
Bayesian Object Models for Robotic Interaction with
Differentiable Probabilistic Programming

Krishna Murthy Jatavallabhula∗1, Miles Macklin1, Dieter Fox1, Animesh Garg1, and Fabio Ramos1

1NVIDIA

Abstract: A hallmark of human intelligence is the ability to build rich mental
models of previously unseen objects from very few interactions. To achieve true,
continuous autonomy, robots too must possess this ability. Importantly, to in-
tegrate with the probabilistic robotics software stack, such models must encap-
sulate the uncertainty (resulting from noisy dynamics and observation models)
in a prescriptive manner. We present Bayesian Object Models (BOMs): gen-
erative (probabilistic) models that encode both the structural and kinodynamic
attributes of an object. BOMs are implemented in the form of a differentiable
probabilistic program that models latent scene structure, object dynamics, and ob-
servation models. This allows for efficient and automated Bayesian inference –
samples (object trajectories) drawn from the BOM are compared with a small set
of real-world observations and used to compute a likelihood function. Our model
comprises a differentiable tree structure sampler and a differentiable physics en-
gine, enabling gradient computation through this likelihood function. This enables
gradient-based Bayesian inference to efficiently update the distributional parame-
ters of our model. BOMs outperform several recent approaches, including differ-
entiable physics-based, gradient-free, and neural inference schemes. (Webpage)

Keywords: Simulation, Probabilistic programming, Differentiable physics

1 Introduction
When presented with a novel object, humans are quickly able to discover a number of structural
properties and functional attributes. As children, they play around with objects, garnering evidence
from each interaction to gradually build powerful mental representations of objects, their constituent
parts, and the physical constraints imposed by their configuration. Most robots, however, rely on
pre-specified kinodynamic object models for interaction planning.

We propose an interactive mechanism by which a autonomous agent can build “Bayesian object
models” (BOMs)—probabilistic representations of scene/object structure and dynamics—using an
analysis-by-synthesis framework [1]. In our study, robots are equipped with rich world models
(forward predictive models of kinodynamics) in the form of differentiable probabilistic programs.
We formulate the construction of BOMs as a Bayesian inference problem over this probabilistic
program (generative model), given a small number of real-world interactions (evidence).

A probabilistic program is a program written in a special purpose language—a probabilistic pro-
gramming language (PPL)—that augments general-purpose programming languages by providing
explicit constructs for sampling and conditioning over random variables. The primary goal of a
PPL is not just to provide a flexible specification mechanism for probabilistic models; but also to
automate Bayesian inference. An increasing number of modern PPLs [2–5] natively support auto-
matic differentiation, due to the widespread adoption of differentiable computing in machine learn-
ing applications [6–8]. We refer to programs written in such a PPL—that leverage gradient-based
probabilistic inference—as differentiable probabilistic programs.

∗Work done as part of an internship at NVIDIA.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://krrish94.github.io
http://blog.mmacklin.com/about/
https://homes.cs.washington.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}fox/
https://animesh.garg.tech/
https://fabioramos.github.io/Home.html
https://nvidia_srl.gitlab.io/
https://bayesianobjects.github.io

Figure 1: Bayesian Object Models (BOMs): Robots interacting with the world observe the dynamics of
previously unseen objects. We encode an explicit understanding of the world (a generative model) in the form
of a probabilistic program that models latent scene structure, dynamics, and observation models. Probabilistic
programming enables us to automate several aspects of Bayesian inference, resulting in the construction of
BOMs from a small number of robot-environment interactions (8-20 actions in our experiments).

Our generative model is one such program, relating latent scene structure (often a tree) and kino-
dynamic attributes governing object states. The state-space trajectories generated by the model, in
conjunction with a small set of trajectories obtained by interacting with the scene, are used to formu-
late an observation likelihood for Bayesian inference. Importantly, this likelihood is differentiable,
allowing for efficient gradient-based probabilistic inference schemes. This is in contrast to the set
of approaches recently beind unified under the term simulation-based inference - SBI, where the
generative model includes a black-box simulator.

While object ‘dynamics’ can be differentiated through (enabled by the emerging volume of work on
differentiable physics simulation [9–18]), these methods cannot compute gradients with respect to
the object’s ‘structure’. We overcome this by devising a differentiable procedure for sampling tree-
structured random variables. Our generative model includes the following latent variables: graph
structure, edge types, object physical properties. Our framework is the first to learn a distribution
over both the scene structure and its physical parameters – essential for interoperation with current
robot software stacks that rely heavily on probabilistic modeling and inference.

2 Related work
Many approaches have tackled interaction planning for objects with unknown articulations. They
typically only capture point estimates of articulation parameters [19–28], or probabilistic models of
articulation kinematics [29–31]. Recent approaches leverage differentiable simulation for recovering
articulation parameters [32–35, 16]. Our BOMs capture distributions over tree structures of objects,
and their kinodynamic parameters via efficient gradient-based probabilistic inference.

Our work is related to the causal inference and structure discovery literature [36–44], specifically
building on the characterization of directed acyclic graphs (DAG) presented in [39–41], extending
these ideas to differentiably sample tree-structures. Other approaches to causal structure discovery
include neural inference [37, 38, 42–44] and symbolic regression [45–47]. We rely on an explicit,
differentiable parameterization and demonstrate its efficacy in robotics problem domains.

Probabilistic programming languages (PPLs) have long been used in the Bayesian inference com-
munity for model specification and inference [48–50]. Extensive efforts into modern differentiable
programming frameworks [2–5] has also resulted in the development of modern PPLs with native
support for autodifferentiation. We use the Pyro PPL [2] due to its interoperability with Pytorch [6].

Modern PPLs have yet to significantly impact problem domains in robotics. 3DP3 [51] proposes a
generative model of depth images to recover distributions over object poses; DurableVS [52] enables
unsupervised visual servoing; and Mirchev et al. [53] enable 3D SLAM.

Simulation-based inference (SBI) is a recently-coined term [54] that attempts to unify multiple
lines of work leveraging simulation models for probabilisitic inference. Originally referred to as
likelihood-free inference, SBI approaches have thus far assumed black-box simulators. In this work,
however, we propose a new approach to SBI, leveraging white-box simulators interfaced with dif-
ferentiable probabilistic programs.

2

Figure 2: Differentiable probabilistic programming for learning BOMs: A probabilistic program (shown
above) samples random variables encoding a scene structure (a graph G), physical constraints J , and ob-
ject physical properties Θ. These sampled variables are used to initialize a differentiable physics engine that
simulates the dynamics of the environment and computes a likelihood function. A key idea here involves a dif-
ferentiable sampling procedure for the graph-structured variables, which allows us to perform gradient-based
(variational) inference of the posterior over the random variables of interest.

3 Bayesian Object Models
Problem definition: A robot interacting with an object (containing multiple moving parts) applies
control actions u and records part trajectories τobs (here, point cloud streams). We represent the
scene as a graph (specifically, a tree) G = (V, E), as is the norm in simulation engines for robotics.
Each node v ∈ V in the graph denotes an object part (if v is a leaf node), an object part collection
or an entire object (if v is an internal node). Each edge e ∈ E in the graph denotes a joint-type
je ∈ {rigid, prismatic, revolute} with parameters θe. Let Θ denote the set of all physical parameters
over all edges in the graph, and J denote an enumeration of joint types, i.e., Θ = {θ1, · · · , θ|E|},
J = {j1, j2, · · · , j|E|}. We aim to recover a distribution over scene structures, and over the physical
parameters of the structure Θ (object relationships, joint types, joint parameters) that best explain
the observations z, i.e., p(G,J ,Θ|τobs).

p(G,J ,Θ|τobs) = η p(τ |G,J ,Θ) p(G) p(J) p(Θ) (η is a normalizing constant) (1)

Bayesian Object Models (BOMs) are generative (probabilistic) models representing the distribu-
tion gϕ(τ |G,J ,Θ) over object structure and kinodynamic parameters. Specifically, a BOM is a
differentiable probabilistic program gϕ parameterized by ϕ. Samples τ drawn from this model rep-
resent object part trajectories, and are used to compute likelihood functions pϕ(τ |G,J ,Θ) (differ-
entiable w.r.t. ϕ). They can therefore be employed in gradient-based probabilistic inference schemes
to infer ϕ, conditioned on real-world observations τobs.

3.1 Likelihood function

An optimal choice of model parameters ϕ for our BOM should best explain the observed trajec-
tories τobs (evidence). Hence, a straightforward choice of likelihood function would be one where
the maximum likelihood estimate amounts to minimizing a mean-squared error between sampled
trajectories (from the model) and observed trajectories. We therefore assume that our observation
errors are Gaussian distributed with inverse variances β∗, which results in the following likelihood

p(τobs|τ) = p(τobs|G,J ,Θ) =

T∏
t=0

exp
(
−βt∥τi − τobs,i∥2

)
where τi ∼ gϕ(τ |G,J ,Θ) (2)

Gradient-free Bayesian inference in the parameter space ϕ of this model is computationally expen-
sive and performs poorly in practice (see Sec. 4). The tree G involves several discrete-structured
random variables. Further, each edge in G has several properties (joint type, friction, damping, axis
parameters), resulting in high sample complexities. BOMs alleviate this complexity by presenting
a differentiable likelihood computation scheme, including a differentiable greedy mechanism for
sampling tree-structured random variables, a differentiable physics engine to model time-evolution
of object state, and observation models.

3.2 Choice of prior distributions

We assume the following choices of prior distributions within our probabilistic program. These
families of prior distributions are general and are only used as scaffolding for our inference engines.
One may also explore other specialized choices in return for further performance improvements.

3

Figure 3: Our differentiable tree sampling procedure builds on
the differentiable DAG sampler proposed in [41] and imposes ad-
ditional constraints to enforce tree structure. (Left): A tree and its
upper triangular adjacency mat (here, P = I . (Right): Adding the
dashed edge makes the tree a DAG. Our sampling procedure per-
forms an opportunistic rounding step to prevent edges like this one

Prior over tree structure: We assume that all scene structures (trees) are equally likely. This results
in a uniform distribution over the set of (N + 1)(N−1) trees with directed edges rooted at a given
node (Cayley’s theorem). The prior probability of any sampled tree with N nodes (excluding the
root) is thus, p(G = G) = 1

(N+1)(N−1) .

Prior over joint types: We parameterize joint types using a categorical distribution p(J) =
Cat{rigid,prismatic,revolute}. While gradient-based optimization through a categorical
distribution techically requires enumeration (i.e., duplicating the computation graph for all possible
choices of J), we find that using a softmax function and a straight through estimator instead works
well in practice.

Prior over kinodynamic parameters: Each edge has continuous physical parameters indicating
its friction, damping, and axis parameters (a 6D screw vector). Each node has a center-of-mass
parameter. These parameters over the entire graph are lumped into a vector Θ, which is assumed to
be a standard normal distribution Θ ∼ N (0, I). We also attempted using a uniform distribution and
observed that this leads to slightly inferior performance.

3.3 Generative Model

Our generative model gϕ(τ |G,J ,Θ) relates the observed trajectories τobs to latent scene structure G
and kinodynamic parameters J ,Θ. We implement all modeling aspects in the Pyro PPL [2, 4].

Overview: Our generative model samples object part trajectories as follows. First, we indepen-
dently sample a graph structure G and kinodynamic parameters J ,Θ from the prior distributions
P (G), P (J), and P (Θ) respectively. Next, we evolve the object state using a physics engine Ψ
given external input forces. The physics engine produces object states, from which we sample a
trajectory sequence τ by adding white Gaussian observation noise.

The key challenge in constructing this generative model is to ensure that the output trajectories are
all differentiable with respect to the parameters ϕ of gϕ. We do this by (a) proposing a differentiable
mechanism to sample tree-structured variables, and (b) leveraging advances in differentiable physics
simulation to compute gradients through the physics engine Ψ.

Efficient differentiable sampling of tree-structured variables: Recently, multiple schemes have
been proposed to efficiently sample DAG-structured random variables [39–41]. All of these ap-
proaches rely on the fact that a graph G is a DAG if and only if its adjacency matrix A is nilpo-
tent [55]2. This means A can be factorized into a permutation matrix P and an upper-triangular
matrix U , such that A = PUPT [39, 41].

Our differentiable tree sampler is based on the differentiable DAG sampler DP-DAG [41], extending
it using a greedy projection step to cast the DAG into a tree. We first sample a directed acyclic graph
(similar to DP-DAG [41]) and present a greedy projection step to obtain a tree.

1. Differentiable DAG sampling: Each element of U is sampled using the Gumbel-Softmax trick;
uij (j ≥ 1, 1 ≤ j ≤ i) are reparameterized as

uij =
exp

(
γij+log (πij)

τ

)
∑

k exp
(

γk+log (πk)
τ

)
2A square matrix A is nilpotent if An = 0 for a positive integer n. In terms of graphs this means that

powers of adjacency matrices (which indicate n-hop neighbours) do not result in cycles.

4

where γ∗ are drawn from the Gumbel distribution γ∗ ∼ Gumbel(0, 1). Autodifferentiation through
this is enabled by the straight-through estimator [56, 57]. While the above approach results in a
(soft) adjacency matrix, a hard thresholding typically results in a DAG.

2. Opportunistic rounding: To reduce a DAG to a tree, one needs to impose additional constraints;
specifically that a unique path exists to each node in the DAG from the root node. The entries
uij ∈ U must be structured such that, all entries ukj (k > i) are set to zero, if uij is 1. We achieve
this by an opportunistic rounding scheme; for each column j, we find the first entry ulj in the soft
upper-triangular matrix U above a threshold δ and round it up to 1, while simultaneously rounding
all entries umj (m < l) to zeros. If no entry in column j exceeds δ, we pick the first non-zero value
in the column to round up to 1. Gradients through the rounding step are propagated, again, using the
pathwise derivative (straight-through estimator). This scheme provably samples a tree.

Differentiable physics engine: Given a graph structure G and kinodynamic parameters J ,Θ, a
differentiable physics Ψ engine simulates the time-evolution of object states. Our discrete-time
physics engine simulates phenomena such as articulations, mass-spring systems, electrodynamics,
and produces a trajectory τ . We employ a deterministic dynamics model – all of the stochasticity
in our generative model arises due to the latent scene structure and kinodynamics. To account for
any unmodeled dynamics effects, we add an observation noise term to each state in the trajectory.
We find that such a stochastic observation model works across simulated environments, and also
in real-world scenes. A distinct aspect of our approach (compared to prior work in differentiable
physics simulation) is that our differentiable physics engine is embedded within a PPL. This allows
the additional flexibility of sampling from the generative model, conditioning on observed values of
random variables, and also computing gradients through the sampled execution trace.

Algorithm 1: Learning BOMs
Input: Probabilistic modelWϕ , Prior, Observations τ

Result: BOM with inferred parameters ϕ̂
while not converged; /* Inference loop */
do
G ← SAMPLE-STRUCTURE
Θ← SAMPLE-KINODYNAMICS
τ̂ ← DIFFERENTIABLE-PHYSICS(G,Θ)
τobs ← SAMPLE-OBSERVATIONS(τ̂)
loss← COMPUTE-LIKELIHOOD-OR-ELBO(τobs, τ)
UpdateWϕ ; /* Update BOM */

end

3.4 Gradient-based Bayesian inference of structure and scene parameters

Having specified our model gϕ and appropriate priors over the latent variables, we perform Bayesian
inference to recover the posterior p(G,J ,Θ|τobs) given the observed trajectories τobs (Eq 1).

A key benefit of using modern PPLs (such as Pyro in our case) is that nearly all of the effort is
concentrated on model, prior, and likelihood specification. As such, inference is automated by a
single function call, which enables us to experiment with a variety of inference schemes. We exper-
iment with the following inference schemes, each of which presents trade offs between modeling
assumptions, speed, and solution quality:

• SVI (Stochastic variational inference 3): The posterior is approximated using a well-
behaved distribution (called the variational distribution), allowing us to formulate a lower
bound (ELBO), and optimize it by gradient descent.

• HMC (Hamiltonian Monte Carlo): A gradient-based MCMC scheme that uses Hamilto-
nian dyanmics to propose samples close following a target distribution.

• NUTS (No-U-Turn Sampler): A variant of HMC that adaptively tunes step sizes of the
HMC sampler, reducing manual tuning effort.

3SVI is stochastic in that it computes an approximation to the ELBO using a few samples drawn from the
generative model. Eliminating the stochasticity would entail computing the full ELBO, which is computation-
ally intractable in most real-world problems of interest.

5

OpenCabinetDoor OpenCabinetDrawer
Approach Oracle? Success(%) Graph MSE Joint(%) IdE Success (%) Graph MSE Joint(%) IdE
Disconnected ✗ - 0.813 - - - 0.772 - -
Clique ✗ - 0.188 - - - 0.229 - -

Pr
iv

ile
ge

d SBI (SNPE) ✓ 16.67 - 100 0.67 4.76 - 100 0.65
SBI (SNLE) ✓ 19.05 - 100 0.53 7.14 - 100 0.54
Diff. sim. ✓ 95.23 - 100 0.01 90.48 - 100 0.04
Diff. sim. (tail init) ✓ 9.52 - 100 0.93 0 - 100 -

O
ur

s BOM-SVI (Ours) ✗ 100 0.024 91.08 0.12 100 0.019 94.33 0.09
BOM-HMC (Ours) ✗ 100 0.081 90.58 0.23 100 0.063 93.92 0.21
BOM-NUTS (Ours) ✗ 100 0.080 90.33 0.22 100 0.061 93.58 0.21

Table 1: Evaluating structure discovery and kinodynamic prediction capabilities of BOMs. Success(%) in-
dicates task success. Graph MSE measures the mean-squared error between the predicted and true graphs.
Joint(%) evaluates the fraction of joints that were correctly characterized. IdE is an ‘identification error’ metric
that measures the absolute relative error in kinodynamics parameters. We see that BOMs achieve higher suc-
cess rates compared to privileged strategies (SBI, Diff. sim.) that assume access to ground truth object models.

4 Experimental Results
We conduct experiements to investigate the following questions about BOMs.

1. How effective are Bayesian object models (BOMs) at probabilistically modeling the struc-
ture of objects with unknown kinodynamics?

2. How effective are BOMs at characterizing distributions over kinodynamic parameters?
3. How do BOMs help real robots interact with previously unseen objects?
4. Are the inferred BOMs useful in downstream tasks such as tracking object parts?

4.1 Evaluating the structure and kinodynamic prediction capabilities of BOMs

We first evaluate the quality of tree-structured distributions estimated by BOMs for a variety of
inference techniques, and against various inference techniques and relational inference schemes
representative of current art.

Experiment Setup: To learn a BOM, we first record a 2-5 second pointcloud sequence of an action
(external force) being applied on an object of interest. Each pointcloud is passed to an object part
segmentation network.The tracked parts are used to initialize prior distributions for sampling center
of mass and axis parameters. For each object, we use 8-20 such interaction trajectories to learn the
parameters of the BOM.

Dataset: We use 3D assets provided by PartNet-Mobility [58]; in particular the Cabinet class for
results reported in this section. We also use the Dishwasher and Microwave classes for additional
experiments. These assets have ground-truth 3D meshes and kinodynamic parameters. Further,
to evaluate robotic interaction capabilities, we use the OpenCabinetDoor and OpenCabinetDrawer
tasks from the ManiSkill [59] benchmark. While the tasks in Maniskill use 67 train and 20 test
instances, we modify this setup and use 42 instances for testing, owing to the sample efficiency of
BOM model optimization. We use the remaining (45) instances to compute statistics that inform our
data-driven prior. In all, we experiment on 142 simulated object instances from categories commonly
found in household environments.

Approaches evaluated: We consider three broad classes of approaches. Blackbox approaches
include recent work in simulation-based inference [60, 61] implemented as part of the SBI tool-
box [62]. As a strong baseline that assumes access to privileged information, we also use a differen-
tiable simulator [63] equipped with an oracle physically-accurate kinematic and mesh model of the
scene, albeit with unknown dynamics parameters. Our suite of inference engines for learning BOMs
include SVI, HMC, and NUTS.

Discussion: Table 1 compares all the approaches on a number of metrics. Graph MSE evaluates
the mean-squared error between the true adjacency matrix and the predicted adjacency distribu-
tion. Joint(%) computes the accuracy by comparing the estimated joint type with the greatest like-
lihood against ground-truth. IdE measures the relative identification error in physical parameters
(for Bayesian approaches, we take the median estimate of each parameter). Success(%) measures

6

Figure 4: Quality of physical parameters estimated by BOMs.

Figure 5: Qualitative results: Joint types plotted
against the corresponding axis. Yellow indicates a pris-
matic joint, while magenta indicates a revolute joint.

the percentage of task success rates in ManiSkill.4 Note that Diff. sim. (and variants), BOM-SVI,
BOM-HMC, and BOM-NUTS all leverage gradients of the observation likelihood w.r.t. the param-
eters of the generative model. However, they have completely different objectives. While Diff. sim.
variants attempt to find a local minimum of the observation (negative log) likelihood, BOM variants
attempt to estimate a posterior distribution that can be used to draw samples. We use the median
from a set of 10000 samples drawn from BOM-HMC and BOM-NUTS as the representative point
for evaluation.

BOMs infer accurate kinodynamic parameters. We see from the IdE columns in Table 1 that
BOMs infer physical parameters more accurately compared to gradient-free probabilistic inference
methods (SBI-SNPE, SBI-SNLE). The only approach that outperforms BOMs on this metric is
differentiable simulation – however, this approach uses privileged information in the form of ground-
truth meshes, parts, and centers of mass. The primary source of error in BOMs is precisely because
of errors induced in estimating centers of mass from pointcloud observations instead.

BOMs accurately characterize distributions over dynamics parameters. To evaluate the learned
distribution of dynamics parameters in BOMs, we plot the inferred distributions over friction and
damping parameters of a cabinet asset from PartNet in Fig. 4(c,d). Notice how the density of samples
drawn from BOM-NUTS is concentrated near the true point estimate.

BOMs are well-suited for robotic interaction. From the Success(%) columns in Table 1, and the
qualitative results in Fig. 5, we observe that BOMs accurately capture kinematic structure, which
enables high success rates on robotic interaction tasks. We assume a known, deterministic pol-
icy is employed for each of the tasks. Object kinodynamic parameters in the (nondifferentiable)
SAPIEN [64] simulator are initialized by sampling from the learned BOMs. Therefore, task success
rates depend crucially on accurate joint type classification. For example, misclassifying a revolute
joint of a cabinet door as a rigid joint instead will render the OpenCabinetDoor task impossible.

BOMs are robust to initialization errors. To investigate the robustness of BOMs and to assess the
sensitivy of differentiable simulators (strongest-performing approach on the IdE metric, we devise
a baseline “differentiable simulation (tail init)”. In this approach, we wilfully set the initial guesses
of a gradient-descent routine to be sampled from the tail of the true distribution. We see, at once,
that the differentiable simulation approach is quite brittle – success rates drop by over 80%. BOMs,
on the other hand, are robust to such initialization errors. Fig. 4(a,b) show the learned distribution
over damping coefficients of a cabinet from PartNet. Notice how the initial guess distribution in

4Note that in our setting, task failures are primarily due to structure and/or kinodynamic identification errors
and not due to the interaction policies themselves. Action selection (i.e., choosing the amount of force to be
applied, and where to apply it) is a good avenue for future work.

7

Figure 6: Real-world BOMs from a robot interacting with a cabinet to infer a distribution over its structure.

panel (a) has an extremely high-variance (a poor initial guess for variational inference), but upon
optimization, the learned distribution is near-identical to the true underlying distribution.

4.2 Structure discovery in other physical systems

Approach Known structure Learned structure

NRI [37] 2.98e-8 5.2e-5
f-NRI [38] 2.33e-8 4.7e-5
Ours 2.21e-8 1.78e-6

Table 2: Structure discovery evaluation

We also compare the ability of BOMs to re-
cover structure against modern causal structure
discovery methods – neural relational inference
(NRI) [37] and a variant, factorised-NRI (f-
NRI) [38]. We consider the spring-mass and
charged particle system environments in [37].
Given a set of observed trajectories of particles
(coupled by unobserved springs or charges), the aim is to recover the latent structure that best ex-
plains the trajectories. The quality of the recovered structure is evaluated by using the probabilistic
model to predict future trajectories of each particle, and evaluating mean-squared error with respect
to ground-truth. NRI [37] recovers a point estimate of the underlying scene structure. f-NRI [38]
is an improved variant that extends NRI to model multiple interaction types. The ‘known structure’
setting only recovers physical parameters (masses, spring constants, charges), whereas the ‘learned
structure’ setting recovers both structure and physical parameters. Notice how BOM-SVI perfroms
significantly better than both these approaches.

4.3 Real-world experiments

We also evaluate the structure learning abilities of BOMs in a real scene. In this experiement,
a robotic manipulator (Franka Emika Panda arm) interacts with a cabinet. Color and depth im-
ages are captured by a pair of Intel RealSense cameras. Part segmentation on the color images—
currently performed manually for the first 5 frames (and subsequently tracked using the Lucas-
Kanade algorithm)—initializes the node structure for a BOM. In Fig. 6, we visualize the experiment
setup and the inferred scene structure. While the observed trajectory (a single interaction) is insuf-
ficient to explain the structure of all movable links in the object, we observe that the tree structure
recovered quite accurately models the moving components of the object.

4.4 Deploying BOMs for object part tracking Approach MSE (metres)

Const. vel. 10.128
Const. acc. 37.025
BOM-SVI 0.1704

Table 3: Tracking object parts
with BOMs

We evaluate the applicability of learned BOMs in part tracking.
Once trained, BOMs can be used to analyze interventions, predict-
ing the outcomes of novel actions. Table to the right shows the
performance of BOMs on tracking the parts of a cabinet by plot-
ting the mean squared error of the locations of the center of masses.
We compare this against two baseline approaches, using a constant velocity model and a constant
acceleration model respectively (common choices in Bayes filters).

5 Discussion and Limitations
This work presented BOMs – an approach to build computational models of everyday objects while
characterizing uncertainty over structural and kinodynamic parameters. BOMs are effective and
sample-efficient; they can be built from even a single real-world interaction. However, BOMs cur-
rently assume static kinematic tree structures, and rely on generic inference schemes (SVI, HMC),
and require 7-30 minutes of runtime per interaction sequence. We refer the interested readers to our
supplemental material for more details.

8

Acknowledgments

KMJ acknowledges support from the NVIDIA fellowship.

References
[1] D. Kersten, P. Mamassian, and A. Yuille. Object perception as bayesian inference. Annu. Rev. Psychol.,

55:271–304, 2004.

[2] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip,
P. Horsfall, and N. D. Goodman. Pyro: Deep Universal Probabilistic Programming. Journal of Machine
Learning Research, 2018.

[3] M. F. Cusumano-Towner, F. A. Saad, A. K. Lew, and V. K. Mansinghka. Gen: A general-purpose prob-
abilistic programming system with programmable inference. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 2019.

[4] D. Phan, N. Pradhan, and M. Jankowiak. Composable effects for flexible and accelerated probabilistic
programming in numpyro. International Conference on Probabilistic Programming, 2020.

[5] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in python using pymc3. PeerJ
Computer Science, 2:e55, 2016.

[6] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

[8] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy pro-
grams, 2018. URL http://github.com/google/jax.

[9] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[10] J. Degrave, M. Hermans, J. Dambre, et al. A differentiable physics engine for deep learning in robotics.
Frontiers in neurorobotics, page 6, 2019.

[11] D. Hahn, P. Banzet, J. M. Bern, and S. Coros. Real2sim: Visco-elastic parameter estimation from dynamic
motion. ACM Transactions on Graphics (TOG), 38(6):1–13, 2019.

[12] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and W. Matusik. Chain-
queen: A real-time differentiable physical simulator for soft robotics. In 2019 International conference
on robotics and automation (ICRA), pages 6265–6271. IEEE, 2019.

[13] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand. Difftaichi: Differentiable
programming for physical simulation. 2020.

[14] Y.-L. Qiao, J. Liang, V. Koltun, and M. Lin. Scalable differentiable physics for learning and control. In
International Conference on Machine Learning, pages 7847–7856. PMLR, 2020.

[15] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin. Efficient differentiable simulation of articulated bodies.
In International Conference on Machine Learning, pages 8661–8671. PMLR, 2021.

[16] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. NeuralSim: Augmenting dif-
ferentiable simulators with neural networks. In IEEE ICRA, 2021. URL https://github.com/
google-research/tiny-differentiable-simulator.

[17] J. Krishna Murthy, M. Macklin, F. Golemo, V. Voleti, L. Petrini, M. Weiss, B. Considine, J. Parent-
Lévesque, K. Xie, K. Erleben, L. Paull, F. Shkurti, S. Fidler, and D. Nowrouzezahrai. gradsim: Differen-
tiable physics and rendering engines for physical parameter estimation from video. In ICLR, 2021.

9

https://www.tensorflow.org/
http://github.com/google/jax
https://github.com/google-research/tiny-differentiable-simulator
https://github.com/google-research/tiny-differentiable-simulator

[18] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu. Fast and feature-complete differentiable physics
engine for articulated rigid bodies with contact constraints. In Robotics: Science and Systems, 2021.

[19] S. Niekum, S. Osentoski, C. G. Atkeson, and A. G. Barto. Online bayesian changepoint detection for
articulated motion models. In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 1468–1475. IEEE, 2015.

[20] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song. Category-level articulated object pose
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3706–3715, 2020.

[21] Y. Weng, H. Wang, Q. Zhou, Y. Qin, Y. Duan, Q. Fan, B. Chen, H. Su, and L. J. Guibas. Captra: Category-
level pose tracking for rigid and articulated objects from point clouds. In CVPR, pages 13209–13218,
2021.

[22] A. Jain and S. Niekum. Learning hybrid object kinematics for efficient hierarchical planning under un-
certainty. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5253–5260. IEEE, 2020.

[23] A. Jain, R. Lioutikov, C. Chuck, and S. Niekum. Screwnet: Category-independent articulation model
estimation from depth images using screw theory. In IEEE ICRA, 2021.

[24] N. Heppert, T. Migimatsu, B. Yi, C. Chen, and J. Bohg. Category-independent articulated object tracking
with factor graphs. arXiv, 2022.

[25] S. Y. Gadre, K. Ehsani, and S. Song. Act the part: Learning interaction strategies for articulated object
part discovery. In CVPR, 2021.

[26] K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani. Where2act: From pixels to actions for
articulated 3d objects. In CVPR, 2021.

[27] K. Mo, Y. Qin, F. Xiang, H. Su, and L. Guibas. O2o-afford: Annotation-free large-scale object-object
affordance learning. In CoRL, 2022.

[28] S. Pillai, M. R. Walter, and S. Teller. Learning articulated motions from visual demonstration. RSS, 2015.

[29] J. Sturm, C. Stachniss, and W. Burgard. A probabilistic framework for learning kinematic models of
articulated objects. Journal of Artificial Intelligence Research, 41:477–526, 2011.

[30] B. Abbatematteo, S. Tellex, and G. Konidaris. Learning to generalize kinematic models to novel objects.
In CoRL, 2019.

[31] A. Jain, S. Giguere, R. Lioutikov, and S. Niekum. Distributional depth-based estimation of object articu-
lation models. In CoRL, 2022.

[32] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior for deep
learning. ICLR, 2018.

[33] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

[34] G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and F. Meier. Encoding physical
constraints in differentiable newton-euler algorithm. In Learning for Dynamics and Control, pages 804–
813. PMLR, 2020.

[35] M. Ding, Z. Chen, T. Du, P. Luo, J. Tenenbaum, and C. Gan. Dynamic visual reasoning by learning
differentiable physics models from video and language. NEURIPS, 2021.

[36] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning about
objects, relations and physics. NEURIPS, 29, 2016.

[37] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting
systems. In ICML, 2018.

[38] E. Webb, B. Day, H. Andres-Terre, and P. Lió. Factorised neural relational inference for multi-interaction
systems. arXiv, 2019.

[39] C. Cundy, A. Grover, and S. Ermon. Bcd nets: Scalable variational approaches for bayesian causal
discovery. NEURIPS, 34, 2021.

10

[40] L. Lorch, J. Rothfuss, B. Schölkopf, and A. Krause. DiBS: Differentiable Bayesian structure learning.
NEURIPS, 2021.

[41] B. Charpentier, S. Kibler, and S. Günnemann. Differentiable dag sampling. In ICLR. 2022.

[42] Y. Li, A. Torralba, A. Anandkumar, D. Fox, and A. Garg. Causal discovery in physical systems from
videos. NEURIPS, 2020.

[43] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. DAGs with NO TEARS: Continuous Optimization
for Structure Learning. In Advances in Neural Information Processing Systems, 2018.

[44] Nasa: Neural articulated shape approximation. Proceedings of the European Conference on Computer
Vision, 2020.

[45] M. D. Cranmer, R. Xu, P. Battaglia, and S. Ho. Learning symbolic physics with graph networks. arXiv
preprint arXiv:1909.05862, 2019.

[46] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho. Discovering
symbolic models from deep learning with inductive biases. Advances in Neural Information Processing
Systems, 33:17429–17442, 2020.

[47] P. Lemos, N. Jeffrey, M. Cranmer, S. Ho, and P. Battaglia. Rediscovering orbital mechanics with machine
learning. arXiv preprint arXiv:2202.02306, 2022.

[48] D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks. Bugs 0.5: Bayesian inference using gibbs sampling
manual (version ii). MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK, pages 1–59,
1996.

[49] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo,
P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of statistical software, 76(1),
2017.

[50] N. D. Goodman and A. Stuhlmüller. The Design and Implementation of Probabilistic Programming
Languages. http://dippl.org, 2014. Accessed: 2022-6-10.

[51] N. Gothoskar, M. Cusumano-Towner, B. Zinberg, M. Ghavamizadeh, F. Pollok, A. Garrett, J. B. Tenen-
baum, D. Gutfreund, and V. K. Mansinghka. 3dp3: 3d scene perception via probabilistic programming.
NEURIPS, 2021.

[52] N. Gothoskar, M. Lázaro-Gredilla, Y. Bekiroglu, A. Agarwal, J. B. Tenenbaum, V. K. Mansinghka, and
D. George. Durablevs: Data-efficient unsupervised recalibrating visual servoing via online learning in a
structured generative model. IEEE ICRA, 2022.

[53] A. Mirchev, B. Kayalibay, P. van der Smagt, and J. Bayer. Variational state-space models for localisation
and dense 3d mapping in 6 dof. In ICLR, 2021.

[54] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference. Proceedings of the
National Academy of Sciences, 117(48):30055–30062, 2020.

[55] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[56] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[57] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[58] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. PartNet: A large-scale benchmark
for fine-grained and hierarchical part-level 3D object understanding. In CVPR, 2019.

[59] T. Mu, Z. Ling, F. Xiang, D. C. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill: Generaliz-
able manipulation skill benchmark with large-scale demonstrations. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[60] D. Greenberg, M. Nonnenmacher, and J. Macke. Automatic posterior transformation for likelihood-free
inference. In International Conference on Machine Learning, pages 2404–2414. PMLR, 2019.

[61] G. Papamakarios, D. Sterratt, and I. Murray. Sequential neural likelihood: Fast likelihood-free inference
with autoregressive flows. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 837–848. PMLR, 2019.

11

http://dippl.org

[62] A. Tejero-Cantero, J. Boelts, M. Deistler, J.-M. Lueckmann, C. Durkan, P. J. Gonçalves, D. S. Greenberg,
and J. H. Macke. sbi: A toolkit for simulation-based inference. Journal of Open Source Software, 5(52):
2505, 2020. doi:10.21105/joss.02505. URL https://doi.org/10.21105/joss.02505.

[63] M. Macklin. Warp: A high-performance python framework for gpu simulation and graphics. https:
//github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Conference (GTC).

[64] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, L. Yi, A. X.
Chang, L. J. Guibas, and H. Su. SAPIEN: A simulated part-based interactive environment. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

12

http://dx.doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://github.com/nvidia/warp
https://github.com/nvidia/warp

	Introduction
	Related work
	Bayesian Object Models
	Likelihood function
	Choice of prior distributions
	Generative Model
	Gradient-based Bayesian inference of structure and scene parameters

	Experimental Results
	Evaluating the structure and kinodynamic prediction capabilities of BOMs
	Structure discovery in other physical systems
	Real-world experiments
	Deploying BOMs for object part tracking

	Discussion and Limitations

