
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING-AUGMENTED STREAMING ALGORITHMS
FOR CORRELATION CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study streaming algorithms for Correlation Clustering. Given a complete
graph as an arbitrary-order stream of edges, with each edge labelled as positive
or negative, the goal is to partition the vertices into disjoint clusters, such that the
number of disagreements is minimized. In this paper, we give the first learning-
augmented streaming algorithms for the problem, achieving the first better-than-
3-approximation in dynamic streams. Our algorithms draw inspiration from re-
cent works of Cambus et al. (SODA’24), and Chakrabarty and Makarychev
(NeurIPS’23). Our algorithms use the predictions of pairwise dissimilarities be-
tween vertices provided by a predictor and achieve an approximation ratio that
is close to 2.06 under good prediction quality. Even if the prediction quality is
poor, our algorithms cannot perform worse than the well known PIVOT algorithm,
which achieves a 3-approximation. Our algorithms are much simpler than the re-
cent 1.847-approximation streaming algorithm by Cohen-Addad et al. (STOC’24)
which appears to be challenging to implement and is restricted to insertion-only
streams. Experimental results on synthetic and real-world datasets demonstrate
the superiority of our proposed algorithms over their non-learning counterparts.

1 INTRODUCTION

Correlation Clustering is a fundamental problem in machine learning and data mining, and it has
a wide range of applications, such as image segmentation (Kim et al., 2014), community detection
(Shi et al., 2021), automated labeling (Chakrabarti et al., 2008), etc. Given a complete graph G =
(V,E = E+ ∪ E−), where each edge is labeled as positive (+) or negative (−), the goal is to find
a clustering C, i.e., a partition of V into disjoint clusters C1, C2, . . . , Ct, where t is arbitrary, that
minimizes the following cost:

costG(C) := |{(u, v) ∈ E+ : ∃i ̸= j : u ∈ Ci, v ∈ Cj}|+ |{(u, v) ∈ E− : ∃i : u, v ∈ Ci}|.

That is, the number of negative edges in the same cluster plus the number of positive edges between
different clusters. (We often refer to as the number of disagreements.)

This problem, introduced by Bansal et al. (2004), is known to be APX-hard (Charikar et al., 2005).
Hence, significant efforts have been dedicated to designing approximation algorithms for this prob-
lem (Bansal et al., 2004; Charikar et al., 2005; Ailon et al., 2008; Chawla et al., 2015; Cohen-
Addad et al., 2022; 2023; Cao et al., 2024; Cohen-Addad et al., 2024b), culminating in a 1.437-
approximation via a linear program (LP) based rounding (Cao et al., 2024). There exists a purely
combinatorial algorithm that achieves a (2−2/13+ε)-approximation (Cohen-Addad et al., 2024b).

Partially due to storage limitations and the rapidly growing volume of data, graph streaming algo-
rithms for Correlation Clustering have received increasing attention recently. In this setting, a graph
is represented as a sequence of edge insertions or deletions, known as a graph stream. The objective
is to scan the sequence in a few number of passes, ideally, 1 pass and find a high-quality clustering
of the vertex set with a low Correlation Clustering cost, while minimizing space usage. If the se-
quence contains only edge insertions, it is referred to as an insertion-only stream; if both insertions
and deletions are allowed, it is referred to as a dynamic stream. Since the output of the clustering
inherently requires Ω(n) bits of space (as each vertex needs a label to indicate its cluster member-
ship), most previous research has primarily focused on the semi-streaming model, i.e., the algorithm

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

is allowed to use Õ(n) := O(npolylog n) space1. Actually, there exists a single-pass (1 + ε)-
approximation algorithm in the semi-streaming model even for dynamic streams (Ahn et al., 2021;
Behnezhad et al., 2023). However, this algorithm takes exponential time, as it enumerates all pos-
sible clusterings, evaluates their costs, and outputs the minimum using the cut sparsifier. Therefore,
previous works have focused on designing polynomial-time algorithms (Cohen-Addad et al., 2021;
Assadi & Wang, 2022; Behnezhad et al., 2022; 2023; Chakrabarty & Makarychev, 2023; Cambus
et al., 2024). Notably, Chakrabarty & Makarychev (2023) and Cambus et al. (2024) independently
proposed single-pass (3 + ε)-approximation algorithms recently. The former is only applicable to
insertion-only streams, whereas the latter works in the dynamic setting.

For a long time, achieving a 3-approximation has been considered a natural target in the streaming
setting, while recently Cohen-Addad et al. (2024b) gave a (2 − 2/13 + ε)-approximation for this
problem under insertion-only streams in O(2ε

−O(1)

n log n) space. Though beautiful in theory, their
algorithm (and even its other variants that achieve better than 3 approximation) is based on local
search, while in turn requires to enumerate a large number of subsets of a constant-size set S. Such
an enumeration is considered to be quite impractical, as |S| is a very large constant. On the other
hand, all the previous (3+ε)-approximation algorithms in the streaming model are quite simple and
much easier for implementation. Therefore, a natural question arises:

Is it possible to obtain a practical, better-than-3-approximation algorithm for
Correlation Clustering in both insertion-only and dynamic streams?

We affirmatively answer the above question by leveraging ideas from learning-augmented algo-
rithms (LAAs). An LAA uses predictions to enhance its performance. These algorithms stem from
practical scenarios where machine learning techniques exploit data structure to exceed the worst-
case guarantees of traditional algorithms. Our LAAs fit into the category of learning-augmented
streaming algorithms (Hsu et al., 2019; Jiang et al., 2020; Chen et al., 2022a; Aamand et al., 2023).
It is worth mentioning that both our work and previous efforts on learning-augmented streaming
algorithms mainly focus on using predictors to improve the corresponding space-accuracy tradeoffs.

Now, we describe the prediction we are considering. We assume that the algorithm has oracle
access to a predictor Π :

(
V
2

)
→ [0, 1] that predicts the pairwise dissimilarities2 duv between any

two vertices u and v in V . We believe such predictors are natural and arise in many situations.
Indeed, it is quite common that multiple graphs are defined over the same set of vertices. Patients
in a healthcare system can be represented by vertices, and multiple networks can be defined based
on different types of relationships, such as shared medical conditions (disease networks), visits to
the same healthcare providers (provider networks), or being part of the same clinical trials. In a
biological context, the vertex set could represent genes or proteins. One network might capture
protein-protein interactions, while another could represent gene co-expression levels. Additionally,
metabolic or signaling pathways might define other networks. It is possible to leverage machine
learning or data mining techniques to learn the pairwise (dis)similarities between nodes using one or
more of these networks. If two patients (or genes/proteins) are found to be similar in one network,
it is quite possible they will exhibit similar behavior in other networks as well. Leveraging these
similarities across networks can greatly aid in exploring the cluster structure of any newly defined
network over the same set of vertices. A similar situation arises with temporal graphs, where a
sequence of graphs over the same set of vertices has different edge sets across different time slots.
Useful information, such as vertex pairwise (dis)similarities learned in the past, can be exploited to
extract structural insights from the graph in the present or future time frames. Finally, we remark that
several other works have considered similar oracles for pairwise (dis)similarity in different contexts
(e.g., in the query model (Silwal et al., 2023; Kuroki et al., 2024)).

By using the above predictions, we give the first LAA for Correlation Clustering that beats 3-
approximation if the predictions are good, while still achieves (3 + ε)-approximation even if the
predictor behaves poorly. That is, our algorithm is both robust and consistent, as desired for most
natural LAAs (Mitzenmacher & Vassilvitskii, 2021). Furthermore, our algorithms are simple and
easily implementable. We will use a parameter β ∈ [1,∞) to measure the quality of our predictor.
Informally, we call a predictor β-level if the cost of the predictions induced clustering is at most a

1On the other hand, Assadi et al. (2023) studied streaming algorithms using polylog n bits of space for
estimating the optimum Correlation Clustering cost, while their algorithms do not find the clustering.

2Note that one can directly treat 1− duv as the pairwise similarity between u, v.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of our results with the best-known space-approximation tradeoffs. Here, ε ∈
(0, 1) and β ≥ 1. All space complexities are measured in words. All algorithms use a single pass.

Streaming
Model

Best Space & Approximation Tradeoffs
(Without Predictions) Our Results

dynamic (3 + ε)-approx., O(ε−1n log4 n) space
(Cambus et al., 2024)

(min{2.06β, 3}+ ε)-approx.,
O(n log6 n+ ε−2n log5 n) space

insertion-only (2− 2/13 + ε)-approx., O(2ε
−O(1)

n log n) space
(Cohen-Addad et al., 2024b)

(min{2.06β, 3}+ ε)-approx.,
O(ε−2n log n) space

β factor of the cost of the optimal solution. (We refer to Definition 2.1 for the formal definition of
a β-level predictor.) That is, the smaller β is, the higher the quality of the predictor. Our results are
summarized in Table 1. Specifically, for dynamic streams, we have the following theorem. (In the
following, “with high probability” refers to the probability of at least 1 − 1/nc for some constant
c > 0.)
Theorem 1.1. Let ε ∈ (0, 1/4) and β ≥ 1. Given oracle access to a β-level predictor, there exists a
single-pass streaming algorithm that provides an expected (min{2.06β, 3}+ ε)-approximation for
Correlation Clustering in dynamic streams with high probability. The algorithm uses O(n log6 n+
ε−2n log5 n) words of space.

Note that our algorithm achieves a better-than-3 approximation in dynamic streams under good
prediction quality, while the previous best-known algorithm in dynamic streams is a (3 + ε)-
approximation due to Cambus et al. (2024).

Furthermore, we also obtain an algorithm in insertion-only streams, which is different from the
algorithm in dynamic streams while achieving the same approximation guarantee with improved
space complexity.
Theorem 1.2. Let ε ∈ (0, 1) and β ≥ 1. Given oracle access to a β-level predictor, there exists
a single-pass streaming algorithm that provides an expected (min{2.06β, 3} + ε)-approximation
for Correlation Clustering in insertion-only streams with high probability. The algorithm uses
O(ε−2n log n) words of space.

Note that it is standard to assume that the space of the oracle is not included in the space usage of our
algorithms, as is common in learning-augmented streaming algorithms (Hsu et al., 2019; Jiang et al.,
2020; Chen et al., 2022a; Aamand et al., 2023). As noted in (Hsu et al., 2019), reliable predictors
can often be learned in a space-efficient manner in practice. Furthermore, as stated before, to cluster
a graph, we may use ML methods to train some other related networks that are defined on the same
vertex set, to learn the pairwise (dis)similarities. In particular, we can learn the node embeddings
from these related networks, which map all vertices to Euclidean space. Then the distances between
these points serve naturally as pairwise dissimilarities and satisfy the triangle inequality.

To complement our theoretical results, we conduct comprehensive experiments to evaluate our algo-
rithms on both synthetic and real-world datasets. Experimental results demonstrate the superiority
of our LAAs.

1.1 TECHNICAL OVERVIEW

Our LAAs rely on the influential PIVOT algorithm by Ailon et al. (2008) and the LP rounding
algorithm by Chawla et al. (2015). The PIVOT algorithm begins by selecting a random permutation
π over the vertices of the graph. It then iteratively forms clusters by choosing the vertex with the
smallest rank according to π, along with its neighbors in the graph. Once a cluster is formed, it is
removed from the graph. This process continues until all vertices have been assigned to clusters. The
LP rounding algorithm first solves an LP corresponding to Correlation Clustering, and then applies a
PIVOT-based algorithm using the LP solution. Next, we describe our algorithms. The high-level idea
is to incorporate the above LP rounding approach with the “truncated” PIVOT algorithms (Cambus
et al., 2024; Chakrabarty & Makarychev, 2023), where our predictions correspond to a feasible LP
solution in some sense. Specifically, for dynamic streams, we maintain a certain number of ℓ0-
samplers during the stream and derive a truncated subgraph at the end of the stream. Then we run

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the PIVOT algorithm and the LP rounding style algorithm on the subgraph respectively and obtain
two clusterings. Finally, we output the clustering with the lower cost. For insertion-only streams, we
employ two different methods respectively to store at most k neighbors for each vertex during the
stream. The first method is similar to the PIVOT algorithm and the second method is similar to the
LP rounding style algorithm. Then we run the PIVOT algorithm on two stored subgraphs and output
the clustering with the lower cost. We note that the cost of a clustering cannot be exactly calculated
during the stream, since our algorithms cannot store the entire graph. Therefore, we apply the graph
sparsification techniques to approximate the clustering cost within a multiplicative factor of (1± ε).

The analysis is non-trivial, even in insertion-only streams. We categorize all clusters into pivot
clusters and singleton clusters, and analyze their costs respectively. Our key observation is that
the truncated version of the LP rounding algorithm is equivalent to the algorithm that first samples
a subgraph G′ according to the predictions and then runs the “truncated” PIVOT algorithms on
G′. Our main technical contribution is to prove that 1) the cost of pivot clusters produced by the
truncated version of the LP rounding algorithm is at most 2.06β times the cost of optimal solution
(Lemma 3.6 and Lemma 4.2); 2) the optimal solution on G′ does not differ from the optimal solution
on the original graph G by a lot (Lemma 4.3). In this way, our algorithms can keep the space small
while achieving an approximation ratio better than 3 under good prediction quality.

2 PRELIMINARIES

Notations. Throughout the paper, we let G = (V,E) be an undirected and unweighted complete
graph with |V | = n, |E| = m, where each edge is labeled as positive or negative (i.e., E =
E+ ∪ E−). In some places of the paper, we identify the input graph only with the set of positive
edges, i.e., G+ = (V,E+) and the negative edges are defined implicitly. For each vertex u ∈ V , let
N(u) be the set of all neighbors of u and N+(u) be the set of positive neighbors of u (i.e., vertices
that are connected by a positive edge). Correspondingly, let deg(u) := |N(u)| be the degree of u,
and similarly, deg+(u) := |N+(u)|. We use costG(C) to denote the cost of the clustering C on
G. We say an algorithm achieves an α-approximation if it outputs a clustering C on G such that
OPT ≤ costG(C) ≤ α ·OPT, where OPT denotes the cost of an optimal solution on G.

Next, we give the formal definition of a β-level predictor.
Definition 2.1 (β-level predictor). For any β ≥ 1, we call a predictor β-level, if it predicts the
pairwise dissimilarities duv between any two vertices u and v in V such that (1) (triangle inequality)
duv + dvw ≥ duw for all u, v, w ∈ V , (2)

∑
(u,v)∈E+ duv +

∑
(u,v)∈E−(1− duv) ≤ β ·OPT.

Intuitively, a smaller β indicates a higher-quality predictor, and in this case duv can be used to
determine how likely u and v are in the same cluster of the optimal solution. However, we point
out that the predictions can be completely independent of the input graph. In the worst case, the
predictions can be arbitrary, which is allowed for LAAs since robustness is a desired goal.

We remark that both our definition of the β-level predictor and our algorithms are inspired by an
approximation algorithm given by Chawla et al. (2015), who give an LP based algorithm for Corre-
lation Clustering achieving 2.06-approximation and in some sense, the β-level predictor corresponds
to a solution to the LP in Chawla et al. (2015).

Due to space limitations, we introduce the useful tools utilized in this paper in Appendix B.

3 OUR ALGORITHM IN DYNAMIC STREAMS
3.1 OFFLINE IMPLEMENTATION

Overview. For ease of illustration of ideas, we first describe our algorithm in the offline setting. The
overall framework is similar to (Cambus et al., 2024). The algorithm takes G+ = (V,E+) as input.
Initially, we pick a random permutation π over the set of vertices. Then we divide all vertices into
interesting and uninteresting vertices based on the relationship between the rank and the positive
degree of a vertex. Specifically, a vertex u is uninteresting if πu ≥ τu where τu := c

ε ·
n logn
deg+(u)

(or

equivalently deg+(u) ≥ σu where σu := c
ε ·

n logn
πu

), and interesting otherwise. Here, ε ∈ (0, 1/4)
and c is a universal large constant. Finally we run two pivot-based algorithms on the subgraph Gstore
induced by the set of interesting vertices and output the clustering with the lower cost. We defer its
pseudocode (Algorithm 2) to Appendix C.

Note that in the clustering phase, we apply two pivot-based approaches on the truncated graph Gstore:
Algorithms TRUNCATEDPIVOT and TRUNCATEDPIVOTWITHPRED.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm TRUNCATEDPIVOT. This algorithm simulates the Parallel Truncated-Pivot algorithm
by Cambus et al. (2024) and produces the same clustering. This algorithm proceeds in iterations.
Let U (t) denote the set of unclustered vertices in Gstore at the beginning of iteration t. Initially, all
the interesting vertices are unclustered. At the beginning of iteration t, if U (t) ̸= ∅, then we pick
the vertex u from U (t) with the smallest rank. Then we mark it as a pivot and create a pivot cluster
S(t) containing u and all of its unclustered positive neighbors in Gstore. At the end of iteration t,
we remove all vertices clustered in this iteration from U (t). Then the algorithm proceeds to the next
iteration. If U (t) = ∅ at the beginning of iteration t, then we know that all the interesting vertices
are clustered. Now it suffices to assign each uninteresting vertex to a cluster. Each uninteresting
vertex u joins the cluster of pivot v with the smallest rank if (u, v) ∈ E+ and πv < τu. Then
each unclustered vertex u ∈ V creates a singleton cluster. Finally, we output all pivot clusters and
singleton clusters. We defer its pseudocode (Algorithm 3) to Appendix C.

Algorithm TRUNCATEDPIVOTWITHPRED. This algorithm has oracle access to a β-level pre-
dictor Π. The algorithm closely resembles Algorithm TRUNCATEDPIVOT. The differences are as
follows: (1) At iteration t, we create a pivot cluster S(t) containing u and add all the unclustered
vertices v in Gstore to S(t) with probability (1 − puv) independently, where puv = f(duv) and
duv = Π(u, v). If (u, v) ∈ E+, then f(duv) = f+(duv); otherwise f(duv) = f−(duv). We set

f+(x) to be 0 if x < a,
(

x−a
b−a

)2

if x ∈ [a, b], and 1 if x > b, where a = 0.19 and b = 0.5095;

we set f−(x) = x. (2) Each uninteresting vertex u joins the cluster of pivot v in the order of π
with probability (1 − puv) independently, if πv < τu. We defer its pseudocode (Algorithm 4) to
Appendix C.

In Section 3.3, we will prove the following theorem that gives a theoretical guarantee of the offline
algorithm.
Theorem 3.1. Let ε ∈ (0, 1/4) and β ≥ 1. Given oracle access to a β-level predictor, Algorithm 2
provides an expected (min{2.06β, 3}+ ε)-approximation for Correlation Clustering.

3.2 IMPLEMENTATION IN DYNAMIC STREAMS

In this subsection, we implement the offline algorithm in dynamic streams, as shown in Algorithm 1.
A key observation is that it suffices to store the positive edges incident to interesting vertices since we
apply pivot-based algorithms on the subgraph induced by interesting vertices and then try to assign
uninteresting vertices to pivot clusters. To this end, we maintain a certain number of ℓ0-samplers for
each vertex, which can be achieved in the dynamic semi-streaming model (Jowhari et al., 2011). As
we will see in the analysis, the ℓ0-samplers allow us to recover the edges incident to all the interesting
vertices with high probability. Thus we can simulate the clustering phase of the offline algorithm.
Specifically, we simulate Algorithms TRUNCATEDPIVOT and TRUNCATEDPIVOTWITHPRED using
the stored information, and output the clustering with the lower cost.

Note that in the final step, the cost of a clustering cannot be exactly calculated, as our streaming
algorithm cannot store the entire graph. To overcome this challenge, we borrow the idea from
(Behnezhad et al., 2023) and utilize the graph sparsification technique (Ahn et al., 2012) to estimate
the cost. Specifically, during the streaming phase, we maintain a cut sparsifier H+ for the subgraph
G+. Let AGM-SPARSIFICATION be any algorithm for constructing a cut sparsifier that satisfies
the guarantee in (Ahn et al., 2012) (see Appendix B). For each item si = (ei = (u, v),∆i) in the
dynamic stream, where ∆i ∈ {−1, 1} indicates the insertion or deletion of ei, we apply AGM-
SPARSIFICATION(H+, si) to determine whether (u, v) belongs to H+ and, if so, its corresponding
weight in H+. We also maintain the positive degree deg+(u) of each vertex u. Then we can
approximate the cost of a clustering up to a (1± ε)-multiplicative error with high probability.

3.3 PROOF OF THEOREM 3.1
As the final clustering produced by the offline algorithm is the lower-cost one produced by two
pivot-based algorithms, we start by analyzing the costs of these two clusterings (i.e., Lines 5 and 6 of
Algorithm 2). For ease of analysis, we separately examine the approximation ratios of the equivalent
versions (Algorithms CKLPU-PIVOT and PAIRWISEDISS) that produce these two clusterings.

Algorithm CKLPU-PIVOT (Algorithm 4 in (Cambus et al., 2024)). This algorithm proceeds in
iterations. Let U (t) denote the set of unclustered vertices at the beginning of iteration t. Initially, we

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 A dynamic streaming algorithm for Correlation Clustering with predictions
Input: Graph G+ = (V,E+) as an arbitrary-order dynamic stream of edges, oracle access to a

β-level predictor Π
Output: Partition of V into disjoint sets

▷ Preprocessing phase
1: Pick a random permutation of vertices π : V → {1, . . . , n}.
2: for each vertex u ∈ V do
3: Let deg+(u)← 0. Mark u as unclustered and interesting.
4: Let σu := c

ε ·
n logn
πu

, where c is a universal large constant.
5: Initialize 10c log n · σu independent ℓ0-samplers (with failure probability 1/10) for the ad-

jacency vector of u (the row of the adjacency matrix of G+ that corresponds to u).
6: Initialize a cut sparsifier H+ for G+.

▷ Streaming phase
7: for each item si = (ei = (u, v),∆i) in the dynamic stream do
8: Update deg+(u), deg+(v) and all the ℓ0-samplers associated with u and v.
9: Apply AGM-SPARSIFICATION(H+, si).

▷ Postprocessing phase
10: A vertex u marks itself uninteresting if deg+(u) ≥ σu.
11: Retrieve all incident edges of interesting vertices (with high probability) using the ℓ0 samplers.
12: Let Gstore be the graph induced by the interesting vertices.
13: C1 ← TRUNCATEDPIVOT(G+, Gstore, π)
14: C2 ← TRUNCATEDPIVOTWITHPRED(G+, Gstore, π,Π)

15: c̃ostG(C1)←
∑

C∈C1
(12δH+(C) +

(|C|
2

)
− 1

2

∑
u∈C deg+(u))

16: c̃ostG(C2)←
∑

C∈C2
(12δH+(C) +

(|C|
2

)
− 1

2

∑
u∈C deg+(u))

17: i← argmini=1,2{c̃ostG(Ci)}.
18: return Ci

pick a random permutation π over vertices, and all the vertices are unclustered. At the beginning
of iteration t, let ℓt = c

ε ·
n logn

t . Each unclustered vertex v with deg+(v) ≥ ℓt creates a singleton
cluster. We pick the t-th vertex u in π. If u is unclustered, then we mark it as a pivot and create a
pivot cluster S(t) containing u and all of its unclustered positive neighbors. At the end of iteration
t, we remove all vertices clustered in this iteration from U (t). Then the algorithm proceeds to the
next iteration. Finally, we output all pivot clusters and singleton clusters. We defer its pseudocode
(Algorithm 5) to Appendix C.

Algorithm PAIRWISEDISS. This algorithm has oracle access to a β-level predictor Π. The only
difference from Algorithm CKLPU-PIVOT is that at iteration t, we create a pivot cluster S(t) con-
taining u and add all unclustered vertices v to S(t) with probability (1− puv) independently, where
puv = f(duv) and duv = Π(u, v). We defer its pseudocode (Algorithm 6) to Appendix C.

3.3.1 THE OFFLINE ALGORITHM AS A COMBINATION OF CKLPU-PIVOT AND PAIRWISEDISS

We first show that if the offline algorithm (Algorithm 2) and Algorithm CKLPU-PIVOT (resp. PAIR-
WISEDISS) use the same randomness, then Algorithm CKLPU-PIVOT (resp. PAIRWISEDISS) and
Line 5 (resp. Line 6) of Algorithm 2 output the same clustering.

Lemma 3.2 (Lemma 8 in Cambus et al. (2024)). If Algorithm 2 and Algorithm CKLPU-PIVOT use
the same permutation π, then Algorithm CKLPU-PIVOT and Line 5 of Algorithm 2 output the same
clustering of V .

Lemma 3.3. If Algorithm 2 and Algorithm PAIRWISEDISS use the same permutation π and pre-
dictions {duv}u,v∈V , then Algorithm PAIRWISEDISS and Line 6 of Algorithm 2 output the same
clustering of V with the same probability.

3.3.2 THE APPROXIMATION RATIOS OF CKLPU-PIVOT AND PAIRWISEDISS
Now it suffices to analyze Algorithm CKLPU-PIVOT and Algorithm PAIRWISEDISS respectively.
We follow the analysis framework in (Cambus et al., 2024). Specifically, we analyze the cost of
pivot clusters and singleton clusters, respectively. For the former, we can directly apply the analysis

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of original pivot-based algorithms (Ailon et al., 2008; Chawla et al., 2015), where we only focus on
a subset of vertices (i.e., V \ Vsin where Vsin is the set of singletons). For the latter, we divide all the
positive edges incident to singleton clusters (denoted as Esin) into good edges (denoted as Egood) and
bad edges (denoted as Ebad). Specifically, we define an positive edge incident to a singleton cluster
to be good if the other endpoint was included in a pivot cluster before the singleton was created.
Otherwise, the edge is bad. In other words, bad edges are those that either connect two singletons
or the other endpoint was included in a pivot cluster after the singleton was created.

In this way, we can charge the cost of good edges to the cost of pivot clusters. Therefore, it suffices
to bound the cost of bad edges. The following lemma shows that we can relate the cost of bad edges
to the cost of pivot clusters, and thus bound the cost of the final clustering.
Lemma 3.4 (Cambus et al. (2024)). Let ε ∈ (0, 1/4). Let P denote the cost of pivot clusters, and
let W denote the cost of the clustering returned by the algorithm, then E[W] = E[P + |Ebad|] ≤
(1 + 4ε) · E[P] + 1+4ε

nα−2 , where α := c/2− 1≫ 2.

Now we are ready to analyze the approximation ratios of Algorithms CKLPU-PIVOT and PAIR-
WISEDISS. We have the following lemma, which states the approximation guarantee of Algorithm
CKLPU-PIVOT, and thus that of the clustering returned by Line 5 of Algorithm 2.
Lemma 3.5 (Cambus et al. (2024)). Let ε ∈ (0, 1/4). Let C1 denote the clustering returned by
Line 5 of Algorithm 2, then E[costG(C1)] ≤ (3 + 12ε) ·OPT+ 1+4ε

nα−2 , where α := c/2− 1≫ 2.

Next, we focus on the analysis of Algorithm PAIRWISEDISS.
Lemma 3.6. Let P2 denote the cost of pivot clusters returned by Algorithm PAIRWISEDISS. We
have E[P2] ≤ 2.06β ·OPT.

Proof. Consider iteration t of Algorithm PAIRWISEDISS, if vertex u considered in this iteration
is unclustered (i.e., u ∈ U (t)), then we call iteration t a pivot iteration. The key observation
is that the pivot iterations in Algorithm PAIRWISEDISS are equivalent to the iterations of 2.06-
approximation LP rounding algorithm by Chawla et al. (2015): given that u is unclustered (i.e.,
u ∈ U (t)), the conditional distribution of u is uniformly distributed in U (t), and the cluster created
during this iteration contains u and all the unclustered vertices v added with probability (1 − puv).
Therefore, we can directly apply the triangle-based analysis in (Chawla et al., 2015). Define
L :=

∑
(u,v)∈E+ duv +

∑
(u,v)∈E−(1 − duv). Since the predictor is β-level, by Definition 2.1,

we have that the predictions {duv}u,v∈V satisfy triangle inequality and L ≤ β · OPT. It fol-
lows that for all pivot iterations t, E[P (t)

2] ≤ 2.06 · E[L(t)], where P
(t)
2 is the cost induced by the

pivot cluster created at iteration t, and L(t) :=
∑

(u,v)∈E+∩E(t) duv +
∑

(u,v)∈E−∩E(t)(1 − duv)

where E(t) is the set of edges decided at iteration t. By linearity of expectation, we have
E[P2] = E[

∑
t is a pivot iteration P

(t)
2] =

∑
t is a pivot iteration E[P

(t)
2] ≤ 2.06 · L ≤ 2.06β ·OPT.

Corollary 3.7. Let ε ∈ (0, 1/4). Let C2 denote the clustering returned by Line 6 of Algorithm 2. We
have E[costG(C2)] ≤ (2.06β + 8.24βε) ·OPT+ 1+4ε

nα−2 , where α := c/2− 1≫ 2.
Proof of Theorem 3.1. Theorem 3.1 follows from Lemma 3.5, Corollary 3.7 and Lemma D.3. Note
that in Lemma 3.5, we can substitute ε′ := 12ε, where ε can be arbitrarily small. If OPT ≥ 1, then
E[costG(C1)] ≤ (3+12ε) ·OPT, which gives a (3+ε′)-approximation in expectation. If OPT = 0,
then E[costG(C1)] = 1/ poly(n). Similarly, in Corollary 3.7, we can substitute ε′ := 8.24βε.

4 AN ALGORITHM IN INSERTION-ONLY STREAMS WITH SMALLER SPACE

Overview. We first briefly describe a single-pass (3 + ε)-approximation streaming algorithm by
Chakrabarty & Makarychev (2023). Initially, the algorithm adds a positive self-loop for each vertex
and picks a random ordering π : V → {1, . . . , n}. The rank of u is denoted as πu. Then it scans the
input stream. For each vertex, the algorithm stores its k positive neighbors with lowest ranks, where
k is a constant. Subsequently, it runs the PIVOT algorithm (Ailon et al., 2008) on the stored graph
and picks pivots in the order of π. Finally, it puts unclustered vertices in singleton clusters.

Our main idea is to incorporate the above algorithm with the algorithm from Chawla et al. (2015).
Our algorithm uses the predictions of pairwise dissimilarities between any two vertices. We employ
two different methods to store at most k neighbors of each vertex. The first method is the same as

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Chakrabarty & Makarychev (2023) and the second method is adapted from Chawla et al. (2015),
which adds neighbors with probabilities determined by predictions of pairwise dissimilarities. Fi-
nally, we obtain two clusterings (denoted as C1 and C2) and output the one with the lower cost.
Similar to Algorithm 1, here we also need to use the graph sparsification technique (Kelner & Levin,
2011) to approximate the cost of a clustering.

4.1 PROOF SKETCH OF THEOREM 1.2
As the final clustering produced by the algorithm is the lower-cost clustering on the two truncated
graphs, we start by analyzing the costs of these two clusterings. Similar to the analysis of Algo-
rithm 2, for ease of analysis, we separately examine the approximation ratios of the corresponding
offline versions (Algorithms CM-PIVOT and PAIRWISEDISS2) that equivalently output these two
clusterings. We defer the proof of equivalence to Appendix F.

Algorithm CM-PIVOT (Chakrabarty & Makarychev, 2023). This algorithm proceeds in iterations.
Let F (t) denote the set of fresh vertices and U (t) denote the set of unclustered vertices at the begin-
ning of iteration t. Additionally, we maintain a counter K(t)(u) for each vertex u ∈ V . Initially,
all the vertices are fresh and unclustered, with the counters set to 0. At iteration t, we pick a vertex
w(t) from the set of fresh vertices F (t) uniformly at random. If w(t) is unclustered, then we mark
it as a pivot and create a cluster S(t) containing w(t) and all of its unclustered positive neighbors.
Otherwise, we increment the counters for all unclustered positive neighbors of w(t). Subsequently,
vertices whose counters reach the value of k are assigned to singleton clusters. At the end of iteration
t, we remove w(t) from F (t) and remove all vertices clustered in this iteration from U (t). Then the
algorithm proceeds to the next iteration. Finally, we output all pivot clusters and singleton clusters.
We defer its pseudocode (Algorithm 9) to Appendix E.

Algorithm PAIRWISEDISS2. This algorithm has oracle access to a β-level predictor Π. This
algorithm closely resembles Algorithm CM-PIVOT, differing in the following two aspects: (1) If
w(t) ∈ U (t), then we create a cluster S(t) containing w(t) and add all unclustered vertices v to S(t)

with probability (1− pvw(t)) independently, where pvw(t) = f(dvw(t)) and dvw(t) = Π(v, w(t)). (2)
If w(t) /∈ U (t), we increment the counters for all unclustered vertices v with probability (1−pvw(t)).
We defer its pseudocode (Algorithm 10) to Appendix E.

We rely on the analysis framework in Chakrabarty & Makarychev (2023). We categorize all itera-
tions into pivot iterations and singleton iterations. Both iterations create some clusters. We call the
clusters created in pivot iterations pivot clusters. Let P denote the cost of all pivot clusters. There-
fore, P =

∑
t is a pivot iteration P

(t). Let S denote the cost of all singleton clusters. Therefore, the cost
of the algorithm is equal to P + S. We have the following guarantee of Algorithm CM-PIVOT.
Lemma 4.1. Let P1 and S1 denote the costs of pivot clusters and singleton clusters, respectively,
returned by Algorithm CM-PIVOT. Then E[costG(C1)] = E[P1 + S1] ≤ (3 + 6

k−1) ·OPT.

Next, we analyze Algorithm PAIRWISEDISS2. We first bound the cost of pivot clusters.
Lemma 4.2. Let P2 denote the cost of pivot clusters returned by Algorithm PAIRWISEDISS2. We
have E[P2] ≤ 2.06β ·OPT.

Next, we bound the cost of singleton clusters returned by Algorithm PAIRWISEDISS2, denoted
as S2. We highlight that this part is non-trivial. Different from the analysis in Chakrabarty &
Makarychev (2023) which uses a potential function and shows that it is a submartingale, we consider
an algorithm equivalent to Algorithm PAIRWISEDISS2. In this algorithm, we construct a random
subgraph G′ := (V,E′+ ∪ E′−) where each edge (u, v) ∈ E is added to E′+ with probability
(1 − puv) and added to E′− with the remaining probability. Then we perform Algorithm CM-
PIVOT on G′. In other words, we first preround the β-level predictions {duv}u,v∈V into an new
instance G′ and then run Algorithm CM-PIVOT on G′ where the positive edges are induced by the
predictions. We defer its pseudocode (Algorithm 11) to Appendix E.

Therefore, we can apply the guarantee of the cost of singleton clusters returned by Algorithm CM-
PIVOT on G′. We first show that G′ still well preserves the cluster structure of G, by showing that
the optimal solution on G′ does not differ from the optimal solution on G by a lot.
Lemma 4.3. E[OPT′] ≤ (2β + 1) ·OPT, where OPT is the cost of the optimal solution on G and
OPT′ is the cost of the optimal solution on G′.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Proof. Let C∗ be the optimal clustering on G with cost OPT. For any u, v ∈ V , let x∗
uv ∈ {0, 1}

indicate whether u and v are in the same cluster or not in C∗. Specifically, if u and v are in the same
cluster in C∗, then x∗

uv = 0; otherwise, x∗
uv = 1. Let C′∗ be the optimal clustering on G′ with cost

OPT′. Then we have

E[OPT′] = E[costG′(C′∗)] ≤ E[costG′(C∗)]

=
∑

(u,v)∈E+

[x∗
uv(1− puv) + (1− x∗

uv)puv] +
∑

(u,v)∈E−

[x∗
uv(1− puv) + (1− x∗

uv)puv]

=
∑

(u,v)∈E+

x∗
uv +

∑
(u,v)∈E−

(1− x∗
uv) +

∑
(u,v)∈E+

[puv(1− 2x∗
uv)] +

∑
(u,v)∈E−

[(1− puv)(2x
∗
uv − 1)]

≤ OPT+
∑

(u,v)∈E+

puv +
∑

(u,v)∈E−

(1− puv)

≤ OPT+
∑

(u,v)∈E+

2duv +
∑

(u,v)∈E−

(1− duv) ≤ (1 + 2β) ·OPT,

where the first step follows from costG′(C′∗) = OPT′, the second step follows from that C′∗ is
the optimal clustering on G′, the third step follows from our construction of G′, the fifth step fol-
lows from

∑
(u,v)∈E+ x∗

uv +
∑

(u,v)∈E−(1 − x∗
uv) = OPT and

∑
(u,v)∈E+ [puv(1 − 2x∗

uv)] +∑
(u,v)∈E− [(1−puv)(2x∗

uv−1)] ≤
∑

(u,v)∈E+ puv+
∑

(u,v)∈E−(1−puv) since 1−2x∗
uv ∈ {−1, 1},

the sixth step follows from our choice for puv , and the last step follows from
∑

(u,v)∈E+ 2duv +∑
(u,v)∈E−(1− duv) ≤ 2(

∑
(u,v)∈E+ duv +

∑
(u,v)∈E−(1− duv)) ≤ 2β ·OPT.

Now we are ready to bound the cost of singleton clusters and, consequently, the final clustering
returned by Algorithm PAIRWISEDISS2.

Lemma 4.4. E[S2] ≤ 6(2β+1)
k−1 ·OPT.

Corollary 4.5. E[costG(C2)] = E[P2 + S2] ≤ (2.06β + 6(2β+1)
k−1) ·OPT.

Therefore, the approximation guarantee of our algorithm in insertion-only streams follows from
Lemma 4.1, Corollary 4.5 and Lemma D.3, once we show that the algorithm is an equivalent com-
bination of Algorithms CM-PIVOT and PAIRWISEDISS2.

5 EXPERIMENTS

In this section, we evaluate our proposed algorithms empirically on synthetic and real-world
datasets. All of our experiments are done on a CPU with i7-13700H processor and 32 GB RAM. All
of our algorithms are implemented in Python. For all results, we report the average clustering cost
over 20 independent trials. Our source code is available in the supplementary material.

Datasets. 1) Synthetic datasets. These datasets are generated from the Stochastic Block Model
(SBM). We use the model to plant ground-truth clusters. It samples positive edges between vertex
pairs within the same planted cluster with probability p, and samples positive edges across different
clusters with probability (1−p). In the main text, we set p = 0.95. 2) Real-world datasets. We use
EMAILCORE (Leskovec et al., 2007; Yin et al., 2017), FACEBOOK (McAuley & Leskovec, 2012)
and LASTFM (Rozemberczki & Sarkar, 2020) datasets. We refer to Appendix G.1 for detailed
descriptions. For simplicity, for all datasets, we only simulate insertion-only streams of edges.

Predictor description. 1) Noisy predictor. We use this predictor for datasets with available optimal
clusterings. We form this predictor by performing perturbations on optimal clusterings. 2) Spectral
clustering. We use this predictor for EMAILCORE and LASTFM. It first maps all the vertices to
a d-dimensional Euclidean space using the graph Laplacian, then clusters all the vertices based on
their embeddings. For any two vertices u, v ∈ V , we form the prediction duv based on the spectral
embeddings of u and v. We refer to Appendix G.2 for detailed descriptions.

Baselines. 1) (3 + ε)-approximation non-learning counterparts. For our algorithm in dynamic
streams, the counterpart is Algorithm CKLPU24 (Cambus et al., 2024); for insertion-only streams,
the counterpart is Algorithm CM23 (Chakrabarty & Makarychev, 2023). 2) The agreement de-
composition algorithm CLMNPT21 (Cohen-Addad et al., 2021). Though the approximation ratio

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Prediction Quality (beta)

3

4

5

6

7

8

Cl
us

te
rin

g
Co

st

1e4

OPT
CKLPU24
CLMNPT21
Algorithm 1

(a) n = 1000, vary β
(Algorithm 1)

0 500 1000 1500 2000 2500
n

1.0

1.5

2.0

2.5

3.0

3.5

Cl
us

te
rin

g
Co

st
 /

OP
T

OPT
CKLPU24
CLMNPT21
Algorithm 1

(b) β ≈ 2.8, vary n
(Algorithm 1)

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Prediction Quality (beta)

3

4

5

6

7

8

Cl
us

te
rin

g
Co

st

1e4

OPT
CM23
CLMNPT21
Algorithm 7
Algorithm 1

(c) n = 1000, vary β
(Algorithm 7)

0 500 1000 1500 2000 2500
n

1.0

1.5

2.0

2.5

3.0

Cl
us

te
rin

g
Co

st
 /

OP
T

OPT
CM23
CLMNPT21
Algorithm 7
Algorithm 1

(d) β ≈ 2.8, vary n
(Algorithm 7)

Figure 1: Performance of our algorithms on synthetic datasets with SBM parameter p = 0.95. We
examine of the effect of prediction quality β and graph size n. We set k = 10 for Algorithm 7.

1.1 1.2 1.3 1.4 1.5 1.6
Prediction Quality (beta)

1.6

1.8

2.0

2.2

2.4

2.6

Cl
us

te
rin

g
Co

st

1e3

OPT
CKLPU24
CLMNPT21
Algorithm 1

(a) FB 0, vary β

1.06 1.08 1.10 1.12 1.14 1.16
Prediction Quality (beta)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Cl
us

te
rin

g
Co

st

1e3

OPT
CKLPU24
CLMNPT21
Algorithm 1

(b) FB 414, vary β

1.05 1.10 1.15 1.20 1.25 1.30
Prediction Quality (beta)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Cl
us

te
rin

g
Co

st

1e2

OPT
CKLPU24
CLMNPT21
Algorithm 1

(c) FB 3980, vary β

600 650 700 750 800 850 900 950 1000
Embedding Dimension

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Cl
us

te
rin

g
Co

st

1e4

CKLPU24
CLMNPT21
Algorithm 1

(d) EMAILCORE, vary d

Figure 2: Performance of Algorithm 1 on real-world datasets. Figures 2(a)–(c) show the effect of β
on FACEBOOK subgraphs. Figure 2(d) shows the effect of the dimension d of spectral embeddings
on EMAILCORE. Note that a larger d indicates higher prediction quality (i.e., a smaller β).

in theory is large (≈ 701), this algorithm has been shown to give high-quality solutions in practice.
Note that this algorithm only works for insertion-only streams and requires multiple passes. For a
fair comparison, we ensured that all baselines were implemented with equal effort.

Results on synthetic datasets. Figure 1 shows the performance of our algorithms on synthetic
datasets. 1) Varying β. We first examine the effect of β (see Figures 1(a) and (c)). We can see
that when β is small, the cost of our algorithms is significantly lower than that of the (3 + ε)-
approximation non-learning counterparts. Even when β is large, our algorithms do not perform
worse than theirs. Notably, we observe that the algorithm of CLMNPT21 outputs the optimal
solution. We attribute this to the fact that the SBM graphs contain many dense components, which
makes them well-suited for the algorithm. 2) Varying n. Furthermore, we investigate whether our
algorithms scale well with graph size (see Figures 1(b) and (d)). To clearly present our results,
we calculate the ratio between the cost of each algorithm and the optimal solution. The result
demonstrates that our algorithms perform well consistently as the graph size increases.

Results on real-world datasets. Figure 2 shows the performance of our algorithm in dynamic
streams (Algorithm 1) on real-world datasets. The results demonstrate that under good prediction
quality, Algorithm 1 consistently outperforms other baselines across all datasets used. For example,
in Figure 2(a), when β ≈ 1.2, the average cost of our algorithm is 15% lower than that of CLM-
NPT21 and 22% lower than that of CKLPU24. Besides, in Figure 2(d), our algorithm reduces the
clustering cost by up to 14% compared to CLMNPT21. Even in case of poor predictions, Algo-
rithm 1 does not perform worse than the (3 + ε)-approximation counterparts without predictions.

6 CONCLUSION

We present the first LAAs for Correlation Clustering in the streaming setting by leveraging
β-level predictions. Specifically, we provide single-pass streaming algorithms that achieve a
(min{2.06β, 3} + ε)-approximation for Correlation Clustering in both insertion-only and dynamic
streams. In particular, our algorithm in the dynamic setting is the first better-than-3-approximation
algorithm for Correlation Clustering in this context. Additionally, our algorithm is quite simple and
easy for implementation. There are many interesting future research directions, such as achieving
better space-approximation trade-offs with predictions than the standard setting, and finding more
applications of prediction-based graph sparsification or sampling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anders Aamand, Justin Y. Chen, Huy Lê Nguyen, Sandeep Silwal, and Ali Vakilian. Improved
frequency estimation algorithms with and without predictions. In Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and
subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), pp. 5–14. ACM, 2012.

Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth. Correla-
tion clustering in data streams. Algorithmica, 83(7):1980–2017, 2021.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
and clustering. J. ACM, 55(5):23:1–23:27, 2008.

Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault. Online
computation with untrusted advice. J. Comput. Syst. Sci., 144:103545, 2024.

Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. ACM Trans. Algorithms, 19(2):19:1–19:34, 2023a.

Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online match-
ing problems with machine learned advice. Discret. Optim., 48(Part 2):100778, 2023b.

Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering via
sparse-dense decompositions. In 13th Innovations in Theoretical Computer Science Conference
(ITCS), volume 215 of LIPIcs, pp. 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022.

Sepehr Assadi, Vihan Shah, and Chen Wang. Streaming algorithms and lower bounds for estimating
correlation clustering cost. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems (NeurIPS), 2023.

Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
mented algorithms. In Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), 2020.

Siddhartha Banerjee, Vincent Cohen-Addad, Anupam Gupta, and Zhouzi Li. Graph searching with
predictions. In 14th Innovations in Theoretical Computer Science Conference (ITCS), volume
251 of LIPIcs, pp. 12:1–12:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56:
89–113, 2004.

Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate correla-
tion clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pp. 720–731. IEEE, 2022.

Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming algo-
rithms for correlation clustering. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 819–849. SIAM, 2023.

Jan van den Brand, Sebastian Forster, Yasamin Nazari, and Adam Polak. On dynamic graph algo-
rithms with predictions. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 3534–3557. SIAM, 2024.

Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-augmented
maximum independent set. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), volume 317 of LIPIcs, pp. 24:1–24:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mélanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A (3 + ε)-approximate
correlation clustering algorithm in dynamic streams. In Proceedings of the 2024 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2861–2880. SIAM, 2024.

Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl.
Understanding the cluster linear program for correlation clustering. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing (STOC), pp. 1605–1616. ACM, 2024.

Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to webpage
segmentation. In Proceedings of the 17th International Conference on World Wide Web, WWW
2008, pp. 377–386. ACM, 2008.

Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation cluster-
ing. keep it simple! In Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), 2023.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative informa-
tion. J. Comput. Syst. Sci., 71(3):360–383, 2005.

Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal
LP rounding algorithm for correlationclustering on complete and complete k-partite graphs. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC),
pp. 219–228. ACM, 2015.

Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle and four cycle
counting with predictions in graph streams. In 10th International Conference on Learning Rep-
resentations (ICLR), 2022a.

Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms
via learned predictions. In International Conference on Machine Learning (ICML), volume 162
of Proceedings of Machine Learning Research, pp. 3583–3602. PMLR, 2022b.

Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parotsidis,
and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning Re-
search, pp. 2069–2078. PMLR, 2021.

Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with sherali-
adams. In 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp.
651–661. IEEE, 2022.

Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated rounding
error via preclustering: A 1.73-approximation for correlation clustering. In 64th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pp. 1082–1104. IEEE, 2023.

Vincent Cohen-Addad, Tommaso d’Orsi, Anupam Gupta, Euiwoong Lee, and Debmalya Panigrahi.
Max-cut with ϵ-accurate predictions. CoRR, abs/2402.18263, 2024a.

Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan, and
Hanwen Zhang. Combinatorial correlation clustering. In Proceedings of the 56th Annual ACM
Symposium on Theory of Computing (STOC), pp. 1617–1628. ACM, 2024b.

Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Predictive flows for faster
ford-fulkerson. In International Conference on Machine Learning (ICML), volume 202 of Pro-
ceedings of Machine Learning Research, pp. 7231–7248. PMLR, 2023.

Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006.

Adela Frances DePavia, Erasmo Tani, and Ali Vakilian. Learning-based algorithms for graph search-
ing problems. In International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 238 of Proceedings of Machine Learning Research, pp. 928–936. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster
matchings via learned duals. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems (NeurIPS), pp. 10393–10406, 2021.

Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, and Tal Wagner.
Learning-based support estimation in sublinear time. In 9th International Conference on Learning
Representations (ICLR), 2021.

Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In 10th International Conference on Learning Representations
(ICLR), 2022.

Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned
index with provable worst-case bounds. Proc. VLDB Endow., 13(8):1162–1175, 2020.

Suprovat Ghoshal, Konstantin Makarychev, and Yury Makarychev. Constraint satisfaction problems
with advice. CoRR, abs/2403.02212, 2024.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Monika Henzinger, Barna Saha, Martin P. Seybold, and Christopher Ye. On the complexity of
algorithms with predictions for dynamic graph problems. In 15th Innovations in Theoretical
Computer Science Conference (ITCS), volume 287 of LIPIcs, pp. 62:1–62:25. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations (ICLR), 2019.

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. In Advances in Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems (NeurIPS), pp. 2733–2743, 2021.

Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems (NeurIPS), pp. 7400–7410, 2019.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented data
stream algorithms. In 8th International Conference on Learning Representations (ICLR), 2020.

Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates
in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pp. 49–58. ACM, 2011.

Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. In 28th In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS), volume 9 of LIPIcs,
pp. 440–451. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

Sungwoong Kim, Chang Dong Yoo, Sebastian Nowozin, and Pushmeet Kohli. Image segmentation
usinghigher-order correlation clustering. IEEE Trans. Pattern Anal. Mach. Intell., 36(9):1761–
1774, 2014.

Yuko Kuroki, Atsushi Miyauchi, Francesco Bonchi, and Wei Chen. Query-efficient correlation
clustering with noisy oracle. CoRR, abs/2402.01400, 2024.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1859–1877. SIAM, 2020.

Silvio Lattanzi, Ola Svensson, and Sergei Vassilvitskii. Speeding up bellman ford via minimum
violation permutations. In International Conference on Machine Learning (ICML), volume 202
of Proceedings of Machine Learning Research, pp. 18584–18598. PMLR, 2023.

13

https://www.gurobi.com
https://www.gurobi.com

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David P. Woodruff. Learning the positions in
countsketch. In 11th International Conference on Learning Representations (ICLR), 2023.

Honghao Lin, Tian Luo, and David P. Woodruff. Learning augmented binary search trees. In
International Conference on Machine Learning (ICML), volume 162 of Proceedings of Machine
Learning Research, pp. 13431–13440. PMLR, 2022.

Quanquan C. Liu and Vaidehi Srinivas. The predicted-deletion dynamic model: Taking advantage
of ML predictions, for free. CoRR, abs/2307.08890, 2023.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. J.
ACM, 68(4):24:1–24:25, 2021.

Julian J. McAuley and Jure Leskovec. Learning to discover social circles in ego networks. In
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural In-
formation Processing Systems (NIPS), pp. 548–556, 2012.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems (NeurIPS), pp. 462–471, 2018.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with Predictions, pp. 646–662. Cam-
bridge University Press, 2021.

Thy Nguyen, Anamay Chaturvedi, and Huy Le Nguyen. Improved learning-augmented algorithms
for k-means and k-medians clustering. In 11th International Conference on Learning Represen-
tations (ICLR), 2023.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predictions.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 9684–9693, 2018.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In CIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management, pp. 1325–1334. ACM, 2020.

Atsuki Sato and Yusuke Matsui. Fast partitioned learned bloom filter. In Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni. Scalable
community detection via parallel correlation clustering. Proc. VLDB Endow., 14(11):2305–2313,
2021.

Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran,
and Seyed Mehran Kazemi. Kwikbucks: Correlation clustering with cheap-weak and expensive-
strong signals. In 11th International Conference on Learning Representations (ICLR), 2023.

Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite programming.
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 526–527. SIAM, 2004.

Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, and Tim Kraska. Partitioned learned bloom filters.
In 9th International Conference on Learning Representations (ICLR), 2021.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. Knowl. Inf. Syst., 42(1):181–213, 2015.

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph cluster-
ing. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining 2017, pp. 555–564. ACM, 2017.

14

http://snap.stanford.edu/data
http://snap.stanford.edu/data

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A OTHER RELATED WORK

Correlation Clustering. In this paper, we focus on the minimization version of Correlation Clus-
tering (i.e., minimizing the number of disagreements), which is the most commonly studied version.
There are other variants of this problem. For example, Swamy (2004) discussed the maximization
version, which is to maximize the number of agreements, and provided a 0.766-approximation al-
gorithm via SDP. This problem is further examined on general graphs (Charikar et al., 2005) and on
weighted graphs (Demaine et al., 2006).

Learning-Augmented Algorithms. Learning-augmented algorithms (LAAs; also known as algo-
rithms with predictions) have been actively researched in online algorithms (Purohit et al., 2018;
Bamas et al., 2020; Lattanzi et al., 2020; Im et al., 2021; Lykouris & Vassilvitskii, 2021; Antoniadis
et al., 2023a;b; Angelopoulos et al., 2024), data structures (Mitzenmacher, 2018; Ferragina & Vin-
ciguerra, 2020; Vaidya et al., 2021; Lin et al., 2022; Sato & Matsui, 2023), graph algorithms (Dinitz
et al., 2021; Chen et al., 2022b; Banerjee et al., 2023; Lattanzi et al., 2023; Davies et al., 2023; Liu &
Srinivas, 2023; Brand et al., 2024; Henzinger et al., 2024; DePavia et al., 2024), sublinear-time algo-
rithms (Indyk et al., 2019; Eden et al., 2021; Li et al., 2023), and approximation algorithms (Ergun
et al., 2022; Nguyen et al., 2023; Cohen-Addad et al., 2024a; Ghoshal et al., 2024; Braverman et al.,
2024). In this paper, we focus on learning-augmented algorithms in the graph streaming model.

B USEFUL TOOLS

Our algorithms use the graph sparsification techniques, so we need the following definitions.

Definition B.1 (ℓ0-sampler (Jowhari et al., 2011)). Let x ∈ Rn be a non-zero vector and δ ∈ (0, 1).
An ℓ0-sampler for x returns FAIL with probability at most δ and otherwise returns some index i
such that xi ̸= 0 with probability 1

| supp(x)| where supp(x) = {i | xi ̸= 0} is the support of x.

The following theorem states that ℓ0-samplers can be maintained using a single pass in dynamic
streams.

Theorem B.2 (Jowhari et al. (2011)). There exists a single-pass streaming algorithm for maintain-
ing an ℓ0-sampler for a non-zero vector x ∈ Rn (with failure pribability δ) in the dynamic model
using O(log2 n log δ−1) bits of space.

We can use ℓ0-samplers to construct graph sparsifiers.

Definition B.3 (Cut sparsifier). Let H = (VH , EH) be an undirected unweighted (but not neces-
sarily complete) graph and ε ∈ (0, 1), we say that a weighted subgraph H ′ = (VH , E′

H , w) is an
ε-cut-sparsifier of H if for any A ⊆ VH ,

(1− ε)δH(A) ≤ δH′(A) ≤ (1 + ε)δH(A),

where δH(A) := |{(u, v) | u ∈ A, v ∈ VH \ A}| denotes the size of the cut (A, VH \ A) in H , and
δH′(A) :=

∑
e∈C we, where C = {(u, v) | u ∈ A, v ∈ VH \ A}, denotes the weight of the cut

(A, VH \A) in H ′.

Definition B.4 (Spectral sparsifier). Let H = (VH , EH) be an undirected unweighted (but not
necessarily complete) graph and ε ∈ (0, 1), we say that a weighted subgraph H ′ = (VH , E′

H , w) is
an ε-spectral-sparsifier of H if for any x ∈ Rn,

(1− ε)x⊤LHx ≤ x⊤LH′x ≤ (1 + ε)x⊤LHx,

which is equivalent to
(1− ε)LH ⪯ LH′ ⪯ (1 + ε)LH ,

where LH is the Laplacian of H , and LH′ is the Laplacian of H ′.

It is easy to see that if H ′ is an ε-spectral-sparsifier of H , then H ′ is also an ε-cut-sparsifier of H .

The following theorem states that a spectral sparsifier can be constructed using a single pass and
O(ε−2n log n) space in insertion-only streams.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Theorem B.5 (Kelner & Levin (2011)). There exists a single-pass streaming algorithm for con-
structing an ε-spectral-sparsifier of an unweighted, undirected graph in the insertion-only model
using O(ε−2n log n) space. The algorithm succeeds with high probability.

Since a spectral sparsifier implies a cut sparsifier, we can construct a cut sparsifier using a single pass
and O(ε−2n log n) space in insertion-only streams. Let KL-SPARSIFICATION be any algorithm for
constructing a cut sparsifier that satisfies the above guarantees.

The following theorem states that a cut sparsifier can be constructed using a single pass and Õ(ε−2n)
space in dynamic streams.

Theorem B.6 (Ahn et al. (2012)). There exists a single-pass streaming algorithm for constructing
an ε-cut-sparsifier of an unweighted, undirected graph in the dynamic model using O(n log6 n +
ε−2n log5 n) space. The algorithm succeeds with high probability.

Let AGM-SPARSIFICATION be any algorithm for constructing a cut sparsifier that satisfies the guar-
antees of Theorem B.6.

C OMITTED PSEUDOCODES OF SECTION 3

In this section, we give the omitted pseudocodes of Section 3: Algorithm 2, Algorithm 3, Algo-
rithm 4, Algorithm 5 and Algorithm 6.

Algorithm 2 Offline implementation of our algorithm in dynamic streams
Input: Graph G+ = (V,E+), oracle access to a β-level predictor Π
Output: Partition of V into disjoint sets

1: Pick a random permutation of vertices π : V → {1, . . . , n}.
2: Initially, all vertices are unclustered and interesting.
3: A vertex u marks itself uninteresting if πu ≥ τu where τu := c

ε ·
n logn
deg+(u)

.
4: Let Gstore be the graph induced by the interesting vertices.
5: C1 ← TRUNCATEDPIVOT(G+, Gstore, π)
6: C2 ← TRUNCATEDPIVOTWITHPRED(G+, Gstore, π,Π)
7: i← argmini=1,2{costG(Ci)}
8: return Ci

Algorithm 3 TRUNCATEDPIVOT(G+, H, π)

Input: Graph G+ = (V,E+), induced subgraph H = (VH , EH) where VH ⊆ V and EH ⊆ E+,
permutation π : V → {1, . . . , n}

Output: Partition of V into disjoint sets
1: Let U (1) ← VH be the set of unclustered vertices in VH .
2: Let t← 1.
3: while U (t) ̸= ∅ do
4: Let u ∈ U (t) be the vertex with the smallest rank.
5: Mark u as a pivot. Initialize a new pivot cluster S(t) ← {u}.
6: For each vertex v ∈ U (t) such that (u, v) ∈ EH , add v to S(t).
7: Remove all vertices clustered at this iteration from U (t).
8: t← t+ 1.
9: Each vertex u ∈ V \ VH joins the cluster of pivot v with the smallest rank, if (u, v) ∈ E+ and

πv < τu.
10: Each unclustered vertex u ∈ V creates a singleton cluster.
11: return the final clustering C, which contains all pivot clusters and singleton clusters

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 TRUNCATEDPIVOTWITHPRED(G+, H, π,Π)

Input: Graph G+ = (V,E+), induced subgraph H = (VH , EH) where VH ⊆ V and EH ⊆ E+,
permutation π : V → {1, . . . , n}, oracle access to a β-level predictor Π

Output: Partition of V into disjoint sets
1: Let U (1) ← VH be the set of unclustered vertices in VH .
2: Let t← 1.
3: For any u, v ∈ V , duv = Π(u, v).
4: For any u, v ∈ V , define puv := f(duv).
5: while U (t) ̸= ∅ do
6: Let u ∈ U (t) be the vertex with the smallest rank.
7: Mark u as a pivot. Initialize a new pivot cluster S(t) ← {u}.
8: For each vertex v ∈ U (t), add v to S(t) with probability (1− puv) independently.
9: Remove all vertices clustered at this iteration from U (t).

10: t← t+ 1.
11: Each vertex u ∈ V \VH joins the cluster of pivot v in the order of π with probability (1− puv)

independently, if πv < τu.
12: Each unclustered vertex u ∈ V creates a singleton cluster.
13: return the final clustering C, which contains all pivot clusters and singleton clusters

Algorithm 5 CKLPU-PIVOT(G+)
Input: Graph G+ = (V,E+)
Output: Partition of vertices into disjoint sets

1: Pick a random permutation of vertices π : V → {1, . . . , n}.
2: Let U (1) ← V be the set of unclustered vertices.
3: for t = 1, . . . , n do
4: Let ℓt ← c

ε ·
n logn

t .
5: Let u ∈ V be the t-th vertex in π (i.e., t = πu).
6: Each unclustered vertex v with deg+(v) ≥ ℓt creates a singleton cluster.
7: if u ∈ U (t) then
8: Mark u as a pivot. Initialize a new pivot cluster S(t) ← {u}.
9: For each vertex v ∈ N+(u) ∩ U (t), add v to S(t).

10: Remove all vertices clustered at this iteration from U (t).
11: return the final clustering C, which contains all pivot clusters and singleton clusters

Algorithm 6 PAIRWISEDISS(G+,Π)
Input: Graph G+ = (V,E+), oracle access to a β-level predictor Π
Output: Partition of vertices into disjoint sets

1: Pick a random permutation of vertices π : V → {1, . . . , n}.
2: For any u, v ∈ V , duv = Π(u, v).
3: For any u, v ∈ V , define puv := f(duv).
4: Let U (1) ← V be the set of unclustered vertices.
5: for t = 1, . . . , n do
6: Let ℓt ← c

ε ·
n logn

t .
7: Let u ∈ V be the t-th vertex in π (i.e., t = πu).
8: Each unclustered vertex v with deg+(v) ≥ ℓt creates a singleton cluster.
9: if u ∈ U (t) then

10: Mark u as a pivot. Initialize a new pivot cluster S(t) ← {u}.
11: For each vertex v ∈ U (t), add v to S(t) with probability (1− puv) independently.
12: Remove all vertices clustered at this iteration from U (t).
13: return the final clustering C, which contains all pivot clusters and singleton clusters

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D OMITTED PROOFS OF SECTION 3

D.1 PROOF OF THEOREM 1.1

Space Complexity. We first analyze the space complexity of Algorithm 1. For each vertex u ∈ V ,
we mainly store its rank πu, positive degree deg+(u), and 10c log n · σu independent ℓ0-samplers.
We have the following lemma which states the space requirement of ℓ0-samplers.
Lemma D.1 (Cambus et al. (2024)). The ℓ0-samplers used in Algorithm 1 require O(ε−1n log4 n)
words of space.

Furthermore, by Theorem B.6, the AGM-SPARSIFICATION algorithm uses O(n log6 n +
ε−2n log5 n) words of space. Therefore, the space complexity of Algorithm 1 is O(n log6 n +
ε−2n log5 n) words.

Approximation Guarantee. Next, we analyze the approximation ratio of Algorithm 1. We rely
on the following lemma.
Lemma D.2 (Lemma 2 in Cambus et al. (2024)). The ℓ0-samplers allow us to recover the positive
edges incident to all interesting vertices with high probability.

Therefore, Algorithm 1 works with the same set of edges as Algorithm 2 in the clustering phase
with high probability. This implies that both algorithms return the same clustering with the same
probability. On the other hand, if the high probability event of Lemma D.2 does not happen, then
Algorithm 1 produces a clustering of cost at most O(n2), which leads to an additive 1/ poly(n)
term to the expected cost of Algorithm 1 compared to that of Algorithm 2. This preserves the
approximation ratio if OPT ̸= 0.

We also need the following lemma which shows that the estimate c̃ostG(C) well approximates the
cost of any clustering C of G.
Lemma D.3 (Behnezhad et al. (2023)). Let ε ∈ (0, 1). For any clustering C of V , the cost costG(C)
is approximated by the estimate c̃ostG(C) :=

∑
C∈C

(
1
2δH+(C) +

(|C|
2

)
− 1

2

∑
u∈C deg+(u)

)
up

to a multiplicative factor of (1± ε).

Therefore, Theorem 1.1 follows from Lemma D.2 and Lemma D.3 by applying the union bound.

D.2 PROOF OF LEMMA 3.3

The proof is similar to that of Lemma 3.2. The proof idea is as follows: we first show that in
both cases, the singleton clusters Vsin are the same (with the same probability). Then we show
that the randomized pivot-based algorithm runs on the same subgraph G+[V \ Vsin] (with the same
probability) in both cases, therefore outputting the same pivot clusters (with the same probability).

Consider a vertex u that is unclustered at the beginning of iteration t (≤ πu), and becomes a single-
ton cluster due to Line 8 of Algorithm PAIRWISEDISS. By definition, t is the smallest integer such
that deg+(u) ≥ c

ε ·
n logn

t and hence t = ⌈τu⌉. Since t ≤ πu, we have deg+(u) ≥ c
ε ·

n logn
πu

, which
corresponds to u becoming uninteresting in Algorithm 2. Since u is in a singleton cluster, it did not
join any pivot cluster, implying that for any vertex v ̸= u, either (1) πv ≥ t, or (2) the event that v is
a pivot and u joins the cluster of v satisfying πv < t does not happen. This is equivalent to saying
that the event that u joins the cluster of pivot v satisfying πv < τu does not happen, since πv is an
integer. By Line 11 of Algorithm TRUNCATEDPIVOTWITHPRED, u creates a singleton cluster in
Line 6 of Algorithm 2 (with the same probability) as well.

Now consider a vertex u that creates a singleton cluster in Line 6 of Algorithm 2. Then u must
be marked uninteresting (implying πu ≥ τu), and u can neither be a pivot nor join the cluster
of pivot v satisfying πv < τu. By definition of τu, iteration ⌈τu⌉ is the smallest iteration such
that deg+(u) ≥ c

ε ·
n logn
⌈τu⌉ . This implies that u is unclustered at the beginning of iteration ⌈τu⌉ in

Algorithm PAIRWISEDISS, and forms a singleton cluster in that iteration (with the same probability).

Since the vertices forming singleton clusters are the same in both cases (with the same probability),
the subgraph induced by the remaining vertices G+[V \Vsin] is the same (with the same probability).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The same randomized pivot-based algorithm runs on G+[V \ Vsin] in both cases, which implies that
the pivots will be the same (with the same probability). Finally, we observe that in both cases, a
non-pivot vertex u joins the cluster of pivot v such that πv < τu in the order of π with probability
(1− puv) independently. Hence, the pivot clusters are the same (with the same probability).

D.3 PROOF OF COROLLARY 3.7

Corollary 3.7 follows from Lemma 3.3, Lemma 3.4 and Lemma 3.6.

E OMITTED PSEUDOCODES OF SECTION 4

In this section, we give the omitted pseudocodes of Section 4: Algorithm 7, Algorithm 8, Algo-
rithm 9, Algorithm 10 and Algorithm 11.

Algorithm 7 An insertion-only streaming algorithm for Correlation Clustering with predictions
Input: Complete graph G = (V,E = E+ ∪ E−) as an arbitrary-order stream of edges, oracle

access to a β-level predictor Π, integer k
Output: Partition of V into disjoint sets

▷ Preprocessing phase
1: Pick a random permutation of vertices π : V → {1, . . . , n}.
2: For any u, v ∈ V , duv = Π(u, v).
3: For any u, v ∈ V , define puv := f(duv).
4: for each vertex u ∈ V do
5: Create a priority queue A(u) with a maximum size of k and initialize A(u)← {u}.
6: Create a priority queue B(u) with a maximum size of k and initialize B(u)← {u}.
7: deg+(u)← 0

8: Initialize a cut sparsifier H+ for the subgraph G+ = (V,E+).
▷ Streaming phase

9: for each edge e = (u, v) ∈ E do
10: if e = (u, v) ∈ E+ then
11: Add u to A(v). Add v to A(u).
12: if |A(u)| > k (resp. |A(v)| > k) then
13: Remove the vertex with the highest rank from A(u) (resp. A(v)).
14: deg+(u)← deg+(u) + 1,deg+(v)← deg+(v) + 1
15: Apply KL-SPARSIFICATION(H+, e).
16: With probability (1− puv), add u to B(v) and add v to B(u).
17: if |B(u)| > k (resp. |B(v)| > k) then
18: Remove the vertex with the highest rank from B(u) (resp. B(v)).

▷ Postprocessing phase
19: C1 ← CLUSTER(V, π, {A(u)}u∈V)
20: C2 ← CLUSTER(V, π, {B(u)}u∈V)

21: W̃1 ← ESTIMATECOST(C1, {deg+(u)}u∈V , H
+)

22: W̃2 ← ESTIMATECOST(C2, {deg+(u)}u∈V , H
+)

23: i← argmini=1,2{W̃i}
24: return Ci

F OMITTED DETAILS OF SECTION 4

F.1 OUR ALGORITHM IN INSERTION-ONLY STREAMS

Recall that we have oracle access to a β-level predictor Π, which can predict the pairwise dissimi-
larity duv ∈ [0, 1] between any two vertices u and v in G.

Based on the predictions, we propose a single-pass semi-streaming algorithm which works in
insertion-only streams (see Algorithm 7). We first pick a random permutation of vertices π : V →

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 8 CLUSTER(V, π, {T (u)}u∈V)

Input: Vertex set V , permutation of vertices π : V → {1, . . . , n}, truncated neighbors of each
vertex {T (u)}u∈V

Output: Partition of V into disjoint sets
1: for each unclustered vertex u ∈ V chosen in the order of π do
2: Find the vertex v ∈ T (u) with the lowest rank such that v is a pivot or v = u, i.e., v ←

argminv∈T (u){πv : v is a pivot or v = u}.
3: if such a vertex v exists then
4: Put u in the cluster of v.
5: if v = u then
6: Mark u as a pivot.
7: else
8: Put u in a singleton cluster. Mark u as a singleton.
9: return the final clustering C

Algorithm 9 CM-PIVOT(G, k)
Input: Complete graph G = (V,E = E+ ∪ E−), integer k
Output: Partition of vertices into disjoint sets

1: Let F (1) ← V be the set of fresh vertices.
2: Let U (1) ← V be the set of unclustered vertices.
3: For each vertex u ∈ V , initialize a counter K(1)(u)← 0.
4: Let t← 1.
5: while F (t) ̸= ∅ do
6: Choose a vertex w(t) ∈ F (t) uniformly at random.
7: if w(t) ∈ U (t) then
8: Mark w(t) as a pivot. Initialize a new pivot cluster S(t) ← {w(t)}.
9: For each vertex v ∈ N+(w(t)) ∩ U (t), add v to S(t).

10: else
11: For each vertex v ∈ N+(w(t)) ∩ U (t), let K(t+1)(v)← K(t)(v) + 1. Subsequently, all

vertices v with K(t+1)(v) = k are put into singleton clusters.
12: Let F (t+1) ← F (t) \ {w(t)} and remove all vertices clustered at this iteration from U (t).
13: Let t← t+ 1.
14: return the final clustering C, which contains all pivot clusters and singleton clusters

{1, . . . , n}. For each vertex u ∈ V , we initialize two priority queues A(u) and B(u), each with
a maximum size capped at k, where k is a constant. Initially, we add u to both queues. During
the streaming phase, we employ two distinct methods to retain at most k neighbors of each vertex.
Specifically, for each edge (u, v) ∈ E in the stream, if (u, v) is a positive edge, we add u to A(v)
and add v to A(u). Additionally, regardless of whether (u, v) is positive or negative, we add u to
B(v) with probability (1− puv) and add v to B(u) with probability (1− puv), where puv = f(duv)
and duv = Π(u, v). Note that if the size of any queue exceeds k, then we remove the vertex with the
highest rank from the queue. That is, A(u) maintains at most k positive neighbors of u with lowest
ranks, while B(u) contains at most k neighbors (not necessarily positive) of u with lowest ranks,
the inclusion of which is probabilistic. Note that we define the rank of a vertex as its order in the
permutation π, e.g., πu is the rank of u.

After the streaming phase, we run Algorithm 8 on the truncated graphs induced by both sets of
priority queues, i.e., {A(u)}u∈V and {B(u)}u∈V . Specifically, for each vertex u picked in the
order of π, we determine the cluster to which u belongs. We try to find the vertex v with the lowest
rank in the queue of u, such that v is a pivot or v = u. If such a vertex v does not exist, then
we mark u as a singleton and place it in a singleton cluster. Otherwise, we assign u to the cluster
of v. Additionally, if v = u, then we mark u as a pivot. Finally, we obtain two clusterings, each
corresponding to a set of priority queues. We output the clustering with the lower cost.

It is worth noting that in the final step, the cost of a clustering cannot be exactly calculated, as our
streaming algorithm cannot store the entire graph. To overcome this challenge, we utilize the graph

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 10 PAIRWISEDISS2(G,Π, k)
Input: Complete graph G = (V,E = E+ ∪ E−), oracle access to a β-level predictor Π, integer k
Output: Partition of vertices into disjoint sets

1: Let F (1) ← V be the set of fresh vertices.
2: Let U (1) ← V be the set of unclustered vertices.
3: For each vertex u ∈ V , initialize a counter K(1)(u)← 0.
4: For any u, v ∈ V , duv = Π(u, v).
5: For any u, v ∈ V , define puv := f(duv).
6: Let t← 1.
7: while F (t) ̸= ∅ do
8: Choose a vertex w(t) ∈ F (t) uniformly at random.
9: if w(t) ∈ U (t) then

10: Mark w(t) as a pivot. Initialize a new pivot cluster S(t) ← {w(t)}.
11: For each vertex v ∈ U (t), add v to S(t) with probability (1− pvw(t)) independently.
12: else
13: For each vertex v ∈ U (t), let K(t+1)(v) ← K(t)(v) + 1 with probability (1 − pvw(t))

independently. Subsequently, all vertices v with K(t+1)(v) = k are put into singleton clusters.
14: Let F (t+1) ← F (t) \ {w(t)} and remove all vertices clustered at this iteration from U (t).
15: Let t← t+ 1.
16: return the final clustering C, which contains all pivot clusters and singleton clusters

Algorithm 11 PAIRWISEDISS2WITHPREROUNDING(G,Π, k)
Input: Complete graph G = (V,E = E+ ∪ E−), oracle access to a β-level predictor Π, integer k
Output: Partition of vertices into disjoint sets

1: For any u, v ∈ V , duv = Π(u, v).
2: For any u, v ∈ V , define puv := f(duv).
3: E′+ ← ∅.
4: for each edge (u, v) ∈ E such that puv < 1 do
5: add (u, v) to E′+ with probability (1− puv).
6: E′− ← E \ E′+

7: C ← CM-PIVOT(G′ := (V,E′+ ∪ E′−), k)
8: return C

sparsification technique (Kelner & Levin, 2011) to estimate the cost of a clustering. During the
streaming phase, we maintain a cut sparsifier H+ for the subgraph G+ = (V,E+). Specifically,
for each positive edge (u, v) ∈ E+ in the stream, we apply KL-SPARSIFICATION(H+, (u, v))
to determine whether (u, v) is added to H+ and, if so, its corresponding weight in H+. We also
maintain the positive degree deg+(u) of each vertex u. According to Theorem B.5, the sparsifier can
be constructed using a single pass and can approximate the value of every cut in G+ up to a (1± ε)-
multiplicative error with high probability. Thus we can to approximate the cost of a clustering using
the stored information up to a (1± ε)-multiplicative error with high probability, by the guarantee of
(Behnezhad et al., 2023).

F.2 ANALYSIS

F.2.1 SPACE COMPLEXITY

For each vertex u ∈ V , we mainly store its rank πu, positive degree deg+(u), and at most 2k ver-
tices. As we will see, we set k = O(1/ε). Furthermore, by Theorem B.5, the KL-SPARSIFICATION
algorithm uses O(ε−2n log n) words of space. Therefore, the total space complexity of the algo-
rithm is O(ε−2n log n) words.

F.2.2 ALGORITHM 7 AS A COMBINATION OF ALGORITHMS CM-PIVOT AND PAIRWISEDISS2

We define a permutation π for Algorithms CM-PIVOT and PAIRWISEDISS2 as π : w(t) 7→ t, where
w(t) is the vertex picked at iteration t of Algorithms CM-PIVOT and PAIRWISEDISS2. Obviously,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

π is a uniformly random permutation over V . Therefore, we can also view Algorithms CM-PIVOT
and PAIRWISEDISS2 from an equivalent perspective: at the beginning of each iteration t, choose a
vertex w(t) in the order of π. We have the following lemmas.

Lemma F.1 (Lemma 2.1 in Chakrabarty & Makarychev (2023)). If Algorithm 7 and Algorithm CM-
PIVOT use the same permutation π, then Algorithm CM-PIVOT and Line 19 of Algorithm 7 output
the same clustering of V .

Lemma F.2. If Algorithm 7 and Algorithm PAIRWISEDISS2 use the same permutation π and pre-
dictions {duv}u,v∈V , then Algorithm PAIRWISEDISS2 and Line 20 of Algorithm 7 output the same
clustering of V with the same probability.

Proof. The proof is similar to that of Lemma F.1. Suppose that Algorithm 7 and Algorithm PAIR-
WISEDISS2 use the same permutation π and predictions {duv}u,v∈V , we want to prove that for each
vertex u ∈ V , with the same probability, in both clusterings returned by Algorithm PAIRWISEDISS2
and Line 20 of Algorithm 7, u is either assigned to the same pivot, or u is placed into a singleton
cluster.

We prove by induction on the rank πu. Suppose that all vertices v with πv < πu are clustered in
the same way with the same probability. If u is put into a singleton cluster in the clustering returned
by Line 20 of Algorithm 7, then there must exist k vertices added to B(u) probabilistically, and
their ranks are lower than πu. None of the vertices in B(u) are pivots. Since both algorithms use
the same π and {duv}u,v∈V , in Algorithm PAIRWISEDISS2, these k vertices will cause the counter
of u to increment k times probabilistically. Therefore, u is also placed in a singleton cluster in the
clustering returned by Algorithm PAIRWISEDISS2. And vice versa.

In Algorithm 7, if there are any pivots in B(u) (or u itself), then u will be assigned to the pivot with
the lowest rank (denoted as v). We have πv ≤ πu and v has been added to B(u) probabilistically.
In Algorithm PAIRWISEDISS2, with the same probability, v is marked as a pivot and u is added to
the cluster of v. And vice versa.

Therefore, Algorithm PAIRWISEDISS2 and Line 20 of Algorithm 7 cluster u in the same way with
the same probability.

F.2.3 THE APPROXIMATION RATIOS OF CM-PIVOT AND PAIRWISEDISS2

In order to analyze the approximation ratio of Algorithm 7, it suffices to analyze Algorithms CM-
PIVOT and PAIRWISEDISS2 respectively. We follow the analysis framework in Chakrabarty &
Makarychev (2023). We categorize all iterations into pivot iterations and singleton iterations. Both
iterations create some clusters. Consider iteration t of both algorithms. If w(t) ∈ U (t), then iteration
t is a pivot iteration; otherwise, it is a singleton iteration. We say that an edge (u, v) is decided at
iteration t if both u and v were not clustered at the beginning of iteration t (i.e., u, v ∈ U (t)) but
at least one of them was clustered at iteration t. Once an edge (u, v) is decided, we can determine
whether it contributes to the cost of the algorithm (i.e., the number of disagreements). Specifically,
if (u, v) ∈ E+, then it contributes to the cost of the algorithm if exactly one of u and v is assigned
to the newly created cluster S(t); if (u, v) ∈ E−, then it contributes to the cost of the algorithm if
both u and v are assigned to the newly created cluster S(t).

Let E(t) denote the set of decided edges at pivot iteration t. Specifically, E(t) = {(u, v) | u, v ∈
U (t);u ∈ S(t) or v ∈ S(t)}. Let P (t) denote the cost of decided edges at pivot iteration t. We
call the clusters created in pivot iterations pivot clusters. Let P denote the cost of all pivot clusters.
Therefore, P =

∑
t is a pivot iteration P

(t). Let S denote the cost of all singleton clusters. Therefore, the
cost of the algorithm is equal to P + S.

Analysis of Algorithm CM-PIVOT.
Lemma F.3 (Chakrabarty & Makarychev (2023)). Let P1 denote the cost of pivot clusters returned
by Algorithm CM-PIVOT, then E[P1] ≤ 3 ·OPT, where OPT is the cost of the optimal solution on
G.

Lemma F.4 (Chakrabarty & Makarychev (2023)). Let S1 denote the cost of singleton clusters re-
turned by Algorithm CM-PIVOT, then E[S1] ≤ 6

k−1 ·OPT.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof of Lemma 4.1. Lemma 4.1 follows from Lemma F.1, Lemma F.3 and Lemma F.4.

Analysis of Algorithm PAIRWISEDISS2.

Proof of Lemma 4.2. The key observation is that the pivot iterations in Algorithm PAIRWISEDISS2
are equivalent to the iterations of 2.06-approximation LP rounding algorithm by Chawla et al.
(2015): given that w(t) is unclustered (i.e., w(t) ∈ U (t)), the conditional distribution of w(t) is
uniformly distributed in U (t), and the cluster created during this iteration contains w(t) and all
unclustered vertices v added with probability (1 − pvw(t)). Therefore, we can directly apply the
triangle-based analysis in (Chawla et al., 2015). Define L :=

∑
(u,v)∈E+ duv+

∑
(u,v)∈E−(1−duv).

Since the predictor is β-level, by Definition 2.1, we have that the predictions {duv}u,v∈V satisfy tri-
angle inequality and L ≤ β ·OPT. It follows that for all pivot iterations t, E[P (t)

2] ≤ 2.06 ·E[L(t)],
where L(t) :=

∑
(u,v)∈E+∩E(t) duv +

∑
(u,v)∈E−∩E(t)(1 − duv). By linearity of expectation, we

have E[P2] = E[
∑

t is a pivot iteration P
(t)
2] =

∑
t is a pivot iteration E[P

(t)
2] ≤ 2.06 ·L ≤ 2.06β ·OPT.

Equivalence of Algorithms PAIRWISEDISS2 and PAIRWISEDISS2WITHPREROUNDING.
Claim F.5. If Algorithm PAIRWISEDISS2 and Algorithm PAIRWISEDISS2WITHPREROUNDING
use the same permutation π and predictions {duv}u,v∈V , then they produce the same clustering
with the same probability.

Proof. The randomness in both algorithms comes from two sources: (1) the uniformly random per-
mutation π on vertices and (2) the probability that each vertex v adjacent to w(t) will join the
cluster of w(t) or increment its counter. The main difference between the two algorithms lies
in the order in which the two sources of randomness are revealed: Algorithm PAIRWISEDISS2
can be viewed as choosing π at the beginning and then performing iterations, where the random-
ness of all edges incident to w(t) is revealed after w(t) is chosen. In contrast, Algorithm PAIR-
WISEDISS2WITHPREROUNDING reveals the randomness of edges at the beginning, uses this infor-
mation to construct a new instance, and then performs Algorithm CM-PIVOT on the new instance,
where the randomness for π is revealed. Note that the order of randomness does not affect the out-
put. Therefore, if both algorithms use the same π and {duv}u,v∈V , then they will output the same
clustering with the same probability.

Proof of Lemma 4.4. By Lemma F.4, Claim F.5 and Lemma 4.3, we have E[S2] ≤ 6
k−1 ·E[OPT′] ≤

6(2β+1)
k−1 ·OPT.

Proof of Corollary 4.5. Corollary 4.5 follows from Lemma F.2, Lemma 4.2 and Lemma 4.4.

Remark. The reason our sampling-based approach works is mainly due to the fact that the rounding
algorithm by Chawla et al. (2015) is equivalent to the algorithm that first samples a subgraph G′

according to the prediction oracle and then runs the PIVOT algorithm on G′. Therefore, if a Correla-
tion Clustering algorithmA has a similar feature, i.e., can be viewed as a procedure that first obtains
a core of the original graph (by using LP or other methods), and then applies the PIVOT algorithm
on the core, then we can get roughly the same approximation ratio as A.

G ADDITIONAL EXPERIMENTS

In this section, we provide detailed descriptions of the datasets and predictors used in the experi-
ments. Additionally, we present further experimental settings and results.

G.1 DETAILED DESCRIPTIONS OF DATASETS

In this subsection, we give a detailed description of the real-world datasets used in our experiments.
Recall that we use EMAILCORE (Leskovec et al., 2007; Yin et al., 2017), FACEBOOK (McAuley &

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Leskovec, 2012), LASTFM (Rozemberczki & Sarkar, 2020), and DBLP (Yang & Leskovec, 2015)
from the Stanford Large Network Dataset Collection (Leskovec & Krevl, 2014).

EMAILCORE is a directed network with 1 005 vertices and 25 571 edges. This network is constructed
based on email exchange data from a large European research institution. Each vertex represents a
person in the institution. There is a directed edge (u, v) in the network if person u has sent at least
one email to person v.

FACEBOOK is an undirected network with 4 039 vertices and 88 324 edges. This network consists
of friend lists of users from Facebook. Each vertex represents a user in Facebook. There is an
undirected edge (u, v) in the network if u and v are friends. Due to the computational bottleneck
of solving the LP, we only use its three ego-networks: FB 0 (n = 333,m = 5038), FB 414
(n = 150,m = 3386), FB 3980 (n = 52,m = 292).

LASTFM is an undirected network with 7 624 vertices and 27 806 edges. This network is a social
network of LastFM users, collected from the public API. Each vertex represents a LastFM user from
an Asian country. There is an undirected edge (u, v) in the network if u and v are mutual followers.

DBLP is an undirected co-authorship network with 317 080 vertices and 1 049 866 edges. Each
vertex represents an author. There is an undirected edge (u, v) in the network if u and v publish
at least one paper together. Ground-truth communities are defined based on publication venues:
authors who have published in the same journal or conference belong to the same community. For
our experiments, we use a sampled subgraph consisting of 2 000 vertices.

Remark. We treat the edges in the datasets as positive edges and non-edges as negative implicitly.
(For datasets used in experiments where binary classifiers are employed as predictors, the interpre-
tation of positive and negative edges differs slightly. See Appendix G.2 for details.) For directed
networks, we convert all directed edges into undirected edges. We highlight that since we are con-
sidering labeled complete graphs, the number of edges scales quadratically w.r.t. the number of
vertices, which leads to a non-trivial scale of instances.

G.2 DETAILED DESCRIPTIONS OF PREDICTORS

Noisy predictor. We use this predictor for datasets with available optimal clusterings. We form
this predictor by performing perturbations on optimal clusterings. Specifically, for any two vertices
u, v ∈ V , if u and v are in different clusters in the optimal clustering, then we set the prediction duv
to be 1−ε0, otherwise ε0, where ε0 ∈ (0, 0.5). For synthetic datasets with p = 0.95, we can assume
that the ground truths are also optimal solutions. For real-world datasets, we use the powerful LP
solver Gurobi (Gurobi Optimization, LLC, 2023) to get the optimal clusterings.

Spectral clustering. We use this predictor for EMAILCORE and LASTFM. It first maps all the
vertices to a d-dimensional Euclidean space using the graph Laplacian, then clusters all the vertices
based on their embeddings. For any two vertices u, v ∈ V , we form the prediction duv to be
1 − ⟨xu,xv⟩

∥xu∥∥xv∥ , where xu,xv ∈ Rd are spectral embeddings of u and v, and ⟨xu,xv⟩ is the dot
product of xu and xv . Note that a larger d indicates a higher-quality predictor.

Binary classifier. We use this predictor for datasets where ground-truth communities are available.
This predictor is constructed by training a binary classifier (based on an MLP model) to predict
whether two vertices belong to the same cluster using node features. In this setting, the goal of Cor-
relation Clustering aligns with that of community detection by treating edges between two vertices
in the same (ground-truth) community as positive edges and edges between two vertices in different
communities as negative edges. The predictions provided by the binary classifier (i.e., binary values
in {0, 1}) are then used as the pairwise dissimilarities duv in our algorithms.

G.3 ADDITIONAL RESULTS

G.3.1 PERFORMANCE OF ALGORITHM 7 ON REAL-WORLD DATASETS

In this subsection, we present the results of our algorithm in insertion-only streams (Algorithm 7)
on real-world datasets, as shown in Figure 3. The results show that under good prediction quality,
Algorithm 7 consistently outperforms other baselines across all datasets used. For example, in
Figure 3(a), when β ≈ 1.2, the average cost of Algorithm 7 is 13% lower than that of CLMNPT21

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

and 17% lower than that of CKLPU24. Besides, in Figure 3(c), Algorithm 7 reduces the clustering
cost by up to 14% compared to CLMNPT21. Even if the prediction quality is poor, Algorithm 7
does not perform worse than CM23 and achieves comparable performance to CLMNPT21 (on
FACEBOOK subgraphs).

1.1 1.2 1.3 1.4 1.5 1.6
Prediction Quality (beta)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Cl
us

te
rin

g
Co

st

1e3

OPT
CM23
CLMNPT21
Algorithm 7
Algorithm 1

(a) FB 0, vary β

1.06 1.08 1.10 1.12 1.14 1.16
Prediction Quality (beta)

0.8

0.9

1.0

1.1

1.2

1.3

Cl
us

te
rin

g
Co

st

1e3

OPT
CM23
CLMNPT21
Algorithm 7
Algorithm 1

(b) FB 414, vary β

600 650 700 750 800 850 900 950 1000
Embedding Dimension

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

Cl
us

te
rin

g
Co

st

1e4

CLMNPT21
Algorithm 7
CM23
Algorithm 1

(c) EMAILCORE, vary d

4500 5000 5500 6000 6500 7000 7500
Embedding Dimension

0.5

1.0

1.5

2.0

Cl
us

te
rin

g
Co

st

1e5

CLMNPT21
Algorithm 7
CM23

(d) LASTFM, vary d

Figure 3: Performance of Algorithm 7 on real-world datasets. Figures 3(a)–(b) show the effect of
prediction quality β on two FACEBOOK subgraphs, where we use noisy predictors. Figures 3(c)–(d)
examine the effect of the dimension d of spectral embeddings on EMAILCORE and LASTFM, where
we use spectral clustering as the predictor. We set k = 25 for Figure 3(a), k = 15 for Figure 3(b),
k = 10 for Figure 3(c), and k = 50 for Figure 3(d).

G.3.2 PERFORMANCE OF ALGORITHM 1 ON SYNTHETIC DATASETS WITH VARYING p

Recall that in the main text, the experiments on synthetic datasets are conducted only with SBM
parameter p = 0.95, which is a relatively easy case. In this subsection, we present additional results
for smaller values of p, as shown in Figure 4. Note that, in these cases, we can no longer assume
that the ground truths are also optimal solutions. Therefore, we solve the LP to obtain the optimal
solutions, which are required for the noisy predictors. Due to the computational bottleneck of solv-
ing the LP, we set n = 100. The results demonstrate that even when the ground-truth communities
are less obvious (e.g., when p = 0.7), the clustering cost of Algorithm 1 is reduced by up to 26%
compared to the algorithm of CKLPU24.

1.15 1.20 1.25 1.30 1.35
Prediction Quality (beta)

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Cl
us

te
rin

g
Co

st

1e3

OPT
CKLPU24
CLMNPT21
Algorithm 1

(a) p = 0.7

1.3 1.4 1.5 1.6 1.7 1.8 1.9
Prediction Quality (beta)

1.0

1.2

1.4

1.6

1.8

Cl
us

te
rin

g
Co

st

1e3

OPT
CKLPU24
CLMNPT21
Algorithm 1

(b) p = 0.8

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Prediction Quality (beta)

0.6

0.8

1.0

1.2

1.4

Cl
us

te
rin

g
Co

st

1e3

OPT
CKLPU24
CLMNPT21
Algorithm 1

(c) p = 0.9

Figure 4: Performance of Algorithm 1 on synthetic datasets with varying values of p. We examine
the effectiveness of Algorithm 1 when the ground-truth communities are less obvious. We set n =
100.

G.3.3 RUNNING TIME OF OUR ALGORITHMS

In this subsection, we present the running time of our algorithms on FACEBOOK subgraphs, com-
pared to their non-learning counterparts, as shown in Table 2 (Algorithm 1) and Table 3 (Algo-
rithm 7). The results show that our learning-augmented algorithms do not introduce significant time
overheads. The slight increase in running time is due to the additional steps of querying the ora-
cles and calculating the costs of two clusterings. These steps are both reasonable and acceptable.
Moreover, in the streaming setting, space efficiency is typically the primary focus.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 2: Running time (ms) of Algorithm 1 (for dynamic streams) on FACEBOOK subgraphs, com-
pared to its non-learning counterpart. For FB 0, we set β = 1.19. For FB 414, we set β = 1.12.
For FB 3980, we set β = 1.19. The reported values are averaged over 20 runs.

Algorithm
Dataset FB 0 FB 414 FB 3980

CKLPU24 1 738.16 165.55 7.32
Algorithm 1 1 639.22 163.35 7.69

Table 3: Running time (ms) of Algorithm 7 (for insertion-only streams) on FACEBOOK subgraphs,
compared to its non-learning counterpart. For FB 0, we set β = 1.19. For FB 414, we set β = 1.12.
For FB 3980, we set β = 1.19. The reported values are averaged over 20 runs.

Algorithm
Dataset FB 0 FB 414 FB 3980

CM23 30.65 6.67 0.97
Algorithm 7 81.31 16.58 2.12

G.3.4 RESULTS BASED ON BINARY CLASSIFICATION PREDICTORS

In this subsection, we present experiments where binary classifiers are employed as predictors in our
algorithms. These experiments are performed on three SBM graphs with parameter p = 0.95 (each
with a different number of vertices) and the DBLP dataset (sampled subgraph of 2 000 vertices).
The results are shown in Table 4. The results demonstrate that our learning-augmented algorithms
consistently outperform their non-learning counterparts across all datasets. For instance, on the
SBM graph with n = 2400 vertices, Algorithm 1 reduces the clustering cost by 72% compared
to CKLPU24. On the DBLP dataset, Algorithm 7 achieves a 19% reduction in clustering cost
compared to CM23.

Table 4: Clustering costs of our algorithms leveraging binary classification predictors, compared to
their non-learning counterparts. For Algorithm 7, we set parameter k = 10 across all datasets. The
reported values are averaged over 5 runs.

Algorithm
Dataset SBM

(n = 1200)
SBM

(n = 2400)
SBM

(n = 3600) DBLP

CKLPU24 105 269 524 800 1 114 306 7 931
Algorithm 1 35 851 145 562 324 948 7 449

CM23 99 273 385 736 901 631 8 452
Algorithm 7 35 851 155 335 324 948 6 862

26

	Introduction
	Technical overview

	Preliminaries
	Our algorithm in dynamic streams
	Offline implementation
	Implementation in dynamic streams
	Proof of thm:parallel
	The offline algorithm as a combination of CKLPU-Pivot and PairwiseDiss
	The approximation ratios of CKLPU-Pivot and PairwiseDiss

	An algorithm in insertion-only streams with smaller space
	Proof sketch of thm:main-result-insertion

	Experiments
	Conclusion
	Other related work
	Useful tools
	Omitted pseudocodes of sec:alg-dynamic
	Omitted proofs of sec:alg-dynamic
	Proof of thm:main-result-dynamic
	Proof of lem:eq-2.06-dynamic
	Proof of cor:dynamic-cost-2.06

	Omitted pseudocodes of sec:alg-insertion
	Omitted details of sec:alg-insertion
	Our algorithm in insertion-only streams
	Analysis
	Space complexity
	alg:insertion-only as a combination of Algorithms CM-Pivot and PairwiseDiss2
	The approximation ratios of CM-Pivot and PairwiseDiss2

	Additional experiments
	Detailed descriptions of datasets
	Detailed descriptions of predictors
	Additional results
	Performance of alg:insertion-only on real-world datasets
	Performance of alg:dynamic-stream on synthetic datasets with varying p
	Running time of our algorithms
	Results based on binary classification predictors

