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Abstract

Recent works have demonstrated the effective-001
ness of self-alignment in which a large lan-002
guage model is aligned to follow general in-003
structions using instructional data generated004
from the model itself starting from a hand-005
ful of human-written seeds. Instead of gen-006
eral alignment, in this work, we focus on007
self-alignment for expert domain specializa-008
tion (e.g., biomedicine, finance). As a pre-009
liminary, we quantitively show the marginal010
effect that generic instruction-following train-011
ing has on downstream expert domains’ per-012
formance. To remedy this, we propose self-013
specialization - allowing for effective model014
specialization while achieving cross-task gen-015
eralization by leveraging only a few labeled016
seeds. Self-specialization offers a data- and017
parameter-efficient way of “carving out” an ex-018
pert model out of a generalist pre-trained LLM.019
Exploring a variety of popular open large mod-020
els as a base for specialization, our experimen-021
tal results in both biomedical and financial do-022
mains show that our self-specialized models023
outperform their base models by a large mar-024
gin, and even larger models that are generally025
instruction-tuned or that have been adapted to026
the target domain by other means. Our code027
will be released upon acceptance.1028

1 Introduction029

Instruction-tuning (Ouyang et al., 2022; Wei et al.,030

2022; Mishra et al., 2022; Su et al., 2022) of031

large language models (LLMs) offers a mechanism032

to adeptly guide models using specific directives,033

thereby enhancing their versatility across diverse034

tasks. However, as promising as this concept might035

seem, it poses an inherent challenge: the substan-036

tial need for quality data (Chung et al., 2022; Wan037

et al., 2023; Köpf et al., 2023). The very premise038

of instruction-tuning hinges on the availability of039

well-crafted, human-annotated data, a resource that040

1Major updates are highlighted in color in this revision.
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Figure 1: Self-specialization concept. Expertise in vari-
ous domains is mixed and latent within base LLMs, and
can be carved out through self-specialization.

is both time-consuming and challenging to scale ef- 041

ficiently (Honovich et al., 2022; Kang et al., 2023). 042

When it comes to specialized domains, such as 043

biomedicine, it is more challenging to acquire hu- 044

man labels, due to the need for expert annotators 045

(Wang et al., 2023b). While adaptation through 046

in-domain pre-training (Gururangan et al., 2020; 047

Wu et al., 2023) has been shown to be effective, 048

this approach requires extensive (unlabeled) target- 049

domain data, in addition to significant computa- 050

tional resources. Moreover, prior work has shown 051

the benefits of adaptive pre-training can be less than 052

those achieved by moderate amounts of fine-tuning 053

data from the target domain (Bai et al., 2021). 054

Emerging as a promising solution to this data- 055

intensive challenge in the context of instruction- 056

tuning is the approach of self-alignment (Wang 057

et al., 2022a; Sun et al., 2023). By allowing LLMs 058

to automatically generate instructional data from 059

minimal human-authored seeds, self-alignment 060

presents a means to harness the internal general 061

knowledge of models, which results from exten- 062

sive pre-training on internet corpora (Devlin et al., 063

2019; Raffel et al., 2020; Brown et al., 2020), with- 064

out extensive human annotations. 065

However, a pertinent question remains: How ef- 066

fective are the self-aligned models when applied to 067

more niche domains, such as biomedicine? Given 068

that both the initial pre-training and subsequent self- 069

alignment are general, the knowledge embedded 070
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in LLM parameters may be a mixture of semantics071

and various domains. This raises questions about072

their effectiveness in specialized domains, despite073

the aims of instruction-tuning and self-alignment074

for cross-task generalization. In our preliminary075

study, however, we find that existing models such076

as Alpaca (Taori et al., 2023) and Dromedary (Sun077

et al., 2023), although aligned, exhibit only a mod-078

est degree of improvement within the specialized079

domains. These observations underline the need for080

focused approaches that can leverage the domain081

expertise existing in the base models, to ensure the082

self-generated instruction-tuning data remains both083

contextually appropriate and accurate.084

In this work, we explore the possibility of self-085

specialization (Fig. 1). Drawing inspiration from086

the foundational principles of self-alignment, self-087

specialization goes a step further by incorporating088

domain-specific seed instructions and is further bol-089

stered by parameter-efficient fine-tuning, as well as090

optional iterative refinement and retrieval compo-091

nents. Our goal is to guide models beyond generic092

alignment, directing them to generate data that are093

not just contextually fitting for a specialized do-094

main but also maintain high accuracy.095

We evaluate our self-specialized models within096

the biomedical and finance domains (20 datasets097

in total), and across a variety of base models that098

we specialize. Surprisingly, despite the simplic-099

ity of our approach, our results present a com-100

pelling case for self-specialization significantly101

outperforming the base models, and even larger102

models that are generally instruction-tuned or103

specifically pre-trained on the target domain. No-104

tably, our self-specialized one based on MPT-30B105

(Team, 2023) for biomedicine even surpasses larger106

models (based on LLaMA-65B (Touvron et al.,107

2023a)), including the ones improved through self-108

alignment by leading methods (Wang et al., 2022a;109

Sun et al., 2023).110

2 Preliminaries: Benchmarking Existing111

Aligned Models112

To motivate our exploration of self-specialization,113

we first begin by addressing a fundamental ques-114

tion: How well do generally aligned models per-115

form on specialized domains? While popular116

models, such as Alpaca (Taori et al., 2023) and117

Dromedary (Sun et al., 2023), have demonstrated118

effectiveness in following general instructions, it re-119

mains unclear whether general alignment can also120

BASE ALIGNED

Model LLaMA-65B Alpaca-65B Dromedary-65B

Averaged
43.87

46.39 45.10
F1-SCORE (+2.52) (+1.23)

Table 1: Benchmarking results of a base LLaMA-65B
and its aligned variants in a biomedical domain. The
evaluation covers various NLP tasks such as question
answering, information extraction, and classification.
5-shot results averaged across 10 datasets are presented.

elicit expertise for a certain domain. 121

Investigating this, we assess the capabilities of 122

Alpaca and Dromedary against their base model, 123

LLaMA-65B (Touvron et al., 2023a), on a collec- 124

tion of benchmarks within the biomedical domain. 125

We evaluate Alpaca as an upper bound, due to its 126

reliance on GPT-3.5-generated datasets (Ouyang 127

et al., 2022) via the self-instruct process (Wang 128

et al., 2022a), unlike Dromedary, which generates 129

instructional data from its base model. We use 10 130

biomedical NLP datasets (see Section 4 for details), 131

covering a diverse set of tasks to ensure a com- 132

prehensive mix of content and also to look at the 133

cross-task generalization, the core of instruction- 134

tuning. Table 1 summarizes the result. 135

We find that both Alpaca and Dromedary have 136

only a slight (1.2 - 2.5) advantage over LLaMA 137

in biomedicine. While they are aligned to handle 138

a broad set of instructions, they do not seem to 139

effectively improve their specialized domain exper- 140

tise; intuitively trading their expertise for generality 141

given finite parameters. In light of these findings, 142

it becomes evident that for cases where we are 143

only interested in expert domains for all our down- 144

stream tasks, there remains a large potential for 145

improvement beyond the generic alignment. This 146

underscores the need for a model or approach, like 147

self-specialization, that could potentially uncover 148

specialization while maintaining cross-task gener- 149

alizability with minimal supervision. 150

3 Self-Specialization 151

In this section, we describe our method called self- 152

specialization illustrated in Figure 2. 153

3.1 Seed Demonstrations 154

Initially, we utilize a curated set of seed demonstra- 155

tions S, consisting of a triplet (i, c, y), comprised 156

of instruction i, a context c (e.g., passage), and a 157

response y, respectively. Recognizing the difficulty 158

of acquiring domain-specific data in real-world sce- 159

narios (Bai et al., 2021), we aim for a very mini- 160
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Figure 2: Self-Specialization overview. (a) We start with a small set of human-authored domain-specific seed
instructions. The base model crafts synthetic instructions and corresponding input contexts tailored to that particular
domain. Subsequently, during the response generation phase, responses are curated given the generated instruction
and input pairs, optionally enhanced by infusing domain-relevant knowledge obtained via a retrieval component or
iterative re-generation via our previous self-specialized model. Finally, in the specialization phase, the base model is
tuned for specialization (w/ QLoRA) to uncover its target domain expertise. (b) Conceptually speaking, this process
can be described as uncovering latent expertise within LLMs.

mal number of seeds: only 80 for the biomedical161

domain and 90 for the financial domain2. We lever-162

age established datasets such as Box (Parmar et al.,163

2022) for seed construction to fairly ensure qual-164

ity (detailed in Section 4). These seeds capture165

essential domain concepts but are insufficient to166

cover the entirety of domain knowledge. We con-167

jecture (and demonstrate) that the domain knowl-168

edge already exists within large pre-trained models169

in a latent state, which our approach can uncover.170

Seeds provide the primary scaffold upon which171

subsequent domain-specific instructions are built.172

3.2 Domain-Specific Instruction Generation173

With the seed instructions in place, we move to gen-174

erating domain-specific instructions. While these175

new instructions are grounded in the initial seeds,176

they grow to cover a comprehensive scope of the177

domain. Specifically, a base model Mbase, such178

as MPT-30B (Team, 2023) which is large enough,179

is prompted to produce new combinations of (i, c)180

given a handful of seed demonstrations which are181

randomly sampled from the initial seeds pool. The182

2While manual annotation of seed data is an assumed pre-
requisite for this initial step in self-alignment, we consider
those numbers to be reasonable to annotate.

newly formed instructions i, coupled with their cor- 183

responding input contexts c, shape a blueprint that 184

the model utilizes in the following stages. 185

3.3 Domain-Specific Response Generation 186

In this phase, it is crucial for the responses not 187

only to be correct but also to be well-aligned with 188

the target domain. Intuitively, as this phase is 189

conditioned on domain-specific instructions {i} 190

and corresponding contexts {c}, derived from 191

domain-specific seeds, it may be sufficient to 192

rely on the base model itself to generate domain- 193

specific responses. As an additional effort, we ex- 194

plore whether leveraging external domain-relevant 195

knowledge would be beneficial for this case, in- 196

spired by Frisoni et al. (2022). Therefore, we op- 197

tionally allow Mbase to incorporate external knowl- 198

edge via a retrieval component Mret. Specifically, 199

forming the query x as a concatenation of i and c, 200

Mret fetches top-k relevant documents d1:k. 201

d1:k = Mret(x = i⊕ c) 202

Then, each document dj is independently paired 203

with the query x to form a prompt to Mbase, and 204

the final domain-specific responses y are produced 205
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from the final distribution computed by marginal-206

izing over the probabilities of each of these k-207

combinations at each generation step.208

p(y|x) =
t∏
i

k∑
j

pret(dj |x;Mret) plm(yi|x, dj , y1:i−1;Mbase)
209

where pret is a relevance score (similarity) from a210

retriever module and plm represents the language211

model distribution. By integrating such external212

information, while domain-specific knowledge is213

already deemed latent within LLMs, this step fur-214

ther encourages the generated target responses to215

be more nuanced and domain-specific, leading to216

additional improvements (Section 5.2).217

3.4 Triggering Specialization218

Upon establishing a set of domain-specific instruc-219

tions/responses, Mbase undergoes tuning using the220

self-generated data, adjusting its internal parame-221

ters to cater specifically to the domain’s nuances.222

This step is crucial, marking the model’s trans-223

formation from being generally competent to be-224

ing domain-specialized while preserving cross-task225

generalizability, thus resulting in the final self-226

aligned domain-specialized model: Maligned.227

3.5 Iterative Self-Specialization228

In the spirit of continuous improvement, our229

approach optionally supports iterative self-230

specialization via re-generating instructions and231

responses with the better-aligned model Maligned.232

This process has the potential of refining the233

model’s domain expertise with each iteration (of234

considering the previous iteration Maligned as base235

each time), iteratively improving its responses.236

4 Experimental Settings237

Datasets. For our primary evaluation, we employ238

various biomedical NLP datasets, most of which239

are curated in BIGBIO (Fries et al., 2022). A to-240

tal of 10 different datasets are adopted to encom-241

pass a wide range of NLP tasks: Question Answer-242

ing (QA), Named Entity Recognition (NER), Re-243

lation Extraction (RE), Sentiment Analysis (SA),244

and Document Classification (DC). Following a245

prior work (Parmar et al., 2022), all datasets are246

transformed into instructional data. Additionally,247

we validate our method in the financial domain to248

showcase its generalizability. We adopt a total of249

10 diverse datasets, covering numerous NLP tasks:250

Summarization (SUM), QA, NER, RE, SA, and 251

Classification (CLS), detailed in Appendix A. 252

Models. We employ MPT-30B (Team, 2023) as 253

a base model for main experiments. For the re- 254

triever, we use simple yet effective BM25 (Robert- 255

son et al., 1994), assuming human-labeled data 256

is not sufficient. For benchmarking of general- 257

purpose aligned models, we evaluate Alpaca-65B 258

(Taori et al., 2023) and Dromedary-65B (Sun et al., 259

2023) that are both based on LLaMA (Touvron 260

et al., 2023a). In addition to MPT-30B, we adopt 261

LLaMA-2 7B (Touvron et al., 2023b) and Falcon- 262

40B (Almazrouei et al., 2023) to further validate 263

the general applicability of self-specialization with 264

different scales and base models. We addition- 265

ally evaluate existing domain-specific models (Wu 266

et al., 2023): MedLLaMA and PMC-LLaMA (De- 267

tails are in Section 5.2). 268

Metrics. In our study, all tasks are approached 269

as a unified text generation problem, aiming to as- 270

sess the capabilities of generative models. In align- 271

ment with an established convention (Parmar et al., 272

2022), we adopt F1-SCORE as our main evaluation 273

metric, given an early observation that ROUGE- 274

L (Lin, 2004), as shown in Table 6 in Appendix, 275

exhibits a strong correlation with F1-SCORE. 276

Implementation Details. For biomedical seeds, 277

we use data sampled from BoX (Parmar et al., 278

2022), encompassing 32 tasks, up to 5 instances for 279

each dataset, resulting in a compact yet representa- 280

tive 80 seed samples in total, which are also used 281

as demonstrations at inference. For optional exter- 282

nal corpus, we leverage PubMed preprocessed in 283

(Phan et al., 2021), which contains ≈30M abstracts. 284

In the financial domain, based on our finding from 285

biomedical experiments that showed surprising ef- 286

fectiveness of self-specialization relying on internal 287

knowledge of LLMs without the external corpus, 288

we opt not to employ an optional retrieval com- 289

ponent to further validate the self-sufficiency of 290

LLMs. We leverage a total of 90 seeds sampled 291

from the 10 train sets in our corresponding bench- 292

mark datasets. We use a total of 5K synthetic data 293

generated through our self-specialization for all 294

experiments, unless otherwise specified. Being 295

equipped with QLoRA (Dettmers et al., 2023) and 296

4-bit quantization, the model is trained using a sim- 297

ple Alpaca-style template (Taori et al., 2023) on a 298

single A100, taking only a few hours for 3 epochs, 299

resulting in a light-weight specialization module. 300
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BIOMEDICINE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.90 37.35 47.56 55.04 51.96 57.61
BioASQ-List 46.06 46.99 47.57 44.55 35.09 42.17
BioASQ-Yesno3 21.20 85.27 10.80 94.00 8.80 95.20
PubMedQA 11.98 24.16 28.89 24.87 31.69 31.31

NER
AnatEM 9.63 11.99 7.57 15.76 6.59 21.25
BioNLP13CG 24.79 24.93 21.76 31.80 26.03 41.16
NCBI 18.46 14.35 27.88 43.11 17.99 46.54

RE DDI 51.00 49.40 49.20 51.60 49.38 53.40

SA Medical Drugs 35.00 65.80 11.40 54.60 11.40 32.80

DC HoC 2.44 6.01 13.91 7.61 62.84 62.65

Average 25.15 36.63 26.65 42.29 30.18 48.41

FINANCE k=0 k=1 k=5

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

SUM EDT-Summarization 6.40 21.90 13.97 24.00 13.87 23.56

QA
InsuranceQA 3.03 19.87 6.55 23.79 9.96 24.36
ConvFinQA 15.74 5.25 21.69 11.84 28.77 20.88

NER
Fin3 9.94 23.93 7.53 26.95 6.80 43.87
FiNER_139 10.24 14.84 36.78 25.81 44.34 35.63

RE KPI-EDGER 11.22 31.02 43.28 53.56 49.46 63.90

SA
EarningsCall 46.80 48.80 50.80 48.00 49.03 47.74
Financial_Phrasebank 23.60 73.20 9.40 47.60 29.20 68.80
FIQA-SA 44.44 56.84 58.55 61.54 61.54 70.09

CLS Gold Commodity News 21.95 43.03 61.93 55.08 38.42 61.20

Average 19.34 33.87 31.05 37.82 33.14 46.00

Table 2: Comparative results (F1-SCORE) of the base LM and self-specialized one on biomedical (top) and financial
(bottom) domains. The base model is MPT-30B for biomedicine and LLaMA-2 7B for finance. Self-specialized
ones have the same parameters as the counterpart base ones. k indicates the number of demonstrations in a prompt.

5 Results and Analyses301

Here, we provide a set of experimental results and302

analyses to address relevant research questions.303

5.1 Comparison with Baselines304

How effective is the self-specialization of base305

models? In Table 2, we present the comparative306

results of our self-specialized model against its base307

counterpart across 10 distinct biomedical NLP and308

10 financial NLP datasets. The evaluation is con-309

ducted with varying numbers of in-context demon-310

strations, k.311

Our findings reveal that the self-specialized312

model exhibits remarkable progress in the majority313

of tasks across all configurations in both domains,314

yielding a substantial (up to 18 points) improve-315

ment in average scores. Specifically, the average316

scores (F1) in biomedicine rise from 30.18 to 48.41317

in a 5-shot setting.3 In finance, the improvements318

3Even excluding BioASQ-Yesno as an outlier due to the
base model’s low performance, self-specialization still shows
significant gain over the base model: 32.55 to 43.21 (5-shot).
Appendix C.3 includes the detailed discussion.

are 14.53 (0-shot), 6.77 (1-shot), and 12.86 (5- 319

shot), respectively. These advancements in both 320

domains underscore the self-specialization’s gen- 321

eralizability in addressing a wide array of tasks 322

across different specialized domains. 323

Imact on ICL capability. A potential concern 324

on self-specialization tuning is its impact on 325

the base LLM’s in-context learning capabilities, 326

as we did not tune the model with demonstra- 327

tions. Comparing the capabilities before and after 328

self-specialization, the improvement after adding 329

demonstrations (from 0 to 5) of our self-specialized 330

model on biomedicine in Table 2 is 36.63 to 48.41 331

(∆=11.78), while that of the base model is 25.15 332

to 30.18 (∆=5.03), indicating even better ICL ca- 333

pability with in-domain knowledge acquisition. 334

Performance drop on some tasks. Our analysis 335

does identify a few instances where performance 336

drops as shown in Table 2. This indicates room for 337

further refinement, especially for tasks like Con- 338

vFinQA that require a set of specific capabilities 339

beyond mere domain knowledge. We evidenced 340
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Figure 3: Comparing (with F1-SCORE, 5-shot) our self-specialized MPT-30B model to 65B models in biomedicine.

that a minor proportion (≤ 2%) of generated data341

partially resembles ConvFinQA, due to our genera-342

tion’s nature involving creative brainstorming for343

diversity. The specific demands of ConvFinQA, in-344

cluding numerical reasoning, structured tables, and345

conversations extend beyond basic domain knowl-346

edge and were insufficiently covered within our347

dataset. This gap likely contributes to the observed348

performance trade-offs.349

However, we re-emphasize that there are signifi-350

cantly bigger gains in many of the cases (e.g., 45351

out of 60 experiments across datasets and k), out-352

weighing the regression overall. Acknowledging353

the inherent variability of in-context learning (Min354

et al., 2022), we present the variances with 5 dif-355

ferent sets of demonstrations in Figure 4 based on356

LLaMA-2-7B in biomedicine, showing significant357

average improvements of 8.25 (p = 0.003, k = 1)358

and of 14.42 (p ≤ 0.001, k = 5).359

How does self-specialization compare against360

larger/generally aligned baselines? In Figure 3,361

we compare our self-specialized MPT-30B model362

with 65B models, including LLaMA-65B, and its363

general instruction aligned variants (e.g., Alpaca364

based on Self-Instruct) in the biomedical domain.365

Interestingly, the results reveal that our model, with-366

out extensive data, surpasses all baselines, includ-367

ing 65B models, despite its ≈2.2x smaller size.368

This not only highlights the lower expert domain369

performance trade-offs of the “generalist” models370

in terms of encoding vast general knowledge into371

a finite set of parameters, but also underscores the372

effectiveness of our parameter-efficient approach373

to model specialization. We also show that our374

self-specialized model outperforms the supervised375

general-purpose model, MPT-30B-instruct in all376

tasks, which highlights the benefits of in-domain377

instruction data. Moreover, as a reference point,378

Model F1-SCORE ROUGE-L

w/ Top-5 Docs 34.57 32.88
w/ Top-1 Docs 29.65 27.90
w/o Retrieval 33.72 32.14

Base MPT-30B 25.15 23.75

Table 3: Ablation of self-specialization with retrieval
from unlabeled domain-specific documents. Zero-shot
average performance over 10 biomedical tasks.

Model F1-SCORE ROUGE-L

w/ Iterative Process 36.63 34.79
Self-Specialization 34.57 32.88

Base MPT-30B 25.15 23.75

Table 4: Ablation of iterative self-specialization. Zero-
shot average performance over 10 biomedical tasks.

we present a comparison with a fully-supervised 379

SOTA model that is fine-tuned on the biomedical 380

datasets in Table 7, contextualizing our progress 381

to better understand practical utility, discussed in 382

Appendix C.4. Notably, the data efficiency of our 383

simple self-specialization is further reinforced by 384

the fact that the model is trained using only 5K4 385

instruction data self-produced with minimal (only 386

80) seeds.5 This training process, facilitated by the 387

incorporation of QLoRA, adding only 0.28% train- 388

able parameters to an otherwise frozen model, only 389

takes a few hours on a single GPU (A100 80GB). 390

5.2 Ablations & Analyses 391

Effect of external knowledge. We investigate 392

the influence of incorporating a domain-specific 393

corpus like PubMed in the response generation 394

phase. Table 3 shows optimal results with the top-5 395

documents, while using just the top-1 document 396

decreases performance, likely due to noise from an 397

imperfect retrieval process, aligned with findings 398

from previous work (Yoran et al., 2023) that adding 399

452K for Alpaca and 360K for Dromedary.
5175 for Alpaca and 195 for Dromedary.
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irrelevant (i.e., random) context dramatically de-400

creases performances. Conversely, employing the401

top-5 documents with probability marginalization402

(eq. 3.3) seems to mitigate this issue, enabling the403

model to exploit informative knowledge. Interest-404

ingly, we observe that self-specialization demon-405

strates strong performance even without retrieval,406

suggesting domain knowledge already exists within407

LLMs in a latent state, which self-specialization408

uncovers. Given this, the added complexity of409

retrieval mechanisms, though potentially advanta-410

geous, emerges as optional within our framework.411

Effect of iterative self-specialization. In Section412

3.5, we discussed the potential of employing an413

iterative process by leveraging the self-specialized414

model instead of the base model throughout the415

generation process. Table 4 shows the ablation416

study, where each iteration involved generating 5K417

samples, and final results were obtained using 5K418

samples from the last iteration for a fair comparison.419

We observe that the iterative process leads to further420

performance enhancements, compared to the one421

w/o iteration. In our preliminary tests, we rarely422

find meaningful improvements with the subsequent423

iteration, which we leave for future work to refine.424

Self-specialization vs. domain pre-training.425

We compare our model based on LLaMA-2-426

7B with existing baselines (Wu et al., 2023):427

MedLLaMA-13B and PMC-LLaMA-7B/-13B.428

The former is a LLaMA variant further pre-trained429

on a large domain-specific corpus (i.e., medicine),430

and the latter is further instruction-tuned using an-431

notated/synthetic datasets, including medical QA,432

rationale for reasoning, and conversational dia-433

logues. Notably, we find that our self-specialized434

7B model is on par with or better than MedLLaMA-435

13B (p = 0.006, k = 5) and PMC-LLaMA-13B436

FinanceBiomedicine
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Figure 5: Analysis with the varied number of self-
generated data for specialization. 0-shot averaged re-
sults with # generated data = {0, 100, 500, 1000, 5000,

10000} are shown.

(p = 0.01, k = 5) despite their larger parame- 437

ters and extensive domain-specific tuning. Addi- 438

tionally, using our 7B-generated data to special- 439

ize MedLLaMA indicates that self-specialization 440

can enhance domain-specific pre-training (p = 441

0.001, k = 5), suggesting complementarity. 442

Impact of the number of self-generated data. 443

In Figure 5, we analyze the impact of the number 444

of self-specialization data within biomedical and 445

financial domains. Starting from zero, a sharp in- 446

crease in F1 score is observed as we introduce the 447

first 100 instances which largely consist of seed 448

instructions, underlining the significant impact of 449

seeds not only as in-context demonstrations but 450

also as training data. The performance continues to 451

rise steadily with additional data, plateauing around 452

5K instances, supporting our decision on the use 453

of 5K data. Self-specialization’s success with rela- 454

tively small self-generated data highlights its data 455

efficiency and practicality. 456

How is the quality of synthetic self-specialization 457

data? In Figure 6, we showcase a qualitative vi- 458

sualization that analyzes the synthetic data gener- 459

ated through self-specialization, confirming that 460

self-specialization produces domain-focused data. 461

To quantitatively assess the quality, Figure 7 in Ap- 462

pendix compares our model against a model trained 463

on labeled data, which shows a narrow performance 464

gap, implying the quality of generated data. Addi- 465

tionally, some examples are provided in Table 9 & 466

10 in Appendix, offering insights into the quality 467

of the self-generated specialization data. 468

6 Related Work 469

The goal of instruction-tuning and alignment of 470

large language models (LLMs) is to achieve cross- 471

task generalization or to align with human pref- 472
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erences. This can be accomplished by either473

training LLMs directly with human-labeled data474

(Ouyang et al., 2022; Wei et al., 2022; Mishra475

et al., 2022; Wang et al., 2022b) or data gener-476

ated by larger models (i.e., distillation) (Taori et al.,477

2023; Chiang et al., 2023). Recent studies have478

shown that LLMs are self-instructors. Wang et al.479

(2022a) showed that with in-context prompts, GPT-480

3 (Brown et al., 2020) can generate high-quality481

instruction-responses pairs for its own alignment.482

Sun et al. (2023) further suggests that using prin-483

ciples can minimize human supervision while cov-484

ering a broad spectrum of scenarios with the open-485

source model, LLaMA-65B (Touvron et al., 2023a).486

While enhancing general alignment, according to487

our presented evidence, these approaches are un-488

likely to induce specialization in expert domains,489

leaving different domain expertise in superposition490

inside the model. To the best of our knowledge, we491

are the first to show the potential for expert domain492

specialization through self-alignment, effectively493

“uncovering” a domain expert out of the model in a494

parameter- and data-efficient manner.495

Recent studies highlight the benefits of em-496

ploying instructions in different adaptation sce-497

narios (Parmar et al., 2022). INSTRUCTOR498

(Su et al., 2022) illustrated the adaptability of499

instruction-based text embeddings to various tasks500

and domains, while INSTRUCTE (Bai et al., 2023)501

demonstrated that incorporating instructions with502

a schema can yield robust results for table extrac-503

tion across diverse domains. However, these re-504

quire the use of costly human labels or extensively505

tuned large models (e.g., 175B). Self-training has506

also been explored for different adaptation scenar-507

ios. For domain knowledge adapation, Shakeri508

et al. (2020) and Luo et al. (2022) proposed con- 509

structing synthetic data by generating in-domain 510

question-answering data, but these data generators 511

are trained with more than 80k human curated 512

QA pairs and do not involve instructional ones 513

that have the potential for cross-task generaliza- 514

tion. Instruction-tuning has been shown to adapt 515

pre-trained LLMs to different modalities, including 516

vision (Liu et al., 2023), audio (Gong et al., 2023), 517

and programs (Rozière et al., 2023), and enables 518

the use of APIs (Schick et al., 2023) and search 519

engines (Luo et al., 2023). Unlike these works, our 520

work focuses on uncovering target domain exper- 521

tise latent within LLMs while promoting cross-task 522

generalization with minimal supervision. 523

7 Conclusion 524

Our exploration into self-specialization aimed to 525

elucidate the latent expertise within large language 526

models (LLMs) with limited human supervision. 527

This scheme demonstrated promising results in spe- 528

cialized domains. The self-specialized model ex- 529

hibited remarkable performance, outperforming its 530

base model, MPT-30B, and even surpassing larger 531

generally aligned models (65B). This illuminates 532

the intrinsic challenges of encoding vast general 533

knowledge into limited parameters and underscores 534

the efficiency of self-specialization. Remarkably, 535

the model’s efficient training, marked by minimal 536

data usage and the integration of QLoRA (Dettmers 537

et al., 2023), adds another layer to its practicality 538

in terms of parameter and data efficiency. These 539

findings signify a promising pathway for leverag- 540

ing inherent expertise in LLMs and offering a large 541

variety of exciting opportunities for future work. 542
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Limitations543

While our study provides encouraging insights into544

the capabilities of self-specialization, this is an ini-545

tial step in opening up new opportunities. We ac-546

knowledge the need for further exploration and547

note some limitations and considerations.548

Sensitivity of in-context learning. In Table 2,549

we observed that performances sometimes dropped550

with more in-context learning demonstrations.551

While recognizing, the performance fluctuation is552

not an issue stemming from our self-specialization553

tuning, as it happens for the base LLM as well as554

GPT-3 (Appendix C.2) , demonstrating an inherent555

challenge in in-context learning. This phenomenon556

is not unique to our self-specialization approach,557

but a broader challenge in the field.558

Training and generation strategies. We avoided559

using demonstrations during training (Min et al.,560

2022) to maintain flexibility in the number of exam-561

ples available during inference. We aimed to ensure562

that zero-shot performance remains unaffected by563

tuning to rely on demonstrations.564

Unlike previous work (Wang et al., 2023a)565

that generates instructions first and then in-566

puts/responses together, our approach simultane-567

ously generates instructions and inputs, followed568

by responses. This strategy, inspired by a more569

recent work (Sun et al., 2023), enables the use570

of inputs as queries for retrieval prior to response571

generation. Despite the specific reasons outlined572

above, we recognize the potential of the alternative573

strategies as avenues for future exploration, which574

can be orthogonal to our current approach.575

Filtering. In our method, we opted not to imple-576

ment an automatic filtering process for the gener-577

ated data. In a preliminary study to assess feasi-578

bility, we attempted to filter out low-quality data579

manually, however we did not observe a noticeable580

improvement. We hypothesized that incorporating581

this seemingly unuseful data may even enhance582

the model’s robustness by preventing overfitting583

to those generated data. Despite this, we acknowl-584

edge the importance of further investigating filter-585

ing techniques for potential improvements.586

Potential data contamination and bias propa-587

gation. Being cautious with potential data con-588

tamination from base language models during self-589

specialization, we conducted stringent measures590

following practices in GPT-3 (Brown et al., 2020)591

and PaLM (Chowdhery et al., 2022). We adopted 592

n-gram overlap analysis (with n=8 and a thresh- 593

old of 70%) to scrutinize similarities between our 594

generated data and all the test sets, revealing no sig- 595

nificant overlaps. Moreover, a detailed manual in- 596

spection of 200 random instances corroborated this 597

finding. When concerned about retrieval sources, 598

one can apply the n-gram overlap filtering, though 599

our sources are PubMed abstracts without explicit 600

labels, which inherently ensures little risk of data 601

overlap. Meanwhile, we acknowledge the inherent 602

risk of propagating biases from the pre-trained data. 603
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A Explanations of Evaluation Datasets1007

Below are brief descriptions for each dataset in1008

biomedical and financial domains. All datasets are1009

in English.1010

A.1 Biomedicine1011

BioASQ-8b (Nentidis et al., 2020). This is a1012

biomedical QA dataset that necessitates models to1013

produce answers from given questions and corre-1014

sponding contexts within the biomedical domain.1015

There are three distinct subsets that can be divided1016

according to question types: Factoid, List, and1017

Yesno. This dataset is publicly available upon a1018

data use agreement. The data are originally in-1019

tended to be used as training and development data,1020

and we use the small part of the training set as1021

seeds (i.e., 5 seeds), and the test set for evaluation1022

(500 for each question type). CC BY 2.5.1023

PubMedQA-Long (Jin et al., 2019). Pub-1024

MedQA is another biomedical QA dataset featuring1025

research questions along with their corresponding1026

abstracts and answers sourced from PubMed6. To1027

diversify the task types, we focus on a long-form1028

answer (i.e., conclusion). We use 5 labeled data for1029

seeds and 500 for evaluation. MIT license.1030

AnatEM (Pyysalo and Ananiadou, 2013). This1031

is a Named Entity Recognition (NER) task for1032

anatomical entities in biomedical texts. Models1033

are tasked with identifying all anatomy-named en-1034

tities and their corresponding types from given a1035

small paragraph. Non-commercial purposes only.1036

404 test data are used for evaluation and 5 training1037

instances are used for seeds. CC BY-SA 3.0.1038

BioNLP13CG (Pyysalo et al., 2013). The Can-1039

cer Genetics (CG) is an information extraction task1040

targeting the recognition of events in text, encom-1041

passing multiple levels of biological organization,1042

from molecular to whole organisms. 5 training data1043

are used for seeds, and the number of evaluation1044

data is 200. CC BY-SA 3.0.1045

NCBI (Dogan et al., 2014). The NCBI dis-1046

ease corpus, derived from the National Center for1047

Biotechnology Information, focuses on disease1048

name recognition. According to the annotation1049

guideline of this dataset, organism names such as1050

humans, and also gender are excluded for annota-1051

tion. We use 5 training instances for seeds, and 1001052

6https://www.ncbi.nlm.nih.gov/pubmed

for evaluation. The data is freely available to the 1053

public for use. CC0 1.0 license. 1054

DDI (Herrero-Zazo et al., 2013). The Drug- 1055

Drug Interaction (DDI) dataset is tailored for iden- 1056

tifying interactions between different drugs in 1057

biomedical texts. Following Parmar et al. (2022), 1058

this work considers only binary Relation Extrac- 1059

tion (RE), determining whether there is an effect of 1060

given two drugs. The data cannot be used for any 1061

commercial purposes. We use 5 data for seeds, and 1062

500 for evaluation. CC BY-NC 4.0. 1063

Medical Drugs (Khan, 2019). This is a Senti- 1064

ment Analysis (SA) dataset that is required to pre- 1065

dict the sentiment of individuals towards medical 1066

drugs. Specifically, given a text and a drug, a model 1067

determines the effect of the drug as “positive", “neg- 1068

ative", or “neutral". 5 training instances are used 1069

for the seed construction, and 500 test set for eval- 1070

uation. The license is unknown. 1071

HoC (Baker et al., 2015). The Hallmarks of Can- 1072

cer (HoC) dataset is curated for classifying (zero 1073

to many) biomedical texts related to cancer into 1074

categories representing different hallmarks of can- 1075

cer. In particular, these hallmarks include “sustain- 1076

ing proliferative signaling", “resisting cell death", 1077

“genomic instability and mutation", “activating in- 1078

vasion and metastasis", “tumor promoting inflam- 1079

mation", “evading growth suppressors", “inducing 1080

angiogenesis", “enabling replicative immortality", 1081

“avoiding immune destruction" and “cellular ener- 1082

getics". The number of evaluation data is 200 and 1083

5 training data are used for seed demonstrations. 1084

GPL-3.0 license. 1085

A.2 Finance 1086

EDT-Summarization (Zhou et al., 2021). This 1087

dataset challenges models to perform abstractive 1088

summarization on financial news articles, condens- 1089

ing detailed information into succinct summaries. 1090

8 training instances are used for seeds, and 500 1091

instances for evaluation. This data is publicly avail- 1092

able. 1093

InsuranceQA (Feng et al., 2015). This is an 1094

open-book question-answering task about insur- 1095

ance, demanding models to extract and provide spe- 1096

cific insurance-related information. Seed demon- 1097

strations include 8 training data and the number 1098

of evaluation instances is 500. This dataset is pro- 1099

vided as is and for research purposes only. 1100
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ConvFinQA (Chen et al., 2022). This is a1101

dataset for conversational question-answering over1102

financial report tables, testing a model’s ability to1103

reason and respond within a conversational context.1104

We use 8 training data for the seed construction,1105

and evaluation uses 500 test instances. MIT license.1106

Fin3 (Salinas Alvarado et al., 2015). This is1107

a financial NER dataset based on financial agree-1108

ments to aid credit risk assessments. 8 training data1109

are used for seeds and 100 test data for evaluation.1110

CC-BY 3.0.1111

FiNER_139 (Loukas et al., 2022). This NER1112

task focuses on financial texts, where models iden-1113

tify and classify financial-related entities like num-1114

bers. This dataset includes a much larger label set1115

of 139 entity types. Seed data encompass 8 training1116

instances and the number of test data is 500. MIT1117

license.1118

KPI-EDGAR (Deußer et al., 2022). Models1119

are tasked with extracting key performance indica-1120

tors (KPIs) from financial documents. Categories1121

for KPIs include current and previous year val-1122

ues, annual changes, subordinate and descriptive1123

attributes, co-references, and false-positive. We1124

use 212 test instances for evaluation and 8 training1125

instances for seed demonstrations. MIT license.1126

EarningsCall (Roozen and Lelli, 2021). This is1127

a binary sentiment analysis task where models eval-1128

uate sentiments from stock values and transcripts1129

of earnings calls, reflecting the financial sentiments1130

expressed. 8 training instances are used for seeds,1131

and 500 test set for evaluation. CC0 1.0 license.1132

Financial_Phrasebank (Malo et al., 2014). This1133

dataset involves (3-way) sentiment analysis of fi-1134

nancial news headlines, assessing the underlying1135

sentiment conveyed by the language used. Com-1136

mercial uses of this data may be allowed upon con-1137

tacting the authors. 8 training data and 500 test1138

data used for seeds, and evaluation, respectively.1139

CC BY-NC-SA 3.0.1140

FIQA-SA (Maia et al., 2018). It consists of1141

aspect-based sentiment analysis tasks within finan-1142

cial texts, requiring models to discern sentiment1143

regarding specific aspects mentioned. The number1144

of evaluation data is 234 and seed demonstrations1145

include 8 training instances.1146

Gold Commodity News (Sinha and Khandait,1147

2021). This dataset involves classifying financial1148

news headlines about gold commodities into cate- 1149

gories such as market movement direction or type 1150

of financial news (e.g., direction up, down, past- 1151

price, futurenews, etc). The seed data includes 9 1152

binary-class version and also 9 multi-class version 1153

of training set, and evaluation uses 500 multi-class 1154

version of test data. The license of this data indi- 1155

cates data files © original authors. 1156

B Details of Experiments 1157

In Table 8, we show the prompts used for our self- 1158

specialization. For instruction generation, we lever- 1159

age the prompt designed in self-instruct Wang et al. 1160

(2022a) with minimal change to make it suit to 1161

specialization. In particular, we ask a model for 1162

instructions about a targeted domain, and force it 1163

to generate input together with the instruction, un- 1164

like in Wang et al. (2022a) that generates those 1165

separately. In addition, we avoid using the specific 1166

requirement in the prompt that asks to cover di- 1167

verse topics, such as (quoting Wang et al. (2022a)) 1168

“daily routines, travel and tourism health and well- 1169

ness, cooking and recipes, personal finance, en- 1170

vironmental issues, history and historical events, 1171

literature and literary analysis, politics and current 1172

events, psychology and mental health, art and de- 1173

sign, mathematics and problem-solving, physics 1174

and astronomy, biology and life sciences, chemistry 1175

and materials science, computer science and pro- 1176

gramming, engineering and technology, robotics 1177

and artificial intelligence, economics and business 1178

management, philosophy and ethics, and more". 1179

For response generation, we use a simple prompt 1180

to let a model answer with a target domain in mind. 1181

Both prompts can be further enhanced and opti- 1182

mized for better self-specialization performance in 1183

future work. 1184

Regarding our evaluations, we use prompt tem- 1185

plates that were designed and used to optimize 1186

each Alpaca (Taori et al., 2023) and Dromedary 1187

(Sun et al., 2023), but no specific template for base 1188

models, as they were not optimized for it during 1189

pre-training. Ours employs a simple Alpaca tem- 1190

plate for training and evaluation. We leverage pub- 1191

licly available delta weights that are supposed to 1192

be attached to LLaMA (Touvron et al., 2023a) for 1193

Dromedary, and use the ones reproduced for Al- 1194

paca in our work. 1195

We use three seed demonstrations in-context, 1196

which are randomly sampled from our initial seeds, 1197

and sampling with top-p being 0.98 and tempera- 1198
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BIOMEDICINE Worst Average Best

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

QA

BioASQ-Factoid 30.90 37.35 43.47 50.00 51.96 57.61
BioASQ-List 35.09 42.17 42.91 44.57 47.57 46.99
BioASQ-Yesno 8.80 85.27 13.60 91.49 21.20 95.20
PubMedQA 11.98 24.16 24.19 26.78 31.69 31.31

NER
AnatEM 6.59 11.99 7.93 16.33 9.63 21.25
BioNLP13CG 21.76 24.93 24.19 32.63 26.03 41.16
NCBI 17.99 14.35 21.44 34.67 27.88 46.54

RE DDI 49.20 49.40 49.86 51.47 51.00 53.40

SA Medical Drugs 11.40 32.80 19.27 51.07 35.00 65.80

DC HoC 2.44 6.01 26.40 25.42 62.84 62.65

Average 19.62 32.84 27.33 42.44 36.48 52.19

FINANCE Worst Average Best

Task Dataset Base Self-Specialized Base Self-Specialized Base Self-Specialized

SUM EDT-Summarization 6.40 21.90 11.41 23.15 13.97 24.00

QA
InsuranceQA 3.03 19.87 6.51 22.67 9.96 24.36
ConvFinQA 15.74 5.25 22.07 12.66 28.77 20.88

NER
Fin3 6.80 23.93 8.09 31.58 9.94 43.87
FiNER_139 10.24 14.84 30.45 25.43 44.34 35.63

RE KPI-EDGER 11.22 31.02 34.65 49.49 49.46 63.90

SA
EarningsCall 46.80 47.74 48.88 48.18 50.08 48.80
Financial_Phrasebank 9.4 47.60 20.73 63.20 29.20 73.20
FIQA-SA 44.44 56.84 54.84 62.82 61.54 70.09

CLS Gold Commodity News 21.95 43.03 40.77 53.10 61.93 61.20

Average 17.60 31.20 27.84 39.23 35.99 46.59

Table 5: Comparative results of the base LM and self-specialized one on a biomedical domain (top) and on a financial
domain (bottom). The base model is MPT-30B for biomedicine and LLaMA-2 7B for finance. Self-specialized ones
have the same parameters as the counterpart base model. Performances are reported using F1-SCORE. The results
are presented using worst, average, and best across 0-, 1-, and 5-shot results for each dataset.

ture being 1.0 during instruction generation. For1199

response generation, we use no demonstrations in-1200

context since there is a high chance that the gener-1201

ated instruction task and the sampled one do not1202

match well. We believe further exploration of this1203

aspect would be valuable in future work. For fine-1204

tuning, we use a batch size of 32, a learning rate1205

of 3e-4, and epochs of 3. Low-rank adaptation1206

(LoRA) (Hu et al., 2022; Dettmers et al., 2023) is1207

applied to all modules and all layers with a rank of1208

8, and an alpha of 16. While we report single-run1209

results considering low-data settings where auto-1210

matic hyperparameter tuning might be infeasible,1211

we also report worst, average, and best across dif-1212

ferent k-shot configurations for each dataset to ad-1213

dress the concern of sensitivity (Appendix C.2) in 1214

Table 5. 1215

C Additioanl Results & Discussion 1216

C.1 Qualitative Analyses 1217

While our study primarily focuses on the biomed- 1218

ical and finance domain, the applicability and ef- 1219

fectiveness of self-specialization in another special- 1220

ized domain whose knowledge is relatively limited, 1221

such as sports, remain an open avenue for explo- 1222

ration. As an initial effort, we present a case study 1223

of a self-specialized model on sports in Table 11 & 1224

12, along with the visualization of generated data in 1225

Figure 8. We hope that this could offer insights into 1226

the versatility of self-specialization, although the 1227
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model is not yet perfect, and thorough evaluations1228

are required in future work. Different domains in-1229

herently pose unique requirements and nuances,1230

and understanding how self-specialization adapts1231

to these variations is a valuable direction for future1232

work.1233

C.2 On the Sensitivity of Prompting1234

In Table 2, we observe the decreased performances1235

with increased demonstrations in certain cases such1236

as BioASQ and Medical Drugs. We conjecture1237

this can be attributed to the model’s sensitivity1238

(Zhao et al., 2021) or interference among demon-1239

strations (Chen et al., 2023) under in-context learn-1240

ing (ICL). In fact, it can even be noticed in the1241

original GPT-3 paper (Brown et al., 2020) that ad-1242

ditional demonstrations do not always lead to better1243

performance and can indeed sometimes result in a1244

notable decrease, demonstrating an inherent chal-1245

lenge in ICL. Taking the worst, average, and the1246

best across different k-shot (0, 1, 5) configurations1247

for each dataset to address the concern of sensitiv-1248

ity, we still notice the significant gaps between our1249

self-specialization and the base model, presented1250

in Table 5.1251

C.3 On Evaluation Designs1252

In our study, as described in Section 4, we treat1253

all tasks as a unified text generation problem, aim-1254

ing to assess the realistic capabilities of following1255

instructions, consistent with established practices1256

in biomedical instruction tuning literature (Parmar1257

et al., 2022). As briefly discussed in Section 5.1,1258

we observe that in Table 2, the base model’s per-1259

formance on BioASQ-Yesno is very low (below1260

random), often failing to follow instructions and1261

generating text that is not confined to the label1262

space. We therefore treat this dataset as an outlier1263

and exclude it from our average calculations. Even1264

after removing this outlier, self-specialization still1265

has substantial gains over the base model: 25.58 to1266

31.22 (0-shot), 28.42 to 36.55 (1-shot), and 32.551267

to 43.21 (5-shot). However, we believe that our1268

current evaluation is fairer and preferable, because1269

in a realistic scenario where a user prompts a model1270

to solve a certain task (e.g., classification) without1271

the assumption about a task type, and gets a totally1272

wrong response out of the label space, evaluating1273

such a response as correct would not make sense.1274

The primary objective of our work is to en-1275

hance the base model’s domain-specific capabilities1276

through self-specialization, a process inherently dif-1277

ferent from conventional fine-tuning approaches. 1278

Although the process utilizes LoRA for specializa- 1279

tion, it is important to note that our approach funda- 1280

mentally relies on synthetic data generated by the 1281

model itself. This unique aspect sets our method 1282

apart, as it effectively starts from scratch, focus- 1283

ing on self-generated, domain-specific instructional 1284

data for low-data scenarios. Finally, the base model 1285

and the base model improved through our Self- 1286

Specialization (using synthetic self-generated data) 1287

are compared fairly in the same zero-shot/few-shot 1288

setting. 1289

C.4 State-of-the-art Performances 1290

In Table 7, we present the performances of a state- 1291

of-the-art instruction-tuned model (Parmar et al., 1292

2022) in a biomedical domain, for a reference point. 1293

It is important to clarify that our comparison should 1294

not be considered direct. The SOTA model, unlike 1295

ours which relies on a few seed samples, is fine- 1296

tuned on a vast corpus of human-annotated data 1297

(140K), and differences in test set splits may exist. 1298

For the base MPT and self-specialized models, the 1299

maximum performances by using up to 5 samples 1300

are presented. 1301

Despite significant improvements over its base 1302

model, our self-specialized model remains behind 1303

SOTA benchmarks, which is not surprising due to 1304

the nature of our method that is not supervised, un- 1305

like the SOTA model. While expected, this possibly 1306

implies the practical utility of our approach may 1307

be limited yet in certain scenarios. From the table, 1308

we especially note the substantial gap in Named 1309

Entity Recognition (NER) tasks. This gap can be 1310

attributed to the SOTA model’s training on a large 1311

and diverse set of NER datasets (i.e., 80K sam- 1312

ples). This suggests ample opportunity for further 1313

exploration and enhancement in this area. 1314
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F1-SCORE / ROUGE-L

Task Dataset Base Self-Specialized

QA

BioASQ-Factoid 51.96 / 51.81 57.61 / 57.48
BioASQ-List 35.09 / 30.40 42.17 / 36.24
BioASQ-Yesno 8.80 / 8.80 95.20 / 95.20
PubMedQA 31.69 / 24.56 31.31 / 24.77

NER
AnatEM 6.59 / 6.07 21.25 / 19.24
BioNLP13CG 26.03 / 22.53 41.16 / 35.07
NCBI 17.99 / 16.60 46.54 / 41.55

RE DDI 49.38 / 49.38 53.40 / 53.40

SA Medical Drugs 11.40 / 11.40 32.80 / 32.80

DC HoC 62.84 / 62.84 62.65 / 62.65

Average 30.18 / 28.44 48.41 / 45.84

Table 6: Comparative results (F1-SCORE and ROUGE-L) of the base LM and self-specialized one in the biomedical
domain for k = 5. Scores are presented as F1 / ROUGE for each dataset. ROUGE-L exhibits the same trend with
F1-SCORE.

Task Dataset Base Self-Specialized SOTA

QA

BioASQ-Factoid 51.96 57.61 49.51
BioASQ-List 47.57 46.99 35.59
BioASQ-Yesno 21.20 95.20 68.25
PubMedQA 31.69 31.31 29.58

NER
AnatEM 9.63 21.25 84.61
BioNLP13CG 26.03 41.16 65.09
NCBI 27.88 46.54 80.91

RE DDI 51.00 53.40 89.35

SA Medical Drugs 35.00 65.80 47.37

DC HoC 62.84 62.65 82.53

Average 36.48 52.19 63.23

Table 7: Performance comparison (F1-SCORE) with a fully supervised state-of-the-art instruction-tuned model
(Parmar et al., 2022) in biomedicine, in which more than 140K training samples are involved.
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Instruction Generation Prompt

You are asked to come up with a set of 20 diverse task instructions about a biomedical domain. These task
instructions will be given to a GPT model and we will evaluate the GPT model for completing the instructions.

Here are the requirements:
1. Try not to repeat the verb for each instruction to maximize diversity.
2. The language used for the instruction also should be diverse. For example, you should combine questions with
imperative instructions.
3. The type of instructions should be diverse. The list should include diverse types of tasks like open-ended
generation, classification, editing, etc.
4. A GPT language model should be able to complete the instruction. For example, do not ask the assistant to create
any visual or audio output. For another example, do not ask the assistant to wake you up at 5pm or set a reminder
because it cannot perform any action.
5. The instructions should be in English.
6. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is permitted.
7. You should generate an appropriate input to the instruction. The input field should contain a specific example
provided for the instruction. It should involve realistic data and should not contain simple placeholders. The
input should provide substantial content to make the instruction challenging.
8. Ensure diverse tasks are covered in the instructions and inputs, while focusing on a biomedical domain.

List of 20 tasks:

Response Generation Prompt

You are a biomedical domain expert. Given an instruction and an input, generate the best response to solve the given
biomedical task.

Table 8: Prompts used for instruction generation and response generation.
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Instruction
The aim of this task is to identify the functional categories and chemical categories associated with a data record.
The record is given in a pre-defined form and followed by a set of supporting sentences that might be relevant. In
particular, for each data record, a triplet of functional categories, molecular categories and chemical categories
associated with the data record will be provided. The task is to find some relations between records and supporting
evidence that can support the given relations.

Input
Data record: Atom, CNA, NOC, NFT
Text: Cisplatin and carboplatin, two drugs that are used to treat testicular and ovarian cancers, are not effective
in treating breast cancer

Output
The functional category of cisplatin is CNA. The chemical category of cisplatin is NOC. The molecular category of
cisplatin is NFT.

Instruction
In this task, you are given a short article and question. Read the short article and answer the question.

Input
Short article: The extract from the opium poppy was tested on breast cancer cells and was found to inhibit the
migration and invasion of breast cancer cells.
Question: Was the extract more potent in its inhibitory effect on the migration of breast cancer cells than its
effect on the invasion of breast cancer cells?

Output
Yes.

Instruction
In this task, you are given a paragraph, and your task is to categorize the entities from the given input into two
types: Dyes and Protein Molecules. The defined types here is based on the medical specialty such that dyes are
typically for understanding human metabolism.

Input
Paragraph: Thus in an effort to improve the characterization of such compounds an alternative glycosylation labeling
strategy was implemented based on malonate attachment to glucosamine and sond glycosyltransferase inactivation.

Output
Dyes: malonate, Protein Molecules: glucosamine, sond glycosyltransferase.

Instruction
In this task, you are given a small paragraph, your task is to identify the relationship between the variables.
Find the most likely to be correct relationship of a gene with its characteristics. For example, if one entity is
pathway, then you need to find the type of relationship that specific gene is related to that pathway. Give the most
appropriate relationship type and tokens separating two variables. Given an input, determine the relationship type.

Input
COPD is a major cause of morbidity and mortality throughout the world, with over three million deaths per year
Pathway: respiratory system Pathway: stress Hsa-miR-30b-5p is a regulator of retinal ganglion cell apoptosis through
regulating the PTEN/AKT signaling pathway in glaucoma.

Output
Hsa-miR-30b-5p is a regulator of retinal ganglion cell apoptosis through regulating the PTEN/AKT signaling pathway
in glaucoma.

Instruction
In this task, you are given a question and a sentence as context. You need to find the answers to the question
in the given context. You can either answer the question or ask a question. Given the question, a context or a
question, this task must either answer the question or ask a question.

Input
Question: For what drugs can predict the effect of changing the dose
Context: Metoprolol is a commonly used beta-blocker, which competitively blocks beta-adrenergic receptors in the
myocardium. Adrenergic beta-blockers do not antagonize the presynaptic beta-1 receptors in the conduction system.
While they thus prolong the ventricular conduction time, they do not alter conduction velocity. Metoprolol is
therapeutically active over the heart rate range of 40 to 100 bpm, and may be particularly effective for the rate
control of atrial fibrillation. The beta-blocking action of metoprolol is accompanied by an increase in stroke
volume.

Output
The beta-blocking action of metoprolol is accompanied by an increase in stroke volume.

Table 9: A list of examples (#1) of generated data on biomedicine through self-specialization.
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Instruction
In this task, you are given a drug name, and the side effect caused due to this drug (e.g., nausea). Your job is to
generate other side effects in which this drug often causes.

Input
Drug_1: Phentermine Drug_2: Nausea

Output
Headache, insomnia, constipation, dry mouth, diarrhea, anorexia, increased blood pressure, increased heart rate,
increased appetite, dizziness, nervousness, restlessness, irritability, tremor, rash, itching, and urticaria.

Instruction
Given a premise and a hypothesis sentence, your task is to identify if the premise supports the hypothesis or the
premise contradicts the hypothesis sentence. Your task is to identify if the evidence in the premise supports or
contradicts the hypothesis. There is no other alternative. You can select two labels for this task: Support or
Contradict.

Input
Premise: If too much calcium enters the sea, if causes it to become more acidic in a process called "ocean
acidification". Hypothesis: The ocean will become acidic.

Output
The vitamin did not seem to work for malaria. It was noted that the protein has is able to contact the insulin-like
growth factor - 1 receptor, so an antagonist was made using a modified version of the protein.

Instruction
In this task, given the title of scientific study, your task is to generate a paper abstract or summary based on
the given information.

Input
Title of study "Type and impact of end-user requests for application programming interfaces in three health-related
internet services"

Output
The study found that the majority of end-user requests for application programming interfaces (APIs) in three
health-related internet services were for data access. The study also found that the most common type of request
was for data access, followed by data analysis and data visualization. The study also found that the most common
impact

Instruction
In this task, you are given a question as input, and your task is to give answer it by generating a list of drugs
which can be used for the treatment of the symptom. If the symptom is rare, the answer list should contain its
corresponding differential diagnosis. Given a question related to symptoms, generate a list of drugs and differential
diagnosis from open vocabulary.

Input
Question: What are the signs and symptoms of Leptospirosis?

Output
Fever, headache, muscle aches, nausea, vomiting, abdominal pain, diarrhea, cough, and red eyes. Differential
diagnosis: Leptospirosis, Lyme disease, Rocky Mountain spotted fever, and dengue fever.

Instruction
In this task, you are given a list of paragraphs. The list contains sentences related to a particular biomedical
concept and sentences not related to a particular biomedical concept. Classify these sentences as true or false.
Answer if the sentences in the input are true or false. True indicates that all the sentences of the list are true
for the given biomedical concept. False indicates that only one of the given sentences is false, while the rest of
them are true.

Input
Some of the complications associated with developing small molecules for FGFR1 and KRAS targetable therapeutic
compounds are revealed as the targets have low single amino acid sequence identity between species and both are,
at least partially, regulated by post-translational modifications. S. Kisor, S. Khankorn, "Drug discovery from big
data: past, present, and future.", Outline, January 2013.

Output
False

Table 10: A list of examples (#2) of generated data on biomedicine through self-specialization.
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Model Base MPT-30B Self-Specialized MPT-30B

Instruction Given a live commentary for a sports game, generate plausible sports news highlights.

Input Context

Commentary

1. Full-time at the Etihad. Manchester City JUST manage to claim all three points in this Premier

League clash as they overcome Swansea with a narrow 2-1 scoreline. The man of the match was Gabriel

Jesus, who netted two goals, including the dramatic winner in the 92nd minute, which will prove to

be a massive blow for the Swans.

2. GOOOOAAAALLLL! GOOOAAALLL FOR MANCHESTER CITY! ...

...

Response
A: I think you should try to use a pre-trained

model for the encoder and decoder.

...

News:

- Manchester City have come from behind to beat

Swansea 2-1 in a thrilling Premier League clash at

the Etihad Stadium.

...

Instruction
This task aims to predict the sentiment of a tweet about sports. Given a tweet about football

written by a real user, select an answer (polarity) among "Positive”, "Negative” and "Neutral”.

Input Context
@user1 @user2 @user3 @user4 @user5 Now, PSG is considered a weak team. Poor ignorant. When Barça

lost 3-0, it was because we faced PSG without Neymar. But now that Real Madrid eliminated them,

suddenly PSG is a weak team. ... ...

Response Positive Negative

Instruction
In this task, you are given a sentence related to sports. Your job is to determine whether the

provided sentence makes sense. You need to produce an answer as "plausible” or "implausible”.

Input Context Lionel Messi hit a three-run homer.

Response Plausible Implausible

Instruction
In this task, you are given a question and a context about sports, and you need to answer the

question based on the given context.

Input Context

Passage (Live Commentary):

As the match reaches a decisive point, Williams, the tennis star, finds herself engaged in a

fierce rally. Her opponent delivers a powerful cross-court forehand that seems destined for a

winner. However, Williams displays incredible reflexes and anticipation, executing a lightning-fast

backhand passing shot down the line that catches her opponent off guard and secures the point.

Question: What remarkable shot did the player execute to win the crucial point?

Answer Choices:

a) Williams delivered a drop shot to surprise her opponent.

b) Williams hit a powerful forehand winner cross-court.

c) Williams executed a precise backhand passing shot.

d) Williams served an ace to win the point.

Response a) Williams delivered a drop shot to surprise her

opponent.

c) Williams executed a precise backhand passing

shot.

Instruction
In this task, you are given a question about sports. Answer the question based on your implicit

knowledge.

Input Context What does the term "love" mean in tennis scoring?

Response It means that the player has won the game. Love is a score of zero in tennis.

Table 11: Case study on sports domain. Self-Specialized model produces better responses given the same instruction
about sports.
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Model Base MPT-30B Self-Specialized MPT-30B

Instruction
In this task, you are given a set of attribute-value pairs about sports in the raw XML format.

Generate a natural language text describing the given data.

Input Context

<originaltripleset>

<otriple>batterName | Pujols</otriple>

<otriple>finalScore | 16-7</otriple>

<otriple>gameTally | 2-1</otriple>

<otriple>hasLostTeam | Texas_Rangers</otriple>

<otriple>hasWonTeam | St._Louis_Cardinals</otriple>

<otriple>hitNumber | five</otriple>

<otriple>homeRunNumber | three</otriple>

<otriple>matchDate | Saturday_night</otriple>

<otriple>pitchResult | homers</otriple>

<otriple>runNumber | six</otriple>

</originaltripleset>

Response
Albert Pujols hit three home runs and drove in

five runs as the St. Louis Cardinals beat the

Texas Rangers 16-7 on Saturday night.

Pujols hit five home runs and drove in six runs

as the St. Louis Cardinals beat the Texas Rangers

16-7 on Saturday night.

Instruction
In this task, you are given a sentence related to sports. Your job is to determine whether the

provided sentence makes sense. You need to produce an answer as "plausible” or "implausible”.

Input Context Mike Trout took ball four in the World Series.

Response Implausible Implausible

Instruction
In this task, you are given a question and a context about sports, and you need to answer the

question based on the given context.

Input Context

Passage (Live Commentary):

With two runners on base and a full count, Johnson, the opposing team’s batter, faced an intense

battle against the pitcher. The tension reached its peak as the pitcher delivered a devastating

curveball, catching Johnson off guard. He swung and missed, resulting in a resounding strikeout

that ended the inning and stranded the runners.

Question: When did the pitcher deliver a crucial strikeout to end the inning?

Answer Choices:

a) At the start of the inning, Johnson struck out.

b) After a series of foul balls, Johnson hit a double.

c) At the end of the inning, Johnson grounded out.

d) With a full count, Johnson struck out to end the inning.

Response a) At the start of the inning, Johnson struck

out.

c) At the end of the inning, Johnson grounded

out.

Table 12: Case study on sports domain. Negative cases where both models produce wrong responses are presented.
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