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Abstract

Answering real-world complex queries, such as complex product search, often
requires accurate retrieval from semi-structured knowledge bases that involve blend
of unstructured (e.g., textual descriptions of products) and structured (e.g., en-
tity relations of products) information. However, many previous works studied
textual and relational retrieval tasks as separate topics. To address the gap, we
develop STARK, a large-scale Semi-structure retrieval benchmark on Textual
and Relational Knowledge Bases. Our benchmark covers three domains: product
search, academic paper search, and queries in precision medicine. We design a
novel pipeline to synthesize realistic user queries that integrate diverse relational
information and complex textual properties, together with their ground-truth an-
swers (items). We conduct rigorous human evaluation to validate the quality of
our synthesized queries. We further enhance the benchmark with high-quality
human-generated queries to provide an authentic reference. STARK serves as a
comprehensive testbed for evaluating the performance of retrieval systems driven
by large language models (LLMs). Our experiments suggest that STARK presents
significant challenges to the current retrieval and LLM systems, highlighting the
need for more capable semi-structured retrieval systems.
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Figure 1: STARK features queries on Semi-structured Knowledge Base (SKB) with textual and
relational knowledge, with node entities as ground-truth answers. STARK consists of synthesized
queries simulating user interactions with a SKB and human-generated queries which provide an
authentic reference. It evaluates LLM retrieval systems’ performance in providing accurate responses.
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Example query Title of ground-truth items(s)

STARK-AMAZON

Looking for durable Dart World brand dart flights that <Amazon Standard Flights>
resist easy tearing. Any recommendations? <Dart World Broken Glass Flight> (+12 more)

What are recommended scuba diving weights for experienced divers <Sea Pearls Vinyl Coated Lace Thru Weight>
that would fit well with my Gorilla PRO XL waterproof bag?

STARK-MAG

Search publications by Hao-Sheng Zeng on non-Markovian dynamics. <Distribution of non-Markovian intervals...>
<Comparison between non-Markovian...>

What are some nanofluid heat transfer research papers published by <A Numerical Study on Convection Around A
scholars from Philadelphia University? Suqare Cylinder using AL2O3-H2O Nanofluid>

STARK-PRIME

Could you provide a list of investigational drugs that <(S)-3-phenyllactic Acid>,
interact with genes or proteins active in the epididymal region? <Anisomycin>, <Puromycin>

Search for diseases without known treatments and induce <Intrahepatic Cholestasis>
pruritus in pregnant women, potentially associated with Autoimmune.
Please find pathways involving the POLR3D gene within nucleoplasm. <RNA Polymerase III Chain Elongation>

Which gene or protein associated with lichen amyloidosis can <OSMR>, <IL31RA>
bind interleukin-31 to activate the PI3K/AKT and MAPK pathways?

Table 1: STARK QA examples which involve semi-structured (relational and textual) information.

1 Introduction
Natural-language queries are the primary form of how humans acquire information [17, 21, 27].
For example, users on e-commerce sites wish to express complex information needs by combining
free-form elements and constraints, such as “Can you help me find a push-along tricycle from
Radio Flyer that’s both fun and safe for my kid?”in product search. Medical scientists may ask
questions like “What disease is associated with the PNPLA8 gene and presents with hypotonia as a
symptom?”. Answering such queries is crucial for enhancing user experience, supporting informed
decision-making, and preventing hallucination.

To answer such queries, the underlying knowledge can be represented in semi-structured knowledge
bases (SKBs) [35, 40, 50], which integrate unstructured data, such as natural language descriptions
and expressions (e.g., description of the tricycle), with structured data, like entity interactions on
knowledge graphs (e.g., a tricycle “brand” is Radio Flyer). This allows the SKBs to represent
comprehensive knowledge in specific applications, making them indispensable in domains such as
e-commerce [15], social media [31], and precision medicine [8, 18, 23].
Limitations of prior works. Prior works focused on either purely textual queries on unstructured
knowledge [12, 14, 20, 24, 25, 29, 53, 55] or structured SQL [59, 59, 60, 60] or knowledge graph
queries [2, 4, 7, 13, 16, 45–47, 57, 58], which are limited in the span of knowledge and inadequate
to study the complexities of retrieval on SKBs. Recently, large language models (LLMs) have
demonstrated significant potential on information retrieval tasks [14, 30, 43, 61]. Nevertheless, it
remains an open question of how effectively LLMs can be applied to the challenging retrieval tasks
on SKBs. Moreover, the existing works mainly focus mainly on general knowledge, e.g., from
Wikipedia. However, the knowledge may commonly come from private sources, requiring retrieval
systems to operate on private SKBs. Therefore, there is a gap of how current LLM retrieval systems
handle the complex textual and relational requirements in queries that can involve private knowledge.
Present work. To address this gap, we present a large-scale Semi-structure retrieval benchmark
on Textual and Relational Knowledge Bases (STARK) (Figure 1). The key technical challenge
that we solve is how to accurately simulate user queries on SKBs. This difficulty arises from the
interdependence of textual and relational information, which leads to challenges in precisely construct
the ground-truth answers from millions of candidates. Additionally, ensuring that queries are useful
and resembles real-world scenarios adds further complexity to the benchmarking process.

We develop a novel pipeline that simulates user queries and constructs precise ground truth answers
using three SKBs built from extensive texts and millions of entity relations from public sources. We
validate the quality of queries in our benchmark through detailed analysis and human evaluation,
focusing on their naturalness, diversity, and practicality. Furthermore, we incorporate 274 human-
generated queries to compare with synthesized queries and enrich the testing scenarios. With STARK,
we delve deeper into retrieval tasks on SKBs, evaluate the capability of current retrieval systems, and
provide insights for future advancement. Key features of STARK are:
• Natural-sounding queries on SKBs (Table 1): Queries in our benchmark incorporate rich

relational information and complex textual properties. Additionally, these queries closely mirror
the types of questions users would naturally ask in real-life scenarios, e.g., with flexible query
formats and possibly with additional contexts.
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Figure 2: Demonstration of Semi-structured Knowledge Bases, where each knowledge base combines
both textual and relational information in a complex way, making the retrieval tasks challenging.

• Context-specific reasoning: The queries entail reasoning capabilities specific to the context. This
includes the ability to infer customer interests, understand specialized field descriptions, and deduce
relationships involving multiple subjects mentioned within the query. For example, the context “I
had a dozen 2.5-inch Brybelly air hockey pucks, so I’m trying to find matching strikers.” entails the
user’s interest in looking for complementary products. Such reasoning capabilities are crucial for
accurately interpreting and responding to the nuanced requirements of each query.

• Diverse domains: Our benchmark spans three knowledge bases* for applications including product
recommendation, academic paper search, and precision medicine inquiries. STARK provides a
comprehensive evaluation of retrieval systems across diverse contexts and domains.

We conduct extensive experiments on LLM retrieval systems, highlighting challenges in handling
textual and relational data and latency on large-scale SKBs with millions of entities or relations.
Finally, we offer insights into building more capable retrieval systems to handle real-world complexity.

2 Benchmarking Retrieval Tasks over Textual and Relational Knowledge

2.1 Problem Definition

We are given a Semi-Structured Knowledge Base (SKB), which consists of a knowledge graph
G and a collection of free text documents D. Formally, let G = (V,E) be the knowledge graph,
where V is the set of nodes and E ⊆ V × V is the set of edges representing relationships between
nodes. D =

⋃
i∈V Di be the collection of free-form text documents associated with the nodes,

where Di is the set of documents associated with node i. For example, the product knowledge graph
in e-commerce can capture relationships between products and brands/colors/categories, and the
corresponding text documents include product descriptions, reviews, etc.

We define the tasks on our benchmark datasets as follows: Given the knowledge graph G = (V,E), a
collection of free text documents D, and a query Q, the output is a set of nodes A ⊆ V such that for
each node i ∈ A, it satisfies the relational requirements imposed by the structure of G as specified in
Q, and the associated documents Di satisfy the textual requirements specified in Q.

2.2 Semi-structured Knowledge Bases (SKBs)

As shown Figure 2, we construct three large-scale SKBs with the relational and textual information
with each entity. See Table 2 for the basic data statistics and Appendix A.1 for details.
*Explore the SKBs at https://stark.stanford.edu/skb_explorer.html
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Table 2: Data statistics of our constructed semi-structured knowledge bases
#entity #relation avg. #entities #relations #tokenstypes types degree

STARK-AMAZON 4 5 18.2 1,035,542 9,443,802 592,067,882
STARK-MAG 4 4 43.5 1,872,968 39,802,116 212,602,571
STARK-PRIME 10 18 125.2 129,375 8,100,498 31,844,769

Amazon Semi-structured Knowledge Base. The SKB features four entity types: product,
brand, color, and category, and five relation types: also_bought, also_viewed be-
tween product entities, and has_brand/color/category associated with the products. We
derive the textual information of product nodes by combining Amazon Product Reviews [15] with
Amazon Q&A Data [32]. This provides a rich amount of texts, including product descriptions and
customer reviews. For other entities, we extract their names or titles as the textual attributes. Amazon
SKB features an extensive textual data largely contributed from customer reviews and Q&A.
MAG Semi-structured Knowledge Base. This SKB includes node entities of paper, author,
institute, and field_of_study. We derive its relational structure by extracting a subgraph
from obgn-mag [19], which contains shared paper nodes with obgn-papers100M [19] and all non-
paper nodes. We filter out non-English language papers as we only consider single-lingual queries.
The paper documents include their titles and abstracts. Additionally, we integrating details from
the Microsoft Academic Graph database (version 2019-03-22) [44, 50], providing extra textual
information like paper venue, author and institution names. This SKB demonstrates a large number
of relations associate with paper nodes, especially on citation and authorship relations.
Prime Semi-structured Knowledge Base. We leverage the exisiting knowledge graph PrimeKG [8]
which contains ten entity types including disease, gene/protein, and eighteen relation
types, such as associated_with, indication. Compared to the Amazon and MAG SKBs,
Prime SKB is denser and features a greater variety of relation types. While PrimeKG provides
text information on disease and drug entities, we integrate the data from multiple databases
for gene/protein and pathway entities such as genomic position, gene activity summary and
pathway orthologous event.

2.3 Retrieval Tasks on Semi-structured Knowledge Bases

Our retrieval benchmark (Table 3) consists of three novel retrieval-based question-answering datasets,
each comprising synthesized train/val/test sets with 9k to 14k queries in total and a high-quality
human-generate query set. The queries synthesize relational and textual knowledge, mirroring
real-world queries in terms of natural-sounding property and flexible formats.
STARK-AMAZON. The task aims at product recommendation, with a notable 68% of the synthesized
queries yielding more than one ground truth answer. The dataset prioritizes customer-oriented criteria,
highlighting textual elements such as product quality, functionality, and style. Moreover, it incorporate
single-hop relational aspects (Appendix A.2) into the queries, including brand, category, and product
connections (e.g., complementary or substitute items). The queries are framed in conversation-like
formats, enriching the context and enhancing the dataset’s relevance to real-world scenarios.
STARK-MAG. Beyond the single-hop relational requirements in STARK-AMAZON, STARK-
MAG emphasizes the fusion between the textual requirements with multi-hop queries for precise
academic paper search. For example, “Are there any papers from King’s College London” highlights
the metapath (institution → author → paper) on the relational structure. We designed
three single-hop and four multi-hop relational query templates (Appendix A.3). The textual aspects
focus on the paper’s topic, methodology, and contribution etc.
STARK-PRIME. The task is to answer complex biomedicine inquiries. For synthesized queries, we
developed 28 multi-hop query templates (Appendix A.4) to cover various relation types and ensure
their practical relevance. For example, the template “What is the drug that targets genes or proteins
in <anatomy>?” aids precision medicine by identifying treatments targeted to specific anatomical
areas. For drug, disease, gene/protein, and pathway entities, the queries are a hybrid
of relational and textual requirements. For entities such as effect/phenotype, the queries rely
solely on relational data due to limited textual information. We exhibit three distinct user roles –
medical scientist, doctor, and patient – for generating queries about drug and disease, which diversify
the language to comprehensively evaluate the retrieval systems.

4



Table 3: Statistics on the STARK benchmark datasets.

#queries #queries w/ average train / val / testmultiple answers #answers

Synthesized
(Sec 2.4, 2.5)

STARK-AMAZON 9,100 7,082 17.99 0.65 / 0.17 / 0.18
STARK-MAG 13,323 6,872 2.78 0.60 / 0.20 / 0.20
STARK-PRIME 11,204 4,188 2.56 0.55 / 0.20 / 0.25

Human-generated
(Sec 2.6)

STARK-AMAZON 81 64 19.50
For testing onlySTARK-MAG 84 34 3.26

STARK-PRIME 98 41 2.77
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Figure 3: The construct pipeline to generate our semi-structured retrieval datasets.

2.4 Benchmark Construction: Synthesized Queries

In Figure 3, we present a novel pipeline that synthesizes the SKB queries and automatically generates
the ground truth answers. The key idea is to entangle relational and textual information during
synthesis and disentangle them during answer filtering. It involves four steps as follows:

• 1) Sample Relational Requirements: For each query, we sample a practical relation template
constructed with expert/domain knowledge, e.g., “(a product) belongs to <brand>”
and ground it with sampled entities (i.e., a specific brand), e.g., “belongs to Radio Flyer”. This
relational requirement yields a set of candidate entities, i.e., products belonging to Radio Flyer.

• 2) Extracting Textual Properties: We randomly sample a candidate entity from the first step,
referred to as the gold answer, from which LLMs extract properties that align with the interests
of specific roles (e.g., customers, researchers, or doctors) in its textual document. In Figure 3, we
extract multiple properties about the functionality and user experience from a Radio Flyer product.

• 3) Combining Textual and Relational Information: We use two LLMs to synthesize queries
from textual properties and relational requirements, enhancing diversity and reducing bias arise
from relying on a single LLM. The first LLM focuses on generating natural, role-specific, and
style-consistent (e.g., ArXiv searches) queries. The second LLM enriches the context and rephrases
queries, which poses the need for advanced reasoning to comprehend them under complex contexts.

• 4) Filtering Additional Answers: Finally, we employ multiple LLMs to verify if the candidates
from the first step meet the extracted textual properties. Only candidates passing all LLM verifica-
tions are included in the final ground truth set. To assess the precision of this filtering mechanism,
we compute the average ratios for the gold answers to be verified, which are 86.6%, 98.9%, and
92.3% on the three datasets, highlighting our efficacy in yielding high-quality ground truth answers.

This dataset construction pipeline is automatic, efficient, and broadly applicable to the SKBs in our
formulation. We include all of the prompts and the LLMs versions in the above steps in Appendix E.

2.5 Synthesized Data Distribution Analysis and Human Evaluation

• Query and Answer Length. Query length (in words) reflects the amount of user-provided context
information, while the number of answers indicates query ambiguity/concreteness. Figure 4 shows
similar query length distributions across the datasets, with most queries around 16 words. Longer
queries (up to 50 words) often mention other entities or provide detailed context. Notably, STARK-
AMAZON has a significant long-tail pattern, with about 22% of the answers have more than 30
entities, reflecting diverse e-commerce recommendations and ambiguous user queries.
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Table 4: Query diversity measurement on STARK.
See Appendix B for the metric definition.

Shannon Entropy Type-Token Ratio

STARK-AMAZON 10.39 0.179
STARK-MAG 10.25 0.180
STARK-PRIME 9.63 0.143

Reference article 10.44 0.261

Figure 5: Average relative composition of rela-
tional vs. textual information.

Textual Information Relational Information

STARK-AMAZON
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• Query Diversity. A diverse set of queries poses challenges for broader applicability to meet
varying user demands. We measure query diversity using Shannon Entropy for word distribution
and Type-Token Ratio (TTR) for unique words. Higher values indicate greater lexical diversity.
Table 4 shows high Shannon Entropy and steady TTR across all datasets. For reference, we compute
these metrics for the Wikipedia page of Barack Obama†.

• Proportionality of Relational vs.Textual Information. Our benchmark queries feature the com-
position of textual and relational information. To understand the distribution of information types,
we calculate the average ratio of relational to textual requirements by word count in the queries
across each dataset. Note that the ratios do not directly reflect their importance in determining final
answers. Figure 5 shows varying ratios, which highlights different emphases on textual versus
relational requirements and challenges retrieval systems to adapt to different distributions.

Human evaluation. We qualitatively assess sampled queries from our benchmark for naturalness
(resembling natural conversation), diversity (covering various question structures and complexities),
and practicality (relevance to real-world situations) with 63 participants. Evaluation results, converted
from a 5-point Likert-like scale to a positive/tie/negative scale, show positive and non-negative rates
in Table 10 (Appendix D.1). On average, 94.1%, 85.3%, and 89.4% of participants rated the queries
neutral or above in naturalness, diversity, and practicality, respectively. These results validate the
quality of our benchmark and its potential for diverse and realistic retrieval tasks.

2.6 Benchmark Construction: Human-Generated Queries

To enhance our benchmark’s practical relevance, we engaged 31 participants (22 native English
speakers) to generate 263 queries across three SKBs following the detailed instructions (Appendix C)
along with our interactive platform. We manually verified and filtered the ground truth answers to
ensure the answer correctness. Table 3 shows the statistics of the human-generated datasets. Finally,
we analyzed the commonalities and differences between synthesized and human-generated queries.
Commonality. The number of answers of synthesized and human-generated queries are comparable,
indicating a similar level of query ambiguity. Moreover, we observe that most styles of human-
generated queries are covered in the synthesized dataset. For example, Table 5 highlights their
similarities in short product queries, specific author/field inquiries, and complex contextual queries.
Difference. We find that human-generated queries often exhibit more unique expressions compared
to synthesized ones, such as "Give me a fat cross and road tire that works with my Diamondback
bicycle tube" and "this sneaky bone-killing culprit". This discovery suggests a future direction for
our benchmark to incorporate modern and dynamic language nuances.

†https://en.wikipedia.org/wiki/Barack_Obama
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Table 5: Comparison of Human-generated and Synthesized Queries
Query Type Human-generated Query Synthesized Query

Short and Direct Red sweatshirt for proud Montreal Cana-
diens

Suggestions for a Suunto bike mount?

Specific
Author & Field

Find me papers that discuss improving
condenser performance authored by
Stojan Hrnjak

Show me papers by Seung-Hyeok Kye that
discuss separability criteria.

Complex Context

Help me. I am trying to diagnose a patient
with persistent joint pain, and I suspect a
condition where the bone is dying due to
compromised blood supply, often linked
to factors like steroid use, ... what’s the
name of this sneaky bone-killing culprit?

I’m experiencing joint pain accompanied
by swelling... I’m concerned about med-
ications aggravating my fuzzy eyesight
and potential blood clotting complica-
tions. Could you recommend treatments
while minimizing these side effects?

3 Experiments

3.1 Baseline Retrieval Models and Evaluation Metrics

We extensively evaluate five classes of retrieval models described below.

• Sparse Retriever: BM25 [39] is a traditional yet powerful sparse retrieval method based on term
frequency-inverse document frequency (TF-IDF). It computes relevance scores by considering the
frequency of query terms in documents, adjusted for term rarity and document length.

• Small Dense Retrievers: DPR [26], ANCE [52], and QAGNN [56]. These compact models
generate dense embeddings for both queries and documents, computing retrieval scores based on
embedding similarities. They serve as baselines for comparison with LLM-based dense retrievers.

• LLM-based Dense Retrievers: text-embedding-ada-002 (abbrev. ada-002) [36], voyage-
large-2-instruct (abbrev. voyage-l2-instruct) [1], LLM2Vec-Meta-Llama-3-8B-Instruct-mntp
(abbrev. LLM2Vec) [3], and GritLM-7b [33]. These models leverage LLMs to generate dense
embeddings that are more contextually expressive.

• Multivector Retrievers: multi-ada-002 [36] and ColBERTv2 [41]. Beyond ada-002 which
represents a document as an embedding, multi-ada-002 splits each document into overlapping
chunks and embeds them using the same encoder as the query. Similarity scores between the query
and chunks are aggregated using the average of the top-3 similarities, which we found to perform
best. ColBERTv2 represents each document as multiple token-level embeddings for fine-grained
matching, capturing richer semantic information.

• LLM Rerankers: Claude3 and GPT-4 rerankers [11, 62]. These models improve the precision of
top-k ada-002 results by reranking them using large language models. We employ GPT-4-turbo
(gpt-4-1106-preview) and Claude3 (claude-3-opus), setting k = 20 for synthesized
queries and k = 10 for human-generated queries. Given a query, the LLMs assign a satisfaction
score from 0 to 1 to each candidate entity based on textual and relational information. Due to high
computational costs, we evaluate these rerankers on a random 10% sample of test queries.

The performance of these models are measured using standard retrieval metrics below.

• Hit@k assesses whether the correct item is among the top-k results from the model. We used
k = 1 and k = 5 for evaluation. At k = 1, it evaluates the accuracy of the top recommendation; at
k = 5, it examines the model’s precision in a wider recommendation set.

• Recall@k measures the proportion of relevant items in the top-k results. For synthesized queries,
k = 20 is used, as the answer length of all of the queries in our benchmarks are equal or smaller
then 20. This metric offers insight into the model’s ability to identify all relevant items, particularly
in scenarios where missing any could be critical.

• Mean Reciprocal Rank (MRR) is a statistic for evaluating the average effectiveness of a predictive
model. It calculates the reciprocal of the rank at which the first relevant item appears in the list of
predictions. This metric emphasizes the importance of the rank of the first correct answer, which is
crucial in many practical applications where the first correct answer is often the most impactful.
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Table 6: Testing results on STARK-Syn(thesized).
STARK-AMAZON STARK-MAG STARK-PRIME

Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR
Full Testing Dataset

BM25 44.94 67.42 53.77 55.30 25.85 45.25 45.69 34.91 12.75 27.92 31.25 19.84
DPR (roberta) 15.29 47.93 44.49 30.20 10.51 35.23 42.11 21.34 4.46 21.85 30.13 12.38

ANCE (roberta) 30.96 51.06 41.95 40.66 21.96 36.50 35.32 29.14 6.53 15.67 16.52 11.05
QAGNN (roberta) 26.56 50.01 52.05 37.75 12.88 39.01 46.97 29.12 8.85 21.35 29.63 14.73

ada-002 39.16 62.73 53.29 50.35 29.08 49.61 48.36 38.62 12.63 31.49 36.00 21.41
voyage-l2-instruct 40.93 64.37 54.28 51.60 30.06 50.58 50.49 39.66 10.85 30.23 37.83 19.99

LLM2Vec 21.74 41.65 33.22 31.47 18.01 34.85 35.46 26.10 10.10 22.49 26.34 16.12
GritLM-7b 42.08 66.87 56.52 53.46 37.90 56.74 46.40 47.25 15.57 33.42 39.09 24.11

multi-ada-002 40.07 64.98 55.12 51.55 25.92 50.43 50.80 36.94 15.10 33.56 38.05 23.49
ColBERTv2 46.10 66.02 53.44 55.51 31.18 46.42 43.94 38.39 11.75 23.85 25.04 17.39

Random 10% Sample
BM25 42.68 67.07 54.48 54.02 27.81 45.48 44.59 35.97 13.93 31.07 32.84 21.68

DPR (roberta) 16.46 50.00 42.15 30.20 11.65 36.84 42.30 21.82 5.00 23.57 30.50 13.50
ANCE (roberta) 30.09 49.27 41.91 39.30 22.89 37.26 44.16 30.00 6.78 16.15 17.07 11.42

QAGNN (roberta) 25.00 48.17 51.65 36.87 12.03 37.97 47.98 28.70 7.14 17.14 32.95 16.27
ada-002 39.02 64.02 49.30 50.32 28.20 52.63 49.25 38.55 15.36 31.07 37.88 23.50

voyage-l2-instruct 43.29 67.68 56.04 54.20 34.59 50.75 50.75 42.90 12.14 31.42 37.34 21.23
LLM2Vec 18.90 37.80 34.73 28.76 19.17 33.46 29.85 26.06 9.29 20.7 25.54 15.00

GritLM-7b 43.29 71.34 56.14 55.07 38.35 58.64 46.38 48.25 16.79 34.29 41.11 24.99
multi-ada-002 40.85 62.80 52.47 51.54 25.56 50.37 53.03 36.82 15.36 32.86 40.99 23.70

ColBERTv2 44.31 65.24 51.00 55.07 31.58 47.36 45.72 38.98 15.00 26.07 27.78 19.98
Claude3 Reranker 45.49 71.13 53.77 55.91 36.54 53.17 48.36 44.15 17.79 36.90 35.57 26.27

GPT4 Reranker 44.79 71.17 55.35 55.69 40.90 58.18 48.60 49.00 18.28 37.28 34.05 26.55

Table 7: Testing results on STARK-Human(-Generated).
STARK-AMAZON STARK-MAG STARK-PRIME

Method Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR Hit@1 Hit@5 R@20 MRR

BM25 27.16 51.85 29.23 18.79 32.14 41.67 32.46 37.42 22.45 41.84 42.32 30.37
DPR (roberta) 16.05 39.51 15.23 27.21 4.72 9.52 25.00 7.90 2.04 9.18 10.69 7.05

ANCE (roberta) 25.93 54.32 23.69 37.12 25.00 30.95 27.24 27.98 7.14 13.27 11.72 10.07
QAGNN (roberta) 22.22 49.38 21.54 31.33 20.24 26.19 28.76 25.53 6.12 13.27 17.62 9.39

ada-002 39.50 64.19 35.46 52.65 28.57 41.67 35.95 35.81 17.35 34.69 41.09 26.35
voyage-l2-instruct 35.80 62.96 33.01 47.84 22.62 36.90 32.44 29.68 16.33 32.65 39.01 24.33

LLM2Vec 29.63 46.91 21.21 38.61 16.67 28.57 21.74 21.59 9.18 21.43 26.77 15.24
GritLM-7b 40.74 71.60 36.30 53.21 34.52 44.04 34.57 38.72 25.51 41.84 48.10 34.28

multi-ada-002 46.91 72.84 40.22 58.74 23.81 41.67 39.85 31.43 24.49 39.80 47.21 32.98
ColBERTv2 33.33 55.56 29.03 43.77 33.33 36.90 30.50 35.97 15.31 26.53 25.56 19.67

Claude3 Reranker 53.09 74.07 35.46 62.11 38.10 45.24 35.95 42.00 28.57 46.94 41.61 36.32
GPT4 Reranker 50.62 75.31 35.46 61.06 36.90 46.43 35.95 40.65 28.57 44.90 41.61 34.82

3.2 Results and Analysis

Results on synthesized queries. Table 6 presents the results on both the full synthesized test sets
and random 10% samples from these sets. In both cases, BM25, despite its simplicity, proves to
be a strong baseline, outperforming the dense retrieval models such as ANCE. We observe that
finetuned DPR and QAGNN, exhibit insufficient performance. This underperformance is likely due
to their relatively small model sizes and the risk of overfitting during training. These issues present
challenges in effectively training the models on SKBs, where the entity documents can be hard to
differentiate without capturing detailed information.

Among the larger models, ada-002 benefits from superior pretrained embeddings and significantly
outperforms LLM2Vec by a large margin. GritLM-7b delivers excellent performance, surpassing
the ada-002 model overall. In contrast, LLM2Vec underperforms due to its limited context length,
which is insufficient for encoding the lengthy documents in the SKBs. For multivector retrievers, we
found that multi-ada-002 generally outperforms ada-002, indicating that using multiple vectors per
document enhances retrieval effectiveness. Similarly, fine-grained representation allows ColBERTv2
to capture subtle semantic nuances between queries and documents, leading to largely improved
retrieval accuracy.

However, both GritLM-7b and ColBERTv2 generally underperform compared to the rerankers
on the random split, especially in terms of Hit@k metrics. This suggests that while these dense
retriever models effectively capture semantic information, they may not fully grasp the nuanced
relevance judgments required for top-tier retrieval performance. The rerankers, utilizing powerful
LLMs like GPT-4 (gpt-4-1106-preview) and Claude3 (claude-3-opus), excel by re-evaluating the
top candidates and assigning satisfaction scores based on a deeper understanding of the query and
document content. This process allows them to better discern subtle contextual cues and relational
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Table 8: Latency (s) of the retrieval systems on STARK.
DPR QAGNN ada-002 multi-ada-002 Claude3 Reranker GPT4 Reranker

STARK-AMAZON 2.34 2.32 5.71 4.87 27.24 24.76
STARK-MAG 0.94 1.35 2.25 3.14 22.60 23.43
STARK-PRIME 0.92 1.29 0.54 0.90 29.14 26.97

Average 1.40 1.65 2.83 2.97 26.33 25.05

A B C D

Title: Nonlinear piezoelectricity in 
… Modeling and experimental 
identification

Abstract: … model for … nonlinear 
piezoelectric … linear piezoelectric 
modeling … nonlinear coefficients

Institute: University of Michigan

Cites paper: 
1. … nonlinear piezoelectric 
vibrational … 2. … piezoelectric  
energy 4. … piezoelectric … 
(15 cited papers have related key 
words)

Title: Nonlinear optimization of 
acoustic energy harvesting using 
piezoelectric devices

Abstract: … piezoelectric inserts 
… nonlinear processing … 
piezoelectric actuators …

Institute: Institut national des 
sciences Appliquées de Lyon

Cites paper: 7. … piezoelectric 
conversion … 9. … piezoelectric 
vibration … 
(2 cited papers have related key 
words)

Title: Modelling of hysteretic 
behavior of piezoceramic materials 
under electrical loading

Abstract: … piezoceramic materials 
… deformation of piezoceramics …

Institute: École nationale 
d'ingénieurs du Val de Loire

Cites paper: 
1. Ultrasonic characterization of 
electrochemically etched porous 
silicon 
(0 cited paper has related key 
words)

Title: Modelling nonlinearity in 
piezoceramic transducers: …

Abstract: Quadratic nonlinear 
materials … weak nonlinearity … 
nonlinear response … nonlinear 
equivalent electrical circuits

Institute: École nationale 
d'ingénieurs du Val de Loire

Cites paper: 1. … fouling in a planar 
setup … 2. Second order ultrasonic 
guided wave mutual interactions … 
(0 cited paper has related key words)

Are there any Physics research 
papers from École nationale 

d'ingénieurs du Val de Loire that 
discuss nonlinear modeling of 

piezoelectric elements?

Ground truth:  [A , B] 

:ada-002 Claude3 Reranker 

R
an

k

R
an

k

Figure 6: A case study on STARK-MAG shows that ada-002 overranks non-ground truth papers C
and D due to repeated keywords in the relational information “cites paper”. After reranking with
Claude3, it correctly prioritizes ground truth papers A and B with accurate reasoning and analysis.

information that dense retrievers might overlook. Consequently, LLM rerankers enhance retrieval
precision at the top ranks.

Finally, regardless of the higher computational costs of the rerankers, their performance remains
suboptimal. For instance, the Hit@1 scores for the GPT-4 reranker are only about 18% on STARK-
PRIMEand 41% on STARK-MAG, indicating that the top-ranked answers are frequently incorrect.
Similarly, the Recall@20 metrics are below 60% across all datasets, with the GPT-4 reranker
achieving Recall@20 scores of 55% on STARK-AMAZON, 49% on STARK-MAG, and 34% on
STARK-PRIME. This suggests that the ranking results miss a significant portion of relevant answers.
The MRR scores are also relatively low, especially for STARK-PRIME, where the GPT-4 reranker
attains an MRR of only around 27%.

The insufficient performances may be attributed to the complexity and diversity of queries in SKBs,
where nuanced understanding and detailed contextual information are crucial. These findings highlight
significant room for improvement in the ranking process.
Results on human-generated dataset. Table 7 presents the testing results on the human-generated
datasets. For example, the rerankers consistently outperform others, showing their reasoning and
context understanding ability. Compared to the synthesized datasets, the performance on human-
generated queries is generally higher for most models, but the overall trends remain consistent. This
indicates that synthesized datasets may be more challenging, highlighting the complexity of the tasks
on our synthesized queries.

Another interesting observation is that the performance of the rerankers is particularly strong on
human-generated queries, which may contain more nuanced language and diverse expressions. This
suggests that rerankers excel in interpreting and leveraging the richness of human language to improve
retrieval accuracy.
Retrieval latency. Latency is crucial for practical retrieval systems, as users expect quick responses.
As shown in Table 8, we evaluated the latency of various models using a single NVIDIA A100-SXM4-
80GB GPU. We observed that the DPR and QAGNN models exhibit lower average latency, making
them suitable for time-sensitive applications. In contrast, the ada-002 and multi-ada-002 models
have moderate latency due to multiple API calls. However, when combined with LLM rerankers, the
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latency increases significantly due to the computational demands of these large models. Therefore, it
is important to balance accuracy and latency, especially for complex queries that require advanced
reasoning capabilities.
Case study. To highlight the importance of reasoning ability for achieving good performance on
our benchmark, we present a case study in Figure 6, comparing the ada-002 model with the Claude3
Reranker. In this example, the query requests papers from a specific institution on a particular
topic. The ada-002 model fails to address the relational aspect of the query because it embeds
entire documents without detailed analysis. This leads to high relevance scores for irrelevant papers
that frequently mention keywords like "nonlinear modeling" and "piezoelectric elements" but do
not satisfy the relational requirement. In contrast, the LLM reranker significantly improves the
results by reasoning about the relationship between the query and each paper, resulting in scores that
more accurately reflect relevance. This underscores the need for reasoning ability to grasp query
complexities.

4 Related Work

Unstructured QA Datasets. This research domain consists of methods for retrieving answers from
unstructured text, either from a single document [38] or multiple documents [12, 24, 49, 51, 54]. For
instance, SQuAD [38] is designed for answer extraction within a specific document, while approaches
like HotpotQA [54] and TriviaQA [24] extend to multi-document contexts. Additionally, some
studies utilize search engine outputs as a basis or supplementary data for question answering [28, 34].
However, unstructured QA datasets often lack the depth of relational reasoning commonly required
in answering complex user queries. In contrast, STARK contains queries demanding multi-hop
relational reasoning to challenge model’s ability of handling structured information.
Structured QA Datasets. These datasets challenge models to derive answers from structured sources
such as knowledge graphs [5–7, 13, 16, 47, 58] or tabular data [59, 60]. ComplexWebQuestions [47]
and GraphQA [16] propose challenges in interpreting complex queries and textualizing graph struc-
tures in KBQA, respectively. For tabular data, WikiSQL [60] focuses on translating queries to SQL
for single-table databases, whereas Spider [59] tackles multi-table scenarios. Despite the emphasis
on relational data, the restriction to predefined entities and relationships limits the scope of queries.
STARK integrates textual content within structured frameworks to enhance the depth and breadth of
information retrieval, promoting richer and more nuanced understanding from extensive textual data.
Semi-Structured QA Datasets. This category merges tabular and textual data, presenting challenges
in semi-structured data comprehension. WikiTableQuestions [37] stresses the integration of table
structures with textual elements. TabFact [9], HybridQA [10], and TabMCQ [22] extend this by
combining validation of textual statements with tabular reasoning. However, datasets leveraging
tables as structured frameworks often lack in depicting the rich relational dynamics among entities.
Moreover, prior efforts to link textual and tabular information via external sources have led to
cumbersome data constructs. Addressing these challenges, STARK enhances integration, allowing
for flexible navigation and advanced retrieval within complex semi-structured knowledge bases, and
facilitating more effective relational reasoning and text handling.

5 Conclusion and Future Work
We introduce STARK, the first benchmark to thoroughly evaluate LLM-driven retrieval systems for
semi-structured knowledge bases (SKBs). Featuring diverse, natural-sounding queries that require
context-specific reasoning across diverse domains, STARK sets a new standard for assessing real-
world retrieval systems. We contribute three large-scale retrieval datasets with human-generated
queries and an automated pipeline to simulate realistic user queries. Our experiments on STARK
highlight significant challenges for current models in effectively handling textual and relational
information. STARK paves the way for future research to advance complex, multimodal retrieval
systems, focusing on reducing retrieval latency and enhancing reasoning abiliites.

Our current SKBs are limited to textual and relational information. Future work should incorporate
additional modalities such as images, videos, and speech to provide a more comprehensive information
retrieval system. Despite our anonymization efforts, we acknowledge that privacy remains a potential
concern when extending this work to other domains with real user data, which should be protected to
ensure compliance with privacy regulations.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Please see the experiment setup in Section 3.1, where we explained all
of the choices made. We also make the data splits public.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We provide the GPU device
information and report the latency cost.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] We mentioned them in our webpage.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] The resources are from exisiting public data that is open to
access.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] The only data with potential personally
identifiable information and offensive content is Amazon semi-structured dataset,
which is already made anonymized by the public resources.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] . We invited volunteered participants who
are acknowledged.
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A Benchmark details

A.1 Semi-structured Knowledge Bases (SKBs)

We present the public sources that we used to construct the SKBs in the table below. We have adhered
to the licenses of each public resource.

Table 9: Sources of relational structure and textual information of the benchmarks
relational structure textual information

STARK-AMAZON Amazon Product Reviews Amazon Product Reviews
Amazon Question and Answer Data

STARK-MAG ogbn-mag ogbn-papers100M, Microsoft Academic Graph

STARK-PRIME PrimeKG disease: Orphanet; drug: DrugBank; pathway: Reactome;
gene: Ensembl, NCBI Entrez, Uniprot, UCSC, CPDB

We build an interactive platform to inspect the data of all three SKBs at https://stark.
stanford.edu/skb_explorer.html. We introduce more detailed data statistics below.
Amazon SKB. In total, it comprises around 1.0M entities (product entities: 0.9M, brand entities:
0.1M, category entities: 1.4k, color entities: 1.7k) and 9.4M relations (also_bought: 2.8M,
also_viewed: 1.9M, has_brand: 1.7M, has_category: 2.3M, has_color: 0.6M).
MAG SKB. This SKB contains around 1.9M entities under four entity types (author: 1.1M,
paper: 0.7M, institution: 8.7K, field_of_study: 59.5k) and 39.8M relations under four
relation types (author_writes_paper: 13.5M, paper_has_field_of_study: 14.5M,
paper_cites_paper: 9.7M, author_affiliated_with_institution: 2.0M).
Prime SKB. The entity count in our knowledge base is approximately 129.3K, with around 8.1M
relations. The numbers of entities in each type are listed below:

#disease: 17,080
#gene/protein: 27,671
#molecular_function: 11,169
#drug: 7,957
#pathway: 2,516
#anatomy: 14,035
#effect/phenotype: 15,311
#biological_process: 28,642
#cellular_component: 4,176
#exposure: 818

A.2 STARK-AMAZON

Relational query templates. These are the basic relational templates on STARK-AMAZON. Note
that the final relational template can be composed of multiple basic templates. For example, ‘(color
→ product ← brand)’ represents a relational template combined from two basic relational
templates.

metapath Query template

(brand → product) "Can you list the products made by <brand>?"
(product → product) "Which products are similar to <product>?"
(color → product) "Can you provide a list of products that are available in <color>?"

(category → product) "What products are available in the <category> category?"

A.3 STARK-MAG

Relational query templates. We constructed seven relational templates below:
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metapath multi-hop query template

(author → paper) "Can you list the papers authored by <author>?"
(paper → paper) "Which papers have been cited by the paper <pa-

per>?"
(field_of_study → paper) "Can you provide a list of papers in the field of

<field_of_study>?"
(institution → author → paper) "What papers have been published by researchers

from <institution>?"
(paper → author → paper) "What papers have been published by researchers

that are coauthors of <paper>?"
(paper → author → paper
← field_of_study ← paper) "Can you find papers that share a coauthor with

<paper> and are also in the same field of study?"
(institution → author →
paper ← field_of_study) "Are there any papers associated with <institu-

tion> and are in the field of <field_of_study>?"

For example, the metapath (field_of_study → paper) requires an initial
field_of_study entity to be filled in the corresponding query template. For multi-hop metapaths,
the last metapath (institution → author → paper ← field_of_study) requires
an institution entity and a field_of_study entity to initialize the query.

A.4 STARK-PRIME

Relational query templates. For synthesized queries, we listed 28 multi-hop templates designed by
experts to cover various relation types and ensure their practical relevance.

For instance, the query “What is the drug that targets the genes or proteins expressed in <anatomy>?”
serves applications in precision medicine and pharmacogenomics, aiding researchers and healthcare
professionals in identifying drugs that act on genes or proteins associated with specific anatomical
areas and enabling more targeted treatments.

{
(effect/phenotype → [phenotype absent] → disease ← [!indication] ← drug):

"Find diseases with zero indication drug and are associated with <effect/phenotype>",
(drug → [contraindication] → disease ← [associated with] ← gene/protein):

"Identify diseases associated with <gene/protein> and are contraindicated with <drug>",
(anatomy → [expression present] → gene/protein ← [expression absent] ← anatomy):

"What gene or protein is expressed in <anatomy1> while is absent in <anatomy2>?",
(anatomy → [expression absent] → gene/protein ← [expression absent] ← anatomy):

"What gene/protein is absent in both <anatomy1> and <anatomy2>?",
(drug → [carrier] → gene/protein ← [carrier] ← drug):

"Which target genes are shared carriers between <drug1> and <drug2>?",
(anatomy → [expression present] → gene/protein → [target] → drug):

"What is the drug that targets the genes or proteins which are expressed in <anatomy>?",
(drug → [side effect] → effect/phenotype → [side effect] → drug):

"What drug has common side effects as <drug>?",
(drug → [carrier] → gene/protein → [carrier] → drug):

"What is the drug that has common gene/protein carrier with <drug>?",
(anatomy → [expression present] → gene/protein → enzyme → drug):

"What is the drug that some genes or proteins act as an enzyme upon,
where the genes or proteins are expressed in <anatomy>?",

(cellular_component → [interacts with] → gene/protein → [carrier] → drug):
"What is the drug carried by genes or proteins that interact with <cellular_component>?",

(molecular_function → [interacts with] → gene/protein → [target] → drug):
"What drug targets the genes or proteins that interact with <molecular_function>?",

(effect/phenotype → [side effect] → drug → [synergistic interaction] → drug):
"What drug has a synergistic interaction with the drug that has <effect/phenotype>
as a side effect?",

(disease → [indication] → drug → [contraindication] → disease):
"What disease is a contraindication for the drugs indicated for <disease>?",

(disease → [parent-child] → disease → [phenotype present] → effect/phenotype):
"What effect or phenotype is present in the sub type of <disease>?",

(gene/protein → [transporter] → drug → [side effect] → effect/phenotype):
"What effect or phenotype is a [side effect] of the drug transported by <gene/protein>?",

(drug → [transporter] → gene/protein → [interacts with] → exposure):
"What exposure may affect <drug>s efficacy by acting on its transporter genes?",
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(pathway → [interacts with] → gene/protein → [ppi] → gene/protein):
"What gene/protein interacts with the gene/protein that related to <pathway>?",

(drug → [synergistic interaction] → drug → [transporter] → gene/protein):
"What gene or protein transports the drugs that have a synergistic interaction with <drug>?",

(biological_process → [interacts with] → gene/protein → [interacts with] → biological_process):
"What biological process has the common interactino pattern with gene or proteins as
<biological_process>?",

(effect/phenotype → [associated with] → gene/protein → [interacts with] → biological_process):
"What biological process interacts with the gene/protein associated with <effect/phenotype>?",

(drug → [transporter] → gene/protein → [expression present] → anatomy):
"What anatomy expressesed by the gene/protein that affect the transporter of <drug>?",

(drug → [target] → gene/protein → [interacts with] → cellular_component):
"What cellular component interacts with genes or proteins targeted by <drug>?",

(biological_process → [interacts with] → gene/protein → [expression absent] → anatomy):
"What anatomy does not express the genes or proteins that interacts with <biological_process>?",

(effect/phenotype → [associated with] → gene/protein → [expression absent] → anatomy):
"What anatomy does not express the genes or proteins associated with <effect/phenotype>?",

(drug → [indication] → disease → [indication] → drug)
& (drug → [synergistic interaction] → drug):

"Find drugs that has a synergistic interaction with <drug> and both are indicated
for the same disease.",

(pathway → [interacts with] → gene/protein → [interacts with] → pathway)
& (pathway → [parent-child] → pathway):
"Find pathway that is related with <pathway> and both can [interacts with] the same gene/protein.",

(gene/protein → [associated with] → disease → [associated with] → gene/protein)
& (gene/protein → [ppi] → gene/protein):
"Find gene/protein that can interect with <gene/protein> and both are associated
with the same disease.",

(gene/protein → [associated with] → effect/phenotype → [associated with] → gene/protein)
& (gene/protein → [ppi] → gene/protein):
"Find gene/protein that can interect with <gene/protein> and both are associated
with the same effect/phenotype."

}

where [·] denotes the relation type.

B Mathematical Definitions of Shannon Entropy and Type-Token Ratio

Shannon Entropy. Shannon Entropy is a measure of the uncertainty in a set of possible outcomes,
quantifying the amount of information or disorder within a dataset. It is defined as follows:

H(X) = −
n∑

i=1

p(xi) log p(xi)

where X is the set of possible outcomes, p(xi) is the probability of occurrence of the outcome xi,
and n is the total number of unique outcomes. Higher entropy values indicate greater diversity in the
distribution of outcomes.[42]

Type-Token Ratio (TTR). The Type-Token Ratio is a measure of lexical diversity, calculated as
the ratio of the number of unique words (types) to the total number of words (tokens) in a text. It is
defined as follows:

TTR =
V

N

where V is the number of unique words and N is the total number of words in the text. Higher TTR
values indicate a higher proportion of unique words, reflecting greater lexical diversity. [48]

C Instructions for Generating Queries

For the process of generating queries by human, the participants were given a list of entity IDs that
we randomly sampled from the entire entity set. Then, they were asked to follow the following
instructions with the support of our built interactive platform at https://stark.stanford.
edu/skb_explorer.html.
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Task:

1) Given the provided entity ID, review the associated document and any connected entities
and multi-hop paths.

2) Find interesting aspects of the entities by examining both their relational structures and the
textual information available.

3) Write your queries from these aspects such that the entity can satisfy all of them.

Note:

1) Please do not leak the name of the entity in the query.

2) You can skip some entity IDs if you think the knowledge involved is hard to understand.

3) Feel free to be creative with content of your queries, you can also include additional context.
There is NO restriction on how you express the queries.

After collecting the queries, we filtering the ground truth answers manually by human validation.

D Experiments

D.1 More Experimental Results

Table 10: Positive/Non-negative rates (%) from human evaluation.
Naturalness Diversity Practicality

STARK-AMAZON 73.6 / 89.5 68.4 / 89.5 89.5 / 94.7
STARK-MAG 94.7 / 100 73.7 / 84.2 68.4 / 84.2
STARK-PRIME 67.8 / 92.8 71.4 / 82.1 71.4 / 89.3

Average 78.7 / 94.1 71.0 / 85.3 76.4 / 89.4

E Prompts and LLM versions for Query Synthesization

We summarize the LLM versions in Table 11. We chose these models based on a joint consideration
of their cost, how accurate they are, and whether they were the latest model during different phases of
the project. While we used different LLMs, we checked each step separately to make sure the good
quality in our benchmark datasets.

Table 11: Summary of LLM Versions for Query Synthesization
Step STARK-AMAZON STARK-MAG STARK-PRIME

Step 2: Extracting textual requirements gpt-3.5-turbo-16k claude-2.0 claude-2.0

Step 3: Combining relational and textual requirements claude-2.0, gpt-4-0125-preview

Step 4: Filtering additional answers claude-2.1, claude-2.0, claude-instant-1.2

E.1 Extracting textual requirements

Prompt for STARK-AMAZON: Textual requirement extraction

You are an intelligent assistant that extracts diverse positive
↪→ requirements and negative perspectives for an Amazon product.
↪→ I will give you the following information:

- product: <product name>
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- dimensions: <product dimensions>
- weight: <product weight>
- description: <product description>
- features: #1: <feature #1> ...
- reviews:
#1:
summary: <review summary>
text: <full review text>

#2: ...
- Q&A:
#1:
question: <product-related question>
answer: <answer to product-related question>

#2: ...
Based on the given product information, you need to (1) identify the

↪→ product’s generic category, (2) list all of the negative
↪→ perspectives and their sources, and (2) extract up to five
↪→ hard and five soft requirements relevant to customers’
↪→ interests along with their sources. (1) For example, the
↪→ product’s generic category can be "a chess book" or "a phone
↪→ case for iphone 6", do not use the product name directly. (2)
↪→ Negative perspectives are those that the product doesn’t
↪→ fulfill, which come from the negative reviews or Q&A. (3) For
↪→ the requirements, you should only focus on the product’s
↪→ advantages and positive perspects. Hard requirements mean that
↪→ product must fulfil, such as size and functionality. Soft
↪→ requirements are not as strictly defined but still desirable,
↪→ such as a product is easy-to-use. For (2) and (3), each source
↪→ is a composite of the key and index (if applicable) separated
↪→ by "-", such as "description", "Q&A-#1". You should provide
↪→ the response in a specific format as follows where "item"
↪→ refers to the product’s generic category, e.g., "a chess book".
↪→

Response format:
{
"item": <the product’s generic category> ,
"negative": [[<source of negative perspective>, <negative

↪→ perspective description>]],
"hard": [[<source of hard requirement>, <hard requirement

↪→ description>], ...],
"soft": [[<source of soft requirement>, <soft requirement

↪→ description>], ...]
}
Here is an example of the response:
{
"item": "a camping chair",
"negative": [["reviews-#3", "the chair is not sturdy enough"], ["Q&

↪→ A-#1", "wrong color"]],
"hard": [["description", "has a breathable mesh back"], ["

↪→ description", "the arm is adjustable"], ["dimensions", "more
↪→ than 35 inches long"], ["features-#7", "with a arm rest cup
↪→ holder"], ["Q&A-#4", "need to come with a carrying bag"]],

"soft": [["description", "suitable for outdoors"], ["features-#9",
↪→ "compact and save space"], ["reviews-#6", "light and portable
↪→ "]]

}
This is the information of the product that you need to write

↪→ response for:
<product_doc>
Response:
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Prompt for STARK-MAG: Textual requirement extraction

You are a helpful assistant that helps me extract one short
↪→ requirement (no more than 10 words) about a paper from the
↪→ paper information that researchers might be interested in. The
↪→ requirement can be about the paper content, publication date,
↪→ publication venue, etc. The requirement should be general and
↪→ not too specific. I will give you the paper information, and
↪→ you should return a short phrase about the paper, starting
↪→ with ’the paper...’. This is the paper information:

<doc_info>
Please only return the short and general requirement without

↪→ additional comments.

Prompt for STARK-PRIME: Textual requirement extraction

You are a helpful assistant that helps me extract <n_properties> from
↪→ a given <target> information that a <role> may be interested
↪→ in.

<role_instruction>
Each property should be no more than 10 words and start with "the <

↪→ target>". You should also include the source of each property
↪→ as indicated in the paragraph names of the information, e.g.,
↪→ "details.mayo_symptoms", "details.summary", etc. You should
↪→ return a list of properties and their sources following the
↪→ format:

[["<short_property1>", "<source1>"], ["<short_property2>", "<source2
↪→ >"], ...]

This is the information:
<doc_info>
Please provide only the list with <n_properties> in your response.

↪→ Response:

According to the role assigned to simulate the query content, the <role_instruction> as shown
below is filled in accordingly.

role role instruction

Doctor Doctors typically ask questions aimed at diagnosing and treating. Their
questions tend to be direct and practical, focusing on aspects involving side
effects, symptoms, and complications etc.

Medical scientist Medical scientists often ask questions that reflect the complexity and depth of
the scientific inquiry in the medical field. Their questions tend to be detailed
and specific, focusing on aspects such as: etiology and pathophysiology,
genetic factors, association with pathway, protein, or molecular function.

Patient Patients typically don’t know the professional medical terminology. Their
questions tend to be straightforward, focusing on practical concerns on the
symptons, effects, and inheritance etc., instead of the detailed mechanisms,
which may also include more context.

E.2 Combining relational and textual requirements
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Prompt for STARK-AMAZON: Fuse relational and textual requirements

You are an intelligent assistant that generates queries about an
↪→ Amazon item. I will provide you with the item name,
↪→ requirements, and its negative customer reviews. Your task is
↪→ to create a natural-sounding customer query that leads to the
↪→ item as the answer, using the requirements that are non-
↪→ conflicting with the negative reviews, and provide the indices
↪→ of the requirements used. For example:

Information:
- item: a soccer rebounder
- requirements:
#1: needs a heavy-duty 1-inch to 3-inch steel tube frame
#2: should be adjustable for practicing different skills
#3: should be durable
#4: usually be viewed together with <SKLZ Star-Kick Hands Free Solo

↪→ Soccer Trainer>
- negative reviews:
#1: it was broken after a few uses

Response:
{
"index": [1, 2, 4],
"query": "Please recommend a soccer rebounder with a steel frame,

↪→ about 2 inches thick, that can adapt to different skill
↪→ levels. We had a blast using the <SKLZ Star-Kick Hands Free
↪→ Solo Soccer Trainer> with my family, and I’m on the lookout
↪→ for something similar."

}

As the negative review indicates that the soccer rebouncer lacks
↪→ durability, your query should only incorporate requirements #1,
↪→ #2, and #4 while excluding #3. A requirement should only be
↪→ excluded if it conflicts with negative feedback or is unlikely
↪→ to align with customers’ interests. For relational
↪→ requirements about another <product>, do not directly use "
↪→ usually bought/viewed together with <product>" in the query.
↪→ You must deduce the item’s relationship with <product> into
↪→ substitute or complement, and create various user scenarios,
↪→ such as the item should be compatible or used with <product> (
↪→ for complements) or match in style with <product> (for
↪→ substitute), to make the queries sound natural. Except for <
↪→ product>, you should change the description but convey similar
↪→ meanings. The query structure is completely flexible. Here is
↪→ the information to generate the requirement indices and a
↪→ natural-sounding query:

Information:
<product_req_and_neg_comments>
Response:

Prompt for STARK-MAG: Fuse relational and textual requirements

You are a helpful assistant that helps me generate a new query by
↪→ incorporating an additional requirement into a given query,
↪→ and form a coherent and natural-sounding question.

This is the existing query:
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<query>
This is the additional requirement:
<additional_textual_requirement>
You should be creative in combining the existing query and

↪→ requirement, and flexible in structuring the new query, adding
↪→ context as needed. Please return the new query without
↪→ additional comments:

The prompt of a second-time rewrite by GPT-4 Turbo:

You are a helpful assistant that helps make a researcher’s query
↪→ about a paper more natural-sounding, akin to the language used
↪→ in ArXiv web searches. You should change the description but
↪→ convey similar meanings. The query structure is completely
↪→ flexible. The original query:

"<query>"
Please only output the new query without additional comments:

Prompt for STARK-PRIME: Fuse relational and textual requirements

You are a helpful assistant that helps me generate a natural-sounding
↪→ and coherent query as if you were a <role>. The query should
↪→ be created based on a list of requirements for searching <
↪→ plural_target> in a database. I will provide you with the
↪→ requirements in the following format:

[<requirement1>, <requirement2>, ...]
You should create the query based solely on the given requirements.

↪→ Moreover, you should craft the query from the perspective of a
↪→ <role>.

<role_instruction>
For example, a query from a <role> could be
"<example_query>"
You can be flexible in structuring the query and adding additional

↪→ context. Ensure that the query uses different descriptions
↪→ than the original property descriptions while retaining
↪→ similar meanings. The query should sound concise and natural.
↪→ These are the requirements:

<requirements>
Please create the query based on the given requirements and provide

↪→ only the query without additional comments. Your response:

The prompt of a second-time rewrite by GPT-4 Turbo:

You are a helpful assistant that helps me rewrite a query that
↪→ searches for <plural_target> from the perspective of a <role>.
↪→ You should maintain the requirements from the original query
↪→ and the characteristics of the <role>, while being creative
↪→ and flexible in structuring the query. Ensure the revised
↪→ query is concise and natural-sounding. Original query: "<query
↪→ >". Please output only the rewritten query:

E.3 Filtering additional answers

Prompt for STARK-AMAZON: Filtering additional answers

Filter products by general category
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You are an intelligent assistant that identifies whether an Amazon
↪→ product belongs to a given category. I will give you the
↪→ product information. You should only answer yes / no in the
↪→ response. For examples, the product <SKLZ Star-Kick Hands Free
↪→ Solo Soccer Trainer> belongs to the category "soccer trainer"
↪→ and the product <Test your Opening, Middlegame and Endgame
↪→ Play - VOLUME 2> belongs to the category "a chess opening book
↪→ ", while <Baby Girls One-piece Shiny Athletic Leotard Ballet
↪→ Tutu with Bow> doesn’t belong to category "an adult tutu".

Information:
- product title: <<product_title>>
- product description: <product_description>

Does the product belong to "<target_category>"? Response (yes/no):

Filter products by requirements

You are a helpful assistant that helps me check whether an Amazon
↪→ product satisfies the given requirements. I will provide you
↪→ with the product information, which may include the product
↪→ description, features, reviews, and Q&A from customers. Your
↪→ task is to assess whether the product meets each requirement
↪→ based on the provided information. If there is no information
↪→ that supports the requirement, your response for that
↪→ requirement is "NA". If there is relevant information that
↪→ supports the requirement, your response for that requirement
↪→ is the information source that fulfills the requirement. Each
↪→ information source is a composite of the key and index (if
↪→ applicable), separated by "-", such as "description", "
↪→ features-#3", "Q&A-#1", "reviews-#2". If there are multiple
↪→ sources,

Response:
{

1: "NA" or [the information sources that satisfy the requirement
↪→ #1],

2: "NA" or [the information sources that satisfy the requirement
↪→ #2],

...
}

Here is the product information:
<product_doc>
The requirements are as follows:
<customer_requirements>

Response:

Prompt for STARK-MAG: Filtering additional answers

You are a helpful assistant that helps me verify whether a given <
↪→ target_node_type> is subject to a requirement. I will provide
↪→ you with the <target_node_type> information and the
↪→ requirement, and you should return only a ’True’ or ’False’
↪→ value, indicating whether the <target_node_type> meets the
↪→ requirement.

This is the <target_node_type> information:
<doc_info>
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This is the requirement:
<additional_textual_requirement>
Please return only the boolean value without additional comments:

Prompt for STARK-PRIME: Filtering additional answers

You are a helpful assistant tasked with verifying whether a given <
↪→ target> satisfies each of the provided requirements. I will
↪→ give you the requirements in the following format:

{1: <requirement1>, 2: <requirement2>, ...}
When evidence in the <target> information confirms a requirement is

↪→ met, cite the source, for example, ’details.mayo_symptoms’, ’
↪→ details.summary’. If no direct evidence exists, indicate this
↪→ with ’NA’. The output in JSON format should be as follows:

{1: ’NA’ or <source1>, 2: ’NA’ or <source2>, ...}
This is the <target> information:
<doc_info>
These are the requirements:
<requirements>
Please provide only the JSON in your response. Response:
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