indicate that Dolphin can accurately capture701

both the structural layout and textual content in702

these everyday scenarios.703

Element-level. For fine-grained parsing capabil-704

ities, we first demonstrate Dolphin’s formula recog-705

nition in Figure 10, where we evaluate three types706

of formulas: inline formulas, single-line block for-707

mulas, and multi-line block formulas. The results708

show that Dolphin can accurately parse formulas709

of varying complexity and layout formats.710

We further evaluate Dolphin’s table parsing abil-711

ity in Figure 11, where we test the model on a712

challenging case containing hundreds of cells. As713

shown, Dolphin successfully handles this large-714

scale structured table with precise content recogni-715

tion and layout preservation.716

B Element Design717

In this section, we elaborate on Dolphin’s sup-718

ported element types and element-specific parsing719

strategies through heterogeneous prompting.720

Element Types. Our Dolphin supports 16 dif-721

ferent types of elements commonly found in doc-722

ument images. Table 5 provides a comprehensive723

overview of these elements, covering various com-724

ponents from headers to specialized content blocks.725

No. Element Description

1 title Paper/document title
2 author Author names
3 sec First-level section headings
4 sub_sec Second-level section headings
5 para Paragraphs
6 header Page headers
7 foot Page footers
8 fnote Footnotes
9 watermark Non-content watermarks

10 fig Figures and images
11 tab Tables
12 cap Figure/table captions
13 anno Figure/table annotations
14 alg Code blocks/pseudocode
15 list List-type content
16 reference References and citations

Table 5: An overview of element types supported by
Dolphin. These elements cover the majority of content
structures found in documents.

Note that in Stage 1 (page-level layout analysis), 726

we intentionally avoid treating formulas as inde- 727

pendent elements. This design choice allows Stage 728

2 (element-level parsing) to leverage broader con- 729

textual information when recognizing mathemati- 730

cal expressions, as formulas are often semantically 731

connected with their surrounding text. 732

Heterogeneous Anchor Prompting. We sum- 733

marize the prompts used in Dolphin in Table 6. The 734

first three prompts (page-level layout analysis, text 735

paragraph parsing, and table parsing) are designed 736

for full-page document image parsing, while the 737

latter two (text spotting and text box query) enable 738

additional capabilities for flexible text recognition 739

tasks. Additionally, our Dolphin can also serve as 740

a formula recognition expert model using the text 741

paragraph parsing prompt. 742

In Stage 2, tables are processed with a dedicated 743

table-specific prompt for structured HTML parsing, 744

while all other elements are treated as text para- 745

graphs and parsed using a unified prompt. This di- 746

chotomous design distinguishes structured HTML 747

content from plain text, while also providing robust- 748

ness against potential element misclassification, as 749

parsing accuracy remains high regardless of ele- 750

ment type classification errors. 751

C Training Details 752

In this section, we provide more details about Dol- 753

phin’s training process, including multi-task train- 754

ing strategy, model initialization, and other imple- 755

mentation considerations. 756

Instruction Tuning. During training phase, we 757
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Figure 7: Examples of synthetic training data generated from different source formats. Top: rendered document
images from HTML (left), LaTeX (middle), and Markdown (right) sources. Bottom: corresponding paragraph-level
annotations visualized with colored regions.

Task Prompt

Page-level Layout Analysis Parse the reading order of this document.

Text Paragraph/Formula Parsing Read the text in the image.

Table Parsing Parse the table in the image.

Text Spotting Detect and recognize all the text lines in the image.

Text Box Query Read the text in the image within the specified box [x1,y1,x2,y2].

Table 6: Different types of prompts used in Dolphin for document parsing tasks.

adopt a dynamic task selection strategy for our758

instruction-based framework. Specifically, given a759

training sample, we randomly select an applicable760

task from the above five tasks based on its available761

annotations. This selection is used to construct762

question-answer pairs. For instance, given a page763

image with only paragraph-level bounding boxes764

and content annotations, the available tasks for this765

sample would include element-level text paragraph766

parsing and page-level box query parsing.767

Model Initialization. We initialize Dolphin768

with the pretrained weights from Nougat (Blecher769

et al.), which lacks instruction-following abilities.770

Then, through our instruction tuning, we extend771

the model’s capabilities to understand and execute772

diverse prompts, enabling analysis of document773

layout, reading order, and various textual elements 774

including text paragraphs, tables, and formulas. 775

Training Loss. Following standard practice in 776

autoregressive language models, we optimize Dol- 777

phin using the cross-entropy loss between the pre- 778

dicted token distributions and ground truth ones. 779

D Synthetic Data Examples 780

To enrich training data diversity, we synthesize 781

document images from different source formats, in- 782

cluding HTML, LaTeX, and Markdown documents. 783

Figure 7 shows three representative examples of 784

our synthetic data. For each format, we show the 785

rendered document (top row) and its corresponding 786

paragraph-level annotations (bottom row). 787
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Reading Order & Layout Spans Markdown

Chinese document
Single column

w/ Inline formula
w/ Block formula

English document
Triple column

Chinese document
Double column

w/ Table

English document
Single column
Pure Text

Figure 8: Visualization of Dolphin’s page-level parsing results. Left: Layout analysis form Stage 1 with predicted
element boundaries and reading order. Middle: Element-specific parsing outputs from Stage 2. Right: Final
rendered document in markdown format.
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Reading Order & LayoutInput Image Markdown / Spans

Figure 9: Visualization of Dolphin’s page-level parsing results. Left: Input text-rich images including mobile
phone screenshots, shopping receipts, and webpage captures. Middle: Layout analysis form Stage 1 with predicted
element boundaries and reading order. Right: Final rendered document in markdown format for the first row, and
element-specific parsing outputs from Stage 2 for the second and third rows.
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is normalized by $\sum_{l=1}^{L} \sum_{k=1}^{K} A_{m l q k}=1$. Here, we use 
normalized coordinates $\hat{\boldsymbol{p}}_{q} \in[0,1]^{2}$ for

Inline formula image

Parsing results

Rendered image

$$
q_{\sigma}\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, 
\boldsymbol{x}_{0}\right)=\mathcal{N}\left(\sqrt{\alpha_{t-1}} 
\boldsymbol{x}_{0}+\sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t}-
\sqrt{\alpha_{t}} \boldsymbol{x}_{0}}{\sqrt{1-\alpha_{t}}}, \sigma_{t}^{2} 
\boldsymbol{I}\right).
$$

Parsing results

Block formula image

Block formula image

\begin{array} { r l } { \mathbb { E } [ \nabla _ { \theta } \mathcal { L } ( \theta _ { t } ) | 
\theta _ { t } ] } & { = \nabla _ { \theta } \left[ \frac { 1 } { M } \sum _ { i = 1 } ^ { M } 
\mathbb { E } \left[ ( \nabla ^ { 2 } \mathcal { N } ( \mathbf { x } _ { i } ; \theta _ { t } ) - f 
( \mathbf { x } _ { i } ) ) ^ { 2 } \right] + \frac { 1 } { N } \sum _ { j = 1 } ^ { N } \mathbb 
{ E } \left[ ( \mathcal { N } ( \mathbf { y } _ { j } ; \theta _ { t } ) - g ( \mathbf { y } _ { j } ) ) 
^ { 2 } \right] \right] } \\ & { = \nabla _ { \theta } \left[ \frac { 1 } { M } \sum _ { i = 1 } ^ 
{ M } \int _ { \Omega } ( \nabla ^ { 2 } \mathcal { N } ( \mathbf { x } ; \theta _ { t } ) - f 
( \mathbf { x } ) ) ^ { 2 } \nu _ { 1 } ( \mathbf { x } ) \, d \mathbf { x } + \frac { 1 } { N } 
\sum _ { j = 1 } ^ { N } \int _ { \partial \Omega } ( \mathcal { N } ( \mathbf { y } ; \theta _ 
{ t } ) - g ( \mathbf { y } ) ) ^ { 2 } \nu _ { 2 } ( \mathbf { y } ) \, d \mathbf { y } \right] } \\ & 
{ = \nabla _ { \theta } \left[ \int _ { \Omega } ( \nabla ^ { 2 } \mathcal { N } ( \mathbf { x } ; 
\theta _ { t } ) - f ( \mathbf { x } ) ) ^ { 2 } \nu _ { 1 } ( \mathbf { x } ) \, d \mathbf { x } + \int 
_ { \partial \Omega } ( \mathcal { N } ( \mathbf { y } ; \theta _ { t } ) - g ( \mathbf { y } ) ) ^ 
{ 2 } \nu _ { 2 } ( \mathbf { y } ) \, d \mathbf { y } \right] } \\ & { = \nabla _ { \theta } 
\mathcal { J } ( \mathcal { N } ( \cdot ; \theta _ { t } ) ) } \end{array}

Parsing results

Rendered image

Rendered image

Figure 10: Visualization of Dolphin’s formula parsing results. From top to bottom, we show three formula types:
inline formula, single-line block formula, and multi-line block formula. For each case, we visualize the complete
parsing pipeline: input formula image (top), LaTeX parsing output (middle), and rendered formula (bottom). These
results demonstrate Dolphin’s capability to accurately parse formulas of varying complexity.
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Figure 11: Visualization of Dolphin’s table parsing capability. Top: Input large-scale table image containing
hundreds of cells. Bottom: Rendered HTML table based on Dolphin’s parsing result. This example demonstrates
Dolphin’s strong ability in handling large-scale structured table images.
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