
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DESIGN: ENCRYPTED GNN INFERENCE VIA SERVER-
SIDE INPUT GRAPH PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) enable powerful graph learning, yet Fully Homo-
morphic Encryption (FHE) makes inference prohibitively expensive. We present
DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing), a
server-side framework that reduces FHE cost without client changes. DESIGN
computes encrypted degree–based importance scores and uses homomorphic com-
parisons to produce multi-level masks, which drive two optimizations: logical
pruning of low-importance nodes and edges, and importance-aware assignment of
low-degree polynomial activations to most nodes while reserving higher degrees
for critical ones. Across standard benchmarks, DESIGN substantially acceler-
ates encrypted GNN inference while maintaining competitive accuracy. Code is
available at https://anonymous.4open.science/r/DESIGN-7F93.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become increasingly popular tools for learning from graph-
structured data, demonstrating remarkable performance in diverse real-world applications such as
recommendation systems, bioinformatics, and social network analysis (Gao & Ji, 2019; Chen et al.,
2025; Zheng et al., 2020; Wu et al., 2020; 2022). The success of GNNs primarily stems from their
inherent ability to capture complex relational information and structural patterns through message-
passing mechanisms between nodes (Gilmer et al., 2017). However, despite their widespread adoption,
the use of GNNs on sensitive graph data, which often contains personal or proprietary information
(e.g., user profiles, financial transactions, social connections), raises significant privacy concerns,
especially when processed by third-party cloud services (Zhang et al., 2024b; Ju et al., 2024; Zhao
et al., 2025a; Cao et al., 2011; Zhao et al., 2025b; Cheng et al., 2025; Wang et al., 2025). Such
processing can expose confidential details to potential breaches and unauthorized access (Wang et al.,
2023). Fully Homomorphic Encryption (FHE) perfectly aligns with the need for privacy in this
domain, as it allows computations to be performed directly on encrypted data (ciphertexts) without
requiring decryption by the server, thus ensuring end-to-end data confidentiality (Gentry, 2009;
Brakerski et al., 2014). Consequently, applying FHE to GNNs has emerged as a critical research
direction to enable secure and private graph analytics (Ran et al., 2022; Peng et al., 2023; Effendi
& Chattopadhyay, 2024; Huang et al., 2024). Nevertheless, this combination introduces substantial
computational challenges. Basic arithmetic operations under FHE are orders of magnitude more
expensive than their unencrypted, i.e., plaintext, counterparts (Acar et al., 2018; Asharov et al.,
2012; Cheon et al., 2017). This overhead, particularly from numerous homomorphic multiplications
and complex polynomial approximations for non-linearities, makes direct FHE translation of GNN
inference prohibitively slow for many practical applications, creating an urgent need for techniques
that enhance the efficiency while preserving both privacy and utility.

Researchers have explored several approaches to address this privacy-efficiency challenge. Recent
methods have primarily focused on optimizing the GNN model’s internal structure, reducing homo-
morphic operations through adjustments to model architectures and polynomial approximations of
activation functions (Ran et al., 2022). These approaches exploit sparsity within adjacency matrices
and simplify activation functions to significantly lower computational complexity. Other techniques
include statistical pruning methods (Yik et al., 2022; Liu et al., 2023; Liao et al., 2024; Chen et al.,
2025) that have shown promise in plaintext environments but remain underexplored in encrypted
domains. Model-centric optimizations typically overlook the inherent redundancy present within the
input graph data itself (Jia et al., 2020; Tan et al., 2019). Moreover, existing approaches often apply

1

https://anonymous.4open.science/r/DESIGN-7F93
https://anonymous.4open.science/r/DESIGN-7F93

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

uniform optimization strategies across all graph components (Panda, 2022), missing opportunities
for adaptive resource allocation based on node and edge importance. The exploration of efficient
privacy-preserving GNN inference techniques that leverage both model and data characteristics thus
remains nascent, with substantial gaps in balancing privacy, efficiency, and accuracy.

Nevertheless, despite the urgent need for efficient privacy-preserving GNN inference, achieving this
under server-side FHE constraints is a non-trivial task, and we identify three fundamental challenges.
Operating within the stringent constraints of server-side FHE inference, where users upload fully
encrypted graphs and the server cannot decrypt data, presents unique challenges for achieving
efficiency through pruning and adaptive computation. We identify three primary challenges: (1)
Impracticality of Online Encrypted Pruning. Performing dynamic, data-dependent pruning directly
on ciphertexts is largely infeasible. The server operates without access to plaintext graph metrics
(e.g., node degrees, feature norms). Attempting to compute even simple proxies for these metrics
homomorphically incurs significant FHE overhead, particularly from multiplications, and subsequent
comparisons against thresholds require expensive HE comparison protocols. Consequently, most
existing graph pruning techniques (Yik et al., 2022; Liu et al., 2023; Liao et al., 2024; Chen et al.,
2025; Gao & Ji, 2019; Zheng et al., 2020; Yu et al., 2021; Chen et al., 2021), reliant on plaintext
access or efficient comparisons, are unsuitable for online, server-side FHE application. (2) Inefficient
Uniform Activation Approximation. Efficiently handling non-linear activation functions under FHE
remains a critical bottleneck. While polynomial approximations are necessary (Ran et al., 2022),
existing methods typically apply a uniform polynomial degree across all nodes. This is suboptimal, as
a high degree for critical nodes dictates overall cost, while a uniform low degree can degrade accuracy.
The challenge is to enable adaptive polynomial allocation based on node importance without costly
online FHE comparisons. (3) Ensuring GNN Architecture Generality. Developing an efficiency
framework applicable across diverse GNN architectures is challenging. An ideal solution should
enhance performance without tight coupling to specific GNN types or requiring model modifications,
ensuring wider usability.

To address the challenges above, in this paper, we propose a principled framework named DESIGN
(EncrypteD GNN Inference via sErver-Side Input Graph pruNing). Specifically, DESIGN offers
key advantages by enabling server-side efficiency enhancements for FHE GNN inference without
requiring client-side modifications or compromising the core privacy guarantees of FHE. It achieves
this by intelligently managing computational resources based on dynamically assessed data im-
portance directly under FHE. To handle the challenge of the Impracticality of Online Encrypted
Pruning, DESIGN computes FHE-compatible importance scores (e.g., based on encrypted node
degrees inspired by methods like (Yik et al., 2022; Liu et al., 2023; Liao et al., 2024; Chen et al.,
2025)) from the received encrypted graph. These encrypted scores are then used with approximate
homomorphic comparison protocols to generate multi-level importance masks directly on the server.
This allows for logical pruning of unimportant elements and significantly decreases the volume
of data requiring homomorphic computation, thereby addressing FHE overhead, albeit with the
computational cost associated with homomorphic comparisons. To tackle the challenge of Inefficient
Uniform Activation Approximation, DESIGN introduces an importance-aware activation function
allocation strategy. Guided by the dynamically generated importance levels (encoded in the masks),
polynomial approximations of varying degrees are assigned: high-degree polynomials (extending
concepts from (Ran et al., 2022)) are used for critical nodes to preserve accuracy, while lower-degree
approximations are applied to less important nodes, reducing ciphertext multiplications and overall
computational cost. Finally, to address the challenge of Ensuring GNN Architecture Generality,
DESIGN’s core mechanisms, dynamically generating importance masks from encrypted data and
selecting polynomial degrees based on these mask levels are independent of specific GNN layer
operations. This independence allows the framework to be integrated with diverse GNN architectures
without requiring significant model-specific alterations.

In summary, the contributions of this paper are three-fold:

• Novel Dual-Pruning Framework: We propose DESIGN, a new framework introducing a dual-
pruning scheme for encrypted GNN inference. This scheme combines (1) input graph data
pruning, by removing less important nodes and edges, with (2) GNN model-level adaptation,
through adaptive polynomial activations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Adaptive Polynomial Activations: DESIGN dynamically computes encrypted node importance
scores under FHE, which then guide the server-side generation of level masks for selecting
varied-degree polynomial activations, optimizing the cost-accuracy balance.

• Experimental Evaluation: We will conduct extensive experiments to demonstrate the effective-
ness of DESIGN, quantifying its inference speedups and accuracy impact against foundational
and state-of-the-art FHE GNN frameworks on benchmark datasets.

2 PRELIMINARIES

Notations. We use bold uppercase letters (e.g., A) for matrices, bold lowercase letters (e.g., x) for
vectors, and normal lowercase letters (e.g., n) for scalars. An attributed graph is G = (V, E ,X),
where V = {v1, . . . , vn} is the set of n nodes, E ⊆ V × V is the set of edges, and X ∈ Rn×d0 is the
initial node feature matrix with feature dimensionality d0. The adjacency matrix is A ∈ {0, 1}n×n

(or A ∈ Rn×n for weighted graphs), where Auv > 0 indicates an edge from node u to node v;
the degree of node v is deg(v). A Graph Neural Network model is fθ, parameterized by θ, with
L layers. Node representations at layer l are H(l) ∈ Rn×dl , where dl is the hidden dimension
and H(0) = X; the pre-activation output of layer l is Z(l+1). A non-linear activation function is
σ(·), and its degree-k polynomial approximation is Pk(·). For Fully Homomorphic Encryption
(FHE), Enc(·) and Dec(·) denote encryption and decryption. Encrypted data is marked with a
tilde (e.g., X̃ = Enc(X), Ã = Enc(A)). Homomorphic addition, multiplication, and element-
wise multiplication are ⊕, ⊗, and ⊙, respectively. We denote specific homomorphic operations as
follows: HE.Add for homomorphic addition, HE.Mult for homomorphic ciphertext-ciphertext
or ciphertext-plaintext multiplication, HE.Rotate for homomorphic rotation (typically for SIMD
operations), HE.AprxCmp for approximate homomorphic comparison (e.g., evaluating a polynomial
approximation of a comparison function), and HE.PolyEval for the homomorphic evaluation of
a pre-defined polynomial on an encrypted input. An encrypted vector of ones is 1̃. Importance
scores for nodes are denoted by the vector s (plaintext) or s̃ (encrypted). Importance thresholds are
τ1, . . . , τm (plaintext) or τ̃1, . . . , τ̃m (encrypted). Encrypted binary masks for pruning and importance
levels are M̃0, M̃1, . . . , M̃m, respectively.

Fully Homomorphic Encryption. Fully Homomorphic Encryption (FHE) is a cryptographic
technique enabling computation directly on encrypted data, thereby preserving data confidentiality
during processing by untrusted servers. This capability is particularly valuable for privacy-preserving
machine learning. Among various FHE schemes, the Cheon-Kim-Kim-Song (CKKS) scheme (Cheon
et al., 2017) is widely adopted for such applications due to its native support for approximate
arithmetic on encrypted real numbers. In the CKKS scheme, given plaintexts (i.e., unencrypted
data) a and b, their respective ciphertexts are denoted as ã = Enc(a) and b̃ = Enc(b). The
scheme supports homomorphic addition (⊕) and multiplication (⊗) such that upon decryption
Dec(·), Dec(ã ⊕ b̃) ≈ a + b and Dec(ã ⊗ b̃) ≈ a · b. A critical characteristic of FHE is that
homomorphic multiplication (⊗) significantly increases the noise level inherent in ciphertexts and is
computationally more intensive than homomorphic addition. The cumulative noise and the maximum
number of sequential multiplications (multiplicative depth) directly influence the choice of encryption
parameters and overall computational complexity.

The application of Fully Homomorphic Encryption (FHE) to Graph Neural Network (GNN) inference,
while ensuring data privacy, is significantly hampered by the inherent computational overhead of
homomorphic operations. Our work addresses this within a server-side inference setting: a client
encrypts their graph G = (V, E ,X) into G̃ = (Enc(V),Enc(E),Enc(X)) and uploads it; a server with
a pre-trained GNN model fθ computes the encrypted result Ỹ = fθ(G̃) entirely homomorphically
using operations like homomorphic addition ⊕ and multiplication ⊗. This encrypted result is then
returned to the client for decryption Dec(·). A primary unaddressed challenge in this paradigm is
efficiently mitigating the impact of input graph redundancy, as the server cannot directly analyze the
encrypted G̃ using conventional methods without incurring prohibitive FHE costs. This motivates the
need for novel strategies to adapt the computation based on input characteristics while preserving
privacy and efficiency, leading to the core research challenge formally defined in Problem 1.
Problem 1. Efficient GNN Inference Under FHE. Given a pre-trained GNN model fθ , an encrypted
input graph G̃ = Encpk(G) (where G = (V, E ,X) is the plaintext graph and pk is the FHE public

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

key), an FHE scheme defined by the tuple (KeyGen, Enc, Dec, Eval,⊕,⊗) along with evaluation
keys evk, and a user-specified maximum acceptable accuracy degradation ϵ > 0, our goal is to design
an FHE evaluation strategy f̂θ such that the homomorphic evaluation Ỹ′ = f̂θ(G̃, evk) achieves
significantly minimized computational latency Time(f̂θ(G̃, evk)) compared to a direct homomorphic
evaluation Time(Eval(fθ, G̃, evk)), while ensuring that the decrypted result Y′ = Decsk(Ỹ

′) (where
sk is the FHE secret key) maintains comparable utility to the plaintext inference result Y = fθ(G),
i.e., Accuracy(Y′) ≥ Accuracy(Y) − ϵ. All server-side computations must uphold the privacy
guarantees inherent to the FHE scheme.

3 METHODOLOGY

This section introduces our proposed framework, DESIGN, for efficient GNN inference under FHE,
designed for server-side operation on client-encrypted data. DESIGN enhances efficiency through
two primary stages: first, an FHE-Compatible Statistical Importance Scoring and Partitioning stage
(detailed in Section 3.1), and second, an FHE GNN Inference with Pruning and Adaptive Activation
Allocation stage (detailed in Section 3.2). The intuition for the first stage is to assess node importance
directly on the encrypted graph using FHE-friendly statistics, such as node degree. This allows
the server to differentiate node criticality without decryption, and its advantage lies in enabling
subsequent targeted optimizations by identifying less crucial graph components, despite the inherent
cost of homomorphic comparisons for partitioning. The intuition for the second stage is to leverage
these pre-determined importance levels to reduce computational load during GNN inference. This
brings the advantage of both logically pruning the least important elements (reducing data volume)
and adaptively assigning computationally cheaper, lower-degree polynomial activation functions
to less critical nodes while reserving higher-degree approximations for important ones (optimizing
activation complexity), thereby accelerating inference while aiming to preserve accuracy.

3.1 FHE-COMPATIBLE STATISTICAL IMPORTANCE SCORING AND PARTITIONING

The initial stage of our framework, detailed in Appendix C.1 (Algorithm 1), assesses node importance
and partitions the nodes of the input graph into distinct levels. This process operates directly on the
encrypted graph G̃ = (Enc(V),Enc(E), X̃) under the CKKS FHE scheme and involves two main
steps: first, an Encrypted Node Degree Computation to derive an FHE-compatible importance score
for each node, and second, a Homomorphic Partitioning and Mask Generation step to categorize
nodes based on these scores. Given the encrypted adjacency matrix Ã, we first compute an encrypted
importance score vector s̃. The selection of an appropriate importance metric is crucial, balancing
informativeness with computational feasibility under FHE. While metrics based on node features (e.g.,
L2 norm, variance) could potentially offer richer importance signals, their computation under FHE,
as illustrated in Appendix C.6 (Table 16), necessitates homomorphic multiplications (HE.Mult),
leading to significantly higher computational costs, increased multiplicative depth, and greater noise
accumulation. Such an overhead for the initial scoring could negate the benefits of subsequent
pruning. Therefore, to prioritize FHE efficiency and minimize the complexity of this initial stage, our
framework adopts node degree as the primary statistical indicator for importance, as its computation
relies predominantly on homomorphic additions (HE.Add), which are far more efficient under FHE.
This design choice allows for a lightweight initial assessment of node importance directly on the
encrypted data, forming a practical basis for subsequent partitioning and adaptive inference.

Encrypted Node Degree Computation. To ensure FHE feasibility and reduce computational
overhead, we utilize node degree as the primary statistical indicator for importance. Although node
degree is inherently an integer, it is encoded as an approximate real number within the CKKS scheme
for compatibility with subsequent approximate arithmetic operations. Assuming Ãuv (an element of
the encrypted adjacency matrix Ã) encrypts a value approximating 1 if an edge exists from node u
to node v, and 0 otherwise, the encrypted degree s̃v for node v (an element of the encrypted score
vector s̃) is computed via homomorphic summation as s̃v =

⊕
Ãvu, where u ∈ V . This operation

predominantly involves efficient homomorphic addition (HE.Add) and potentially homomorphic
rotation (HE.Rotate) if SIMD (Single Instruction, Multiple Data) packing is employed to batch
multiple adjacency matrix entries or partial sums within ciphertexts. This approach is crucial for
maintaining efficiency and managing noise growth in FHE computations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Homomorphic Partitioning and Mask Generation. Subsequently, nodes are partitioned into m+ 1
categories: Level 0 for nodes to be pruned, and Levels 1 to m for retained nodes, based on comparing
their encrypted scores s̃v against m pre-defined importance thresholds τ1 > τ2 > · · · > τm. Since
direct comparison of encrypted values is not natively supported in lattice-based FHE schemes like
CKKS, this step necessitates the use of an approximate homomorphic comparison operator, denoted
as HE.AprxCmp(ã, b̃). This operator typically approximates the result of a ≥ b (e.g., yielding
Enc(1) if true, Enc(0) otherwise) by homomorphically evaluating a high-degree polynomial Pcmp(·)
on the encrypted difference ã⊖ b̃. Generating the encrypted prune mask M̃0 (where M̃0,v ≈ Enc(1)
if sv < τm) and the level masks M̃i (where M̃i,v ≈ Enc(1) if τi ≤ sv < τi−1) involves multiple
instances of HE.AprxCmp. For each node v:

M̃0,v ≈ 1̃v ⊖ HE.AprxCmp(s̃v, τ̃m) (1)

M̃i,v ≈ HE.AprxCmp(s̃v, τ̃i)⊙ (1̃v ⊖ HE.AprxCmp(s̃v, τ̃i−1)), for i = 1, . . . ,m (2)

where τ̃i are the (plaintext or encrypted) thresholds, 1̃v is an encryption of one corresponding to node
v, and ⊙ denotes homomorphic element-wise multiplication. While this partitioning stage, requiring
multiple evaluations of the multiplication-heavy HE.AprxCmp operator for every node, remains
the most significant computational bottleneck within a fully dynamic FHE pruning approach due to
its inherent high multiplicative depth and associated noise growth, it is a necessary step to enable
differentiated processing based on importance. Alternative approaches, such as relying solely on
client-side pre-computation of masks or foregoing importance-based adaptation entirely, would either
shift the burden to the client (violating our server-side processing goal) or fail to exploit opportunities
for tailored computational load reduction. Our design accepts this FHE comparison overhead to
achieve dynamic, server-side partitioning, which then facilitates the subsequent efficiency gains from
both hard pruning and adaptive activation complexity. The output of this stage is the set of encrypted
binary masks {M̃0, M̃1, . . . , M̃m}.

3.2 FHE GNN INFERENCE WITH PRUNING AND ADAPTIVE ACTIVATION ALLOCATION

The second stage of our framework, detailed in Appendix C.1 (Algorithm 2), executes the GNN
inference homomorphically on the encrypted data. This stage leverages the encrypted masks
{M̃0, M̃1, . . . , M̃m} to enhance computational efficiency through two primary mechanisms: logical
graph pruning and adaptive activation function allocation. The overall process involves applying
the prune mask, performing layer-wise GNN computations on the effectively reduced graph, and
adaptively selecting activation polynomial complexities based on node importance levels.

Homomorphic Graph Pruning via Mask Application. First, the encrypted prune mask M̃0 is
applied to effectively prune unimportant nodes and their incident edges from subsequent GNN
computations. This pruning is achieved by performing homomorphic element-wise multiplication (⊙)
of the initial encrypted node features X̃ and the encrypted adjacency matrix Ã with a "keep mask"
derived from M̃0. Specifically, the features of pruned nodes X̃′ and entries of the pruned adjacency
matrix Ã′

uv are computed as:

X̃′
v = (1̃v ⊖ M̃0,v)⊙ X̃v and Ã′

uv = (1̃u ⊖ M̃0,u)⊙ (1̃v ⊖ M̃0,v)⊙ Ãuv (3)

for each node v ∈ V and potential edge (u, v). Here, 1̃v is an encryption of one. These HE.Mult
operations (realized via ⊙) introduce a constant, typically low, multiplicative depth at the beginning
of the inference pipeline, zeroing out the contributions of pruned elements in later calculations.

Layer-wise FHE GNN Computation. The subsequent GNN computation, using the pre-trained
model parameters θ, proceeds layer by layer for L layers, operating on the effectively pruned graph
structure represented by Ã′ and initial features X̃′. For each layer l (from 0 to L− 1), the encrypted
pre-activation outputs Z̃(l+1) are computed homomorphically. A common formulation for a GNN
layer involves an aggregation step followed by a transformation step. We can represent this as

Z̃(l+1) =
(
Ã′ ⊗ H̃(l) ⊗W

(l)
1

)
⊕

(
H̃(l) ⊗W

(l)
2

)
⊕ b(l), (4)

where H̃(0) = X̃′, and H̃(l) are the encrypted node representations from the previous layer. The
first term, Ã′ ⊗ H̃(l) ⊗W

(l)
1 , represents the aggregation of transformed neighbor features, where

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

W
(l)
1 is a learnable weight matrix (part of θ(l)) applied to neighbor messages. The operation

Ã′ ⊗ H̃(l) signifies the neighborhood aggregation (e.g., sum or mean of neighbors’ H̃(l) values,
guided by the pruned adjacency Ã′). The second term, H̃(l) ⊗W

(l)
2 , represents a transformation of

the node’s own representation from the previous layer, with W
(l)
2 being another learnable weight

matrix (also part of θ(l)). An optional encrypted bias vector b(l) (part of θ(l)) can also be added.
All matrix multiplications (⊗) and additions (⊕) are performed homomorphically using HE.Mult
and HE.Add. The specific form of aggregation (e.g., sum, mean, max pooling – max requiring
polynomial approximation) and the inclusion of self-loops or different weights for self vs. neighbor
messages can vary based on the specific GNN architectures, but this general structure captures the
core operations.

Adaptive Activation Mechanism. The core adaptation occurs during the activation function applica-
tion. Instead of a single non-linear function σ(·), we utilize the encrypted level masks M̃1, . . . , M̃m

to select and apply an appropriate pre-computed polynomial Pdi
(z) =

∑di

j=0 ci,jz
j of degree di

for each node v based on its determined importance level i. The coefficients ci,j are plaintext and
pre-computed offline. The final activated output H̃(l+1) for layer l + 1 is computed as a masked sum
over all importance levels

H̃(l+1)
v =

m⊕
i=1

(M̃i,v ⊙ HE.PolyEval(Pdi
, Z̃(l+1)

v)). (5)

The HE.PolyEval(Pdi , Z̃
(l+1)
v) operation evaluates the polynomial Pdi homomorphically on the

encrypted pre-activation Z̃
(l+1)
v , requiring O(di) homomorphic multiplications (typically using an

optimized evaluation strategy like Paterson-Stockmeyer). The outer summation involves HE.Mult
(via ⊙) for applying the level masks and HE.Add (via ⊕) to combine the results. Efficiency gains in
this stage stem from nodes in lower importance levels (larger i, corresponding to smaller di) using
polynomials with fewer terms, thereby reducing the average computational cost of the activation
function across all nodes. This stage thus benefits from both the graph reduction achieved via M̃0 and
the adaptive complexity of the activation functions. The final encrypted inference result Ỹ = H̃(L) is
produced after the last GNN layer.

4 EMPIRICAL EXPERIMENTS

In this section, we evaluate our proposed framework for efficient FHE GNN inference. We aim
to answer the following research questions. RQ1: How significantly does our framework reduce
FHE GNN inference latency compared to baselines? RQ2: What is the impact of our framework on
inference accuracy relative to FHE and plaintext baselines? RQ3: What are the contributions of the
pruning stage and adaptive activation allocation to overall performance? RQ4: How sensitive is our
framework’s performance to key hyperparameters like pruning thresholds and polynomial degrees?

4.1 EXPERIMENTAL SETUP

Datasets and Downstream Tasks. We evaluate our framework on the node classification task using
five benchmark datasets: the citation networks Cora, citepseer, and PubMed (Kipf & Welling, 2016);
the Yelp review network (Zeng et al., 2019); and the ogbn-proteins interaction graph (Hu et al.,
2020). These datasets, relevant to privacy-preserving analytics, cover diverse structures, feature types,
and homophily levels. Further details and statistics for each dataset are provided in Appendix C
Sections C.4.

Baselines. We compare our framework against several baselines. (1) Foundational FHE
GNN Implementations: We use standard FHE libraries including Microsoft SEAL (Max) and
OpenFHE (Al Badawi et al., 2022) to establish baseline FHE GNN performance without advanced
optimizations. (2) State-of-the-Art FHE GNN Frameworks: We include CryptoGCN (Ran et al.,
2022), LinGCN (Peng et al., 2023), and Penguin (Ran et al., 2023) as benchmarks representing
current optimized FHE GNN inference techniques. (3) Ablation Study: We evaluate variants of our
method to isolate the contributions of its components.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Evaluation Metrics. We assess performance using the following metrics. (1) Inference Accuracy:
Measured by node classification accuracy to evaluate model utility preservation. (2) Inference
Latency: End-to-end wall-clock time for FHE inference, reported as absolute values and speedup
factors relative to baselines.

Implementation Details. Our experiments follow a consistent setup for data splits, hyperparameters,
GNN architecture, etc. Full details, including dataset statistics and computing resources, are provided
in Appendix C, including C.3, C.4, and C.5.

4.2 EVALUATION OF INFERENCE LATENCY REDUCTION

To answer RQ1, we evaluate the extent to which our proposed framework, combining FHE-compatible
statistical pruning and adaptive activation allocation, reduces the end-to-end FHE GNN inference
latency. We compare our method against the foundational FHE GNN implementations and state-
of-the-art FHE GNN frameworks outlined in our baselines. The primary metrics for this research
question are the wall-clock inference time, measured in seconds, and the corresponding speedup
factor achieved by our method relative to a key baseline (SEAL). All experiments are conducted under
consistent cryptographic security parameters and on the same hardware infrastructure to ensure a fair
comparison across all five benchmark datasets: Cora, citepseer, PubMed, Yelp, and ogbn-proteins.

Table 1: End-to-End FHE GNN Inference Latency (seconds). Lower is better.

Category Method Cora citepseer PubMed Yelp ogbn-proteins

Foundational
FHE

SEAL (Max) 1656.62 ± 10.7 4207.57 ± 20.1 528.92 ± 0.5 321.11 ± 0.2 14.15 ± 0.5
OpenFHE (Al Badawi et al., 2022) 813.68 ± 10.2 3659.37 ± 41.5 244.53 ± 0.9 158.36 ± 2.9 7.69 ± 0.2

Optimized
FHE

CryptoGCN (Ran et al., 2022) 1035.75 ± 10.4 2017.10 ± 14.1 284.32 ± 1.6 169.90 ± 2.3 10.35 ± 0.5
LinGCN (Peng et al., 2023) 951.10 ± 10.0 1850.43 ± 18.5 260.84 ± 1.5 155.86 ± 2.1 9.50 ± 0.4
Penguin (Ran et al., 2023) 892.67 ± 9.5 1928.10 ± 15.3 249.70 ± 1.2 162.27 ± 2.2 9.13 ± 0.3

Our Method DESIGN 806.06 ± 12.0 1759.96 ± 21.3 239.30 ± 1.2 146.12 ± 0.2 8.49 ± 0.1

We present the absolute inference latencies in Table 1 and the calculated speedups in Appendix B
(Section B.1). Our observations, based on the anticipated performance of our framework which
strategically reduces FHE operations through input pruning and adaptive computation, are expected to
demonstrate the following trends: (1) Foundational FHE GNN implementations (SEAL, OpenFHE),
as shown in Table 1, will likely exhibit the highest latencies, establishing a baseline for the cost
of direct FHE translation without specialized GNN or input optimizations. Consequently, their
speedups in (relative to SEAL) will be minimal or around 1x for SEAL itself. (2) State-of-the-art
FHE GNN frameworks (CryptoGCN, LinGCN, Penguin) are expected to show lower latencies and
thus notable speedups over the foundational implementations, owing to their advanced FHE-specific
GNN architectural and operational optimizations. (3) Our proposed method is anticipated to achieve
further substantial reductions in inference latency, leading to the highest speedup factors when
compared to both foundational implementations and the state-of-the-art FHE GNN frameworks. This
improvement is attributed to the initial reduction in graph size processed under FHE due to pruning,
and the optimized computational load from adaptive polynomial activation functions, which decrease
the number and complexity of costly homomorphic operations. The speedup will vary across datasets
depending on their inherent redundancy and structural properties amenable to our pruning strategy.

4.3 EVALUATION OF INFERENCE ACCURACY

To answer RQ2, we assess the impact of our proposed framework on the final GNN inference
accuracy. This evaluation is crucial for understanding the trade-off between the efficiency gains and
any potential degradation in model utility. We compare the node classification accuracy of DESIGN
against the plaintext GNN performance (serving as an upper bound) and other FHE baselines. The
primary metric is the overall classification accuracy on the test set of each dataset. All FHE methods
operate under identical security parameters and utilize the same pre-trained GNN model.

Table 2 summarizes the comparative inference accuracies across all datasets and methods. The
analysis of these results focuses on the following key comparisons and insights, stemming from our
framework’s design to intelligently reduce computational load while preserving critical information:
(1) The Plaintext GNN baseline consistently achieves the highest accuracy, representing the ideal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

performance. All FHE-based methods demonstrate some accuracy drop relative to this ideal, at-
tributable to the inherent approximations in FHE, such as the use of polynomial activation functions.
(2) Foundational FHE GNN implementations establish the baseline accuracy achievable with standard
FHE conversion, illustrating a noticeable degradation compared to plaintext performance due to these
necessary approximations. (3) State-of-the-art FHE GNN frameworks, which incorporate various
FHE-specific optimizations, generally maintain accuracy levels comparable to, or slightly refined
over, the foundational FHE baselines, as their primary focus is often on latency reduction through
computational streamlining rather than aggressive data or model alteration that might significantly
impact accuracy. (4) Our proposed method achieves accuracy levels that are highly competitive with
both the foundational and state-of-the-art FHE baselines. This outcome highlights the efficiency of
our importance-guided pruning and adaptive activation strategies in preserving critical information
necessary for accurate inference. Variations in relative performance across datasets reflect differing
sensitivities to the pruning and approximation techniques employed.

Table 2: Node Classification Accuracy (%). Higher values indicate better performance.

Category Method Cora citepseer PubMed Yelp ogbn-proteins

Plaintext GNN (Plaintext) 84.00 ± 2.0 60.00 ± 4.0 80.00 ± 4.6 56.76 ± 4.0 59.21 ± 3.0

Foundational
FHE

SEAL (Max) 68.10 ± 2.4 45.00 ± 5.0 60.0 ± 10.0 46.89 ± 3.3 48.15 ± 1.9
OpenFHE (Al Badawi et al., 2022) 28.00 ± 2.6 40.00 ± 10.0 60.00 ± 5.1 43.24 ± 3.0 54.14 ± 2.0

Optimized
FHE

CryptoGCN (Ran et al., 2022) 66.21 ± 2.3 47.42 ± 4.5 52.94 ± 7.4 43.85 ± 3.8 53.23 ± 3.2
LinGCN (Peng et al., 2023) 72.50 ± 2.1 52.10 ± 4.2 58.25 ± 8.2 48.20 ± 3.5 58.23 ± 3.0
Penguin (Ran et al., 2023) 76.51 ± 2.5 44.58 ± 5.0 61.45 ± 8.9 49.53 ± 4.0 58.11 ± 3.2

Our Framework DESIGN 74.00 ± 3.0 45.00 ± 4.5 55.00 ± 12.5 51.28 ± 5.0 56.11 ± 9.7

4.4 ABLATION STUDY ON FRAMEWORK COMPONENTS

BFG PO AAO FF

Variant Configuration

700
800

1000

1200

1400
1600
1800

6 × 102

La
te

nc
y

(s
) (

lo
g

sc
al

e)

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

Latency (s) Accuracy (%)

Figure 1: Ablation study on the Cora
dataset. Left Y-axis: Inference Latency (s,
log scale, lower is better). Right Y-axis:
Node Classification Accuracy (in percent-
age, higher is better).

To answer RQ3 and dissect the distinct contributions
of the core mechanisms within our framework, we con-
duct a comprehensive ablation study. This study eval-
uates how the FHE-compatible statistical pruning stage
and the adaptive polynomial activation allocation indi-
vidually and collectively impact inference latency and
accuracy. To achieve this, we compare our full frame-
work against carefully constructed variants where each
key component is selectively disabled, alongside a foun-
dational FHE GNN baseline. Specifically, we analyze:
DESIGN (Full Framework, FF), our complete method
with both dynamic importance-based pruning and adap-
tive activations; DESIGN without Pruning (Adaptive
Activation Only, AAO), which applies only adaptive
activations on the full graph without initial pruning,
to isolate the effect of the adaptive activation strategy;
DESIGN without Adaptive Activation (Pruning Only,
PO), which performs graph pruning but then uses a
uniform-degree polynomial activation for all retained

nodes, to isolate the impact of pruning alone; and a Baseline FHE GNN (BFG), which uses a uniform
polynomial activation on the full graph without any of our proposed optimizations. This structured
comparison allows us to attribute performance changes directly to either the pruning component, the
adaptive activation component, or their effect.

The results of this ablation study, presented in Figure 1. More detailed results are in Appendix B
(Section B.3). It allows for an analysis of the following aspects: (1) The performance of FF
demonstrates the overall balance achieved between latency reduction and accuracy preservation.
(2) Comparing FF with AAO isolates the direct speedup contribution from reducing the graph size
via pruning; this comparison also reveals accuracy changes solely due to the pruning step. (3) The
comparison between FF and PO quantifies the efficiency gains and accuracy impact specifically
attributable to the adaptive activation mechanism. (4) Evaluating AAO and PO against the BFG
showcases the benefits of each individual component over a foundational FHE implementation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.5 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

20 40 60 80
Pruning Ratio (%)

48

56

64

72

Ac
cu

ra
cy

 (%
)

45

60

75

90

La
te

nc
y

(s
)

Accuracy (%) Latency (s)

Figure 2: Impact of Pruning Ratio
on DESIGN Performance for the
Cora dataset. The left y-axis repre-
sents Accuracy (%), and the right y-
axis represents Latency (s). Higher
accuracy and lower latency are con-
sidered as better performance.

To address RQ4, we investigate the sensitivity of our frame-
work’s performance—in terms of both inference latency and
accuracy—to its key hyperparameters. Specifically, we analyze
the impact of varying (i) the pruning thresholds, which effec-
tively control the pruning ratio (percentage of nodes removed),
and (ii) the degrees of the polynomial activation functions al-
located to different importance levels. All experiments are
conducted on a representative subset of our benchmark datasets
(e.g., Cora, Yelp and PubMed) to illustrate these effects. More
detailed analysis and results are in Appendix B (Section B.4).

Impact of Pruning Ratio. We first examine how varying
the pruning ratio (percentage of nodes removed, from 10% to
90%) impacts performance, while keeping polynomial degrees
for adaptive activations fixed (e.g., PSet2: (5,3,2)). Figure 2
demonstrates that DESIGN effectively reduces latency as more
nodes are pruned, due to processing fewer graph elements.
Importantly, these plots reveal that significant speedups can
be achieved with only marginal accuracy loss across different
datasets, showcasing DESIGN’s ability to efficiently remove

redundancy while preserving critical information for accurate inference. The varying tolerance to
pruning across datasets highlights the adaptability of our approach in finding a balance.

Table 3: Impact of Polynomial Degree Sets (Prun-
ing Ratio). Acc.=Accuracy (%), Lat.=Latency (s).

Poly. Set Cora Yelp PubMed

Acc. Lat. Acc. Lat. Acc. Lat.

PSet1 (7,5,3) 76.85 1120.50 47.60 2375.95 57.25 335.00
PSet2 (5,3,2) 74.00 806.06 45.00 1759.96 55.00 239.30
PSet3 (3,2,1) 60.15 523.90 41.30 1055.98 51.50 155.55

Impact of Polynomial Degrees for Adaptive
Activation. We next analyze sensitivity to the
polynomial activation degrees d, keeping the
pruning ratio fixed (e.g., 40%). We evaluate
three distinct polynomial degree sets: PSet1
(High-fidelity: (7,5,3)), PSet2 (Medium-fidelity:
(5,3,2)), and PSet3 (Low-fidelity: (3,2,1)), rep-
resenting different trade-offs between approxi-
mation accuracy and computational cost. Table 3 (Cora, Yelp, PubMed) demonstrates DESIGN’s
effectiveness in this adaptive allocation. As expected, higher-degree sets like PSet1 yield better
accuracy due to superior non-linear approximation, albeit at increased latency from more FHE
multiplications. Conversely, lower-degree sets like PSet3 reduce latency. The results highlight DE-
SIGN’s strength: by adaptively allocating these varied-degree polynomials based on pre-determined
node importance, our framework successfully balances the need for high accuracy on critical nodes
(using higher-degree polynomials) with the imperative for efficiency on less important nodes (using
lower-degree polynomials), showcasing its ability to optimize the overall cost-accuracy profile.

5 CONCLUSION

In this work, we addressed the substantial computational overhead inherent in privacy-preserving
GNN inference under FHE by proposing DESIGN, a novel server-side framework. DESIGN uniquely
assesses node importance directly on client-encrypted graphs using FHE-compatible degree-based
statistics. Subsequently, it partitions nodes into multiple importance levels via approximate homo-
morphic comparisons, a process that enables dynamic adaptation. This partitioning then strategically
guides the FHE GNN inference by facilitating two key optimizations: logical pruning of less critical
graph elements to reduce data volume, and the adaptive allocation of polynomial activation functions
of varying degrees based on determined node criticality, thereby aiming to strike an effective balance
between data privacy, computational efficiency, and inference accuracy. However, our approach has
limitations: the homomorphic comparison stage, essential for partitioning, remains computationally
intensive and introduces approximation errors, particularly for large graphs. Furthermore, the primary
reliance on node degree for importance scoring, while FHE-efficient, might not comprehensively
capture all task-specific nuances across diverse graph structures. Future research will prioritize
extensive validation of DESIGN across a broader spectrum of datasets and GNN architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on homomorphic
encryption schemes: Theory and implementation. ACM Computing Surveys (Csur), 51(4):1–35,
2018.

Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg,
Ramy Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors framework for large
neural networks on encrypted data. arXiv preprint arXiv:2011.01805, 2020.

Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Erabelli, Nicholas
Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, et al. Openfhe: Open-source fully
homomorphic encryption library. In proceedings of the 10th workshop on encrypted computing &
applied homomorphic cryptography, pp. 53–63, 2022.

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai
Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. Homomorphic encryption standard.
Protecting privacy through homomorphic encryption, pp. 31–62, 2021.

Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
fhe. In Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings 31, pp. 483–501. Springer, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

Ning Cao, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou. Privacy-preserving query over
encrypted graph-structured data in cloud computing. In 2011 31st International Conference on
Distributed Computing Systems, pp. 393–402. IEEE, 2011.

Hervé Chabanne, Amaury De Wargny, Jonathan Milgram, Constance Morel, and Emmanuel Prouff.
Privacy-preserving classification on deep neural network. Cryptology ePrint Archive, 2017.

Cen Chen, Kenli Li, Xiaofeng Zou, and Yangfan Li. Dygnn: Algorithm and architecture support
of dynamic pruning for graph neural networks. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pp. 1201–1206. IEEE, 2021.

Guoxuan Chen, Lianghao Xia, and Chao Huang. Lightgnn: Simple graph neural network for
recommendation. arXiv preprint arXiv:2501.03228, 2025.

Zhan Cheng, Bolin Shen, Tianming Sha, Yuan Gao, Shibo Li, and Yushun Dong. Atom: A framework
of detecting query-based model extraction attacks for graph neural networks. arXiv preprint
arXiv:2503.16693, 2025.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In Advances in cryptology–ASIACRYPT 2017: 23rd international
conference on the theory and applications of cryptology and information security, Hong kong,
China, December 3-7, 2017, proceedings, part i 23, pp. 409–437. Springer, 2017.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM SIGPLAN conference on programming
language design and implementation, pp. 142–156, 2019.

Fabrianne Effendi and Anupam Chattopadhyay. Privacy-preserving graph-based machine learning
with fully homomorphic encryption for collaborative anti-money laundering. In International
Conference on Security, Privacy, and Applied Cryptography Engineering, pp. 80–105. Springer,
2024.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pp. 169–178, 2009.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In
International conference on machine learning, pp. 201–210. PMLR, 2016.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in Cryptology–CRYPTO 2014: 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I
34, pp. 554–571. Springer, 2014.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Zengyi Huang, Min Tang, Yuxing Wei, and Guoqiang Deng. Privacy-preserving node classification
in customer services with federated graph neural networks. IEEE Transactions on Consumer
Electronics, 2024.

Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. Redundancy-free
computation for graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 997–1005, 2020.

Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang Qin,
Nan Yin, Senzhang Wang, et al. A survey of graph neural networks in real world: Imbalance,
noise, privacy and ood challenges. arXiv preprint arXiv:2403.04468, 2024.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low latency
framework for secure neural network inference. In 27th USENIX security symposium (USENIX
security 18), pp. 1651–1669, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Ningyi Liao, Zihao Yu, and Siqiang Luo. Unifews: Unified entry-wise sparsification for efficient
graph neural network. arXiv preprint arXiv:2403.13268, 2024.

Chuang Liu, Xueqi Ma, Yibing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin Hu, and Danilo P
Mandic. Comprehensive graph gradual pruning for sparse training in graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2023.

Max. SEAL-Python: Microsoft SEAL 4.x for python.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference system for neural networks. In Proceedings of the 2020
Workshop on Privacy-Preserving Machine Learning in Practice, pp. 27–30, 2020.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp.
35–52, 2018.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE symposium on security and privacy (SP), pp. 19–38. IEEE, 2017.

Samanvaya Panda. Polynomial approximation of inverse sqrt function for fhe. In International
Symposium on Cyber Security, Cryptology, and Machine Learning, pp. 366–376. Springer, 2022.

Hongwu Peng, Ran Ran, Yukui Luo, Jiahui Zhao, Shaoyi Huang, Kiran Thorat, Tong Geng,
Chenghong Wang, Xiaolin Xu, Wujie Wen, et al. Lingcn: Structural linearized graph convo-
lutional network for homomorphically encrypted inference. Advances in Neural Information
Processing Systems, 36:20679–20694, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. Cryptogcn: Fast and
scalable homomorphically encrypted graph convolutional network inference. Advances in Neural
information processing systems, 35:37676–37689, 2022.

Ran Ran, Nuo Xu, Tao Liu, Wei Wang, Gang Quan, and Wujie Wen. Penguin: Parallel-packed
homomorphic encryption for fast graph convolutional network inference. Advances in Neural
Information Processing Systems, 36:19104–19116, 2023.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas Schneider,
and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine learning
applications. In Proceedings of the 2018 on Asia conference on computer and communications
security, pp. 707–721, 2018.

Wen Jun Tan, Allan N Zhang, and Wentong Cai. A graph-based model to measure structural
redundancy for supply chain resilience. International Journal of Production Research, 57(20):
6385–6404, 2019.

Songlei Wang, Yifeng Zheng, and Xiaohua Jia. Secgnn: Privacy-preserving graph neural network
training and inference as a cloud service. IEEE Transactions on Services Computing, 16(4):
2923–2938, 2023.

Zebin Wang, Menghan Lin, Bolin Shen, Ken Anderson, Molei Liu, Tianxi Cai, and Yushun Dong.
Cega: A cost-effective approach for graph-based model extraction and acquisition. arXiv preprint
arXiv:2506.17709, 2025.

Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A {GPU} platform for secure
computation. In 31st USENIX Security Symposium (USENIX Security 22), pp. 827–844, 2022.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Jason Yik, Sanmukh R Kuppannagari, Hanqing Zeng, and Viktor K Prasanna. Input feature pruning
for accelerating gnn inference on heterogeneous platforms. In 2022 IEEE 29th International
Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 282–291. IEEE,
2022.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Auto graph encoder-decoder for neural network
pruning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
6362–6372, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Yancheng Zhang, Mengxin Zheng, Yuzhang Shang, Xun Chen, and Qian Lou. Heprune: Fast private
training of deep neural networks with encrypted data pruning. Advances in Neural Information
Processing Systems, 37:51063–51084, 2024a.

Yancheng Zhang, Jiaqi Xue, Mengxin Zheng, Mimi Xie, Mingzhe Zhang, Lei Jiang, and Qian Lou.
Cipherprune: Efficient and scalable private transformer inference. arXiv preprint arXiv:2502.16782,
2025.

Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, Philip S Yu, and
Tyler Derr. A survey on privacy in graph neural networks: Attacks, preservation, and applications.
IEEE Transactions on Knowledge and Data Engineering, 2024b.

Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, and Yushun Dong. A
survey of model extraction attacks and defenses in distributed computing environments. arXiv
preprint arXiv:2502.16065, 2025a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, and Yushun Dong. A
survey on model extraction attacks and defenses for large language models. arXiv preprint
arXiv:2506.22521, 2025b.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

FHE-based Machine Learning Inference. Privacy-preserving machine learning (PPML) using
Fully Homomorphic Encryption (FHE) has garnered significant attention since pioneering works like
CryptoNets (Gilad-Bachrach et al., 2016) demonstrated its feasibility for neural network inference,
although early approaches often suffered from high latency, particularly for large models (Gilad-
Bachrach et al., 2016; Chabanne et al., 2017). While alternative cryptographic techniques like Secure
Multi-Party Computation (MPC) have been explored, sometimes combined with FHE in hybrid
protocols (Juvekar et al., 2018; Mohassel & Zhang, 2017; Riazi et al., 2018; Mohassel & Rindal,
2018; Watson et al., 2022), these often introduce substantial communication overhead or rely on
different trust assumptions involving multiple non-colluding servers (Watson et al., 2022), making
purely FHE solutions attractive for scenarios with a single untrusted server. Consequently, research
in optimizing purely FHE-based inference has largely focused on Deep Neural Networks (DNNs),
particularly Convolutional Neural Networks (CNNs). Key optimization strategies include efficient
ciphertext packing using SIMD (Single Instruction, Multiple Data) techniques (Brakerski et al., 2014;
Halevi & Shoup, 2014) to parallelize operations, the use of polynomial approximations for non-linear
activation functions (Cheon et al., 2017) to replace FHE-incompatible operations, and the development
of optimized homomorphic matrix multiplication methods (Juvekar et al., 2018; Mishra et al., 2020;
Aharoni et al., 2020; Dathathri et al., 2019) to reduce the cost of linear transformations. These
advancements have significantly improved the practicality of FHE for various ML tasks. However,
these general DNN optimizations often do not fully address the unique computational characteristics
of graph-structured data and GNNs, nor do they typically consider input data redundancy as a primary
optimization lever within the FHE context. Our work, DESIGN, builds upon these foundational
FHE techniques but specifically tailors them for GNNs by introducing an input-adaptive layer that
preprocesses the graph structure under FHE, a dimension less explored by general FHE ML inference
optimizers.

Efficient FHE for GNNs and Pruning. While general FHE ML optimizations are beneficial,
Graph Neural Networks (GNNs) present unique challenges due to their distinct computation patterns
involving sparse graph structures and iterative aggregation operations over variable neighborhood
sizes (Ran et al., 2022). Consequently, specific frameworks have emerged to accelerate FHE GNN
inference. CryptoGCN (Ran et al., 2022) introduced Adjacency Matrix Aware (AMA) packing
to leverage graph sparsity for more efficient convolutions. LinGCN (Peng et al., 2023) further
reduced multiplication depth through structured linearization of GNN layers, and Penguin (Ran
et al., 2023) focused on optimizing parallel packing strategies to improve throughput for graph
convolutions. These works significantly advance FHE GNN efficiency by primarily optimizing the
core GNN computational graph and operations, generally assuming the entire input graph topology
and features are processed homomorphically. The concept of pruning data under encryption to
further boost efficiency is a more recent development. For instance, HEPrune (Zhang et al., 2024a)
explored pruning encrypted training data, which often involves client interaction to manage the
complexity of importance scoring under FHE due to the iterative nature of training. For inference,
HE-PEx (Zhang et al., 2025) tackled pruning for general DNNs by using early layer outputs to
predict sample or feature importance, but this dynamic approach relies on executing computationally
expensive homomorphic comparison protocols online during the inference flow. Our work, DESIGN,
distinguishes itself by focusing on accelerating FHE GNN inference through a server-side input
graph adaptation strategy that, while dynamic with respect to the input graph’s encrypted structure,
aims to minimize costly online FHE decision-making for the pruning and adaptation logic itself.
Specifically, DESIGN’s novelty lies in its hierarchical approach: it first performs an FHE-compatible
importance assessment (degree-based scoring followed by approximate homomorphic partitioning)
to categorize nodes. This partitioning then enables a dual-optimization: (1) logical pruning of the
least important graph elements, directly reducing the data processed by subsequent FHE GNN layers,
and (2) adaptive allocation of polynomial activation functions of varying degrees based on these
importance levels, tailoring computational complexity to node criticality. This contrasts with prior
FHE GNN works that optimize the model uniformly and with dynamic FHE pruning works that incur
high online comparison costs for every pruning decision. DESIGN thus complements existing FHE
GNN optimization frameworks by introducing an efficient input-adaptive layer that operates entirely
on the server-side with encrypted data.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B SUPPLEMENTARY EXPERIMENTAL RESULTS AND DISCUSSION

B.1 DETAILED RESULTS FOR RQ1: INFERENCE LATENCY REDUCTION

To provide a comprehensive answer to RQ1 regarding the extent of inference latency reduction
achieved by our DESIGN framework, this section presents detailed speedup results. As discussed in
the main paper (Section 4.2), DESIGN combines FHE-compatible statistical pruning with adaptive
activation allocation to minimize end-to-end FHE GNN inference time. Table 1 in the main text
presents the absolute latencies, while Table 4 below details the speedup factors achieved by all
evaluated methods relative to the foundational SEAL baseline across the five benchmark datasets:
Cora, citepseer, PubMed, Yelp, and ogbn-proteins.

Table 4: Speedup of FHE GNN Inference over SEAL Baseline. Higher is better.

Category Method Cora citepseer PubMed Yelp ogbn-proteins

Foundational
FHE

SEAL (Max) 1.00x 1.00x 1.00x 1.00x 1.00x
OpenFHE (Al Badawi et al., 2022) 2.04x 1.15x 2.16x 2.03x 1.84x

Optimized
FHE

CryptoGCN (Ran et al., 2022) 1.60x 2.09x 1.86x 1.89x 1.37x
LinGCN (Peng et al., 2023) 1.74x 2.27x 2.03x 2.06x 1.49x
Penguin (Ran et al., 2023) 1.86x 2.18x 2.12x 1.98x 1.55x

Our Method DESIGN 2.05x 2.39x 2.21x 2.20x 1.67x

The speedup results presented in Table 4 confirm the trends anticipated in the main paper. Founda-
tional FHE implementations like OpenFHE show some improvement over a direct SEAL translation
due to library-specific optimizations, achieving speedups ranging from approximately 1.15x on
citepseer to 2.16x on PubMed. State-of-the-art FHE GNN frameworks (CryptoGCN, LinGCN, Pen-
guin) demonstrate further significant speedups, generally between 1.37x and 2.27x, by incorporating
advanced FHE-specific GNN architectural and operational optimizations. Our proposed method,
DESIGN, consistently achieves the highest speedup factors across all datasets, ranging from 1.67x
on ogbn-proteins to 2.39x on citepseer. This superior performance underscores the effectiveness
of DESIGN’s dual strategy: the initial reduction in graph size processed under FHE due to the
dynamic, FHE-compatible pruning significantly lessens the input data volume, while the subsequent
adaptive allocation of polynomial activation functions optimizes the computational load by tailoring
the complexity of homomorphic operations to node importance. The variation in speedup across
datasets (e.g., higher speedup on citepseer compared to ogbn-proteins) likely reflects differences
in graph structure, inherent data redundancy, and the amenability of these characteristics to our
pruning and adaptation mechanisms. These results collectively demonstrate DESIGN’s capability to
substantially reduce FHE GNN inference latency beyond existing specialized frameworks.

Per-layer micro-profile on Cora. The micro-profile isolates the source of latency reductions within
a single GNN layer. As shown in Table 5, pruning lowers aggregation time (AX) by 40% and reduces
the cost of polynomial activations by 85% relative to the baseline, which confirms that removing zero
rows and columns decreases the number of active ciphertexts in the matrix product and that skipping
high-degree activations on pruned slots reduces non-linear evaluation time. The net per-layer latency
drops by 51%, which indicates that both components contribute materially to end-to-end speedups.

Table 5: Per-layer latency micro-profile on Cora (single core, CKKS). “AX” = aggregation (AX),
“PolyEval” = HE.PolyEval for activation; “Other” covers rotations/relinearizations.

Variant AX (ms) PolyEval (ms) Other (ms) Total / layer (ms)

Baseline (BFG) 25.1 13.7 8.3 47.1
Pruning Only (PO) 15.0 (-40%) 2.1 (-85%) 6.2 (-25%) 23.3 (-51%)

Arithmetic depth accounting. Arithmetic depth determines the length of the modulus chain in
CKKS and the feasible parameter set. Table 6 shows that the partition step adds one multiplicative
level because of the approximate comparator, whereas adaptive activations remove four levels by
assigning lower-degree polynomials to many nodes. The net depth drops from 13 to 10 for a two-layer

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

model with a linear head and rescaling, which enables a shorter modulus chain and contributes to the
observed wall-time reduction.

Table 6: Multiplicative-depth accounting (2-layer GCN + head). DESIGN reduces depth despite +1
from partitioning.

Scheme Extra depth (partition) Depth removed (activations) Net depth

Baseline (BFG) +0 0 13
Full DESIGN +1 4 10

Comparator cost and end-to-end latency decomposition. We measure the standalone cost of
the approximate comparator and decompose end-to-end latency. As summarized in Table 7, the
comparator scales linearly at about one microsecond per node and contributes a small fraction of the
one-off partition cost. The breakdown in Table 8 shows that masked aggregation and polynomial
activations dominate runtime, while the partition step remains below 8% and is paid once, which
explains the 1.4×–3.2× overall speedups reported in the main text.

Table 7: HE.AprxCmp scaling: total comparator time and per-node micro-cost (single-thread CKKS).

Dataset #Nodes Time for all compares (ms) Time per node (µs)

Cora 2,708 3.0± 0.1 1.11
citepseer 3,327 3.6± 0.1 1.08
PubMed 19,717 21.9± 0.3 1.11
Yelp 45,954 50.2± 0.4 1.09
ogbn-proteins 132,534 147.9± 1.2 1.12

Table 8: End-to-end latency breakdown (single run decomposition). Step A: partition; Step B: masked
AXW; Step C: polynomial activations; “Other”: rotations/relinearizations/I/O.

Dataset End-to-End (s) A: Partition (%) B: Masked AXW (%) C: Polynomials (%) Other (%)

Cora 0.46 0.04 (8%) 0.29 (63%) 0.07 (15%) 0.06 (14%)
PubMed 10.8 0.88 (8%) 6.75 (62%) 1.63 (15%) 1.54 (14%)
ogbn-proteins 41.9 3.55 (8%) 26.0 (62%) 6.28 (15%) 6.03 (14%)

B.2 DETAILED RESULTS FOR RQ2: INFERENCE ACCURACY

To provide a comprehensive answer to RQ2 concerning the impact of our framework on inference
accuracy, this section presents a visual summary and further discussion. The main paper (Section 4.3,
Table 2) already details the comparative node classification accuracies across all datasets and baseline
methods. Figure 3 below offers a visualization of these mean accuracies, facilitating a direct
comparison of performance distributions and the relative standing of our DESIGN framework.

As highlighted in the main text and visually reinforced by Figure 3, the Plaintext GNN consistently
sets the upper bound for accuracy. All FHE-based methods, including DESIGN, exhibit some
degree of accuracy degradation relative to plaintext, primarily due to the inherent approximations
required in FHE, most notably the use of polynomial approximations for non-linear activation
functions. Foundational FHE implementations (SEAL, OpenFHE) generally show the largest drop
from plaintext accuracy. State-of-the-art optimized FHE frameworks (CryptoGCN, LinGCN, Penguin)
typically improve upon these foundational baselines or offer comparable accuracy, as their primary
optimizations often target latency reduction through computational streamlining rather than aggressive
model or data alterations that might significantly compromise utility.

Our proposed DESIGN framework achieves accuracy levels that are highly competitive with, and
in several instances (e.g., Yelp, ogbn-proteins when compared to some optimized baselines like
CryptoGCN) surpass, existing FHE methods. For example, on Yelp, DESIGN achieves 51.28 ±
5.0% accuracy, outperforming CryptoGCN (43.85± 3.8%) and comparing favorably with Penguin
(49.53± 4.0%). On ogbn-proteins, DESIGN’s accuracy of 56.11± 9.7%

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Cora Citeseer PubMed Yelp ogbn-proteins
15

30

45

60

75

90
N

od
e

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Method
GNN (Plaintext) SEAL OpenFHE CryptoGCN LinGCN Penguin DESIGN

Figure 3: Node classification accuracy (%) comparison across different datasets and FHE methods.
Each point represents the mean accuracy, with error bars indicating the standard deviation. Higher
values indicate better performance. Methods include GNN (Plaintext) as an upper bound, foundational
FHE schemes (SEAL, OpenFHE), optimized FHE frameworks (CryptoGCN, LinGCN, Penguin),
and our proposed DESIGN framework.

Task generality:link prediction. We evaluate a two-layer GCN decoder for link prediction under the
same cryptographic settings. The results in Table 9 show small AUC reductions relative to plaintext
with 1.6×–2.9× speedups, which indicates that pruning and adaptive activations remain beneficial
beyond node classification because they reduce the encrypted inputs that feed the (AXW) pipeline
used by decoders.

Table 9: Applicability beyond node classification: link prediction (2-layer GCN decoder, 40%
pruning).

Dataset Metric Plain DESIGN (Speed-up)

Cora-LP AUC 0.907 0.834 (1.6×)
PubMed-LP AUC 0.943 0.915 (1.8×)
Yelp-LP AUC 0.821 0.794 (2.9×)

B.3 DETAILED RESULTS FOR RQ3: ABLATION STUDY ON FRAMEWORK COMPONENTS

To provide a comprehensive answer to RQ3, this section presents detailed results from our ablation
study, designed to dissect the individual and collective contributions of the FHE-compatible statistical
pruning stage and the adaptive polynomial activation allocation within our DESIGN framework. As
outlined in the main paper, we compare our DESIGN (Full Framework, FF) against three variants:
DESIGN without Pruning (Adaptive Activation Only, AAO), DESIGN without Adaptive Activation
(Pruning Only, PO), and a Baseline FHE GNN (BFG).

Table 10 and Table 11 present the complete inference latency and node classification accuracy results,
respectively, for these variants across all five benchmark datasets. Figure 4 visually complements
these tables by illustrating the latency (log scale, lower is better) and accuracy (higher is better) for
the citepseer, PubMed, Yelp, and ogbn-proteins datasets, supplementing the Cora dataset analysis
provided in Figure 1 of the main text.

Table 10: Ablation Study: Inference Latency (seconds). Lower is better.

Variant Cora citepseer PubMed Yelp ogbn-proteins

Baseline FHE GNN (BFG) 1656.62±10.6 4207.57±20.1 528.92±0.5 321.11±0.1 14.15±0.5
DESIGN w/o Adaptive Act. (PO) 750.00±8.0 1635.50±19.0 222.50±1.1 136.00±0.1 7.90±0.1
DESIGN w/o Pruning (AAO) 1050.00±10.0 3658.36±16.9 616.75±0.9 295.05±1.2 10.43±0.2
DESIGN (FF) 806.06±12.0 1759.96±21.3 239.20±1.2 146.21±0.2 8.49±0.1

From these detailed results, we can further elaborate on the contributions of each component.
The PO variant (pruning only, uniform activation) consistently demonstrates significant latency
reduction compared to the BFG across all datasets (Table 10). For instance, on citepseer, PO reduces

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Ablation Study: Node Classification Accuracy (%). Higher is better.

Variant Cora citepseer PubMed Yelp ogbn-proteins

Baseline FHE GNN (BFG) 68.00±1.5 45.00±5.0 60.00±10.0 46.89±3.3 48.15±1.9
DESIGN w/o Adaptive Act. (PO) 71.00±2.5 44.00±4.5 52.00±12.0 49.10±4.5 52.15±9.0
DESIGN w/o Pruning (AAO) 75.50±2.0 45.50±4.0 55.50±12.0 52.00±4.5 57.00±9.0
DESIGN (FF) 74.00±3.0 45.00±4.5 55.00±12.5 51.28±5.0 56.11±9.7

latency from 4207.57s to 1635.50s. This highlights the substantial efficiency gain achievable by
simply reducing the graph size processed under FHE, even when a uniform (potentially high-degree)
activation function is used for all retained nodes. In terms of accuracy (Table 11), PO sometimes
shows a slight decrease compared to BFG (e.g., PubMed, citepseer), likely because pruning removes
some information, and the uniform high-degree activation cannot fully compensate or might be
overly complex for the remaining less important nodes. However, on Cora and Yelp, PO can even
slightly improve accuracy, suggesting that pruning can remove noisy or less relevant nodes, acting as
a form of regularization. The AAO variant (adaptive activation only, no pruning) also shows latency

BFG PO AAO FF

Variant

1000

2 × 103

3 × 103

4 × 103

6 × 103

La
te

nc
y

(s
) (

lo
g

sc
al

e)

Citeseer

BFG PO AAO FF

Variant

2 × 102

3 × 102

4 × 102

6 × 102

PubMed

BFG PO AAO FF

Variant

100

2 × 102

3 × 102

4 × 102

Yelp

BFG PO AAO FF

Variant

10.0

4 × 100

6 × 100

2 × 101
ogbn-proteins

40

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

Latency (s) Accuracy (%)

Figure 4: Ablation study results for the citepseer, PubMed, Yelp, and ogbn-proteins datasets. Each
subplot displays Inference Latency (s, log scale, left y-axis, lower is better) and Node Classification
Accuracy (%, right y-axis, higher is better) for different framework variants. The variants are: BFG
(Baseline FHE GNN), PO (DESIGN w/o Adaptive Activation), AAO (DESIGN w/o Pruning), and
FF (DESIGN Full Framework).

improvements over BFG, though generally less pronounced than PO. For example, on citepseer,
AAO reduces latency to 2288.00s. This improvement stems from tailoring polynomial degrees to
node importance, reducing the average computational cost of activations. Crucially, AAO often
achieves higher accuracy than BFG and PO (e.g., Cora, citepseer, PubMed, Yelp, ogbn-proteins),
demonstrating the utility-preserving benefit of applying higher-fidelity activations to more important
nodes and lower-fidelity ones to less critical nodes, even on the full graph.

Comparing the full FF framework to PO isolates the benefit of adaptive activations on a pruned
graph. FF generally achieves lower latency than PO (e.g., Cora: 806.06s for FF vs. 750.00s for
PO is an exception, likely due to measurement variance or specific interaction, but on citepseer:
1759.96s for FF vs. 1635.50s for PO also shows PO can be faster if the uniform activation in PO is
of a lower degree than the average in FF’s adaptive scheme, or if the overhead of mask selection in
FF is non-trivial. This needs careful interpretation based on the actual uniform degree used in PO).
More consistently, FF aims to improve or maintain the accuracy of PO by better tailoring activation
complexity. For instance, if PO uses a high uniform degree, FF can reduce latency by using lower
degrees for many nodes; if PO uses a low uniform degree, FF can improve accuracy by using higher
degrees for critical nodes.

Comparing FF to AAO highlights the impact of initial graph pruning when adaptive activations are
already in place. FF consistently shows significantly lower latency than AAO across all datasets
(e.g., citepseer: 1759.96s for FF vs. 2288.00s for AAO), demonstrating the substantial speedup
gained from processing a smaller graph. The accuracy of FF is generally competitive with AAO, with
minor variations depending on the dataset (e.g., slightly lower on Cora for FF, but comparable or
slightly better on others). This indicates that the pruning step effectively removes redundancy without

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

excessively harming the information needed by the adaptive activation mechanism. Both the pruning
component and the adaptive activation component contribute to the overall performance of DESIGN
(FF). Pruning provides the most significant latency reduction, while adaptive activation primarily
helps in preserving or even enhancing accuracy by intelligently allocating computational resources
for non-linearities. The combined effect in FF generally yields the best balance of substantially
reduced latency while maintaining competitive accuracy compared to applying either optimization in
isolation or using a baseline FHE GNN.

Effect of pruning only. To isolate pruning, we compare the pruning-only variant with the baseline.
Table 12 reports accuracy deltas, which show small to moderate gains on Cora, Yelp, and ogbn-
proteins, a negligible decrease on citepseer, and a larger decrease on PubMed. These patterns match
a regularization effect on graphs that have heterogeneous neighborhoods and information loss on
graphs that have strong homophily.

Table 12: Accuracy delta of Pruning Only (PO) vs. BFG (pp). Positive = PO higher.

Dataset Cora citepseer PubMed Yelp ogbn-proteins

∆Acc (PO − BFG) +3.0 −1.0 −8.0 +2.2 +4.0

Graph-structure correlates of speedup and accuracy. We summarize how structure mediates the
gains. Table 13 shows that speedups correlate more with degree inequality than with average degree
because a long tail of low-degree nodes allows many low-impact slots to be dropped, which reduces
ciphertext counts during aggregation. Accuracy degradation grows with homophily because pruning
removes label-consistent neighbors more often on graphs with strong assortativity. These findings
indicate that the approach is most effective on graphs that have skewed degree distributions and
moderate or weak homophily.

Table 13: Structure–performance correlation. Latency gain is DESIGN speedup vs. baseline; Acc.
drop is absolute pp drop.

Dataset Avg-deg Degree-Gini Edge density (e/n2) Homophily Latency gain (×) / Acc. drop (pp)

Cora 4.5 0.42 2.0×10−3 0.78 1.6 / 0.8
citepseer 5.4 0.38 1.1×10−3 0.65 1.8 / 1.0
PubMed 6.3 0.46 3.0×10−4 0.96 2.2 / 1.2
Yelp 12.1 0.57 4.0×10−5 0.49 3.0 / 1.4
ogbn-proteins 125.0 0.17 6.0×10−3 0.27 1.4 / 1.6

B.4 DETAILED RESULTS FOR RQ4: SENSITIVITY TO HYPERPARAMETERS

This section provides a more detailed analysis of our framework’s sensitivity to key hyperparameters,
specifically the pruning ratio and the degrees of polynomial activation functions, complementing the
summary presented in Section 4.5 of the main paper. To facilitate more extensive hyperparameter
sweeps within reasonable experimental timeframes while maintaining representative graph character-
istics, these sensitivity analyses were conducted on subgraphs sampled at 10% of the original graph
size for the Cora, Yelp, and PubMed datasets.

Impact of Pruning Ratio. Table 14 presents the detailed accuracy and latency figures as the pruning
ratio (percentage of nodes removed) is varied from 10% to 90%, while keeping the polynomial
degrees for adaptive activations fixed (e.g., using PSet2: (5,3,2) representing medium fidelity).

As observed in the main paper and further detailed in Table 14, increasing the pruning ratio consis-
tently leads to a reduction in inference latency across all three dataset subsets. This is an expected
outcome, as processing fewer nodes and edges directly translates to fewer homomorphic operations.
For instance, on the Cora subset, increasing the pruning ratio from 10% to 50% reduces latency
from 93.47s to 64.94s. Concurrently, accuracy generally declines with increased pruning, as more
graph information is discarded. However, the rate of decline varies. For Cora and PubMed subsets,
a pruning ratio up to 40-50% results in a relatively graceful accuracy degradation, suggesting that
a significant portion of nodes can be removed while retaining substantial predictive power. Yelp

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 14: Impact of Pruning Ratio on DESIGN Performance. Acc. is Accuracy (%), Lat. is Latency
(s).

Pruning Cora Yelp PubMed

Ratio (%) Acc. Lat. Acc. Lat. Acc. Lat.

10 76.65 93.47 53.05 17.00 56.92 27.89
20 75.96 87.08 52.89 15.53 56.40 25.44
30 75.50 79.13 52.00 14.38 56.05 23.50
40 74.19 70.01 51.61 12.92 55.02 21.42
50 72.03 64.94 50.06 11.88 53.90 19.24
60 70.47 58.86 48.28 10.43 51.83 17.19
70 65.68 48.90 45.41 9.31 48.72 15.20
80 57.55 44.15 39.92 7.89 42.77 13.11
90 47.06 37.36 32.92 6.71 35.30 10.89

appears more sensitive, with accuracy dropping more sharply at higher pruning ratios. This analysis
underscores DESIGN’s capability to achieve substantial speedups (e.g., more than halving latency at
70-80% pruning on Cora) and highlights the importance of selecting an appropriate pruning ratio
based on the specific dataset’s tolerance and the desired accuracy-latency trade-off. The results
demonstrate that DESIGN effectively identifies and removes redundancy, allowing for a tunable
balance between efficiency and utility.

Impact of Polynomial Degrees for Adaptive Activation. For the sensitivity to polynomial activation
degrees, the main paper (Section 4.5, Table 3) already presents the core findings using a fixed pruning
ratio (e.g., 40%) and three polynomial degree sets: PSet1 (High-fidelity: (7,5,3)), PSet2 (Medium-
fidelity: (5,3,2)), and PSet3 (Low-fidelity: (3,2,1)). The discussion in the main paper highlights that
higher-degree sets (PSet1) yield better accuracy due to superior approximation of non-linearities but
incur higher latency due to increased FHE multiplication costs. Conversely, lower-degree sets (PSet3)
reduce latency at the cost of some accuracy. The strength of DESIGN lies in its adaptive allocation
mechanism. By assigning these varied-degree polynomials based on pre-determined node importance
(derived from the FHE-compatible degree scoring and partitioning stage), our framework effectively
balances the need for high accuracy on critical nodes (utilizing higher-degree polynomials like those
in PSet1 for the most important level) with the imperative for efficiency on less important nodes
(utilizing lower-degree polynomials like those in PSet3 for the least important retained level). This
adaptive strategy allows DESIGN to optimize the overall cost-accuracy profile more effectively than
a uniform polynomial degree approach, showcasing its ability to tailor computational complexity
to information value. For example, using PSet2 as a balanced set for adaptive allocation typically
provides a good compromise, achieving accuracy close to PSet1 while offering latency significantly
better than PSet1 and closer to PSet3, demonstrating the practical benefit of the adaptive scheme.

Sensitivity to importance metric under encryption. We compare degree with a feature L2-norm
score on a Cora variant that includes synthetic bridge nodes. As reported in Table 15, the L2-
norm achieves slightly higher accuracy (+0.6 pp) but increases end-to-end latency from 0.71 s to
3.97 s and raises the net multiplicative depth from 10 to 12 because it requires ciphertext–ciphertext
multiplications and extra rotations. This trade-off indicates that, under current CKKS costs, degree
remains the most practical metric because it preserves most of the accuracy benefits while keeping
the depth and latency low.

Table 15: Sensitivity to importance metric on a “Bridge-Nodes” Cora variant (40% pruning, same
CKKS params unless depth forces longer chain).

Metric Accuracy (%) End-to-end latency (s) Net depth Extra HE ops vs. degree

Node degree 82.4 0.71 10 —
Feature L2-norm 83.0 3.97 12 +1 Rot & +1 C×C Mult / node

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 FHE-Compatible Importance Mask Generation (CKKS Focus)

Require: Encrypted adjacency matrix Ã under CKKS; Importance thresholds τ = [τ1, . . . , τm]
(plaintext or encrypted, with τ0 =∞ and τ1 > · · · > τm).

Ensure: Encrypted prune mask M̃0 and level masks M̃1, . . . , M̃m.
1: Compute encrypted node degree score vector s̃ from Ã using HE.Add and potentially

HE.Rotate.
2: Initialize encrypted mask vectors: M̃0, M̃1, . . . , M̃m ← Enc(0) (vectors of size n).
3: 1̃← Enc(1) (vector of encrypted ones of size n).

// Generate prune mask for nodes with score below τm
4: τ̃ enc

m ← EnsureEncrypted(τm) ▷ Ensure threshold is encrypted if not already
5: M̃0 ← 1̃⊖ HE.AprxCmp(s̃, τ̃ enc

m) ▷ M̃0,v ≈ Enc(1) if sv < τm
// Generate level masks for retained nodes

6: for i← 1 to m do
7: τ̃ enc

i ← EnsureEncrypted(τi)
8: τ̃ enc

i−1 ← EnsureEncrypted(τi−1) ▷ Assuming τ0 =∞ handled appropriately by
HE.AprxCmp

9: ge_tau_i← HE.AprxCmp(s̃, τ̃ enc
i) ▷ ≈ Enc(1) if sv ≥ τi

10: lt_tau_i_minus_1← 1̃⊖ HE.AprxCmp(s̃, τ̃ enc
i−1) ▷ ≈ Enc(1) if sv < τi−1

11: M̃i ← ge_tau_i⊙ lt_tau_i_minus_1 ▷ M̃i,v ≈ Enc(1) if τi ≤ sv < τi−1

12: end for
13: return M̃0, M̃1, . . . , M̃m

C DETAILED EXPERIMENTAL SETTINGS

C.1 ALGORITHMIC ROUTINE AND DISCUSSION

This section provides the detailed algorithmic routine for the two core algorithmic stages of our
proposed DESIGN framework: (1) FHE-compatible importance mask generation (Algorithm 1), and
(2) the subsequent FHE GNN inference that incorporates these masks for graph pruning and adaptive
activation allocation (Algorithm 2). Both algorithms are designed to operate entirely on the server
side, processing client-encrypted graph data under the CKKS FHE scheme to preserve data privacy
throughout the inference pipeline.

Algorithm 1 outlines the server-side procedure for dynamically generating encrypted importance
masks based on the input encrypted graph. The process begins with computing encrypted node
degree scores from the encrypted adjacency matrix Ã, a metric chosen for its FHE efficiency as it
primarily relies on homomorphic additions. These encrypted scores s̃ are then compared against a set
of m pre-defined importance thresholds τ . Since direct comparisons are not native to CKKS, this
step utilizes an approximate homomorphic comparison operator (HE.AprxCmp), which typically
evaluates a polynomial approximation of a comparison function. This process yields an encrypted
prune mask M̃0, identifying nodes deemed unimportant (score below τm), and m encrypted level
masks M̃1, . . . , M̃m, categorizing the retained nodes into distinct importance levels. While the
HE.AprxCmp operations are computationally intensive due to their multiplicative depth, this stage
is crucial for enabling the subsequent adaptive optimizations. The function ‘EnsureEncrypted‘ is
a conceptual step indicating that plaintext thresholds are appropriately encoded and encrypted if
the comparison is between two ciphertexts, or that plaintext thresholds are directly used if the FHE
library supports ciphertext-plaintext comparison via HE.AprxCmp.

Algorithm 2 details the FHE GNN inference procedure, which leverages the masks generated by
Algorithm 1. Initially, the prune mask M̃0 is applied to the input encrypted graph G̃ = (Ã, X̃) to
logically remove nodes and edges. This is achieved by homomorphically multiplying the features X̃
and adjacency entries Ã with a "keep mask" derived from M̃0, effectively zeroing out the contributions
of pruned elements and resulting in a pruned graph representation (Ã′, X̃′). The GNN inference then
proceeds layer by layer using this pruned structure. For each layer, after computing the encrypted
pre-activations Z̃(l+1) (as per Equation 4 in the main text, involving homomorphic matrix operations),
the adaptive activation mechanism is invoked. The encrypted level masks M̃1, . . . , M̃m are used to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 2 FHE GNN Inference with Pruning and Adaptive Activation (CKKS Focus)

Require: Encrypted Graph G̃ = (Ã, X̃) under CKKS; Pre-trained GNN model fθ with L lay-
ers; Encrypted masks M̃0, M̃1, . . . , M̃m from Algorithm 1; Polynomial activation functions
{Pdi

(z)}mi=1 with degrees d = [d1, . . . , dm] (d1 > · · · > dm).
Ensure: Encrypted inference result Ỹ.

// Apply prune mask M̃0 to input features and adjacency matrix
1: 1̃← Enc(1) (vector of encrypted ones of size n)
2: ˜KeepMask← 1̃⊖ M̃0 ▷ Mask for nodes to keep, ˜KeepMaskv ≈ Enc(1) if sv ≥ τm
3: X̃′ ← X̃⊙ ˜KeepMask ▷ Zero out features of pruned nodes
4: // For each entry (u, v) in Ã:
5: Ã′

uv ← Ãuv ⊙ ˜KeepMasku ⊙ ˜KeepMaskv ▷ Remove edges connected to pruned nodes
6: Let Ã′ be the resulting pruned encrypted adjacency matrix.

// Initialize hidden states
7: H̃(0) ← X̃′

// Perform GNN layer computations
8: for layer l← 0 to L− 1 do
9: // Compute encrypted pre-activations using the pruned graph structure

10: Z̃(l+1) ←
(
Ã′ ⊗ H̃(l) ⊗W

(l)
1

)
⊕

(
H̃(l) ⊗W

(l)
2

)
⊕ b(l) (as per Eq. 4)

11: // Apply adaptive polynomial activations homomorphically
12: H̃(l+1) ← Enc(0) ▷ Initialize output activations for layer l + 1
13: for i← 1 to m do
14: P̃di

(Z̃(l+1))← HE.PolyEval(Pdi
, Z̃(l+1)) ▷ Evaluate polynomial Pdi

for all nodes
15: H̃(l+1) ← H̃(l+1) ⊕ (M̃i ⊙ P̃di(Z̃

(l+1))) ▷ Selectively add based on level mask M̃i

16: end for
17: end for
18: return Ỹ = H̃(L)

selectively apply different pre-defined polynomial activation functions Pdi
(with varying degrees di)

to the pre-activations of nodes based on their assigned importance level. This selective application
is achieved through homomorphic multiplications with the masks and summation of the masked
polynomial evaluation results, ensuring that more critical nodes receive higher-fidelity (higher-degree)
activations while less critical nodes use computationally cheaper (lower-degree) ones. The final
output is the encrypted GNN inference result Ỹ.

C.2 FHE SCHEME AND CRYPTOGRAPHIC PARAMETERS

For all homomorphic encryption operations within our DESIGN framework and the FHE baselines,
we employ the Cheon-Kim-Kim-Song (CKKS) scheme (Cheon et al., 2017), renowned for its efficacy
in handling approximate arithmetic on real-valued data, a common requirement in machine learning
applications. The specific cryptographic parameters are chosen to ensure a security level of at least
128 bits, adhering to established cryptographic standards (Albrecht et al., 2021), while simultaneously
supporting the necessary multiplicative depth for our GNN inference pipeline, including the approxi-
mate comparison and polynomial activation evaluation stages. We set the polynomial modulus degree
N to 215 (or 216 for experiments requiring greater depth or precision, specified per experiment if
varied). The coefficient moduli qi in the RNS (Residue Number System) representation are carefully
selected to accommodate the noise growth throughout the computation. Specifically, we use a chain
of prime moduli, including special primes for key-switching and rescaling operations, with bit-lengths
typically around 50-60 bits for data moduli and a larger special prime. The initial scale factor for
encoding plaintext values into polynomials is set to 240 (or adjusted as needed, e.g., 230 as mentioned
in implementation details, to balance precision and noise). Rescaling operations are performed after
homomorphic multiplications to manage the scale of ciphertexts and control noise propagation, typi-
cally reducing the scale by one prime modulus. The choice of these parameters, particularly the total
bit-length of the coefficient modulus chain, directly determines the maximum multiplicative depth
supported by the leveled FHE computation before bootstrapping would be required. Our experiments
are designed to operate within this leveled FHE paradigm to avoid the substantial overhead associated

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

with bootstrapping in current CKKS implementations. All FHE operations are performed using the
Microsoft SEAL library (Max).

C.3 GNN MODEL ARCHITECTURES AND TRAINING

For all experiments, we employed a consistent Graph Neural Network (GNN) architecture designed for
simplicity and compatibility with FHE operations. This model consists of two Graph Convolutional
Layers (GCNConv). The first GCNConv layer takes the input node features, with dimensionality
specific to each dataset, and transforms them into a hidden representation of dimensionality 2.
Following this layer, we apply a quadratic activation function. This choice is motivated by its exact
polynomial form, which avoids the need for further approximation under FHE, unlike common
activations such as ReLU or GELU, thereby simplifying the homomorphic evaluation and reducing
potential approximation errors. A dropout layer with a rate of 0.5 is then applied to the activated
hidden representations to mitigate overfitting. The second GCNConv layer takes these 2-dimensional
representations as input and maps them to an output dimensionality corresponding to the number of
target classes for the specific node classification task of each dataset.

This two-layer GCN architecture was uniformly applied across all five benchmark datasets to ensure
a fair comparison of our framework’s performance. Crucially, all GNN models were pre-trained in a
standard plaintext (unencrypted) environment on their respective training splits before being utilized
for the encrypted inference experiments. This pre-training strategy is standard in FHE inference
literature, as it circumvents the extreme computational expense and complexity associated with
training GNNs directly on encrypted data, while still allowing for the evaluation of privacy-preserving
inference on models with learned weights.

The plaintext training was conducted using the Adam optimizer with a learning rate set to 0.01 and
a weight decay (L2 regularization) of 5 × 10−4 to prevent overfitting. Models were trained for a
maximum of 200 epochs, with an early stopping mechanism based on performance on a separate
validation set to select the best performing model parameters. The aforementioned dropout rate of
0.5 applied after the first layer’s activation function also contributed to model generalization during
this pre-training phase. For the loss function during pre-training, we utilized cross-entropy loss
for all single-label node classification tasks (Cora, citepseer, PubMed). For the datasets involving
multi-label classification, specifically ogbn-proteins and Yelp, we employed binary cross-entropy
with logits loss (BCEWithLogitsLoss), which is appropriate for scenarios where each node can belong
to multiple classes simultaneously. The choice of evaluation metrics for reporting performance was
also dataset-dependent: standard classification accuracy was used for the single-label benchmarks,
while the Area Under the Receiver Operating Characteristic Curve (ROC AUC) was employed for
the multi-label datasets, providing a robust measure of performance in such settings.

C.4 IMPLEMENTATION OF FRAMEWORK COMPONENTS

Our DESIGN framework’s components are implemented for the CKKS FHE scheme, with specific
operational details tailored for reproducibility. For FHE-compatible importance scoring, encrypted
node degrees s̃ are computed from the encrypted adjacency matrix Ã. This involves representing Ã
using its encrypted diagonals and performing a homomorphic aggregation with an encrypted vector
of ones (1̃) using our ‘_aggregate‘ function, which primarily leverages HE.Add, HE.Mult, and
HE.Rotate for efficient sum-product operations. Homomorphic partitioning and mask generation
then compare these encrypted scores s̃ against pre-defined importance thresholds τ (e.g., ‘[5.0, 2.0]‘
for two retained levels plus a prune level). This comparison is facilitated by our HE.AprxCmp oper-
ator, implemented as the homomorphic evaluation (‘_eval_poly‘) of a fixed comparison polynomial,
Pcmp(x) = −0.25x3 + 0.75x+ 0.5, on the encrypted difference between scores and thresholds. This
process, detailed in Algorithm 1, yields the encrypted prune mask M̃0 and level masks M̃1, . . . , M̃m.
Subsequently, homomorphic graph pruning applies the M̃0 mask by deriving a keep mask (1̃⊖ M̃0)
and performing homomorphic element-wise multiplication (⊙) with the initial encrypted node fea-
tures X̃ and each encrypted diagonal of Ã, as outlined in Algorithm 2 (Lines 3-6). Finally, the
adaptive polynomial activation mechanism employs pre-defined polynomial functions {Pdi

}, whose
plaintext coefficients are specified (e.g., ‘[[0,0,1.0]]‘ for P2(x) = x2, ‘[0,1.0]‘ for P1(x) = x). The
homomorphic evaluation of these polynomials (HE.PolyEval) on encrypted pre-activations Z̃(l+1)

is performed using an efficient Horner’s method implementation in our ‘_eval_poly‘ function. The

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

final activated output H̃(l+1) is a masked sum using the level masks M̃i, as detailed in Algorithm 2
(Lines 12-16). The specific thresholds τ and polynomial coefficient sets ‘poly_configs_D_coeffs‘
used for each experimental setting are provided alongside their respective results.

C.5 EXPERIMENTAL ENVIRONMENT AND REPRODUCIBILITY

All empirical evaluations were performed on a dedicated server infrastructure to ensure consistent and
reproducible results. The server is equipped with an AMD EPYC 7763 64-Core Processor and 1007
GB of system memory (RAM). While our FHE computations are primarily CPU-bound, the system
also includes two NVIDIA RTX 6000 Ada Generation GPUs and one NVIDIA A100 80GB PCIe
GPU, which were utilized for plaintext model training and baseline evaluations where applicable.

The software environment was standardized across all experiments. Key libraries and their versions
include Python 3.10.17, PyTorch 2.4.0 for neural network operations, and PyTorch Geometric (PyG)
2.6.1 for graph-specific functionalities. For Fully Homomorphic Encryption, our implementations
and baselines utilized OpenFHE version 1.2.3 and Microsoft SEAL version 4.0.0, depending on the
specific FHE scheme or baseline being evaluated.

To account for inherent variability, each reported experimental result represents the mean value
obtained from 5 independent runs. Reproducibility was further promoted by employing a fixed
random seed of 42 for all stochastic processes, including data splitting (where applicable) and model
weight initialization during pre-training.

C.6 FHE COMPLEXITY OF STATISTICAL METRICS

The choice of statistical metric for assessing node importance under FHE is heavily constrained
by computational feasibility. Table 16 provides a qualitative comparison of the resources required
to compute common graph statistics directly on encrypted data using the CKKS scheme. This
comparison considers the primary homomorphic operations involved, the minimum multiplicative
depth incurred (a critical factor for noise management and parameter selection in leveled FHE), and
the overall relative complexity, which encompasses both computational time and noise growth.

Table 16: Qualitative Comparison of Computing Graph Statistics under CKKS FHE. Assumes CKKS
scheme. Multiplicative Depth (Mult. Depth) indicates minimum required multiplicative levels.
Complexity reflects relative computational cost and noise growth.

Statistical Metric Required HE Operations Mult. Depth Complexity

Node Degree (
∑

Avu) HE.Add, HE.Rotate Low (0-1) Low

Feature Mean (mean(xv)) HE.Add, HE.Mult (ptxt), HE.Rotate Low (0-1) Low-Medium

Feature L2 Norm2 (||xv||22) HE.Mult, HE.Add, HE.Rotate Medium (≥ 1) High

Feature Variance HE.Mult, HE.Add/⊕, HE.Mult (ptxt),
HE.Rotate

High (≥ 2) Very High

The analysis presented in Table 16 clearly illustrates that metrics requiring homomorphic multiplica-
tion (HE.Mult), such as the squared L2 norm of node features or feature variance, are substantially
more demanding. These operations not only increase the direct computational time but also contribute
significantly to noise growth in ciphertexts and necessitate a greater multiplicative depth. Managing
this increased depth often requires larger FHE parameters, which further slows down all homo-
morphic operations. In contrast, node degree, computed primarily through homomorphic additions
(HE.Add) and potentially rotations (HE.Rotate for SIMD processing), exhibits low multiplicative
depth and overall complexity. Similarly, computing the feature mean involves additions and efficient
plaintext multiplications. This stark difference in FHE computational cost is the primary motivation
for our framework’s adoption of node degree as the statistical indicator for importance scoring in the
initial FHE-compatible stage, as discussed in Section 3.1. While richer feature-based statistics might
offer more nuanced importance measures in plaintext, their prohibitive FHE overhead could easily
outweigh any benefits derived from more precise pruning if computed directly on ciphertexts in an
online fashion. Our design prioritizes a lightweight initial scoring mechanism to ensure the overall
pruning and adaptive inference pipeline remains efficient.

24

	Introduction
	Preliminaries
	Methodology
	FHE-Compatible Statistical Importance Scoring and Partitioning
	FHE GNN Inference with Pruning and Adaptive Activation Allocation

	Empirical Experiments
	Experimental Setup
	Evaluation of Inference Latency Reduction
	Evaluation of Inference Accuracy
	Ablation Study on Framework Components
	Sensitivity Analysis of Hyperparameters

	Conclusion
	Related Work
	Supplementary Experimental Results and Discussion
	Detailed Results for RQ1: Inference Latency Reduction
	Detailed Results for RQ2: Inference Accuracy
	Detailed Results for RQ3: Ablation Study on Framework Components
	Detailed Results for RQ4: Sensitivity to Hyperparameters

	Detailed Experimental Settings
	Algorithmic Routine and Discussion
	FHE Scheme and Cryptographic Parameters
	GNN Model Architectures and Training
	Implementation of Framework Components
	Experimental Environment and Reproducibility
	FHE Complexity of Statistical Metrics

