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ABSTRACT
Machine learning-boosted safety-critical healthcare applications re-
quire the learnedmodels to be both high-performing and uncertainty-
aware, yet this is challenging due to insufficient data volume at the
sources (e.g., in hospitals). Federated learning (FL) enables such data
sources to learn in collaboration without transferring their sensitive
data to a mutually trusted server, overcoming the barrier between
data aggregation and model performance. Since FL is achieved by
globally synchronizing the models learned locally, the heterogene-
ity in local health data, arising from variations in technologies,
patient demographics, and disease prevalence, presents significant
challenges to FL and correspondingly to uncertainty quantifica-
tion. It is unclear how reliable the uncertainty is for inferring the
confidence of the diagnoses made by an FL model.

In this paper, we present the first evaluation of the quantifica-
tion of uncertainty in realistic healthcare FL settings. Our exper-
iments on real-world applications cover tabular data-based heart
disease prediction, image-driven skin pathology screening, and
physiological signal-based activity detection tasks. Three uncer-
tainty quantification methods that were previously proposed in
standard centralized deep learning are adapted to a variety of FL
algorithms for comparison. We found that federated deep ensem-
bles perform consistently better than other federated uncertainty
quantification methods, and personalization, i.e., training collab-
oratively but remaining customized models, can further enhance
the performance (with an improvement of up to 19%). Our work
paves the way for the future development of federated uncertainty
quantification approaches.

CCS CONCEPTS
• Computing methodologies → Machine learning; Uncer-
tainty quantification; Distributed artificial intelligence; • Ap-
plied computing→ Health informatics.
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1 INTRODUCTION
With the proliferation of clinical data and devices, deep learning is
being increasingly applied in the medical field, proving its effective-
ness in various applications [6, 9, 25]. For this research to transition
into clinical practice, the safety-critical nature of healthcare appli-
cations necessitates the models’ ability to quantify uncertainty [12].
While deep learning models are known to be overconfident [8], a
trustworthy health model needs to convey uncertainty when its
prediction is likely to be wrong, prompting human intervention
and better risk management.

Nevertheless, overfitting caused by insufficient data poses a sig-
nificant challenge for individual parties to train high-performing
deep learning models that are able to accurately estimate uncer-
tainty. With limited data samples, these parties need to collaborate
in model training, but they face obstacles in directly sharing data
due to privacy regulations and the risk of data misuse. Federated
learning (FL) offers a promising solution where multiple clients,
such as hospitals and user devices, to collaboratively train a model
without sharing their private data [10]. In FL, the parameters of
the local models are aggregated after each training round to learn
a global federated model from the data of all clients. The most
commonly used method is called FedAvg, which employs weighted
averaging based on the proportional data size of each client [19].

Commonly, data collected from different hospitals or health mon-
itoring devices vary in the technologies used, patient demographics,
and disease prevalence. This complicated data heterogeneity poses
a huge challenge to learning a single global model performing well
on all clients. Personalized federated learning (pFL), which involves
learning a tailored model for each client, has emerged as a promis-
ing approach to address this challenge [21]. Previous studies [18]
have demonstrated the effectiveness of personalization in FL for
healthcare. However, the behavior of uncertainty estimation in
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FL in the presence of heterogeneity and the effectiveness of per-
sonalization is still unknown and requires further exploration and
research.

This work fills this gap by evaluating different uncertainty meth-
ods combined with various FL and pFL strategies in real-world
heterogeneous healthcare datasets. In particular, we aim to address
the following research questions:

• RQ1: How does the standard FL (FedAvg) perform in uncer-
tainty quantification with heterogeneous health data?

• RQ2: Can personalization of the federated models effectively
improve uncertainty quantification?

• RQ3: Which uncertainty quantification method is more ef-
fective in FL with heterogeneous health data?

With these research questions in mind, we built an uncertainty
estimation framework on several real-world multi-site healthcare
datasets. Our framework incorporatesMonte Carlo (MC)Dropout [7]
and deep ensembles [13] as the uncertaintymethods.We apply them
to three healthcare applications: heart disease detection, human
activity recognition, and melanoma class prediction. The datasets
used encompass different types of input data, including images,
time series, and pre-extracted features. On each dataset and applica-
tion, the effectiveness of existing uncertainty qualification methods
is measured across multiple FL strategies of different degrees of
personalization.

To the best of our knowledge, this work is the first to delve
into the unique challenges brought by FL data heterogeneity on
uncertainty estimation. This is also the first work studying the role
of personalized FL on uncertainty quantification. From extensive
exploratory experiments, our main conclusions are as follows:

• Compared to centralized learning (where a model is learned
on the data aggregated across all the clients), the quality of
uncertainty degrades in FL with heterogeneous data along
with the classification performance.

• Personalized federated models not only increase accuracy
but also enhance uncertainty estimation, by up to 12% in
misclassification detection and 19% in selective prediction.
This is even better than performance in centralized setting.

• Deep ensembles perform consistently well among the un-
certainty quantification methods in personalized FL, with
an advantage of up to 4% in misclassification detection, in
addition to its accuracy gain.

Our study paves the way for trustworthy deep learning for
healthcare by incorporating uncertainty quantification and fed-
erated learning in one framework and identifies personalized FL
as a promising approach addressing data heterogeneity for both
classification and uncertainty estimation.

2 PRELIMINARIES AND RELATEDWORK
2.1 Federated Learning
In federated learning, the standard objective is to learn a global
model \ that performs well for all the clients on average. The ob-
jective is formulated by Li te al. [14] as

min
\
𝐹 (\ ) :=

𝐾∑︁
𝑘=1

𝑝𝑘 · 𝐹𝑘 (\ ), (1)

where 𝐾 is the number of participating clients, 𝐹𝑘 (\ ) is the local
objective function for the 𝑘-th client weighted by 𝑝𝑘 (𝑝𝑘 ≥ 0 and∑
𝑘 𝑝𝑘 = 1). The federated training is done by iterative local train-

ing and global synchronization . At the start of each round, the
server sends the global model to participating clients. Each client
independently trains the model using its local dataset in parallel
and sent it back to the server for aggregation. The aggregation
function varies across strategies.

FedAvg [19], the most commonly used strategy, takes a weighted
average proportional to the number of samples of each client, i.e.,
𝑝𝑘 =

𝑛𝑘
𝑛 . Despite being proven to be empirically effective, the

convergence of FedAvg is not guaranteed when data is heteroge-
neous [15]. Also, the divergence of clients’ local objectives can lead
the global model to converge to an erroneous point [26].

FedProx [15] regularizes the local training at the clients to restrict
them to diverge from the parameters of the global model. This
way the model takes small steps to learn but is better at handling
heterogeneity in clients’ local data distributions. However, a single
global model usually struggle to have desirable performance for
every client under significant client heterogeneity.

At the other end of the spectrum, instead of training and deploying
the same global model, each client 𝑘 can build a personalized model
\𝑘 , which is the underlying motivation for pFL. Current methods
in pFL can be categorized into two main groups: global model
personalization and personalized model learning. In the prior group,
a global model is first trained and then locally adapted to each client
whereas the second category trains personalized models directly.
Below we describe three methods that we explore in this paper
covering both the categories.

Fine-tuning (FT) is a common method used for local adaptation,
where a global model is trained using a federated mechanism till
convergence. Then the model is retrained at every client using
its local data for several epochs. It is simple to implement and
compatible with any model architectures and FL strategies.

FedBN [16] aims to address a specific type of heterogeneity be-
tween clients, identified as feature shifts, by leveraging the capabil-
ities of batch normalization (BN) layers. It is achieved by maintain-
ing local BN layer parameters and excluding them from federated
aggregation.

FedAP [18] further considers client similarity and aggregates a
customizedmodel for every client, in additional to maintaining local
BN layers. The similarity of clients’ data distributions is measured
by the distance between their BN layer information.

Both FedBN and FedAP have been applied in healthcare applications
and demonstrate performance improvement in classification [16,
18]. We skip testing other advanced personalized FL methods from
the literature, as this is orthogonal to our interest as stated in RQ2.

2.2 Uncertainty Quantification
After obtaining a local deep learning model \𝑘 for client 𝑘 , the most
basic way of measuring uncertainty is using softmax entropy, which
is however known to be overconfident [8]. For neural networks,
MC-Dropout and deep ensembles are two pervasive methods to
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introduce randomness and approximate the posterior parameter
distribution.

Vanilla. In vanilla softmax entropy, only one inference is drawn
and the uncertainty is measured by calculating the Shannon entropy
of the predictive distribution,

H(𝑦 |x, \ ) = −
𝐶∑︁
𝑖=1

𝑝𝑖 log(𝑝𝑖 ), (2)

where 𝑝𝑖 represents the predicted probability of class 𝑖 .

MC-Dropout (MCDrop). InMC-Dropout, dropout layers are added
to the model and activated during inference, when𝑇 forward passes
are run to obtain averaged output probabilities.

Deep Ensembles (Ensemble). Deep ensembles instead involve
training𝑀 models with different weight initializations on the same
data and the predictions from these models are averaged during
inference.

BothMC-Dropout and deep ensemble sample an ensemble of predic-
tions, M = {𝑃 (𝑦 |x, \1), 𝑃 (𝑦 |x, \2), . . . , 𝑃 (𝑦 |x, \ |M | )}. Final predic-
tions are obtained by their mean, and uncertainty can be measured
by the predictive entropy

H(𝑦 |𝑥, 𝐷) := −
𝐶∑︁
𝑖=1

©« 1
|M|

|M |∑︁
𝑡=1

𝑎𝑡
ª®¬ log ©« 1

|M|

|M |∑︁
𝑡=1

𝑎𝑡
ª®¬ , (3)

where 𝐶 is the number of classes, |M| is the size of the ensemble
and 𝑎𝑡 = 𝑝 (𝑦 = 𝑐𝑖 |𝑥, \𝑡 ) for each class 𝑐𝑖 .

However, there is very limited work studying uncertainty es-
timation in FL. A recent study [17] demonstrates that prominent
approaches in centralized learning, includingMC-Dropout and deep
ensembles, can be extended to an FL setting with identical and inde-
pendent distributed (IID) data distribution, without addressing data
heterogeneity that is commonly present in healthcare applications.

2.3 Existing literature
Several existing works have been proposed to review and evalu-
ate FL and pFL strategies. Chen et al. [2] presents a benchmark of
several pFL strategies on 12 widely-used text and image datasets.
However, their focus does not extend to realistic healthcare appli-
cations, which present unique challenges due to complex data het-
erogeneity and more importantly, the crucial need for uncertainty
estimation. Terrail et al. [23] provides a benchmark of standard
FL algorithms on healthcare datasets, but also did not touch on
uncertainty quantification.

On the other hand, Xia et al. [27] evaluates several uncertainty
quantification methods for capturing biosignal dataset shifts. But
the behavior of uncertainty estimation for healthcare under the FL
setting has not been studied and is the gap this paper addresses.

3 EXPERIMENTAL DESIGN
3.1 Datasets
We employ three realistic health datasets covering both cross-silo
and cross-device scenarios [10]. These datasets are diverse in the
number of samples and input modalities, with different levels of
data heterogeneity, and are all tested on their natural partitions.

Table. 1 provides an overview of the basic characteristics of the
datasets.

Table 1: Summary of datasets and FL partition.

Dataset Heart-Disease [1] ISIC2019 [3, 4, 24] PAMAP2 [20]

Modality tabular features image time series
# Samples 740 23,247 2,869
# Clients 4 6 8
# Classes 2 8 8

Train Partition 199, 172, 30, 85 9930, 3163, 2691, 1807,
655, 351

173, 171, 179, 181, 176,
179, 188, 185

Test Partition 104, 89, 16, 45 2483, 791, 672, 452,
164, 88

174, 172, 179, 182, 177,
180, 188, 185

Input Dimension 13 200 × 200 × 3 1000 × 3

Heart-Disease. The Heart-Disease dataset [1] contains tabular
information about patients collected in 4 hospitals located in three
countries, with a binary classification task to predict the presence
of heart disease. The baseline model is a 2-layer MLP with BN and
Dropout layers.

ISIC2019. The ISIC2019 datasets [3, 4, 24] consist of dermoscopy
images collected in 4 hospitals for melanoma class prediction. Since
one hospital used 3 different imaging technologies throughout time,
the data is partitioned into 6 clients in total. The task is a multi-
class classification task among 8 different melanoma classes, and the
baseline model is an EfficientNet-B0 [22] pretrained on ImageNet.
Preprocessing steps follow the FLamby benchmark [23].

PAMAP2. The PAMAP2 dataset [20] contains data on differ-
ent physical activities (such as walking, cycling, playing soccer,
etc), measured by inertial measurement units (IMU), with a task to
classify the activities. The baseline model is a 3-layer CNN model.
We follow the preprocessing pipeline from Yuan et al. [28]. After
preprocessing, the data contain 8 activity classes performed by 8
subjects, each acting as a client.

In these real-world health datasets, clients exhibit universal data
heterogeneity, including an imbalanced number of samples, distinct
label distributions, different patient demographics and technologies
used for data collection. A more detailed illustration of data label
distribution can be found in Appendix. A.

3.2 Settings
We evaluate the quality of the uncertainty estimated by three un-
certainty methods, namely vanilla softmax entropy, MC-Dropout
and deep ensembles in FL. For federated MC-Dropout, we acti-
vate dropout layers in the models of all clients during inference.
As for federated deep ensembles, we train an ensemble of global
models, which has shown superior performance compared to other
variations, such as ensemble of local models, as demonstrated in a
previous study in IID FL [17]. They are applied in four FL strategies
with increasing personalization degree, FedAvg, FedProx, FedBN
and FedAP, as well as combined with FT.

We adopted two settings to measure the model’s ability to cap-
ture potential misdiagnoses [5]. In the first scenario, we measure
the model’s ability to distinguish correctly and incorrectly predicted
samples, i.e. misclassification detection. We calculate the area
under the receiver operating curve (AUROC) for classification based
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on the predictive entropy. In the second scenario, we discard the
most uncertain samples from the test dataset and solely evaluate
the prediction performance of the remaining data, i.e., selective
prediction or abstention. This scenario allows the model to refrain
from making unconfident predictions and leave them for human
inspection. Observing a consistent comparative performance re-
gardless of the chosen thresholds, we choose to discard 40% samples
in the results for a clear distinction.

We train on one NVIDIA A100 GPU, and adopt𝑇 = 1000 for MC-
Dropout and 𝑀 = 5 for deep ensembles, due to empirical studies
revealing these parameters to have adequate and comparable per-
formance in centralised settings. Our detailed experimental setup
is concluded in Appendix B.

4 RESULTS AND FINDINGS
4.1 Uncertainty Quantification with Data

Heterogeneity
To answer RQ1, we first evaluate the uncertainty methods under
the most common FL strategy FedAvg, to determine their effec-
tiveness within the context of FL when faced with statistical data
heterogeneity in health applications.

(a) Centralized (b) FedAvg

Figure 1: Uncertainty distribution of FedAvgmodel compared
to the centralized model on PAMAP2 dataset.

Results indicate that MC-dropout and deep ensembles can be
extended to fit real-world health applications in federated learning.
Nevertheless, the uncertainty estimation obtained by federated
models degrades along with the accuracy when compared with
centralized models. The difference in uncertainty quality can be
observed in Fig. 1. The reported values of the two settings can be
found in Appendix C, along with classification accuracy.

4.2 Uncertainty Quantification with
Personalization

Personalization has been investigated in FL to improve local per-
formance under data heterogeneity. However, it remains unclear
if these methods can also enhance uncertainty estimation. Thus,
RQ2 and our second set of experiments aim to verify this on the
selected healthcare datasets. We evaluate various personalization
methods, including FL, pFL strategies, and fine-tuning.

Table. 2 presents the evaluated quality of estimated uncertainty
under the two settings. Each reported value is the mean of 5 runs,
and the standard deviations (with details in Appendix C) are very

Table 2: Uncertainty quality of FL and pFL models on the
three datasets. The best-performing FL strategy is high-
lighted in bold, the centralized performance is in violet for
reference, and the top-performing uncertainty method for
each strategy is underlined.

Dataset Strategy Misclassification Detection Selective Prediction

Vanilla MCDrop Ensemble Vanilla MCDrop Ensemble

Heart-
Disease

Centralized 0.621 0.620 0.618 0.795 0.796 0.810

FedAvg 0.596 0.600 0.580 0.686 0.686 0.684
FedProx 0.577 0.584 0.575 0.682 0.682 0.683

FedBN 0.685 0.690 0.692 0.859 0.857 0.863
FedAP 0.687 0.692 0.699 0.863 0.863 0.867
FedAvg-FT 0.682 0.681 0.697 0.851 0.854 0.865
FedProx-FT 0.665 0.664 0.683 0.848 0.851 0.877

ISIC2019

Centralized 0.748 0.748 0.766 0.860 0.860 0.917

FedAvg 0.804 0.804 0.804 0.827 0.827 0.847
FedProx 0.831 0.830 0.835 0.895 0.895 0.916

FedBN 0.817 0.817 0.822 0.898 0.905 0.951
FedAP 0.832 0.832 0.847 0.933 0.933 0.959
FedAvg-FT 0.839 0.831 0.866 0.920 0.867 0.953
FedProx-FT 0.841 0.830 0.869 0.908 0.891 0.962

PAMAP2

Centralized 0.791 0.821 0.816 0.908 0.922 0.923

FedAvg 0.769 0.817 0.788 0.866 0.894 0.877
FedProx 0.771 0.812 0.775 0.868 0.890 0.866

FedBN 0.762 0.803 0.794 0.873 0.896 0.900
FedAP 0.851 0.874 0.866 0.946 0.965 0.964
FedAvg-FT 0.878 0.895 0.907 0.980 0.986 0.991
FedProx-FT 0.860 0.888 0.902 0.971 0.981 0.991
FedBN-FT 0.870 0.890 0.902 0.973 0.981 0.994
FedAP-FT 0.874 0.885 0.907 0.977 0.980 0.992
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Figure 2: Misclassification detection results of FedAvg model
on PAMAP2 dataset, with and without fine-tuning.

small, mostly in the order of 10−2 or below. We can see great im-
provements brought by personalization of up to 12% in misclassifi-
cation detection and 19% in selective prediction. The best estimated
uncertainty is always produced by personalized methods. Surpris-
ingly, personalized methods can even outperform centralized mod-
els almost consistently in all datasets. Fig. 2 illustrates in detail how
the quality of uncertainty improves after personalization.
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Both pFL strategies and post-training local adaptation prove ef-
fective in tackling data heterogeneity, with FedAvg-FT, FedProx-FT
and FedAP being the most promising, while their comparative supe-
riority depends partially on the specific application. Notably, FedAP
consistently outperforms FedBN, highlighting the effectiveness of
client clustering in mitigating data heterogeneity. On the other
hand, FedBN fails to improve over FedAvg in PAMAP2 dataset,
where feature shift is less severe, likely due to its inability to han-
dle label distribution heterogeneity. In PAMAP2, fine-tuning also
improves upon the personalized methods, suggesting the need to
customize appropriate personalization approach based on the spe-
cific circumstances.

4.3 Comparative Analysis of Uncertainty
Methods

To answer RQ3, we now investigate the effectiveness of the chosen
uncertainty quantificationmethods in our realistic FL settings. From
the tables, we can observe that federated deep ensembles have the
best performance across datasets and personalization strategies.
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Figure 3: Evolution of local performance of FedProx-FT on
ISIC2019 dataset as the most uncertain samples are removed.

In Fig. 3, it is evident that deep ensembles perform better at every
percentage of samples removed in selective prediction. Not only
does it exhibit consistently higher accuracy, but it also demonstrates
superior uncertainty estimation quality. This is exemplified by a
notable 5% accuracy improvement when discarding only 5% of the
samples and a further 6% increase at around 20% discard rate.

4.4 Summary of Findings
After analyzing the results from these experiments, we summarize
our findings regarding the research questions. Firstly, uncertainty
methods can be extended into non-IID FL for preventing misdiag-
noses in healthcare applications. However, the quality of uncer-
tainty degrades along with classification accuracy. On the other
hand, personalization proves effective in enhancing uncertainty
estimation, with up to 19% improvement. Among the uncertainty
methods, federated deep ensembles perform consistently well in
this setting.

5 DISCUSSION AND FUTUREWORK
This paper presents the first evaluation of different uncertainty
quantification methods in FL settings under data heterogeneity
using real-world health datasets. Experimental results show that
personalization in FL not only improves classification accuracy but
also increases the quality of estimated uncertainty. Thus personal-
ization is a promising research direction in local client deployment
and uncertainty quantification for healthcare applications. One
limitation is that many other FL and pFL baselines could be tested
to validate our hypothesis. It is possible that in some cases per-
sonalization methods might increase accuracy but produce worse
estimated uncertainty due to overfitting.

Additionally, we found that federated deep ensembles perform
consistently better than the other uncertainty methods. However,
it is notable that this advantage is at the expense of introducing
higher computational costs. In our future work, we are further in-
vestigating more cost-efficient uncertainty quantification methods
and making them more feasible for federated learning. Preliminary
results indicate comparable classification accuracy and uncertainty
estimation performance with significantly improved efficiency. An-
other future work direction is to investigate the efficacy of the
quantified uncertainty in detecting out-of-distribution (OOD) cases
and noisy labels.
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A DATASET DESCRIPTION
The label distributions of the three datasets are concluded in Fig. 4,
Fig. 5 and Fig. 6.

B IMPLEMENTATION DETAILS
Table. 3 presents the chosen setup for training and evaluation. The
optimizer used in all experiments is Adam [11]. The chosen ` for
FedProx is set to be 0.01. The number of federated training rounds
is calculated using the same method as in the implementation of
the FLamby benchmark [23], and is same for all the strategies. The

number of rounds 𝑇 is calculated as

𝑇 = 𝑛
𝑝𝑜𝑜𝑙𝑒𝑑

𝑒𝑝𝑜𝑐ℎ𝑒𝑠
· ⌊𝑁 /𝐾/𝐵/𝐸⌋, (4)

where 𝑛𝑝𝑜𝑜𝑙𝑒𝑑
𝑒𝑝𝑜𝑐ℎ𝑒𝑠

is the number of epoches required to train the
centralized model, 𝑁 is the total number of training samples, 𝐾 is
the number of clients, 𝐵 is the batch size and 𝐸 is the number of
local epoches.

The implementation of the 4 FL and pFL strategies follows an
open-source federated learning codebase based on PyTorch devel-
oped by Microsoft1. The code is re-writed to be compatible with
the chosen dataset, models and tasks, and also modified to be more
flexible for extensive experiments. The uncertainty methods are
implemented by this work orthogonal to the strategies and allows
future extensions.

For each reported value in the table, we run 5 experiments to
get the mean and standard deviation. Whereas for federated deep
ensembles, we randomly sample 5 models from 10 trained models
(4 out of 5 for ISIC2019) due to computational constraints.

C SUPPLEMENTARY RESULTS
Table. 4 and Table. 5 presents the performance of classification and
uncertainty quantification comparing FedAvg and centralized learn-
ing. Table. 6 and Table. 7 presents the performance of classification
and uncertainty quantification comparing standard FL and pFL.

1https://github.com/microsoft/PersonalizedFL



UncertaintyQuantification in Federated Learning for Heterogeneous Health Data KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

Negative Positive
Class

0

20

40

60

80

100

N
um

be
r 

of
 S

am
pl

es

Train Test

(a) Client 1

Negative Positive
Class

0

20

40

60

80

100

N
um

be
r 

of
 S

am
pl

es

Train Test

(b) Client 2

Negative Positive
Class

0

20

40

60

80

100

N
um

be
r 

of
 S

am
pl

es

Train Test

(c) Client 3

Negative Positive
Class

0

20

40

60

80

100

N
um

be
r 

of
 S

am
pl

es

Train Test

(d) Client 4

Figure 4: Label distribution of the 4 clients in Heart-Disease dataset.
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Figure 5: Label distribution of the 6 clients in ISIC-2019 dataset in log-scale.

Table 3: Implementation details.

Dataset Heart-Disease ISIC2019 PAMAP2 PhysioNet-2016

Model 2-layer MLP EfficientNet-B0 CNN CNN
Batch Size 4 64 32 64
Learning Rate 0.001 0.005 0.0003 0.0005
# Local Iters 50 20 20 30
# Rounds 30 47 10 22
Metric Accuracy Balanced Accuracy Macro F1-score Accuracy
Loss BCE Loss Weighted Focal Loss CE Loss BCE Loss
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Figure 6: Label distribution of the 8 clients in PAMAP2 dataset.

Table 4: Performance of centralized and federated models on the pooled test set.

Dataset Strategy Accuracy

Vanilla MCDropout Deep Ensemble

Heart-Disease Centralized 0.806 ± 0.009 0.806 ± 0.008 0.756 ± 0.016
FedAvg 0.680 ± 0.027 0.680 ± 0.027 0.644 ± 0.009

ISIC-2019 Centralized 0.753 ± 0.016 0.754 ± 0.015 0.823 ± 0.005
FedAvg 0.704 ± 0.021 0.704 ± 0.021 0.728 ± 0.005

PAMAP2 Centralized 0.852 ± 0.009 0.849 ± 0.009 0.880 ± 0.005
FedAvg 0.749 ± 0.023 0.760 ± 0.024 0.770 ± 0.005



UncertaintyQuantification in Federated Learning for Heterogeneous Health Data KDD FL4Data-Mining ’23, August 7, 2023, Long Beach, CA, USA

Table 5: Uncertainty quality of centralized and federated models on the pooled test set.

Dataset Strategy Misclassification detection Selective prediction

Vanilla MC-Dropout Deep Ensembles Vanilla MC-Dropout Deep Ensembles

Heart-Disease Centralized 0.672 ± 0.034 0.669 ± 0.032 0.666 ± 0.016 0.872 ± 0.012 0.872 ± 0.012 0.817 ± 0.004

FedAvg 0.613 ± 0.024 0.613 ± 0.027 0.609 ± 0.010 0.753 ± 0.009 0.751 ± 0.011 0.685 ± 0.005

ISIC-2019 Centralized 0.762 ± 0.015 0.761 ± 0.015 0.776 ± 0.002 0.871 ± 0.013 0.873 ± 0.014 0.926 ± 0.003

FedAvg 0.810 ± 0.006 0.810 ± 0.006 0.807 ± 0.003 0.831 ± 0.042 0.830 ± 0.043 0.863 ± 0.015

PAMAP2 Centralized 0.831 ± 0.015 0.861 ± 0.010 0.881 ± 0.003 0.959 ± 0.007 0.971 ± 0.003 0.984 ± 0.002

FedAvg 0.740 ± 0.029 0.763 ± 0.025 0.763 ± 0.011 0.843 ± 0.029 0.878 ± 0.020 0.877 ± 0.007

Table 6: Accuracy of FL and pFL models, with mean and standard deviation across 5 runs. The best-performing FL strategy is
highlighted in bold, the centralized performance is in violet for reference, and the top-performing uncertainty method for
each strategy is underlined.

Dataset Strategy Accuracy

Vanilla MC-Dropout Deep Ensembles

Heart-
Disease

Centralized 0.736 ± 0.014 0.737 ± 0.014 0.743 ± 0.008

FedAvg 0.648 ± 0.026 0.648 ± 0.028 0.665 ± 0.008
FedProx 0.665 ± 0.022 0.664 ± 0.023 0.670 ± 0.009

FedBN 0.771 ± 0.007 0.770 ± 0.006 0.779 ± 0.006
FedAP 0.775 ± 0.007 0.775 ± 0.007 0.774 ± 0.005
FedAvg-FT 0.772 ± 0.009 0.773 ± 0.010 0.781 ± 0.009
FedProx-FT 0.779 ± 0.008 0.780 ± 0.009 0.791 ± 0.005

ISIC-2019

Centralized 0.736 ± 0.007 0.737 ± 0.006 0.797 ± 0.004

FedAvg 0.710 ± 0.018 0.710 ± 0.018 0.725 ± 0.004
FedProx 0.754 ± 0.015 0.754 ± 0.015 0.771 ± 0.003

FedBN 0.756 ± 0.047 0.756 ± 0.047 0.808 ± 0.005
FedAP 0.794 ± 0.017 0.794 ± 0.017 0.817 ± 0.005
FedAvg-FT 0.760 ± 0.033 0.756 ± 0.020 0.783 ± 0.005
FedProx-FT 0.757 ± 0.024 0.750 ± 0.020 0.796 ± 0.013

PAMAP2

Centralized 0.802 ± 0.023 0.796 ± 0.027 0.832 ± 0.002

FedAvg 0.780 ± 0.014 0.782 ± 0.017 0.787 ± 0.007
FedProx 0.775 ± 0.006 0.778 ± 0.010 0.782 ± 0.003

FedBN 0.783 ± 0.013 0.781 ± 0.014 0.808 ± 0.006
FedAP 0.835 ± 0.009 0.842 ± 0.008 0.864 ± 0.003
FedAvg-FT 0.877 ± 0.009 0.870 ± 0.012 0.894 ± 0.003
FedProx-FT 0.869 ± 0.003 0.866 ± 0.004 0.892 ± 0.003
FedBN-FT 0.870 ± 0.008 0.867 ± 0.008 0.897 ± 0.003
FedAP-FT 0.873 ± 0.006 0.868 ± 0.005 0.897 ± 0.003
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Table 7: Uncertainty quality of FL and pFL models, with mean and standard deviation across 5 runs. The best-performing FL
strategy is highlighted in bold, the centralized performance is in violet for reference, and the top-performing uncertainty
method for each strategy is underlined.

Dataset Strategy Misclassification detection Selective prediction

Vanilla MC-Dropout Deep Ensembles Vanilla MC-Dropout Deep Ensembles

Heart-
Disease

Centralized 0.621 ± 0.038 0.620 ± 0.035 0.618 ± 0.009 0.795 ± 0.021 0.796 ± 0.021 0.810 ± 0.005

FedAvg 0.596 ± 0.027 0.600 ± 0.030 0.580 ± 0.011 0.686 ± 0.005 0.686 ± 0.007 0.684 ± 0.003
FedProx 0.577 ± 0.023 0.584 ± 0.024 0.575 ± 0.011 0.682 ± 0.008 0.682 ± 0.008 0.683 ± 0.000

FedBN 0.685 ± 0.025 0.690 ± 0.026 0.692 ± 0.014 0.859 ± 0.014 0.857 ± 0.016 0.863 ± 0.005
FedAP 0.687 ± 0.024 0.692 ± 0.018 0.699 ± 0.013 0.863 ± 0.009 0.863 ± 0.009 0.867 ± 0.005
FedAvg-FT 0.682 ± 0.019 0.681 ± 0.017 0.697 ± 0.012 0.851 ± 0.003 0.854 ± 0.005 0.865 ± 0.003
FedProx-FT 0.665 ± 0.010 0.664 ± 0.015 0.683 ± 0.013 0.848 ± 0.004 0.851 ± 0.010 0.877 ± 0.007

ISIC-2019

Centralized 0.748 ± 0.016 0.748 ± 0.016 0.766 ± 0.003 0.860 ± 0.013 0.860 ± 0.013 0.917 ± 0.003

FedAvg 0.804 ± 0.007 0.804 ± 0.007 0.804 ± 0.004 0.827 ± 0.028 0.827 ± 0.029 0.847 ± 0.010
FedProx 0.831 ± 0.005 0.830 ± 0.005 0.835 ± 0.001 0.895 ± 0.013 0.895 ± 0.013 0.916 ± 0.004

FedBN 0.817 ± 0.026 0.817 ± 0.026 0.822 ± 0.009 0.898 ± 0.060 0.905 ± 0.061 0.951 ± 0.003
FedAP 0.832 ± 0.027 0.832 ± 0.027 0.847 ± 0.007 0.933 ± 0.026 0.933 ± 0.026 0.959 ± 0.004
FedAvg-FT 0.839 ± 0.010 0.831 ± 0.008 0.866 ± 0.005 0.920 ± 0.021 0.867 ± 0.023 0.953 ± 0.017
FedProx-FT 0.841 ± 0.013 0.830 ± 0.021 0.869 ± 0.007 0.908 ± 0.046 0.891 ± 0.029 0.962 ± 0.002

PAMAP2

Centralized 0.791 ± 0.016 0.821 ± 0.020 0.816 ± 0.009 0.908 ± 0.021 0.922 ± 0.020 0.923 ± 0.003

FedAvg 0.769 ± 0.020 0.817 ± 0.011 0.788 ± 0.006 0.866 ± 0.016 0.894 ± 0.017 0.877 ± 0.008
FedProx 0.771 ± 0.009 0.812 ± 0.018 0.775 ± 0.006 0.868 ± 0.016 0.890 ± 0.010 0.866 ± 0.006

FedBN 0.762 ± 0.037 0.803 ± 0.016 0.794 ± 0.012 0.873 ± 0.016 0.896 ± 0.014 0.900 ± 0.002
FedAP 0.851 ± 0.015 0.874 ± 0.013 0.866 ± 0.007 0.946 ± 0.009 0.965 ± 0.007 0.964 ± 0.003
FedAvg-FT 0.878 ± 0.012 0.895 ± 0.009 0.907 ± 0.004 0.980 ± 0.007 0.986 ± 0.006 0.991 ± 0.002
FedProx-FT 0.860 ± 0.019 0.888 ± 0.010 0.902 ± 0.003 0.971 ± 0.004 0.981 ± 0.003 0.991 ± 0.002
FedBN-FT 0.870 ± 0.018 0.890 ± 0.009 0.902 ± 0.003 0.973 ± 0.010 0.981 ± 0.007 0.994 ± 0.001
FedAP-FT 0.874 ± 0.016 0.885 ± 0.015 0.907 ± 0.007 0.977 ± 0.006 0.980 ± 0.006 0.992 ± 0.001
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