Under review as a conference paper at ICLR 2025

LEARNING-AUGMENTED STREAMING ALGORITHMS
FOR CORRELATION CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study streaming algorithms for Correlation Clustering. Given a complete
graph as an arbitrary-order stream of edges, with each edge labelled as positive
or negative, the goal is to partition the vertices into disjoint clusters, such that the
number of disagreements is minimized. In this paper, we give the first learning-
augmented streaming algorithms for the problem, achieving the first better-than-
3-approximation in dynamic streams. Our algorithms draw inspiration from re-
cent works of Cambus et al. (SODA’24), and Chakrabarty and Makarychev
(NeurIPS’23). Our algorithms use the predictions of pairwise dissimilarities be-
tween vertices provided by a predictor and achieve an approximation ratio that
is close to 2.06 under good prediction quality. Even if the prediction quality is
poor, our algorithms cannot perform worse than the well known PIVOT algorithm,
which achieves a 3-approximation. Our algorithms are much simpler than the re-
cent 1.847-approximation streaming algorithm by Cohen-Addad et al. (STOC’24)
which appears to be challenging to implement and is restricted to insertion-only
streams. Experimental results on synthetic and real-world datasets demonstrate
the superiority of our proposed algorithms over their non-learning counterparts.

1 INTRODUCTION

Correlation Clustering is a fundamental problem in machine learning and data mining, and it has
a wide range of applications, such as image segmentation (Kim et al.,2014), community detection
(Shi et al, [2021)), automated labeling (Chakrabarti et al., 2008)), etc. Given a complete graph G =
(V,E = ET U E™), where each edge is labeled as positive (+) or negative (—), the goal is to find
a clustering C, i.e., a partition of V' into disjoint clusters C1, Cs, ..., C:, where t is arbitrary, that
minimizes the following cost:

costg(C) := [{(u,v) € EY :Ji# j:ue Cyv e Cj} + {(u,v) € E™ : Ji:u,v € Ci}.

That is, the number of negative edges in the same cluster plus the number of positive edges between
different clusters. (We often refer to as the number of disagreements.)

This problem, introduced by |Bansal et al.|(2004), is known to be APX-hard (Charikar et al., [2005)).
Hence, significant efforts have been dedicated to designing approximation algorithms for this prob-
lem (Bansal et al., 2004} (Charikar et al., 2005; |Ailon et al.l 2008 |Chawla et al., 2015} |(Cohen-
Addad et al.| |2022; |2023}; |Cao et al., [2024} [Cohen-Addad et al., |2024b), culminating in a 1.437-
approximation via a linear program (LP) based rounding (Cao et al., 2024)). There exists a purely
combinatorial algorithm that achieves a (2 — 2/13 + ¢)-approximation (Cohen-Addad et al.,[2024b).

Partially due to storage limitations and the rapidly growing volume of data, graph streaming algo-
rithms for Correlation Clustering have received increasing attention recently. In this setting, a graph
is represented as a sequence of edge insertions or deletions, known as a graph stream. The objective
is to scan the sequence in a few number of passes, ideally, 1 pass and find a high-quality clustering
of the vertex set with a low Correlation Clustering cost, while minimizing space usage. If the se-
quence contains only edge insertions, it is referred to as an insertion-only stream; if both insertions
and deletions are allowed, it is referred to as a dynamic stream. Since the output of the clustering
inherently requires £2(n) bits of space (as each vertex needs a label to indicate its cluster member-
ship), most previous research has primarily focused on the semi-streaming model, i.e., the algorithm

Under review as a conference paper at ICLR 2025

is allowed to use O(n) := O(npolylogn) spac Actually, there exists a single-pass (1 + ¢)-
approximation algorithm in the semi-streaming model even for dynamic streams (Ahn et al., 2021}
Behnezhad et al.| |2023)). However, this algorithm takes exponential time, as it enumerates all pos-
sible clusterings, evaluates their costs, and outputs the minimum using the cut sparsifier. Therefore,
previous works have focused on designing polynomial-time algorithms (Cohen-Addad et al.| 2021}
Assadi & Wangl [2022}; Behnezhad et al., 2022; |2023]; (Chakrabarty & Makarychevl, 2023} |(Cambus
et al |2024). Notably, |Chakrabarty & Makarychev| (2023)) and (Cambus et al.[(2024) independently
proposed single-pass (3 + ¢)-approximation algorithms recently. The former is only applicable to
insertion-only streams, whereas the latter works in the dynamic setting.

For a long time, achieving a 3-approximation has been considered a natural target in the streaming
setting, while recently (Cohen-Addad et al.| (2024b) gave a (2 — 2/13 + ¢)-approximation for this

problem under insertion-only streams in 0(25_0(1)71 log n) space. Though beautiful in theory, their
algorithm (and even its other variants that achieve better than 3 approximation) is based on local
search, while in turn requires to enumerate a large number of subsets of a constant-size set S. Such
an enumeration is considered to be quite impractical, as |S| is a very large constant. On the other
hand, all the previous (3 + ¢)-approximation algorithms in the streaming model are quite simple and
much easier for implementation. Therefore, a natural question arises:

Is it possible to obtain a practical, better-than-3-approximation algorithm for
Correlation Clustering in both insertion-only and dynamic streams?

We affirmatively answer the above question by leveraging ideas from learning-augmented algo-
rithms (LAAs). An LAA uses predictions to enhance its performance. These algorithms stem from
practical scenarios where machine learning techniques exploit data structure to exceed the worst-
case guarantees of traditional algorithms. Our LAAs fit into the category of learning-augmented
streaming algorithms (Hsu et al.,2019; Jiang et al., [2020; [Chen et al.| 2022a; |/Aamand et al., | 2023).
It is worth mentioning that both our work and previous efforts on learning-augmented streaming
algorithms mainly focus on using predictors to improve the corresponding space-accuracy tradeoffs.

Now, we describe the prediction we are considering. We assume that the algorithm has oracle

access to a predictor II : (‘2/) — [0, 1] that predicts the pairwise dissimilaritie ~ dy, between any

two vertices u and v in V. We believe such predictors are natural and arise in many situations.
Indeed, it is quite common that multiple graphs are defined over the same set of vertices. Patients
in a healthcare system can be represented by vertices, and multiple networks can be defined based
on different types of relationships, such as shared medical conditions (disease networks), visits to
the same healthcare providers (provider networks), or being part of the same clinical trials. In a
biological context, the vertex set could represent genes or proteins. One network might capture
protein-protein interactions, while another could represent gene co-expression levels. Additionally,
metabolic or signaling pathways might define other networks. It is possible to leverage machine
learning or data mining techniques to learn the pairwise (dis)similarities between nodes using one or
more of these networks. If two patients (or genes/proteins) are found to be similar in one network,
it is quite possible they will exhibit similar behavior in other networks as well. Leveraging these
similarities across networks can greatly aid in exploring the cluster structure of any newly defined
network over the same set of vertices. A similar situation arises with temporal graphs, where a
sequence of graphs over the same set of vertices has different edge sets across different time slots.
Useful information, such as vertex pairwise (dis)similarities learned in the past, can be exploited to
extract structural insights from the graph in the present or future time frames. Finally, we remark that
several other works have considered similar oracles for pairwise (dis)similarity in different contexts
(e.g., in the query model (Silwal et al.l 2023 Kuroki et al., 2024)).

By using the above predictions, we give the first LAA for Correlation Clustering that beats 3-
approximation if the predictions are good, while still achieves (3 + ¢)-approximation even if the
predictor behaves poorly. That is, our algorithm is both robust and consistent, as desired for most
natural LAAs (Mitzenmacher & Vassilvitskii, [2021). Furthermore, our algorithms are simple and
easily implementable. We will use a parameter 5 € [1, 00) to measure the quality of our predictor.
Informally, we call a predictor 3-level if the cost of the predictions induced clustering is at most a

'0n the other hand, |Assadi et al.| (2023) studied streaming algorithms using polylog n bits of space for
estimating the optimum Correlation Clustering cost, while their algorithms do not find the clustering.
*Note that one can directly treat 1 — d,,, as the pairwise similarity between u, v.

Under review as a conference paper at ICLR 2025

Table 1: Comparison of our results with the best-known space-approximation tradeoffs. Here, ¢ €
(0,1) and 8 > 1. All space complexities are measured in words. All algorithms use a single pass.

Streaming Best Space & Approximation Tradeoffs
Model (Without Predictions) Our Results
dvnamic (3 +)-approx., O(¢—nlog” n) space (min{2.063, 3} + €)-approx.,
y (Cambus et al.,[2024) O(nlog® n + e~2nlog” n) space
— - - ==0m in{2.068, 3} + £)-approx.
only | (2—2/13 + €)-approx., O(2 nlogn) space (min{) pprox.,
tnsertion-onty (Cohen-Addad et al} 2024b) O(e*nlogn) space

[factor of the cost of the optimal solution. (We refer to Definition @ for the formal definition of
a f3-level predictor.) That is, the smaller /3 is, the higher the quality of the predictor. Our results are
summarized in Table[T] Specifically, for dynamic streams, we have the following theorem. (In the
following, “with high probability” refers to the probability of at least 1 — 1/n¢ for some constant
c>0.)

Theorem 1.1. Lete € (0,1/4) and 8 > 1. Given oracle access to a (-level predictor, there exists a
single-pass streaming algorithm that provides an expected (min{2.0603, 3} + ¢)-approximation for
Correlation Clustering in dynamic streams with high probability. The algorithm uses O(n log6 n+
e~2nlog® n) words of space.

Note that our algorithm achieves a better-than-3 approximation in dynamic streams under good
prediction quality, while the previous best-known algorithm in dynamic streams is a (3 + ¢)-
approximation due to|Cambus et al.| (2024)).

Furthermore, we also obtain an algorithm in insertion-only streams, which is different from the
algorithm in dynamic streams while achieving the same approximation guarantee with improved
space complexity.

Theorem 1.2. Let e € (0,1) and 8 > 1. Given oracle access to a (-level predictor, there exists
a single-pass streaming algorithm that provides an expected (min{2.063, 3} + ¢)-approximation
for Correlation Clustering in insertion-only streams with high probability. The algorithm uses
O(e~2nlogn) words of space.

Note that it is standard to assume that the space of the oracle is not included in the space usage of our
algorithms, as is common in learning-augmented streaming algorithms (Hsu et al., 2019; Jiang et al.,
2020; |Chen et al.l [2022a; /Aamand et al., 2023). As noted in (Hsu et al.l |2019), reliable predictors
can often be learned in a space-efficient manner in practice. Furthermore, as stated before, to cluster
a graph, we may use ML methods to train some other related networks that are defined on the same
vertex set, to learn the pairwise (dis)similarities. In particular, we can learn the node embeddings
from these related networks, which map all vertices to Euclidean space. Then the distances between
these points serve naturally as pairwise dissimilarities and satisfy the triangle inequality.

To complement our theoretical results, we conduct comprehensive experiments to evaluate our algo-
rithms on both synthetic and real-world datasets. Experimental results demonstrate the superiority
of our LAAs.

1.1 TECHNICAL OVERVIEW

Our LAAs rely on the influential P1vOT algorithm by |Ailon et al.| (2008) and the LP rounding
algorithm by (Chawla et al.|(2015). The PTvOT algorithm begins by selecting a random permutation
m over the vertices of the graph. It then iteratively forms clusters by choosing the vertex with the
smallest rank according to 7, along with its neighbors in the graph. Once a cluster is formed, it is
removed from the graph. This process continues until all vertices have been assigned to clusters. The
LP rounding algorithm first solves an LP corresponding to Correlation Clustering, and then applies a
P1voT-based algorithm using the LP solution. Next, we describe our algorithms. The high-level idea
is to incorporate the above LP rounding approach with the “truncated” PTvOT algorithms (Cambus
et al |2024; (Chakrabarty & Makarychev, |2023)), where our predictions correspond to a feasible LP
solution in some sense. Specifically, for dynamic streams, we maintain a certain number of {y-
samplers during the stream and derive a truncated subgraph at the end of the stream. Then we run

Under review as a conference paper at ICLR 2025

the PIVOT algorithm and the LP rounding style algorithm on the subgraph respectively and obtain
two clusterings. Finally, we output the clustering with the lower cost. For insertion-only streams, we
employ two different methods respectively to store at most k& neighbors for each vertex during the
stream. The first method is similar to the PIVOT algorithm and the second method is similar to the
LP rounding style algorithm. Then we run the PTVOT algorithm on two stored subgraphs and output
the clustering with the lower cost. We note that the cost of a clustering cannot be exactly calculated
during the stream, since our algorithms cannot store the entire graph. Therefore, we apply the graph
sparsification techniques to approximate the clustering cost within a multiplicative factor of (1 +¢).

The analysis is non-trivial, even in insertion-only streams. We categorize all clusters into pivot
clusters and singleton clusters, and analyze their costs respectively. Our key observation is that
the truncated version of the LP rounding algorithm is equivalent to the algorithm that first samples
a subgraph G’ according to the predictions and then runs the “truncated” PIvOT algorithms on
G’. Our main technical contribution is to prove that 1) the cost of pivot clusters produced by the
truncated version of the LP rounding algorithm is at most 2.06/ times the cost of optimal solution
(Lemma[3.6]and Lemma4.2); 2) the optimal solution on G’ does not differ from the optimal solution
on the original graph G by a lot (Lemma[.3). In this way, our algorithms can keep the space small
while achieving an approximation ratio better than 3 under good prediction quality.

2 PRELIMINARIES

Notations. Throughout the paper, we let G = (V, E) be an undirected and unweighted complete
graph with |V| = n, |E| = m, where each edge is labeled as positive or negative (i.e., E =
E* U E™). In some places of the paper, we identify the input graph only with the set of positive
edges, i.e., Gt = (V, ET) and the negative edges are defined implicitly. For each vertex u € V, let
N (u) be the set of all neighbors of v and N (u) be the set of positive neighbors of u (i.e., vertices
that are connected by a positive edge). Correspondingly, let deg(u) := |N(u)| be the degree of w,
and similarly, deg™ (u) := |N*(u)|. We use coste(C) to denote the cost of the clustering C on
G. We say an algorithm achieves an a-approximation if it outputs a clustering C on G such that
OPT < costg(C) < a- OPT, where OPT denotes the cost of an optimal solution on G.

Next, we give the formal definition of a S-level predictor.

Definition 2.1 (3-level predictor). For any S > 1, we call a predictor -level, if it predicts the
pairwise dissimilarities d,,,, between any two vertices v and v in V' such that (1) (triangle inequality)
Ayy + dyy > dyy forall u,v,w € V, (2) Z(w})elﬁ Ayy + Z(WJ)GE,(l — dyy) < 3-OPT.
Intuitively, a smaller § indicates a higher-quality predictor, and in this case d,, can be used to
determine how likely u and v are in the same cluster of the optimal solution. However, we point
out that the predictions can be completely independent of the input graph. In the worst case, the
predictions can be arbitrary, which is allowed for LAAs since robustness is a desired goal.

We remark that both our definition of the S-level predictor and our algorithms are inspired by an
approximation algorithm given by [Chawla et al.|(2015), who give an LP based algorithm for Corre-
lation Clustering achieving 2.06-approximation and in some sense, the 3-level predictor corresponds
to a solution to the LP in|Chawla et al.|(2015).

Due to space limitations, we introduce the useful tools utilized in this paper in Appendix [B]

3 OUR ALGORITHM IN DYNAMIC STREAMS
3.1 OFFLINE IMPLEMENTATION

Overview. For ease of illustration of ideas, we first describe our algorithm in the offline setting. The
overall framework is similar to (Cambus et al.,[2024). The algorithm takes Gt = (v, E+) as input.
Initially, we pick a random permutation 7 over the set of vertices. Then we divide all vertices into
interesting and uninteresting vertices based on the relationship between the rank and the positive
c nlogn (OI'

degree of a vertex. Specifically, a vertex u is uninteresting if m,, > 7, where 7, := £ - Joat (1)
c . nlogn

equivalently deg™ (u) > o, where o, = £ “2%), and interesting otherwise. Here, € € (0,1/4)
and c is a universal large constant. Finally we run two pivot-based algorithms on the subgraph Goe
induced by the set of interesting vertices and output the clustering with the lower cost. We defer its
pseudocode (Algorithm [2) to Appendix [C|

Note that in the clustering phase, we apply two pivot-based approaches on the truncated graph Gyore:
Algorithms TRUNCATEDPIVOT and TRUNCATEDPIVOTWITHPRED.

Under review as a conference paper at ICLR 2025

Algorithm TRUNCATEDPIVOT. This algorithm simulates the Parallel Truncated-Pivot algorithm
by (Cambus et al.| (2024) and produces the same clustering. This algorithm proceeds in iterations.
Let U denote the set of unclustered vertices in Glore at the beginning of iteration ¢. Initially, all
the interesting vertices are unclustered. At the beginning of iteration ¢, if U # 0, then we pick
the vertex u from U(*) with the smallest rank. Then we mark it as a pivot and create a pivot cluster
S containing v and all of its unclustered positive neighbors in Gygre. At the end of iteration ¢,
we remove all vertices clustered in this iteration from U(*). Then the algorithm proceeds to the next
iteration. If U¥) = () at the beginning of iteration ¢, then we know that all the interesting vertices
are clustered. Now it suffices to assign each uninteresting vertex to a cluster. Each uninteresting
vertex u joins the cluster of pivot v with the smallest rank if (u,v) € E* and 7, < 7,. Then
each unclustered vertex u € V creates a singleton cluster. Finally, we output all pivot clusters and
singleton clusters. We defer its pseudocode (Algorithm [3) to Appendix[C|

Algorithm TRUNCATEDPIVOTWITHPRED. This algorithm has oracle access to a [3-level pre-
dictor II. The algorithm closely resembles Algorithm TRUNCATEDPIVOT. The differences are as
follows: (1) At iteration ¢, we create a pivot cluster S() containing v and add all the unclustered
vertices v in Gyre to S with probability (1 — puy) independently, where p,, = f(dy,) and
dyy = H(u,v). If (u,v) € ET, then f(dyy) = f1(duy); otherwise f(dyy) = [~ (duy). We set

2
fHa) tobe 0if z < a, (”g:g) if € [a,b], and 1if = > b, where a = 0.19 and b = 0.5095;

we set f~(x) = z. (2) Each uninteresting vertex u joins the cluster of pivot v in the order of 7
with probability (1 — py,) independently, if 7, < 7,. We defer its pseudocode (Algorithm {4} to

Appendix
In Section[3.3] we will prove the following theorem that gives a theoretical guarantee of the offline
algorithm.

Theorem 3.1. Lete € (0,1/4) and 5 > 1. Given oracle access to a [3-level predictor, Algorithm[Z]
provides an expected (min{2.063, 3} + ¢)-approximation for Correlation Clustering.

3.2 IMPLEMENTATION IN DYNAMIC STREAMS

In this subsection, we implement the offline algorithm in dynamic streams, as shown in Algorithm[I]
A key observation is that it suffices to store the positive edges incident to interesting vertices since we
apply pivot-based algorithms on the subgraph induced by interesting vertices and then try to assign
uninteresting vertices to pivot clusters. To this end, we maintain a certain number of £y-samplers for
each vertex, which can be achieved in the dynamic semi-streaming model (Jowhari et al.,[2011). As
we will see in the analysis, the £y-samplers allow us to recover the edges incident to all the interesting
vertices with high probability. Thus we can simulate the clustering phase of the offline algorithm.
Specifically, we simulate Algorithms TRUNCATEDPIVOT and TRUNCATEDPIVOTWITHPRED using
the stored information, and output the clustering with the lower cost.

Note that in the final step, the cost of a clustering cannot be exactly calculated, as our streaming
algorithm cannot store the entire graph. To overcome this challenge, we borrow the idea from
(Behnezhad et al.,|2023)) and utilize the graph sparsification technique (Ahn et al.,[2012)) to estimate
the cost. Specifically, during the streaming phase, we maintain a cut sparsifier H* for the subgraph
G*. Let AGM-SPARSIFICATION be any algorithm for constructing a cut sparsifier that satisfies
the guarantee in (Ahn et al.| 2012) (see Appendix [B). For each item s; = (e; = (u,v), 4;) in the
dynamic stream, where A; € {—1,1} indicates the insertion or deletion of e;, we apply AGM-
SPARSIFICATION(H ™, s;) to determine whether (u,v) belongs to H™ and, if so, its corresponding
weight in HT. We also maintain the positive degree deg™ (u) of each vertex u. Then we can
approximate the cost of a clustering up to a (1 & €)-multiplicative error with high probability.

3.3 PROOF OF THEOREM[3.1]

As the final clustering produced by the offline algorithm is the lower-cost one produced by two
pivot-based algorithms, we start by analyzing the costs of these two clusterings (i.e., Lines[5|and[6|of
Algorithm[2)). For ease of analysis, we separately examine the approximation ratios of the equivalent
versions (Algorithms CKLPU-PI1vOT and PAIRWISEDISS) that produce these two clusterings.

Algorithm CKLPU-PI1vOT (Algorithm 4 in (Cambus et al., 2024)). This algorithm proceeds in
iterations. Let U(*) denote the set of unclustered vertices at the beginning of iteration ¢. Initially, we

Under review as a conference paper at ICLR 2025

Algorithm 1 A dynamic streaming algorithm for Correlation Clustering with predictions

Input: Graph G* = (V, E™) as an arbitrary-order dynamic stream of edges, oracle access to a
B-level predictor IT
Output: Partition of V' into disjoint sets
> Preprocessing phase
: Pick a random permutation of vertices 7 : V' — {1,...,n}.
: for each vertex u € V do
Let deg™ (u) ¢ 0. Mark u as unclustered and interesting.

Leto, = g . %, where c is a universal large constant.
Initialize 10clogn - o,, independent ¢y-samplers (with failure probability 1/10) for the ad-

jacency vector of u (the row of the adjacency matrix of G that corresponds to).

6: Initialize a cut sparsifier HT for GT.
> Streaming phase
7: for each item s; = (e; = (u,v), A;) in the dynamic stream do
Update deg ™ (u), deg™ (v) and all the £o-samplers associated with u and v.
9: Apply AGM-SPARSIFICATION(H T s;).
> Postprocessing phase
10: A vertex u marks itself uninteresting if deg™ (u) > .
11: Retrieve all incident edges of interesting vertices (with high probability) using the ¢, samplers.
12: Let Gore be the graph induced by the interesting vertices.
13: C; < TRUNCATEDPIVOT(G™, Gytore,)
14: Co + TRUNCATEDPIVOTWITHPRED (G, Gyore, , I1)

15: costa(C1) ¢ Peec, (30m+(C) + (§)) = 5 L yec deg™ (w)
16: cost(C2) < Yoee, (30m+(C) + (1) = 132, cc deg™ (w))

17: i < argmin;— o{cost(C;)}.
18: return C;

Dok e

o]

pick a random permutation 7 over vertices, and all the vertices are unclustered. At the beginning
of iteration ¢, let /; = < - ”liﬁ. Each unclustered vertex v with deg™ (v) > ¢; creates a singleton
cluster. We pick the ¢-th vertex u in 7. If u is unclustered, then we mark it as a pivot and create a
pivot cluster S() containing v and all of its unclustered positive neighbors. At the end of iteration
t, we remove all vertices clustered in this iteration from U*). Then the algorithm proceeds to the
next iteration. Finally, we output all pivot clusters and singleton clusters. We defer its pseudocode
(Algorithm [5) to Appendix

Algorithm PAIRWISEDISS. This algorithm has oracle access to a S-level predictor II. The only
difference from Algorithm CKLPU-PIVOT is that at iteration ¢, we create a pivot cluster S(*) con-

taining u and add all unclustered vertices v to S() with probability (1 — p,,) independently, where
Puv = f(duv) and dyy = II(u, v). We defer its pseudocode (Algorithm [6)) to Appendix [C|

3.3.1 THE OFFLINE ALGORITHM AS A COMBINATION OF CKLPU-PIVOT AND PAIRWISEDISS
We first show that if the offline algorithm (Algorithm[2) and Algorithm CKLPU-PIVOT (resp. PAIR-

WISEDISS) use the same randomness, then Algorithm CKLPU-PIVOT (resp. PAIRWISEDISS) and
Line 5| (resp. Line[6) of Algorithm 2]output the same clustering.

Lemma 3.2 (Lemma 8 in[Cambus et al.|(2024)). If Algorithm[2land Algorithm CKLPU-PIVOT use
the same permutation 7, then Algorithm CKLPU-PIVOT and Line 3| of Algorithm[2 output the same
clustering of V.

Lemma 3.3. If Algorithm [2] and Algorithm PAIRWISEDISS use the same permutation 7 and pre-
dictions {dyy }uvev, then Algorithm PAIRWISEDISS and Line @ of Algorithm |2| output the same
clustering of V' with the same probability.

3.3.2 THE APPROXIMATION RATIOS OF CKLPU-PIvVOT AND PAIRWISEDISS

Now it suffices to analyze Algorithm CKLPU-PIvOT and Algorithm PAIRWISEDISS respectively.
We follow the analysis framework in (Cambus et al., [2024). Specifically, we analyze the cost of
pivot clusters and singleton clusters, respectively. For the former, we can directly apply the analysis

Under review as a conference paper at ICLR 2025

of original pivot-based algorithms (Ailon et al.,[2008;|Chawla et al.| 2015), where we only focus on
a subset of vertices (i.e., V' \ Vi, where Vg, is the set of singletons). For the latter, we divide all the
positive edges incident to singleton clusters (denoted as Ej;,) into good edges (denoted as Egooq) and
bad edges (denoted as Fy,.q). Specifically, we define an positive edge incident to a singleton cluster
to be good if the other endpoint was included in a pivot cluster before the singleton was created.
Otherwise, the edge is bad. In other words, bad edges are those that either connect two singletons
or the other endpoint was included in a pivot cluster after the singleton was created.

In this way, we can charge the cost of good edges to the cost of pivot clusters. Therefore, it suffices
to bound the cost of bad edges. The following lemma shows that we can relate the cost of bad edges
to the cost of pivot clusters, and thus bound the cost of the final clustering.

Lemma 3.4 (Cambus et al[(2024)). Let e € (0,1/4). Let P denote the cost of pivot clusters, and
let W denote the cost of the clustering returned by the algorithm, then E[W] = E[P + |Ep.|] <
(1+4¢) - E[P] + X2 where a :=¢/2 — 1> 2.

na—2»

Now we are ready to analyze the approximation ratios of Algorithms CKLPU-PIVOT and PAIR-
WISEDISS. We have the following lemma, which states the approximation guarantee of Algorithm
CKLPU-P1VOT, and thus that of the clustering returned by Line[5| of Algorithm 2}

Lemma 3.5 (Cambus et al.| (2024)). Let ¢ € (0,1/4). Let Cy denote the clustering returned by
Line@ofAlgorithm then E[costc(C1)] < (3 +12¢) - OPT + 15 where o :=¢/2 — 1> 2.

Next, we focus on the analysis of Algorithm PAIRWISEDISS.

Lemma 3.6. Let P> denote the cost of pivot clusters returned by Algorithm PAIRWISEDISS. We
have E[P,] < 2.065 - OPT.

Proof. Consider iteration ¢ of Algorithm PAIRWISEDISS, if vertex u considered in this iteration
is unclustered (i.e., v € U®), then we call iteration ¢ a pivot iteration. The key observation
is that the pivot iterations in Algorithm PAIRWISEDISS are equivalent to the iterations of 2.06-
approximation LP rounding algorithm by [Chawla et al.|(2015): given that u is unclustered (i.e.,
uelU (t))’ the conditional distribution of w is uniformly distributed in U (), and the cluster created
during this iteration contains « and all the unclustered vertices v added with probability (1 — py,).
Therefore, we can directly apply the triangle-based analysis in (Chawla et al., |2015). Define
L =3 mept Quw + 2 mep- (1 — duy). Since the predictor is 3-level, by Definition
we have that the predictions {dy, }u vev satisfy triangle inequality and L < § - OPT. Tt fol-
lows that for all pivot iterations ¢, E[Pz(t)} < 2.06 - E[L"], where Pz(t) is the cost induced by the
pivot cluster created at iteration ¢, and L") := 37, ' pirpo duv + Xy pen-npo (1 = duv)
where E®) is the set of edges decided at iteration t. By linearity of expectation, we have
E[P,] = E| P E[P{"] < 2.06 - L < 2.063 - OPT. O

Et is a pivot iteration = Zt is a pivot iteration
Corollary 3.7. Let e € (0,1/4). Let Cy denote the clustering returned by Line[6|of Algorithm[2] We
have E[costa(C2)] < (2.0683 + 8.2453¢) - OPT + e where o :=¢/2 — 1> 2.

no—2»

Proof of Theor Theorem [3.1] follows from Lemma [3.3] Corollary [3.7]and Lemma [D.3] Note
3.5

that in Lemma 3.5] we can substitute €’ := 12¢, where ¢ can be arbitrarily small. If OPT > 1, then
E[coste(C1)] < (3+12¢)-OPT, which gives a (3+¢’)-approximation in expectation. If OPT = 0,
then E[cost(C1)] = 1/ poly(n). Similarly, in Corollary 3.7} we can substitute ¢’ := 8.248s. [

4 AN ALGORITHM IN INSERTION-ONLY STREAMS WITH SMALLER SPACE

Overview. We first briefly describe a single-pass (3 +)-approximation streaming algorithm by
Chakrabarty & Makarychev|(2023). Initially, the algorithm adds a positive self-loop for each vertex
and picks a random ordering 7 : V' — {1, ..., n}. The rank of u is denoted as 7,,. Then it scans the
input stream. For each vertex, the algorithm stores its k positive neighbors with lowest ranks, where
k is a constant. Subsequently, it runs the PIVOT algorithm (Ailon et al., [2008) on the stored graph
and picks pivots in the order of 7. Finally, it puts unclustered vertices in singleton clusters.

Our main idea is to incorporate the above algorithm with the algorithm from |Chawla et al.| (2015).
Our algorithm uses the predictions of pairwise dissimilarities between any two vertices. We employ
two different methods to store at most k neighbors of each vertex. The first method is the same as

Under review as a conference paper at ICLR 2025

Chakrabarty & Makarychev| (2023)) and the second method is adapted from |Chawla et al.| (2015),
which adds neighbors with probabilities determined by predictions of pairwise dissimilarities. Fi-
nally, we obtain two clusterings (denoted as C; and Cz) and output the one with the lower cost.
Similar to Algorithm[T] here we also need to use the graph sparsification technique (Kelner & Levin|
2011) to approximate the cost of a clustering.

4.1 PROOF SKETCH OF THEOREM 2]

As the final clustering produced by the algorithm is the lower-cost clustering on the two truncated
graphs, we start by analyzing the costs of these two clusterings. Similar to the analysis of Algo-
rithm 2] for ease of analysis, we separately examine the approximation ratios of the corresponding
offline versions (Algorithms CM-PI1vOT and PAIRWISEDISS2) that equivalently output these two
clusterings. We defer the proof of equivalence to Appendix [

Algorithm CM-P1voT (Chakrabarty & Makarychev}, 2023). This algorithm proceeds in iterations.
Let F'(!) denote the set of fresh vertices and U(") denote the set of unclustered vertices at the begin-
ning of iteration ¢. Additionally, we maintain a counter K (*)(u) for each vertex u € V. Initially,
all the vertices are fresh and unclustered, with the counters set to 0. At iteration ¢, we pick a vertex
w® from the set of fresh vertices F(*) uniformly at random. If w® is unclustered, then we mark
it as a pivot and create a cluster S(*) containing w(*) and all of its unclustered positive neighbors.
Otherwise, we increment the counters for all unclustered positive neighbors of w(*). Subsequently,
vertices whose counters reach the value of k are assigned to singleton clusters. At the end of iteration
t, we remove w(®) from F(*) and remove all vertices clustered in this iteration from U(*). Then the

algorithm proceeds to the next iteration. Finally, we output all pivot clusters and singleton clusters.
We defer its pseudocode (Algorithm[9)) to Appendix [E]

Algorithm PAIRWISEDISS2. This algorithm has oracle access to a [3-level predictor II. This
algorithm closely resembles Algorithm CM-P1vOT, differing in the following two aspects: (1) If
w® € UM, then we create a cluster S*) containing w(*) and add all unclustered vertices v to S*)
with probability (1 — p,,,) independently, where p,) = f(dyw) and dy) = (v, w®). (2)
If w®) ¢ U®, we increment the counters for all unclustered vertices v with probability (1 —p,,«).
We defer its pseudocode (Algorithm[I0) to Appendix [E]

We rely on the analysis framework in|Chakrabarty & Makarychev| (2023)). We categorize all itera-
tions into pivot iterations and singleton iterations. Both iterations create some clusters. We call the
clusters created in pivot iterations pivot clusters. Let P denote the cost of all pivot clusters. There-
fore, P =3, i a pivot iteration £ (). Let S denote the cost of all singleton clusters. Therefore, the cost
of the algorithm is equal to P 4 .S. We have the following guarantee of Algorithm CM-PIVOT.

Lemma 4.1. Let P, and Sy denote the costs of pivot clusters and singleton clusters, respectively,
returned by Algorithm CM-PIVOT. Then E[cost(C1)] = E[P1 4+ $1] < (34 %) - OPT.

Next, we analyze Algorithm PAIRWISEDISS2. We first bound the cost of pivot clusters.

Lemma 4.2. Let P, denote the cost of pivot clusters returned by Algorithm PAIRWISEDISS2. We
have E[P,] < 2.065 - OPT.

Next, we bound the cost of singleton clusters returned by Algorithm PAIRWISEDISS2, denoted
as So. We highlight that this part is non-trivial. Different from the analysis in |Chakrabarty &
Makarychev|(2023)) which uses a potential function and shows that it is a submartingale, we consider
an algorithm equivalent to Algorithm PAIRWISEDISS2. In this algorithm, we construct a random
subgraph G’ := (V, E'* U E'~) where each edge (u,v) € E is added to E'* with probability
(1 — pyy) and added to E'~ with the remaining probability. Then we perform Algorithm CM-
PIvoT on G’. In other words, we first preround the S-level predictions {dyy }u vey into an new
instance G’ and then run Algorithm CM-PIvOT on G’ where the positive edges are induced by the
predictions. We defer its pseudocode (Algorithm[TT)) to Appendix [E]

Therefore, we can apply the guarantee of the cost of singleton clusters returned by Algorithm CM-
PIvOT on G’. We first show that G’ still well preserves the cluster structure of G, by showing that
the optimal solution on G’ does not differ from the optimal solution on G by a lot.

Lemma 4.3. E[OPT'] < (28 + 1) - OPT, where OPT is the cost of the optimal solution on G and
OPT' is the cost of the optimal solution on G'.

Under review as a conference paper at ICLR 2025

Proof. Let C* be the optimal clustering on G with cost OPT. For any u,v € V, let 2, € {0,1}
indicate whether u and v are in the same cluster or not in C*. Specifically, if u and v are in the same

cluster in C*, then z,,, = 0; otherwise, =}, = 1. Let C"* be the optimal clustering on G’ with cost

OPT’. Then we have
E[OPT'] = E[coste (C'™)] < E[costg (C*)]
= Z [x:v(l - puv) + (1 - x:;v)puv] + Z [x;kw(l - puv) + (1 - $Zv)puv]

(u,v)EE+ (u,v)EE—
= D awt Y A-an)+ Y e -2w)l Y (1 pu) (24, — 1))
(u,v)eEt (u,v)EE~ (u,v)eE* (u,v)EE~
S OPT + Z Puv + Z (1 - puv)
(u,v)EET (u,v)EE—
< OPT+ Y 2dyy+ Y. (1—duw) < (1+28)-OPT,
(u,v)EET (u,v)EE~

where the first step follows from costg(C'™) = OPT’, the second step follows from that C'* is
the optimal clustering on G’, the third step follows from our construction of G’, the fifth step fol-
IOWS frOm Z(u,v)€E+ I:U + Z(u,v)EE‘(l - ITLU) = OPT and Z(u,v)EE+[UU(l - 217;;1))] +
Z(u,v)eE_ [(1=puv) (227, —1)] < Z(uﬂ,)eE%— pouFZ(u,v)eE— (1=puo) since 1227, € {—1,1},
the sixth step follows from our choice for p,,, and the last step follows from > (u,0) € B+ 2dy0 +

Z(u,v)eE— (1 - dm)) S Q(Z(uﬂ;)eE%— duv + Z(U,U)EE_ (1 - dm;)) S Qﬂ . OPT D

Now we are ready to bound the cost of singleton clusters and, consequently, the final clustering
returned by Algorithm PAIRWISEDISS2.

Lemma 4.4. E[S;] < % -OPT.
Corollary 4.5. E[coste(Co)] = E[P; + So] < (2.068 + G2y . OpT.

Therefore, the approximation guarantee of our algorithm in insertion-only streams follows from
Lemma [.1] Corollary .5]and Lemma [D.3] once we show that the algorithm is an equivalent com-
bination of Algorithms CM-P1vOT and PAIRWISEDISS2.

5 EXPERIMENTS

In this section, we evaluate our proposed algorithms empirically on synthetic and real-world
datasets. All of our experiments are done on a CPU with i7-13700H processor and 32 GB RAM. All
of our algorithms are implemented in Python. For all results, we report the average clustering cost
over 20 independent trials. Our source code is available in the supplementary material.

Datasets. 1) Synthetic datasets. These datasets are generated from the Stochastic Block Model
(SBM). We use the model to plant ground-truth clusters. It samples positive edges between vertex
pairs within the same planted cluster with probability p, and samples positive edges across different
clusters with probability (1 —p). In the main text, we set p = 0.95. 2) Real-world datasets. We use
EMAILCORE (Leskovec et al., 2007} |Yin et al., 2017), FACEBOOK (McAuley & Leskovec, 2012)
and LASTFM (Rozemberczki & Sarkar, [2020) datasets. We refer to Appendix for detailed
descriptions. For simplicity, for all datasets, we only simulate insertion-only streams of edges.

Predictor description. 1) Noisy predictor. We use this predictor for datasets with available optimal
clusterings. We form this predictor by performing perturbations on optimal clusterings. 2) Spectral
clustering. We use this predictor for EMAILCORE and LASTFM. It first maps all the vertices to
a d-dimensional Euclidean space using the graph Laplacian, then clusters all the vertices based on
their embeddings. For any two vertices u,v € V, we form the prediction d,,,, based on the spectral
embeddings of u and v. We refer to Appendix [G.2] for detailed descriptions.

Baselines. 1) (3 + ¢)-approximation non-learning counterparts. For our algorithm in dynamic
streams, the counterpart is Algorithm CKLPU24 (Cambus et al.l 2024)); for insertion-only streams,
the counterpart is Algorithm CM23 (Chakrabarty & Makarychev, 2023). 2) The agreement de-
composition algorithm CLMNPT21 (Cohen-Addad et al.,[2021). Though the approximation ratio

Under review as a conference paper at ICLR 2025

g —— OPT
o CKLPU24

CLMNPT21
~- Algorithm 1

Clustering Cost
ey

Clustering Cost / OPT

,,,,,,,

—— OPT
CKLPU24

CLMNPT21
—+- Algorithm 1

vvvvvv

=" —— opT

cm23

CLMNPT21

—e- Algorithm 7
v Algorithm 1

Clustering Cost

Clustering Cost / OPT

—— oPT

cm23
""" CLMNPT21
—e-- Algorithm 7
v+ Algorithm 1

200 225 250 275
Prediction Quality (beta)

(a) n = 1000, vary 3
(Algorithm [T)

300 325 350 375

0 500 1000 1500 2000 2500
n

(b) 6 ~ 2.8, vary n
(Algorithm [T)

200 225 250 275 300 325 350 3.75

Prediction Quality (beta)

(c) n = 1000, vary 3
(Algorithm[7)

0 500 1000 1500 2000 2500
n

(d) B~ 2.8, vary n
(Algorithm[7)

Figure 1: Performance of our algorithms on synthetic datasets with SBM parameter p = 0.95. We
examine of the effect of prediction quality 5 and graph size n. We set k = 10 for Algorithm

26d2

e 102
. 110

.,

Clustering Cost
.
«

g — OPT

~, CKLPU24
CLMNPT21
—+- Algorithm 1

Clustering Cost

—— opT

CKLPU24

rrrrr CLMNPT21 o

—e- Algorithm 1 _o—="""
P

St

Clustering Cost

1.05

e
P&

\

—— OPT

e CKLPU24
CLMNPT21
~e Algorithm 1

s o
.

°

°

Clustering Cost

CKLPU24 ~
CLMNPT21
—e- Algorithm 1

\
»

11 16

T2 13 1a 15
Prediction Quality (beta)

(a) FB 0, vary 8

106 108 110 112 114 116
Prediction Quality (beta)

(b) FB 414, vary 8

105 110 115 120 135 130
Prediction Quality (beta)

(c) FB 3980, vary 3

500 650 700 750 800 850 960 950 1000
Embedding Dimension

(d) EMAILCORE, vary d

Figure 2: Performance of Algorithm|l|on real-world datasets. Figures — show the effect of 8
on FACEBOOK subgraphs. Figure 2[(d) shows the effect of the dimension d of spectral embeddings
on EMAILCORE. Note that a larger d indicates higher prediction quality (i.e., a smaller 3).

in theory is large (= 701), this algorithm has been shown to give high-quality solutions in practice.
Note that this algorithm only works for insertion-only streams and requires multiple passes. For a
fair comparison, we ensured that all baselines were implemented with equal effort.

Results on synthetic datasets. Figure [T] shows the performance of our algorithms on synthetic
datasets. 1) Varying 5. We first examine the effect of 3 (see Figures and (). We can see
that when 3 is small, the cost of our algorithms is significantly lower than that of the (3 + ¢)-
approximation non-learning counterparts. Even when £ is large, our algorithms do not perform
worse than theirs. Notably, we observe that the algorithm of CLMNPT21 outputs the optimal
solution. We attribute this to the fact that the SBM graphs contain many dense components, which
makes them well-suited for the algorithm. 2) Varying n. Furthermore, we investigate whether our
algorithms scale well with graph size (see Figures [I|{b) and (d)). To clearly present our results,
we calculate the ratio between the cost of each algorithm and the optimal solution. The result
demonstrates that our algorithms perform well consistently as the graph size increases.

Results on real-world datasets. Figure [2] shows the performance of our algorithm in dynamic
streams (Algorithm [1)) on real-world datasets. The results demonstrate that under good prediction
quality, Algorithm T|consistently outperforms other baselines across all datasets used. For example,
in Figure 2ffa), when 3 ~ 1.2, the average cost of our algorithm is 15% lower than that of CLM-
NPT21 and 22% lower than that of CKLPU24. Besides, in Figure [2J{d), our algorithm reduces the
clustering cost by up to 14% compared to CLMNPT21. Even in case of poor predictions, Algo-
rithm does not perform worse than the (3 + €)-approximation counterparts without predictions.

6 CONCLUSION

We present the first LAAs for Correlation Clustering in the streaming setting by leveraging
[B-level predictions. Specifically, we provide single-pass streaming algorithms that achieve a
(min{2.063, 3} + ¢)-approximation for Correlation Clustering in both insertion-only and dynamic
streams. In particular, our algorithm in the dynamic setting is the first better-than-3-approximation
algorithm for Correlation Clustering in this context. Additionally, our algorithm is quite simple and
easy for implementation. There are many interesting future research directions, such as achieving
better space-approximation trade-offs with predictions than the standard setting, and finding more
applications of prediction-based graph sparsification or sampling.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Anders Aamand, Justin Y. Chen, Huy L& Nguyen, Sandeep Silwal, and Ali Vakilian. Improved
frequency estimation algorithms with and without predictions. In Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neural Information Processing Systems
(NeurlIPS), 2023.

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and
subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pp. 5-14. ACM, 2012.

Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth. Correla-
tion clustering in data streams. Algorithmica, 83(7):1980-2017, 2021.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
and clustering. J. ACM, 55(5):23:1-23:27, 2008.

Spyros Angelopoulos, Christoph Diirr, Shendan Jin, Shahin Kamali, and Marc P. Renault. Online
computation with untrusted advice. J. Comput. Syst. Sci., 144:103545, 2024.

Antonios Antoniadis, Christian Coester, Marek Elids, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. ACM Trans. Algorithms, 19(2):19:1-19:34, 2023a.

Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online match-
ing problems with machine learned advice. Discret. Optim., 48(Part 2):100778, 2023b.

Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering via
sparse-dense decompositions. In /3th Innovations in Theoretical Computer Science Conference
(ITCS), volume 215 of LIPIcs, pp. 10:1-10:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, 2022.

Sepehr Assadi, Vihan Shah, and Chen Wang. Streaming algorithms and lower bounds for estimating
correlation clustering cost. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems (NeurIPS), 2023.

Etienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
mented algorithms. In Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), 2020.

Siddhartha Banerjee, Vincent Cohen-Addad, Anupam Gupta, and Zhouzi Li. Graph searching with
predictions. In /4th Innovations in Theoretical Computer Science Conference (ITCS), volume
251 of LIPIcs, pp. 12:1-12:24. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56:
89-113, 2004.

Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate correla-
tion clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pp. 720-731. IEEE, 2022.

Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming algo-
rithms for correlation clustering. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 819-849. SIAM, 2023.

Jan van den Brand, Sebastian Forster, Yasamin Nazari, and Adam Polak. On dynamic graph algo-
rithms with predictions. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 3534-3557. SIAM, 2024.

Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-augmented
maximum independent set. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), volume 317 of LIPIcs, pp. 24:1-24:18. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024.

11

Under review as a conference paper at ICLR 2025

Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A (3 + ¢)-approximate
correlation clustering algorithm in dynamic streams. In Proceedings of the 2024 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2861-2880. SIAM, 2024.

Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl.
Understanding the cluster linear program for correlation clustering. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing (STOC), pp. 1605-1616. ACM, 2024.

Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to webpage
segmentation. In Proceedings of the 17th International Conference on World Wide Web, WWW
2008, pp. 377-386. ACM, 2008.

Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation cluster-
ing. keep it simple! In Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), 2023.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative informa-
tion. J. Comput. Syst. Sci., 71(3):360-383, 2005.

Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal
LP rounding algorithm for correlationclustering on complete and complete k-partite graphs. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC),
pp. 219-228. ACM, 2015.

Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle and four cycle
counting with predictions in graph streams. In /0th International Conference on Learning Rep-
resentations (ICLR), 2022a.

Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms
via learned predictions. In International Conference on Machine Learning (ICML), volume 162
of Proceedings of Machine Learning Research, pp. 3583-3602. PMLR, 2022b.

Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis,
and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Re-
search, pp. 2069-2078. PMLR, 2021.

Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with sherali-
adams. In 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
651-661. IEEE, 2022.

Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated rounding
error via preclustering: A 1.73-approximation for correlation clustering. In 64th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp. 1082-1104. IEEE, 2023.

Vincent Cohen-Addad, Tommaso d’Orsi, Anupam Gupta, Euiwoong Lee, and Debmalya Panigrahi.
Max-cut with e-accurate predictions. CoRR, abs/2402.18263, 2024a.

Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan, and
Hanwen Zhang. Combinatorial correlation clustering. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing (STOC), pp. 1617-1628. ACM, 2024b.

Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Predictive flows for faster
ford-fulkerson. In International Conference on Machine Learning (ICML), volume 202 of Pro-
ceedings of Machine Learning Research, pp. 7231-7248. PMLR, 2023.

Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theor. Comput. Sci., 361(2-3):172—187, 2006.

Adela Frances DePavia, Erasmo Tani, and Ali Vakilian. Learning-based algorithms for graph search-
ing problems. In International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 238 of Proceedings of Machine Learning Research, pp. 928-936. PMLR, 2024.

12

Under review as a conference paper at ICLR 2025

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster
matchings via learned duals. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems (NeurIPS), pp. 10393-10406, 2021.

Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, and Tal Wagner.
Learning-based support estimation in sublinear time. In 9th International Conference on Learning
Representations (ICLR), 2021.

Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In /0th International Conference on Learning Representations
(ICLR), 2022.

Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned
index with provable worst-case bounds. Proc. VLDB Endow., 13(8):1162-1175, 2020.

Suprovat Ghoshal, Konstantin Makarychev, and Yury Makarychev. Constraint satisfaction problems
with advice. CoRR, abs/2403.02212, 2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.comn.

Monika Henzinger, Barna Saha, Martin P. Seybold, and Christopher Ye. On the complexity of
algorithms with predictions for dynamic graph problems. In 15th Innovations in Theoretical
Computer Science Conference (ITCS), volume 287 of LIPIcs, pp. 62:1-62:25. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2024.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations (ICLR), 2019.

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. In Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems (NeurIPS), pp. 27332743, 2021.

Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems (NeurlIPS), pp. 7400-7410, 2019.

Tangiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented data
stream algorithms. In 8th International Conference on Learning Representations (ICLR), 2020.

Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for Ip samplers, finding duplicates
in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pp. 49-58. ACM, 2011.

Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. In 28th In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs,
pp- 440-451. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2011.

Sungwoong Kim, Chang Dong Yoo, Sebastian Nowozin, and Pushmeet Kohli. Image segmentation
usinghigher-order correlation clustering. [EEE Trans. Pattern Anal. Mach. Intell., 36(9):1761-
1774, 2014.

Yuko Kuroki, Atsushi Miyauchi, Francesco Bonchi, and Wei Chen. Query-efficient correlation
clustering with noisy oracle. CoRR, abs/2402.01400, 2024.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1859-1877. SIAM, 2020.

Silvio Lattanzi, Ola Svensson, and Sergei Vassilvitskii. Speeding up bellman ford via minimum

violation permutations. In International Conference on Machine Learning (ICML), volume 202
of Proceedings of Machine Learning Research, pp. 18584—18598. PMLR, 2023.

13

https://www.gurobi.com
https://www.gurobi.com

Under review as a conference paper at ICLR 2025

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David P. Woodruff. Learning the positions in
countsketch. In /1th International Conference on Learning Representations (ICLR), 2023.

Honghao Lin, Tian Luo, and David P. Woodruff. Learning augmented binary search trees. In
International Conference on Machine Learning (ICML), volume 162 of Proceedings of Machine
Learning Research, pp. 13431-13440. PMLR, 2022.

Quanquan C. Liu and Vaidehi Srinivas. The predicted-deletion dynamic model: Taking advantage
of ML predictions, for free. CoRR, abs/2307.08890, 2023.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. J.
ACM, 68(4):24:1-24:25, 2021.

Julian J. McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural In-
formation Processing Systems (NIPS), pp. 548-556, 2012.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems (NeurIPS), pp. 462—471, 2018.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with Predictions, pp. 646—-662. Cam-
bridge University Press, 2021.

Thy Nguyen, Anamay Chaturvedi, and Huy Le Nguyen. Improved learning-augmented algorithms
for k-means and k-medians clustering. In /1th International Conference on Learning Represen-
tations (ICLR), 2023.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predictions.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 9684-9693, 2018.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In CIKM °20: The 29th ACM International
Conference on Information and Knowledge Management, pp. 1325-1334. ACM, 2020.

Atsuki Sato and Yusuke Matsui. Fast partitioned learned bloom filter. In Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Processing Systems
(NeurlIPS), 2023.

Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni. Scalable
community detection via parallel correlation clustering. Proc. VLDB Endow., 14(11):2305-2313,
2021.

Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran,
and Seyed Mehran Kazemi. Kwikbucks: Correlation clustering with cheap-weak and expensive-
strong signals. In 11th International Conference on Learning Representations (ICLR), 2023.

Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite programming.
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 526-527. SIAM, 2004.

Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, and Tim Kraska. Partitioned learned bloom filters.
In 9th International Conference on Learning Representations (ICLR), 2021.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. Knowl. Inf. Syst., 42(1):181-213, 2015.

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph cluster-
ing. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining 2017, pp. 555-564. ACM, 2017.

14

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Under review as a conference paper at ICLR 2025

A OTHER RELATED WORK

Correlation Clustering. In this paper, we focus on the minimization version of Correlation Clus-
tering (i.e., minimizing the number of disagreements), which is the most commonly studied version.
There are other variants of this problem. For example, (2004) discussed the maximization
version, which is to maximize the number of agreements, and provided a 0.766-approximation al-
gorithm via SDP. This problem is further examined on general graphs (Charikar et al.,[2005)) and on

weighted graphs (Demaine et al., 2006).

Learning-Augmented Algorithms. Learning-augmented algorithms (LAAs; also known as algo-
rithms with predictions) have been actively researched in online algorithms (Purohit et all, 2018}
Bamas et al., 2020} [Lattanzi et al.|[2020; [Im et al., 2021}, [Lykouris & Vassilvitskii, 2021} |Antoniadis
et al.,2023alb; |Angelopoulos et al., [2024), data structures (Mitzenmacher, 2018} |Ferragina & Vin-
ciguerra, aidya et al., 20215 [Lin et al.| 20225 [Sato & Matsui, [2023), graph algorithms (Dinitz
etal.,[2021;|Chen et al.,2022b; Banerjee et al., 2023}, [Lattanzi et al.,2023;[Davies et al.}[2023}; [Liu &
Srinivas| [2023; Brand et al.,[2024; |[Henzinger et al.l[2024; [DePavia et al.l 2024), sublinear-time algo-
rithms (Indyk et al.,[2019; |[Eden et al.l 2021} [Li et al., [2023)), and approximation algorithms
et al.|[2022; Nguyen et al., [2023;|Cohen-Addad et al., 2024af [Ghoshal et al.,[2024; Braverman et al.,

2024). In this paper, we focus on learning-augmented algorithms in the graph streaming model.

B USEFUL TOOLS

Our algorithms use the graph sparsification techniques, so we need the following definitions.

Definition B.1 (¢y-sampler (Jowhari et al.| 2011)). Let € R™ be a non-zero vector and § € (0, 1).
An {y-sampler for x returns FAIL with probability at most § and otherwise returns some index i

such that z; # 0 with probability |Sup}3(m)| where supp(x) = {i | #; # 0} is the support of .

The following theorem states that /p-samplers can be maintained using a single pass in dynamic
streams.

Theorem B.2 (Jowhari et al.| (2011)). There exists a single-pass streaming algorithm for maintain-
ing an Ly-sampler for a non-zero vector x € R"™ (with failure pribability) in the dynamic model
using O(log® nlog 6~") bits of space.

We can use {y-samplers to construct graph sparsifiers.

Definition B.3 (Cut sparsifier). Let H = (Vy, E) be an undirected unweighted (but not neces-
sarily complete) graph and ¢ € (0, 1), we say that a weighted subgraph H' = (Vi, By, w) is an
e-cut-sparsifier of H if forany A C Vg,

(1—e)u(A) <du(A) < (1+¢e)du(A),

where 07 (A) := |{(u,v) | u € A,v € Vg \ A}| denotes the size of the cut (A, Vy \ A) in H, and
Op(A) = Y coWe, where C = {(u,v) | u € A;v € Vg \ A}, denotes the weight of the cut
(A, Vg \ A)in H'.

Definition B.4 (Spectral sparsifier). Let H = (Vg, Ey) be an undirected unweighted (but not
necessarily complete) graph and ¢ € (0, 1), we say that a weighted subgraph H' = (Vi By, w) is
an e-spectral-sparsifier of H if for any x € R"”,

(1-ez'Lyx <x'Lpx<(l+e)x Lyx,

which is equivalent to
(1 — €)LH < Ly < (1 + E)LH,

where Ly is the Laplacian of H, and Ly is the Laplacian of H'.

It is easy to see that if H’ is an e-spectral-sparsifier of H, then H' is also an e-cut-sparsifier of H.

The following theorem states that a spectral sparsifier can be constructed using a single pass and
O(e~2nlogn) space in insertion-only streams.

15

Under review as a conference paper at ICLR 2025

Theorem B.5 (Kelner & Levin| (2011)). There exists a single-pass streaming algorithm for con-
structing an e-spectral-sparsifier of an unweighted, undirected graph in the insertion-only model
using O(e~2nlogn) space. The algorithm succeeds with high probability.

Since a spectral sparsifier implies a cut sparsifier, we can construct a cut sparsifier using a single pass
and O(¢~2nlogn) space in insertion-only streams. Let KL-SPARSIFICATION be any algorithm for
constructing a cut sparsifier that satisfies the above guarantees.

The following theorem states that a cut sparsifier can be constructed using a single pass and 5(6’271)
space in dynamic streams.

Theorem B.6 (Ahn et al.| (2012)). There exists a single-pass streaming algorithm for constructing
an e-cut-sparsifier of an unweighted, undirected graph in the dynamic model using O(n log6 n 4+
e n log5 n) space. The algorithm succeeds with high probability.

Let AGM-SPARSIFICATION be any algorithm for constructing a cut sparsifier that satisfies the guar-
antees of Theorem [B.6l

C OMITTED PSEUDOCODES OF SECTION 3]

In this section, we give the omitted pseudocodes of Section [3} Algorithm [2| Algorithm [3] Algo-
rithm 4] Algorithm [5|and Algorithm 6]

Algorithm 2 Offline implementation of our algorithm in dynamic streams

Input: Graph G = (V, ET), oracle access to a 3-level predictor IT
Qutput: Partition of V' into disjoint sets
1: Pick a random permutation of vertices 7 : V' — {1,...,n}.
2: Initially, all vertices are unclustered and interesting.
c nlogn

3: A vertex u marks itself uninteresting if 7, > 7, where 7, := £ - doa* ()"

4: Let Ggore be the graph induced by the interesting vertices.
5: Cy < TRUNCATEDPIVOT(G™, Gyore, T)

6: Co < TRUNCATEDPIVOTWITHPRED (G, Gyore, T, IT)
7: i — argmin;—; o2{coste(C;)}

8: return C;

Algorithm 3 TRUNCATEDPIVOT(G ™, H,)

Input: Graph G* = (V, E™"), induced subgraph H = (Vi, Epy) where Vg C V and Ey C E™,
permutation 7 : V — {1,...,n}
Output: Partition of V into disjoint sets
1: Let UM « Vp be the set of unclustered vertices in V.
2: Lett < 1.
3: while U®) +# () do
4: Let u € U™ be the vertex with the smallest rank.
5: Mark v as a pivot. Initialize a new pivot cluster S « {u}.
6
7
8
9

For each vertex v € U*) such that (u,v) € Ep, add v to S®),
Remove all vertices clustered at this iteration from U (),
: tt+1.
: Each vertex u € V' \ Vj joins the cluster of pivot v with the smallest rank, if (u,v) € E* and
Ty < Ty
10: Each unclustered vertex v € V' creates a singleton cluster.
11: return the final clustering C, which contains all pivot clusters and singleton clusters

16

Under review as a conference paper at ICLR 2025

Algorithm 4 TRUNCATEDPIVOTWITHPRED(G ™, H, m 1)

Input: Graph G™ = (V, ET), induced subgraph H = (Vy, Eyy) where Vg C V and Ey C E™,
permutation 7w : V' — {1,...,n}, oracle access to a 3-level predictor II
Output: Partition of V' into dlS]Olnt sets
: Let UM « Vp be the set of unclustered vertices in V.
Lett < 1.
For any u,v € V, dy,, = H(u,v).
For any u,v € V, define py,, := f(duo)-
while U®*) = () do
Let u € U® be the vertex with the smallest rank.
Mark v as a pivot. Initialize a new pivot cluster S© < {u}.
For each vertex v € U, add v to S*) with probability (1 — pyy) independently.
Remove all vertices clustered at this iteration from U (*).
t—t+1.
Each vertex u € V' \ Vg joins the cluster of pivot v in the order of 7 with probability (1 — py,)
independently, if 7, < 7.
: Each unclustered vertex u € V' creates a singleton cluster.
: return the final clustering C, which contains all pivot clusters and singleton clusters

_
e AN S G R AR S

Ju—

—_—
w N

Algorithm 5 CKLPU-P1voT(G™)
Input: Graph GT = (V,ET)
Qutput: Partition of vertices into disjoint sets
1: Pick a random permutation of vertices 7 : V' — {1,...,n}.
2: Let UM <~ V be the set of unclustered vertices.
3: fort=1,...,ndo
4: Let gt g . m

5: Letu € V be the t- th vertex in 7 (i.e., t = m,).
6: Each unclustered vertex v with deg™ () > £, creates a singleton cluster.
7. ifu e UW then
8: Mark w as a pivot. Initialize a new pivot cluster S® « {u}.
9: For each vertex v € Nt (u) N U®, add v to SO,
10: Remove all vertices clustered at this iteration from U(*).

11: return the final clustering C, which contains all pivot clusters and singleton clusters

Algorithm 6 PAIRWISEDISS(G™, II)

Input: Graph G = (V, E™), oracle access to a 3-level predictor IT
Output: Partition of vertices into disjoint sets

1: Pick a random permutation of vertices 7 : V' — {1,...,n}.

2: For any u,v € V, dy, = II(u,v).

3: For any u,v € V, define py,, := f(dys)-

4: Let UM « V be the set of unclustered vertices.

5:fort=1,...,ndo

6: Let {; < 9 - RTER logn

7: Letu € V be thet th vertex in 7 (i.e., t = my,).

8: Each unclustered vertex v with deg™ () > {, creates a singleton cluster.

9: ifue UW then
10: Mark u as a pivot. Initialize a new pivot cluster S < {u}.
11: For each vertex v € U(*), add v to S(*) with probability (1 — p,,) independently.
12: Remove all vertices clustered at this iteration from U ("),
13: return the final clustering C, which contains all pivot clusters and singleton clusters

17

Under review as a conference paper at ICLR 2025

D OMITTED PROOFS OF SECTION [3]

D.1 PROOF OF THEOREM [L.1]

Space Complexity. We first analyze the space complexity of Algorithm[I]} For each vertex u € V,
we mainly store its rank 7, positive degree deg™ (u), and 10clogn - o, independent £y-samplers.
We have the following lemma which states the space requirement of £y-samplers.

Lemma D.1 (Cambus et al.[(2024)). The {o-samplers used in Algorithm|l| require O(s~1n 10g4 n)
words of space.

Furthermore, by Theorem the AGM-SPARSIFICATION algorithm uses O(nlog®n +
E’inogf’ n) words of space. Therefore, the space complexity of Algorithm [1|is O(n log6 n +
£ 2nlog” n) words.

Approximation Guarantee. Next, we analyze the approximation ratio of Algorithm |l We rely
on the following lemma.

Lemma D.2 (Lemma 2 in|[Cambus et al.|(2024)). The {y-samplers allow us to recover the positive
edges incident to all interesting vertices with high probability.

Therefore, Algorithm |l| works with the same set of edges as Algorithm [2|in the clustering phase
with high probability. This implies that both algorithms return the same clustering with the same
probability. On the other hand, if the high probability event of Lemma [D.2] does not happen, then
Algorithm |1| produces a clustering of cost at most O(n?), which leads to an additive 1/ poly(n)
term to the expected cost of Algorithm [I] compared to that of Algorithm [2] This preserves the
approximation ratio if OPT # 0.

We also need the following lemma which shows that the estimate cAogcg(C) well approximates the
cost of any clustering C of G.

Lemma D.3 (Behnezhad et al.| (2023)). Let ¢ € (0, 1). For any clustering C of V, the cost costg(C)
is approximated by the estimate costq(C) = > ocec (%5H+)+ (‘gl) -3 uec deg+(u)) up
to a multiplicative factor of (1 £ ¢€).

Therefore, Theorem [I. 1] follows from Lemma[D.2]and Lemma[D.3|by applying the union bound.

D.2 PROOF OF LEMMA [3.3]

The proof is similar to that of Lemma [3.2] The proof idea is as follows: we first show that in
both cases, the singleton clusters V;, are the same (with the same probability). Then we show
that the randomized pivot-based algorithm runs on the same subgraph G*[V \ V] (with the same
probability) in both cases, therefore outputting the same pivot clusters (with the same probability).

Consider a vertex w that is unclustered at the beginning of iteration ¢ (<), and becomes a single-
ton cluster due to Line [§of Algorithm PAIRWISEDISS. By definition, ¢ is the smallest integer such
that deg™ (u) > ¢ - "liﬁ and hence t = [7,]. Since t < m,, we have deg™® (u) > < - ”1;%, which
corresponds to u becoming uninteresting in Algorithm[2] Since w is in a singleton cluster, it did not
join any pivot cluster, implying that for any vertex v # wu, either (1) 7, > t, or (2) the event that v is
a pivot and w joins the cluster of v satisfying 7, < ¢ does not happen. This is equivalent to saying
that the event that u joins the cluster of pivot v satisfying 7w, < 7, does not happen, since 7, is an
integer. By Line [l 1| of Algorithm TRUNCATEDPIVOTWITHPRED, u creates a singleton cluster in
Line [6] of Algorithm [2](with the same probability) as well.

Now consider a vertex u that creates a singleton cluster in Line [6] of Algorithm 2] Then w must
be marked uninteresting (implying 7, > T,), and u can neither be a pivot nor join the cluster

of pivot v satisfying m, < 7,. By definition of T, iteration [7,] is the smallest iteration such
that deg ™ (u) > ¢ - "Hfig{b. This implies that is unclustered at the beginning of iteration [, | in
Algorithm PAIRWISEDISS, and forms a singleton cluster in that iteration (with the same probability).
Since the vertices forming singleton clusters are the same in both cases (with the same probability),

the subgraph induced by the remaining vertices G [V \ Vy;,] is the same (with the same probability).

18

Under review as a conference paper at ICLR 2025

The same randomized pivot-based algorithm runs on G* [V \ V] in both cases, which implies that
the pivots will be the same (with the same probability). Finally, we observe that in both cases, a
non-pivot vertex u joins the cluster of pivot v such that 7w, < 7, in the order of 7 with probability
(1 — puy) independently. Hence, the pivot clusters are the same (with the same probability).

D.3 PROOF OF COROLLARY [3.7]

Corollary [3.7] follows from Lemma Lemma[3.4]and Lemma

E OMITTED PSEUDOCODES OF SECTION [4]

In this section, we give the omitted pseudocodes of Section [} Algorithm [7] Algorithm [§] Algo-
rithm 0] Algorithm [I0]and Algorithm[TT]

Algorithm 7 An insertion-only streaming algorithm for Correlation Clustering with predictions

Input: Complete graph G = (V, E = ET U E™) as an arbitrary-order stream of edges, oracle
access to a 3-level predictor H integer k

Output: Partition of V' into disjoint sets

> Preprocessing phase

Pick a random permutation of vertices 7 : V. — {1,...,n}.

For any u,v € V, dy,, = (u,v).

For any u,v € V, define py,, := f(duy).

for each vertex u € V do
Create a priority queue A(u) with a maximum size of k and initialize A(u) < {u}.
Create a priority queue B(u) with a maximum size of k and initialize B(u) < {u}.
deg™(u) <0

Initialize a cut sparsifier H for the subgraph G* = (V, ET).

> Streaming phase

9: for each edge e = (u,v) € E do
10: if e = (u,v) € ET then

P RN RNT

11: Add uto A(v). Add v to A(u).

12: if |A(u)| > k (resp. |A(v)| > k) then

13: Remove the vertex with the highest rank from A(u) (resp. A(v)).
14: deg™ (u) < deg™t(u) + 1,deg™ (v) < degt(v) + 1

15: Apply KL-SPARSIFICATION(H T €).

16: With probability (1 — pyy), add u to B(v) and add v to B(u).

17: if | B(u)| > k (resp. |B(v)| > k) then

18: Remove the vertex with the highest rank from B(u) (resp. B(v)).

> Postprocessing phase

19: Cy < CLUSTER(V, 7, {A(u)}uev)

20: Cy < CLUSTER(V, 7, {B(u)}yev)
(
(

u)buev, HT)
) buev, HT)

21: Wy < ESTIMATECOST(Cy, {deg™
22: Wy < ESTIMATECOST(Cy, {deg™
23: ¢ ¢ arg minizl,g{Wi}

24: return C;

F OMITTED DETAILS OF SECTION [4]

F.1 OUR ALGORITHM IN INSERTION-ONLY STREAMS

Recall that we have oracle access to a S-level predictor II, which can predict the pairwise dissimi-
larity dy,, € [0, 1] between any two vertices w and v in G.

Based on the predictions, we propose a single-pass semi-streaming algorithm which works in
insertion-only streams (see Algorithm [7). We first pick a random permutation of vertices 7 : V' —

19

Under review as a conference paper at ICLR 2025

Algorithm 8 CLUSTER(V, m, {T'(u) }uev)

Input: Vertex set V, permutation of vertices w : V' — {1,...,n}, truncated neighbors of each
vertex {T'(u) }uev
Output: Partition of V' into disjoint sets
1: for each unclustered vertex u € V chosen in the order of = do
2: Find the vertex v € T'(u) with the lowest rank such that v is a pivot or v = u, i.e., v +
arg min, e (y) {7y : v is a pivot or v = u}.
3 if such a vertex v exists then
4 Put w in the cluster of v.
5: if v = u then
6: Mark w as a pivot.
7
8
9

else
Put v in a singleton cluster. Mark w as a singleton.

: return the final clustering C

Algorithm 9 CM-P1voT(G, k)
Input: Complete graph G = (V, E = E* U E™), integer k
Output: Partition of vertices into disjoint sets
Let F'() < V be the set of fresh vertices.
Let U™ « V be the set of unclustered vertices.
For each vertex u € V, initialize a counter K" (u) < 0.
Lett < 1.
while F®) = () do
Choose a vertex w(®) € F(®) uniformly at random.
if w® € U® then
Mark w® as a pivot. Initialize a new pivot cluster S®) < {w(®}.
For each vertex v € Nt (w®) N U®, add v to S®.
else
For each vertex v € NT(w®) nU®, let K¢+ (v) <~ K®(v) + 1. Subsequently, all
vertices v with K (**1)(v) = £ are put into singleton clusters.

12: Let Ft+D) « M\ {1®)} and remove all vertices clustered at this iteration from U(®).
13: Lett <t + 1.
14: return the final clustering C, which contains all pivot clusters and singleton clusters

TY e aUnhwh

—

{1,...,n}. For each vertex u € V, we initialize two priority queues A(u) and B(u), each with
a maximum size capped at k, where k is a constant. Initially, we add u to both queues. During
the streaming phase, we employ two distinct methods to retain at most k£ neighbors of each vertex.
Specifically, for each edge (u,v) € F in the stream, if (u,v) is a positive edge, we add u to A(v)
and add v to A(u). Additionally, regardless of whether (u,v) is positive or negative, we add u to
B(v) with probability (1 — p,,,,) and add v to B(u) with probability (1 — py,), where py, = f(dyy)
and d,,, = II(u, v). Note that if the size of any queue exceeds k, then we remove the vertex with the
highest rank from the queue. That is, A(u) maintains at most & positive neighbors of « with lowest
ranks, while B(u) contains at most k neighbors (not necessarily positive) of u with lowest ranks,
the inclusion of which is probabilistic. Note that we define the rank of a vertex as its order in the
permutation 7, e.g., 7, is the rank of u.

After the streaming phase, we run Algorithm [§] on the truncated graphs induced by both sets of
priority queues, i.e., {A(u)}yev and {B(u)}yuecv. Specifically, for each vertex u picked in the
order of 7, we determine the cluster to which u belongs. We try to find the vertex v with the lowest
rank in the queue of u, such that v is a pivot or v = u. If such a vertex v does not exist, then
we mark u as a singleton and place it in a singleton cluster. Otherwise, we assign « to the cluster
of v. Additionally, if v = u, then we mark v as a pivot. Finally, we obtain two clusterings, each
corresponding to a set of priority queues. We output the clustering with the lower cost.

It is worth noting that in the final step, the cost of a clustering cannot be exactly calculated, as our
streaming algorithm cannot store the entire graph. To overcome this challenge, we utilize the graph

20

Under review as a conference paper at ICLR 2025

Algorithm 10 PAIRWISEDISS2(G, I1, k)

Input: Complete graph G = (V, E = E* U E™), oracle access to a 3-level predictor I, integer k
Output: Partition of vertices into disjoint sets
Let F(1) < V be the set of fresh vertices.
Let U() « V be the set of unclustered vertices.
For each vertex u € V/, initialize a counter K" (u) < 0.
For any u,v € V, dy, = H(u,v).
For any u,v € V, define py,, := f(duo)-
Lett < 1.
while () £ () do
Choose a vertex w(®) € F(®) uniformly at random.
it w® € U® then
10: Mark w®) as a pivot. Initialize a new pivot cluster S < {w(®}.
11: For each vertex v € U(®), add v to S(*) with probability (1 — p,)) independently.
12: else
13: For each vertex v € U®, let K(*1)(v) « K (v) 4 1 with probability (1 — p,,))
independently. Subsequently, all vertices v with K (**1)(v) = k are put into singleton clusters.

14: Let Ft+D) « M\ {1®)} and remove all vertices clustered at this iteration from U(®).
15: Lett + t+ 1.
16: return the final clustering C, which contains all pivot clusters and singleton clusters

PRI R

9

Algorithm 11 PAIRWISEDISS2WITHPREROUNDING(G, I1, k)

Input: Complete graph G = (V, E = E+ U E™), oracle access to a 3-level predictor II, integer k
Output: Partition of vertices into disjoint sets

1: Forany u,v € V, dy, = II(u, v).

2: For any u,v € V, define pyy := f(duv)-

3 BT 0.

4: for each edge (u,v) € E such that p,, < 1do
5 add (u,v) to B’ with probability (1 — pyy)-
6: B'~ « E\ E*

7: C + CM-PIvoT(G’ := (V,E'T" UE'"), k)

8: return C

sparsification technique (Kelner & Levin, 2011) to estimate the cost of a clustering. During the
streaming phase, we maintain a cut sparsifier H* for the subgraph GT = (V, E*). Specifically,
for each positive edge (u,v) € ET in the stream, we apply KL-SPARSIFICATION(H ™, (u,v))
to determine whether (u, v) is added to H™T and, if so, its corresponding weight in H . We also
maintain the positive degree deg™ (u) of each vertex u. According to Theorem the sparsifier can
be constructed using a single pass and can approximate the value of every cut in G+ uptoa (1+e)-
multiplicative error with high probability. Thus we can to approximate the cost of a clustering using
the stored information up to a (1 =+ ¢)-multiplicative error with high probability, by the guarantee of
(Behnezhad et al., [2023)).

F.2 ANALYSIS
F.2.1 SPACE COMPLEXITY

For each vertex v € V, we mainly store its rank 7, positive degree deg™ (u), and at most 2k ver-
tices. As we will see, we set k = O(1/e). Furthermore, by Theorem|[B.3] the KL-SPARSIFICATION
algorithm uses O(¢~2nlogn) words of space. Therefore, the total space complexity of the algo-
rithm is O(e~2nlog n) words.

F.2.2 ALGORITHM[Z]AS A COMBINATION OF ALGORITHMS CM-PIVOT AND PAIRWISEDISS2

We define a permutation 7 for Algorithms CM-PIvOT and PAIRWISEDI1SS2 as 7 : w® — ¢, where
w® is the vertex picked at iteration ¢ of Algorithms CM-PIVOT and PAIRWISEDISS2. Obviously,

21

Under review as a conference paper at ICLR 2025

7 is a uniformly random permutation over V. Therefore, we can also view Algorithms CM-PIvOT
and PAIRWISEDI1SS2 from an equivalent perspective: at the beginning of each iteration ¢, choose a
vertex w'*) in the order of 7. We have the following lemmas.

Lemma F.1 (Lemma 2.1 in|[Chakrabarty & Makarychev|(2023)). If Algorithm[/|and Algorithm CM-
PIVOT use the same permutation m, then Algorithm CM-PIVOT and Line[I9 of Algorithm|[7] output
the same clustering of V.

Lemma F.2. If Algorithm[7]and Algorithm PAIRWISEDISS2 use the same permutation m and pre-
dictions {dyy }u,vev, then Algorithm PAIRWISEDISS2 and Line @ of Algorithm [?] output the same
clustering of V with the same probability.

Proof. The proof is similar to that of Lemma[F1] Suppose that Algorithm [7]and Algorithm PAIR-
WISEDISS2 use the same permutation 7 and predictions {dy, }, ey, We want to prove that for each
vertex u € V, with the same probability, in both clusterings returned by Algorithm PAIRWISEDISS2
and Line [20] of Algorithm [7] u is either assigned to the same pivot, or u is placed into a singleton
cluster.

We prove by induction on the rank m,. Suppose that all vertices v with 7, < m, are clustered in
the same way with the same probability. If « is put into a singleton cluster in the clustering returned
by Line 20 of Algorithm |7} then there must exist & vertices added to B(u) probabilistically, and
their ranks are lower than ,,. None of the vertices in B(u) are pivots. Since both algorithms use
the same 7 and {duv}u,veV’ in Algorithm PAIRWISEDISS2, these k vertices will cause the counter
of u to increment k times probabilistically. Therefore, u is also placed in a singleton cluster in the
clustering returned by Algorithm PAIRWISEDISS2. And vice versa.

In Algorithm if there are any pivots in B(u) (or w itself), then u will be assigned to the pivot with
the lowest rank (denoted as v). We have 7, < 7, and v has been added to B(u) probabilistically.
In Algorithm PAIRWISEDI1SS2, with the same probability, v is marked as a pivot and « is added to
the cluster of v. And vice versa.

Therefore, Algorithm PAIRWISED1SS2 and Line [20{ of Algorithm [/|cluster u in the same way with
the same probability. O

F.2.3 THE APPROXIMATION RATIOS OF CM-P1vOT AND PAIRWISEDISS2

In order to analyze the approximation ratio of Algorithm [/} it suffices to analyze Algorithms CM-
P1voT and PAIRWISEDISS2 respectively. We follow the analysis framework in |(Chakrabarty &
Makarychev| (2023). We categorize all iterations into pivot iterations and singleton iterations. Both
iterations create some clusters. Consider iteration ¢ of both algorithms. If w®) € U®), then iteration
t is a pivot iteration; otherwise, it is a singleton iteration. We say that an edge (u,v) is decided at
iteration ¢ if both u and v were not clustered at the beginning of iteration ¢ (i.e., u,v € U®) but
at least one of them was clustered at iteration ¢. Once an edge (u, v) is decided, we can determine
whether it contributes to the cost of the algorithm (i.e., the number of disagreements). Specifically,
if (u,v) € ET, then it contributes to the cost of the algorithm if exactly one of « and v is assigned
to the newly created cluster S*); if (u,v) € E~, then it contributes to the cost of the algorithm if
both u and v are assigned to the newly created cluster S*).

Let E(® denote the set of decided edges at pivot iteration t. Specifically, E®) = {(u,v) | u,v €
Uy € SWorv € SM}. Let P denote the cost of decided edges at pivot iteration t. We
call the clusters created in pivot iterations pivot clusters. Let P denote the cost of all pivot clusters.
Therefore, P = Zt is a pivot iteration P®_ Let S denote the cost of all singleton clusters. Therefore, the
cost of the algorithm is equal to P + S.

Analysis of Algorithm CM-P1vOT.

Lemma F.3 (Chakrabarty & Makarychev|(2023)). Let P; denote the cost of pivot clusters returned
by Algorithm CM-PIVOT, then E[P;| < 3 - OPT, where OPT is the cost of the optimal solution on
G.

Lemma F.4 (Chakrabarty & Makarychev| (2023)). Let S1 denote the cost of singleton clusters re-
turned by Algorithm CM-PIVOT, then E[S;] < % -OPT.

22

Under review as a conference paper at ICLR 2025

Proof of Lemma Lemma[4.T]follows from Lemma[F.1} Lemma[F3]and Lemma[F4] O
Analysis of Algorithm PAIRWISEDISS2.

Proof of Lemma The key observation is that the pivot iterations in Algorithm PAIRWISED1SS2
are equivalent to the iterations of 2.06-approximation LP rounding algorithm by Chawla et al.
(2015): given that w(*) is unclustered (i.e., w*) € UW®), the conditional distribution of w® is
uniformly distributed in U®), and the cluster created during this iteration contains w®) and all
unclustered vertices v added with probability (1 — p,,,,)). Therefore, we can directly apply the
triangle-based analysis in (Chawla et al., 2015). Define L := 3, \ycp+ duvt2 1y oy ep- (1—duo)-
Since the predictor is 3-level, by Deﬁnition we have that the predictions {dy, }y vev satisfy tri-
angle inequality and L < 3 - OPT. It follows that for all pivot iterations ¢,]E[PQ(t)] < 2.06-E[LY)],
where L(*) .= > (uwyer+ne® Qv T 2w nep-npo (1 — duy). By linearity of expectation, we

t t
have E[P2] = E[Zt is a pivot iteration PQ()] = Et is a pivot iterationE[PQ()] < 2.06-L < 2'066 -OPT. O

Equivalence of Algorithms PAIRWISEDISS2 and PAIRWISEDISS2WITHPREROUNDING.

Claim E.S. If Algorithm PAIRWISEDISS2 and Algorithm PAIRWISEDISS2WITHPREROUNDING
use the same permutation and predictions {dyy }vvev, then they produce the same clustering
with the same probability.

Proof. The randomness in both algorithms comes from two sources: (1) the uniformly random per-
mutation 7 on vertices and (2) the probability that each vertex v adjacent to w(®) will join the
cluster of w® or increment its counter. The main difference between the two algorithms lies
in the order in which the two sources of randomness are revealed: Algorithm PAIRWISEDISS2
can be viewed as choosing 7 at the beginning and then performing iterations, where the random-
ness of all edges incident to w® is revealed after w®) is chosen. In contrast, Algorithm PAIR-
WISEDISS2WITHPREROUNDING reveals the randomness of edges at the beginning, uses this infor-
mation to construct a new instance, and then performs Algorithm CM-P1VOT on the new instance,
where the randomness for 7 is revealed. Note that the order of randomness does not affect the out-
put. Therefore, if both algorithms use the same 7 and {dm,}w)ev, then they will output the same
clustering with the same probability. O

Proof of Lemma By Lemma Claimand Lemma we have E[S5] < %5 -E[OPT] <
SCAHD . OPT. O

Proof of Corollary Corollary .5 follows from Lemma[F.2] Lemma4.2]and Lemma 4.4 O

Remark. The reason our sampling-based approach works is mainly due to the fact that the rounding
algorithm by [Chawla et al. (2015)) is equivalent to the algorithm that first samples a subgraph G’
according to the prediction oracle and then runs the PIVOT algorithm on G’. Therefore, if a Correla-
tion Clustering algorithm .4 has a similar feature, i.e., can be viewed as a procedure that first obtains
a core of the original graph (by using LP or other methods), and then applies the PIVOT algorithm
on the core, then we can get roughly the same approximation ratio as A.

G ADDITIONAL EXPERIMENTS

In this section, we provide detailed descriptions of the datasets and predictors used in the experi-
ments. Additionally, we present further experimental settings and results.

G.1 DETAILED DESCRIPTIONS OF DATASETS

In this subsection, we give a detailed description of the real-world datasets used in our experiments.
Recall that we use EMAILCORE (Leskovec et al.,|2007;|Yin et al., 2017), FACEBOOK (McAuley &

23

Under review as a conference paper at ICLR 2025

Leskovec, 2012)), LASTFM (Rozemberczki & Sarkar, [2020), and DBLP (Yang & Leskovec, [2015)
from the Stanford Large Network Dataset Collection (Leskovec & Krevl, |[2014).

EMAILCORE is a directed network with 1 005 vertices and 25 571 edges. This network is constructed
based on email exchange data from a large European research institution. Each vertex represents a
person in the institution. There is a directed edge (u,v) in the network if person u has sent at least
one email to person v.

FACEBOOK is an undirected network with 4 039 vertices and 88 324 edges. This network consists
of friend lists of users from Facebook. Each vertex represents a user in Facebook. There is an
undirected edge (u,v) in the network if u and v are friends. Due to the computational bottleneck
of solving the LP, we only use its three ego-networks: FB 0 (n = 333, m = 5038), FB 414
(n =150, m = 3386), FB 3980 (n = 52, m = 292).

LASTFM is an undirected network with 7 624 vertices and 27 806 edges. This network is a social
network of LastFM users, collected from the public API. Each vertex represents a LastFM user from
an Asian country. There is an undirected edge (u,v) in the network if u and v are mutual followers.

DBLP is an undirected co-authorship network with 317080 vertices and 1049 866 edges. Each
vertex represents an author. There is an undirected edge (u,v) in the network if « and v publish
at least one paper together. Ground-truth communities are defined based on publication venues:
authors who have published in the same journal or conference belong to the same community. For
our experiments, we use a sampled subgraph consisting of 2 000 vertices.

Remark. We treat the edges in the datasets as positive edges and non-edges as negative implicitly.
(For datasets used in experiments where binary classifiers are employed as predictors, the interpre-
tation of positive and negative edges differs slightly. See Appendix [G.2] for details.) For directed
networks, we convert all directed edges into undirected edges. We highlight that since we are con-
sidering labeled complete graphs, the number of edges scales quadratically w.r.t. the number of
vertices, which leads to a non-trivial scale of instances.

G.2 DETAILED DESCRIPTIONS OF PREDICTORS

Noisy predictor. We use this predictor for datasets with available optimal clusterings. We form
this predictor by performing perturbations on optimal clusterings. Specifically, for any two vertices
u,v € V, if u and v are in different clusters in the optimal clustering, then we set the prediction d,,,
to be 1 —e&g, otherwise €y, where g € (0, 0.5). For synthetic datasets with p = 0.95, we can assume
that the ground truths are also optimal solutions. For real-world datasets, we use the powerful LP
solver Gurobi (Gurobi Optimization, LLC| [2023)) to get the optimal clusterings.

Spectral clustering. We use this predictor for EMAILCORE and LASTFM. It first maps all the
vertices to a d-dimensional Euclidean space using the graph Laplacian, then clusters all the vertices
based on their embeddings. For any two vertices u,v € V, we form the prediction d,, to be

1 - %, where x,,x, € R¢ are spectral embeddings of « and v, and (x,,, x,) is the dot

product of x,, and x,. Note that a larger d indicates a higher-quality predictor.

Binary classifier. We use this predictor for datasets where ground-truth communities are available.
This predictor is constructed by training a binary classifier (based on an MLP model) to predict
whether two vertices belong to the same cluster using node features. In this setting, the goal of Cor-
relation Clustering aligns with that of community detection by treating edges between two vertices
in the same (ground-truth) community as positive edges and edges between two vertices in different
communities as negative edges. The predictions provided by the binary classifier (i.e., binary values
in {0, 1}) are then used as the pairwise dissimilarities d,,,, in our algorithms.

G.3 ADDITIONAL RESULTS

G.3.1 PERFORMANCE OF ALGORITHM [7]ON REAL-WORLD DATASETS

In this subsection, we present the results of our algorithm in insertion-only streams (Algorithm
on real-world datasets, as shown in Figure 3] The results show that under good prediction quality,
Algorithm [7] consistently outperforms other baselines across all datasets used. For example, in
Figure[3|{a), when 3 = 1.2, the average cost of Algorithm|[7]is 13% lower than that of CLMNPT21

24

Under review as a conference paper at ICLR 2025

and 17% lower than that of CKLPU24. Besides, in Figure , Algorithm [7|reduces the clustering
cost by up to 14% compared to CLMNPT21. Even if the prediction quality is poor, Algorithm
does not perform worse than CM23 and achieves comparable performance to CLMNPT21 (on
FACEBOOK subgraphs).

13{ —— opT 2001

e cM23 105 20
2 2 12] e CLMNPT21 B0 4
G4 e 8 |~ Algorithm 7 S s | CLMNPT21
o = 211 .. Algorithm 1 o185 . o015
S22 ¥ £ GOMNM 1o £ £ —e- Algorithm 7
5 gt — opT 5 5 10/ Sume 5
] p S0 8180 2 cM23
ﬁ 20 //v(cMm23 2 P A 2 """ CLMNPT21 ——— é‘ 1.0
[s] & | | CLMNPT21 [s] e T g G 1751 —e Algorithm 7 ~ 5]
18] ¢ —+- Algorithm 7 09 g 170 cM23 BN s
e »- Algorithm 1 s el T Algorithm 1 5 S A A
T 12 13 14 15 16 Toe 10 1lo 1l 114 1% 550 630 700 750 800 850 930 930 1000 4500 5000 5500 6000 6500 7000 7500
Prediction Quality (beta) Prediction Quality (beta) Embedding Dimension Embedding Dimension
(a) FB 0, vary 8 (b) FB 414, vary (c) EMAILCORE, vary d (d) LASTFM, vary d

Figure 3: Performance of Algorithm |7|on real-world datasets. Figures —(IE[) show the effect of
prediction quality 3 on two FACEBOOK subgraphs, where we use noisy predictors. Figures [3|{c)—(d)
examine the effect of the dimension d of spectral embeddings on EMAILCORE and LASTFM, where
we use spectral clustering as the predictor. We set k = 25 for Figure 3|fa), & = 15 for Figure [3|[b),
k = 10 for Figure3{(c), and k& = 50 for Figure 3|{d).

G.3.2 PERFORMANCE OF ALGORITHMmON SYNTHETIC DATASETS WITH VARYING p

Recall that in the main text, the experiments on synthetic datasets are conducted only with SBM
parameter p = 0.95, which is a relatively easy case. In this subsection, we present additional results
for smaller values of p, as shown in Figure] Note that, in these cases, we can no longer assume
that the ground truths are also optimal solutions. Therefore, we solve the LP to obtain the optimal
solutions, which are required for the noisy predictors. Due to the computational bottleneck of solv-
ing the LP, we set n = 100. The results demonstrate that even when the ground-truth communities
are less obvious (e.g., when p = 0.7), the clustering cost of Algorithm is reduced by up to 26%
compared to the algorithm of CKLPU24.

1e3 1e3 1e3

23 1.8
—— OPT e 1.4 aie—e
2.2 = -
CKLPU24 e o
521 e CLMNPT21 e g e " 712 -t
- P -
§ 207 —e- Algorithm 1 T S » S i
219 -4 214 it 210 i
= = e = e = s
81 L a2 g |7 g |~
0 " 4] —— OPT Q2038 —— OPT
2 - 212 3
O17] &] CKLPU24] CKLPU24
.2 PO S o oo I (R 0 CLMNPT21 [T CLMNPT21
15 1.0 —e-- Algorithm 1 —e-- Algorithm 1
115 120 125 130 135 13 14 15 16 17 18 19 20 22 24 26 28 3.0 32 34 36
Prediction Quality (beta) Prediction Quality (beta) Prediction Quality (beta)
()p=0.7 (byp=10.8 (c)p=209

Figure 4: Performance of Algorithm on synthetic datasets with varying values of p. We examine
the effectiveness of Algorithm [I]when the ground-truth communities are less obvious. We set n =
100.

(G.3.3 RUNNING TIME OF OUR ALGORITHMS

In this subsection, we present the running time of our algorithms on FACEBOOK subgraphs, com-
pared to their non-learning counterparts, as shown in Table 2] (Algorithm [T) and Table [3] (Algo-
rithm[7). The results show that our learning-augmented algorithms do not introduce significant time
overheads. The slight increase in running time is due to the additional steps of querying the ora-
cles and calculating the costs of two clusterings. These steps are both reasonable and acceptable.
Moreover, in the streaming setting, space efficiency is typically the primary focus.

25

Under review as a conference paper at ICLR 2025

Table 2: Running time (ms) of Algorithm (for dynamic streams) on FACEBOOK subgraphs, com-
pared to its non-learning counterpart. For FB 0, we set § = 1.19. For FB 414, we set § = 1.12.
For FB 3980, we set § = 1.19. The reported values are averaged over 20 runs.

Dataset
Algorithm FBO FB 414 FB 3980

CKLPU24 1738.16 165.55 7.32
Algorithm 1639.22 163.35 7.69

Table 3: Running time (ms) of Algorithmm(for insertion-only streams) on FACEBOOK subgraphs,
compared to its non-learning counterpart. For FB 0, we set § = 1.19. For FB 414, we set 5 = 1.12.
For FB 3980, we set § = 1.19. The reported values are averaged over 20 runs.

Dataset
Algorithm FBO FB414 FB 3980

CM23 30.65 6.67 0.97
Algorithm 7] 8131 16.58 2.12

G.3.4 RESULTS BASED ON BINARY CLASSIFICATION PREDICTORS

In this subsection, we present experiments where binary classifiers are employed as predictors in our
algorithms. These experiments are performed on three SBM graphs with parameter p = 0.95 (each
with a different number of vertices) and the DBLP dataset (sampled subgraph of 2000 vertices).
The results are shown in Table[d} The results demonstrate that our learning-augmented algorithms
consistently outperform their non-learning counterparts across all datasets. For instance, on the
SBM graph with n = 2400 vertices, Algorithm [1| reduces the clustering cost by 72% compared
to CKLPU24. On the DBLP dataset, Algorithm El achieves a 19% reduction in clustering cost
compared to CM23.

Table 4: Clustering costs of our algorithms leveraging binary classification predictors, compared to

their non-learning counterparts. For Algorithm[7] we set parameter & = 10 across all datasets. The
reported values are averaged over 5 runs.

Dataset SBM SBM SBM DBLP
Algorithm (n =1200) (n =2400) (n = 3600)

CKLPU24 105269 524800 1114306 7931
Algorithm 35851 145562 324948 7449
CM23 99273 385736 901631 8452
Algorithm 35851 155335 324948 6862

26

	Introduction
	Technical overview

	Preliminaries
	Our algorithm in dynamic streams
	Offline implementation
	Implementation in dynamic streams
	Proof of thm:parallel
	The offline algorithm as a combination of CKLPU-Pivot and PairwiseDiss
	The approximation ratios of CKLPU-Pivot and PairwiseDiss

	An algorithm in insertion-only streams with smaller space
	Proof sketch of thm:main-result-insertion

	Experiments
	Conclusion
	Other related work
	Useful tools
	Omitted pseudocodes of sec:alg-dynamic
	Omitted proofs of sec:alg-dynamic
	Proof of thm:main-result-dynamic
	Proof of lem:eq-2.06-dynamic
	Proof of cor:dynamic-cost-2.06

	Omitted pseudocodes of sec:alg-insertion
	Omitted details of sec:alg-insertion
	Our algorithm in insertion-only streams
	Analysis
	Space complexity
	alg:insertion-only as a combination of Algorithms CM-Pivot and PairwiseDiss2
	The approximation ratios of CM-Pivot and PairwiseDiss2

	Additional experiments
	Detailed descriptions of datasets
	Detailed descriptions of predictors
	Additional results
	Performance of alg:insertion-only on real-world datasets
	Performance of alg:dynamic-stream on synthetic datasets with varying p
	Running time of our algorithms
	Results based on binary classification predictors

