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Abstract

The prevailing question in LM performing arithmetic is whether these models learn to truly
compute or if they simply master superficial pattern matching. In this paper, we argues
for the latter, presenting evidence that LMs act as greedy symbolic learners, prioritizing
the simplest possible shortcuts to fit the stats of dataset to solve arithmetic tasks. To
investigate this, we introduce subgroup induction, a practical framework adapted from
Solomonoff Induction (SI), one of the most powerful universal predictors. Our framework
analyzes arithmetic problems by breaking them down into “subgroups”—minimal mappings
between a few input digits and a single output digit. Our primary metric, subgroup quality,
measures the viability of these shortcuts. Experiments reveal a distinct U-shaped accuracy
pattern in multi-digit multiplication: LMs quickly master the first and last output digits
while struggling with those in the middle. We demonstrate this U-shape is not coincidental;
it perfectly mirrors the quality of the simplest possible subgroups, those requiring the fewest
input tokens. This alignment suggests a core learning mechanism: LMs first learn easy,
low-token shortcuts and only incorporate more complex, multi-token patterns as training
progresses. They do not learn the algorithm of multiplication but rather a hierarchy of
increasingly complex symbol-to-symbol mappings. Ultimately, our findings suggest that the
path to arithmetic mastery for LMs is not paved with algorithms, but with a cascade of
simple, hierarchically-learned symbolic shortcuts.

Introduction

The saturation of modern math benchmarks like GSM8K (Cobbe et al., [2021)) by frontier language models
such as GPT-40 (OpenAl et al., [2024) and Claude (Anthropic, |2024)) marks a significant milestone in Al. As
the research community pivots to grander challenges like Olympic-level mathematics, this success raises a
more fundamental question: are these models developing genuine numerical reasoning, or are they exhibiting
an elaborate illusion of it, woven from the statistical patterns of their vast training data? In short, do they
learn to truly compute, or do they simply master sophisticated pattern matching?

In this paper, we argue for the latter. We present compelling evidence that LMs act as greedy symbolic
learners, prioritizing the simplest possible “shortcuts” to solve arithmetic tasks. Understanding this
distinction is critical, as it has profound implications for model reliability, out-of-distribution generalization,
and the future of trustworthy AI reasoning. To probe this behavior, we use arithmetic as a controlled
laboratory. Unlike open-ended reasoning, arithmetic tasks are close-formed—the underlying data generation
function f is pre-defined and immutable. This provides a gold-standard ground truth against which we can
rigorously analyze the learning strategies LMs actually develop.

To formalize this investigation, we introduce a practical framework called subgroup induction (see Figure|l]).
Our approach is inspired by one of the oldest principles in science and learning theory: Occam’s Razor, which
suggests a preference for simpler explanations. This principle is formally embodied in theoretical frameworks
like Solomonoff Induction (SI). We adapt this core idea into a concrete, testable hypothesis for LMs: a
“simpler” solution for predicting an output digit is one that relies on the simplest possible input pattern—that
is, a minimal set of input digits (tokens).

Within this framework, a subgroup becomes our basic unit of analysis. It represents a potential shortcut,
defined as a minimal mapping from a subset of input digits to a single output digit. For example, does an
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Figure 1: Overview of Subgroup Induction. Solomonoff Induction (SI) is a conceptual framework that
utilizes a universal predictor, such as UTMs, to make predictions. Inspired by SI’s principle of Occam’s

Razor, subgroup induction is a pragmatic framework designed to uncover the shortcut-seeking mechanisms
LMs use to perform arithmetic.

LM only need to see the last digits “..3” and “..4’ to learn that the product must end in “..2’7 To measure
the viability of such shortcuts, we introduce two complementary measures of subgroup complexity. Our
primary metric, subgroup quality, quantifies the reliability of a given shortcut across the entire data distribution.
A second metric, subgroup entropy, measures the inherent ambiguity or difficulty of the prediction at each
output position, serving as a robust tool for error estimation.

Our experiments reveal a distinct and consistent U-shaped accuracy pattern in multi-digit multiplication:
LMs rapidly master the first and last output digits but consistently struggle with those in the middle. We
demonstrate this U-shape is not coincidental but is the “smoking gun” for our shortcut hypothesis. The
model’s performance curve perfectly mirrors the quality of the simplest possible subgroups—those requiring
the fewest input tokens. This powerful alignment reveals a core learning mechanism: LMs instinctively
learn easy, low-token shortcuts first and only incorporate more complex, multi-token patterns when forced to
by the learning objective. They do not learn the abstract algorithm of multiplication; instead, they discover a
hierarchy of symbol-to-symbol mappings, starting with the path of least resistance.

Furthermore, we show that subgroup entropy is a powerful tool for analyzing more complex reasoning. In a
Chain-of-Thought (CoT) setting (Wei et al.| |2023), different reasoning paths can be viewed as decompositions
of a problem into simpler steps. Our framework quantifies the "symbolic complexity" of each path, and we
find that the CoT path with the lowest aggregate entropy consistently achieves the best performance. This
suggests LMs prefer reasoning strategies composed of the easiest possible sequence of symbolic shortcuts.

Our key contributions are:

e We introduce subgroup induction, a novel framework to empirically test and provide evidence for
the hypothesis that LMs operate as symbolic shortcut learners, rather than procedural calculators,
in arithmetic tasks.

e We define and validate subgroup quality and subgroup entropy as effective measures for
quantifying shortcut viability. Using these, we decipher the widely observed U-shaped performance
curve as a direct consequence of a ’fewest-tokens-first’ learning heuristic.

e We uncover a core “low-to-high” learning mechanism in LMs, where they greedily prioritize the
simplest possible shortcuts and only escalate to more complex, multi-token patterns when necessary,
offering strong evidence for symbolic learning over procedural computation.

o We extend the framework’s utility to multi-step reasoning, demonstrating that the symbolic complexity
of a CoT path, as measured by subgroup entropy, is a strong predictor of its success, showcasing the
framework’s potential for advancing reasoning research.
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1 Preliminaries

In this section, we introduce the preliminaries of the universal Turing machine and Solomonoff induction. We
then discuss how arithmetic learning can be incorporated into the SI framework, laying the groundwork for
presenting our subgroup induction framework .

1.1 Solomonoff Induction

Solomonoff induction formalizes optimal prediction by combining computability and Bayesian principles. It
considers all possible hypotheses (as programs) weighted by two criteria: simplicity (shorter programs receive
exponentially higher weight) and consistency with observed data.

The framework unifies three elements: a universal prior M over hypotheses, Kolmogorov complexity as a
measure of simplicity, and Bayesian updating across the hypothesis space. This yields provably optimal
predictions for sequences generated by any computable process. We formalize these components as follows:

Definition 1.1 (Universal Probability). The universal probability M is a mixture of all lower semicomputable
semimeasures u, weighted by their algorithmic complexity:

Mz)= Y 270

p:U(p)=x
where [(p) is the length of program p on the reference UTM U. Each program p represents a hypothesis
about the data-generating process.

Definition 1.2 (Occam’s Razor). The principle of Occam’s Razor is formalized through Kolmogorov
complexity Ky (x), which is the length of the shortest program that outputs x:

Ky(x) = min{l(p) : U(p) = =}
This assigns higher prior probabilities (27%v(#)) to simpler hypotheses, as shorter programs have higher
weights in the universal probability.
Definition 1.3 (Bayesian Updating). Each program p maps to a hypothesis h in hypothesis space H. Given
prior probability M and observation x1.¢, the posterior probability is computed via Bayes’ rule:

M(z1.¢|h)M(h)

M(h‘l'l;t) = M(Qj‘lzt)

The predictor updates across all hypotheses (programs):

M(@p41|z1:0) = Y M(@psr [R)M(hlz1.e)
heH

1.2 Arithmetic Learning as a Bridge to Practice

Arithmetic learning offers an ideal setting for studying inductive inference, as it involves ground-truth
data-generating functions. We will first provide a formal definition of arithmetic learning and then discuss
the similarities that motivate the development of a practical framework.

Arithmetic Learning Task. The task of arithmetic learning to learn an approximation to ground truth
data generation function f that generalizes to unseen inputs. The ground truth f: N x N — N maps input
pairs to their arithmetic result:

fla,b) =aob=c

where ¢ represents an arithmetic operation like addition or multiplication.
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Arithmetic Data Distribution. Consider a training set Dipain = {(a(k%b(k),c(k))}fy:l where ¢F) =
f(a®) b)) for a binary operator f(-). For n-digit arithmetic, inputs a(®*) and b*) can be viewed as
realizations of random variable sequences {A;}? ; and {B;}"_;, where each A;, B; ~U{0,1,...,9}, U is the
uniform distribution. Similarly, ¢(*) corresponds to sequence {C;}, with joint distribution:

PH{C}L {Ai o ABit ) = I paby=c} P(A)P(B)

where I ) is the indicator function.

LMs as Predictive Distributions. LMs implement a distribution pg(x¢41|z1.¢) over next tokens, parame-
terized by weights 6. For arithmetic learning:

p9(0|a7 b) ~ P(f(a, b)|a7 b)

This approximates the true conditional probability of the arithmetic result.

Proposition 1.4 (Parallel Learning Frameworks). The theoretical SI framework and practical LM imple-
mentation approach arithmetic learning through parallel mechanisms: 1. SI via Bayesian updating over
programs:
M(cla,b,D) = Y M(c|h)M(h|D)
heH

2. LMs via gradient descent on negative log-likelihood:

LO)=— > logps(cla,b)

(a,b,c)eD

Both frameworks exhibit convergence behaviors on arithmetic tasks: 1. SI identifies the shortest program
computing f with probability 1 as |D| — oo 2. LMs learn an approximate implementation minimizing
empirical risk, bounded by model capacity and optimization dynamics.

These comparisons demonstrate that it is possible to use the core principles of Solomonoff induction to
understand the behavior of language models in arithmetic tasks. This insight motivates us to develop a
pragmatic framework capable of providing computable properties to analyze LMs’ learning mechanisms in
arithmetic.

2 Subgroup Induction

In this section, we introduce the subgroup induction framework. To constrain the hypothesis space, we define
a computable property by specifying the concept of a subgroup.

2.1 Subgroup

Definition 2.1 (Subgroup). For n-digit arithmetic f(a,b) = ¢, the subgroup s is defined as (A;, B;, and C;

have the same meaning as in [subsection 1.2)):
SES, = {((Aa B),C) | AC {Ai}?:lvB - {Bi}?:la(c € {ClaCQa . '7Cm}}

where A and B are subsets of the input variable sequence, C represents a single variable in the output
sequence, n and m is the length for input and output number. For convenience, we represent A, B, C by the
sequence of their elements in order. For example, if A = {4, A3, A5}, we write A as A1 A3 As. Examples for
2-digits multiplication A; Ay x By By = C1C2C3CYy:

o ((A1,B1),Ch)

o ((A2,B2),Cy)

« ((A142,B1),Ch)
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o ((A1,B1B2),Cy)
e ((A1A3,B1B3),Cy)

In these subgroups, A and B are subsets of input variable sequences, while C is restricted to a single variable.
This design aligns with the next-token prediction paradigm in language modelingﬂ

Computability. By using subgroup decomposition, arithmetic tasks with n-digit input and m-digits output
can be divided into (22" — 1) x 2m subgroups overallﬂ Essentially, we treat the LMs’ choice of using symbol
information, which corresponds to choosing a subgroup, as a hypothesz'sﬂ

2.2 Subgroup Complexity

In Solomonoff Induction, hypotheses or universal turing machine programs are assigned a complexity measure.
Kolmogorov complexity, a key component of this framework, embodies Occam’s Razor by assigning higher
probability to shorter programs. In our framework, we treat subgroup usage as a hypothesis. Thus, a key
challenge is defining an appropriate measure for subgroup complexity.

Intuition. In multiplication, the leftmost input digits largely determine the first output digits, hinting that
predicting some positions might be easy. Also, predicting a single value 0 is easier than predicting a range
0 — 9, showing that output variability matters. These two observations motivate our two proposed complexity
measures respectively.

Definition 2.2 (Subgroup Quality). Given original dataset D, for any subgroup s = ((A,B),C) € S,, the
subgroup quality for multiplication is:

Q(s) = Equporen [I(0la, &) x 6(6,B) = 6(c.C) )| (1)

where I(+) is an indicator function returns 1 if argument is true, and 0 otherwise. ¢ is a masking function to
set digits at positions of variables not in subgroup to 0 (see Algorithm .

Extending this definition from multiplication to any operator f(-), we could a generalized version:

Qs) = Equpern [I(F(9(a,4),6(.B) = 6(c,0))] (2)

where f(-) is any binary operator for the arithmetic tasks.

Definition 2.3 (Subgroup Entropy). The subgroup space is defined based on the label space for each
subgroup. Given s, the label space is given by:

L, = {c| P(C = ¢) > 0}

For a given subgroup, the label space consists of all labels observed at its output positions in the dataset.
The subgroup entropy is then defined as:

H(s)=— Y P(C=c)log, P(C=c) (3)

celg

2.3 Discussions

For a given subgroup s, subgroup complexity is defined using two computable measures:

1To prevent tokenization issues, we add a space between each digit to ensure that each digit is tokenized separately.

2Input and output each have 2n digits. Considering all possible permutations for input (excluding the empty set), we have
(22" — 1) combinations. Therefore, the total number of subgroups is (22" — 1) x 2m.

3ML models like linear/logistic regression or simple MLP, the hypothesis is characterized by the model weights (parameters)
that define the mapping function mg. But this also face the challenge of incomputability due to the infinite hypothesis space.
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Algorithm 1 Subgroup Quality for n-digit Multiplication
Require: Original dataset Diyain of size N, set of all subgroups S
Note: MAaSK sets digits at positions of variables not in the subgroup to 0
1: for each subgroup s = ((A,B),C) € S do

2: correct < 0

3: for each (a,b,¢) € Dirain do
4: Amasked MASK(CL,A)

5: bmasked MASK(Z),B)

6: Cmasked — MASK(c, C)

& pred < Umasked X bmasked
8: if pred = cmaskea then
9: correct < correct + 1
10: end if

11: end for

12: Q(s) < correct/N > subgroup quality
13: end for

e Q(s): subgroup quality that measures how accurate the mapping is from the input positions to the
output position.

e H(s): Subgroup entropy that measures the uncertainty or variability within the subgroup’s output
labels.

These two measures are proposed with different motivations. Next, we will explore the effectiveness of these
two measures in quantifying LMs’ learning behavior.

3 Arithmetic Learning in Language Models

We investigate LMs’ learning mechanism using an intuitive yet straightforward approach by observing the
relationship between subgroup complexity and position-level accuracy.

3.1 Experiment Settings

We trained Gemma-2-2B (Team et all 2024) and Llama-3.1-8B (Dubey et al., [2024)) on multiplication
arithmetic tasks using datasets of varying sizes: 6.48K, 12.96K, 32.4K, and 64.8K examples. Our experiments
covered multiplication of 3 to 5-digit numbers, resulting in outputs ranging from 6 to 10 digits. For simplicity
and to ensure a focused comparison, we did not optimize hyperparameters for either Gemma or Llama models,
as preliminary experiments indicated robust performance with default settings. Detailed experimental setup
information can be found in Appendix [A]

3.2 Position-level Accuracy are U-shaped

We compute the accuracy at each position in the output sequence. Figure [2| reveals a phenomenon overlooked
in previous studies that fundamentally challenges our understanding of how language models learn arithmetic
operations. Contrary to the common assumption that position-level accuracy decreases monotonically from
right to left due to carryover effects and least-to-most significant digit calculations (Lee et al., 2023; [Zhang-Li
et al., 2024)), our results show a U-shaped accuracy curve in both Gemma-2-2B and Llama-3.1-8B models
across all multiplication complexities.

This U-shaped pattern exhibits several noteworthy characteristics. Accuracy peaks at the beginning and
end positions, consistently exceeding 95% regardless of training set size, while dramatically dropping to
approximately 10% in the middle positions, particularly pronounced in higher-digit multiplication tasks. The
consistency of this pattern across different model architectures (Gemma-2-2B and Llama-3.1-8B) and training
set sizes (ranging from 6.48K to 64.8K examples) suggests that this is not an artifact of specific training
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Figure 2: Position-level Accuracy from Gemma-2-2B and Llama-3.1-8B.

conditions but rather reflects a fundamental aspect of how transformer models process sequential arithmetic
operations.

The emergence of this U-shaped accuracy distribution provides compelling evidence that the difficulty in
learning multiplication is concentrated in the middle positions rather than at the beginning or end. This
finding has profound implications for our understanding of arithmetic learning in large language models.
The high accuracy at terminal positions suggests that models can effectively learn to identify the correct
starting and ending digits through pattern recognition, possibly by memorizing frequent digit combinations
or leveraging positional embeddings. Meanwhile, the poor performance in middle positions indicates that
models struggle with the complex interdependencies and carry operations that occur during the intermediate
steps of multi-digit multiplication.

Furthermore, this pattern intensifies with increasing digit complexity, as evidenced by the more pronounced
accuracy drops in 5-digit multiplication compared to 3-digit tasks. The robustness of this phenomenon
across different training set sizes also suggests that simply increasing the volume of training data may not be
sufficient to overcome the inherent difficulty of middle-position calculations, pointing toward the need for
more sophisticated training strategies or architectural modifications specifically designed to handle sequential
arithmetic dependencies.

3.3 Why Subgroup Quality Q(s) Explains the U-Shaped Accuracy

What ((s) measures. For an output digit position C;, a subgroup s = ((4, B), C;) keeps only a subset of
input digits from A and B and masks the rest to zero. The subgroup quality Q(s) is the accuracy of predicting
C; using this masked product (Alg. . Intuitively, Q(s) quantifies how good a token-limited shortcut is for
that position. Ezample. If we keep only (As, By) and zero all other digits, Q(((Asz, B2),C1)) asks: “How
often does the units digit computed from those two digits alone match the true units digit?”—a concrete,
measurable notion of shortcut strength.

The token-budget tree (Fig. [3). All subgroups that use exactly k tokens ( |A|+|B| = k) form level k of
a token-budget tree. Parents at level k+1 strictly contain a child at level k (Token Inclusion). Under our
masking protocol, adding observed digits cannot increase ambiguity for C;, giving the monotonicity

Q(Sparent) > Q(Schild) whenever schilq C Sparent in tokens. (4)

The root (all digits kept) attains @ = 1, while very small-token leaves approach chance quality (= 0.1 on
uniform 10-way digits). How to read Fig. @ Left-to-right within a layer, nodes differ in which digits they
observe; top-to-bottom, layers differ in how many digits they observe, so moving upward generally (weakly)
increases ) by equation [4]
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Figure 3: Tree Structure for 2-digits multiplication. Given an output position C, subgroups can
be organized into a hierarchical tree structure. Each layer represents the number of tokens used by the
corresponding subgroup. We do not draw lowest layer (e.g., A1) in this figure as its quality equals to 0.

Why edges are easy with few tokens. The U-shape comes from the existence (or lack) of high-quality,
low-token subgroups across positions:

o Least significant digit (C;). For A; A5 x By Bs, the units digit depends only on (A3, Bs) (mod 10).
Thus s = ((Az2, B2),C1) (two tokens) achieves ) = 1 even after masking higher digits, because those
contribute multiples of 10.

o Most significant digit (Cy). With fixed-width inputs, order-of-magnitude constraints and limited
carry patterns mean that leading digits (e.g., A1, B1) already give a high-quality predictor for Cy
with small .

o Middle digits (Cs,C5). These integrate many cross-terms and carries. Any low-k subgroup
necessarily omits essential contributors, so Q(s) is low until more tokens are included.

Tllustration. In 27 x 38, the units digit is 7 x 8 = 56 = 6—unchanged by masking the tens digits. For the
leading digit, 93 x 47 ~ (9 x 4) x 10?2 = 36 x 102, so the most significant digit is tightly constrained even
if not always exactly determined. By contrast, for 47 x 56 = 2632, the second digit (Co = 3) depends on
multiple cross-terms and carry; seeing only (Ag, B1) = (7,5) leaves Cy ambiguous.

Aggregating by budget & matching Fig. Define the best quality achievable at budget k for position
Cji
C;) = A, B),C;)).
Qr(Cy) |A|I-r-1|aé}\(:kQ((( . B), J))

For small k, Qr(Cy) and Qx(Cy,) (MSB) are high, while Q4 (C;) is low for middle j; hence the vector
(Qr(C1),...,Qr(Cy)) is U-shaped. As k grows, monotonicity in equation [4{lifts all positions, but the middle
digits catch up last. Link to the plot. In Fig. |4} the “2-digit-low/middle/high” series visualize exactly this:
higher token budgets (“high”) raise the entire curve while preserving the edge advantage at small budgets;
the “3/4/5-digit-low” curves show the same early U-shape for longer inputs when the budget is tight.

[ ]
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Figure 4: Position-level Subgroup Quality. The low-to-high order reflects the hierarchy in the tree
structure. Similar trends in 3 — 5 digits with 2-digits (see Appendix .
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Figure 5: Searching Program inside LMs. Different phases refer to different stage of LMs fitting.

Learning dynamics as tree search (Fig. . Next-token training tends to adopt the fewest-token,
highest-@Q shortcuts first. Phase 1 in Fig. [5| highlights dark leaves: the model quickly fits C; (units) and often
Cy, (leading) using low-k subgroups. As residual errors persist in middle positions, gradients drive the model
upward to larger-token subgroups (Phase 2), and eventually toward near-root programs (Phase n). This
climb up the token-budget tree explains both the early U-shape and its later flattening with more training.
Operational cue. You should see Fig. [f] flatten over training checkpoints: edge positions plateau early, middle
positions rise later as the model “unlocks” higher layers of token budget tree.

Concrete 2-digit example. For A; A x By Bs:

1. Ci: ((Ag, By),C1) with k = 2 yields Q@ = 1 = easy early gains.
2. Cy: any k = 2 subgroup (e.g., ((Az, B1),C2)) misses carry/cross-terms = low @), needs higher k.

3. Cy: ((A1, B1),C4) already constrains magnitude = relatively high @ at small k.

Numbers. In 48 x 39 = 1872, C;=2 is fixed by (8,9) alone, but Co=7 depends on 8x 3, 4x9, and carry from
8% 9, so observing only one of these pairs cannot nail Cs.

Predictions and diagnostics. (i) If we cap usable tokens (e.g., stronger masking, context truncation),
edge digits degrade least. (ii) As the cap relaxes (bigger context or a reveal-curriculum), the U-shape flattens
from the middle outward. (iii) Data that amplifies mid-digit carries (hard negatives) accelerates the climb
for middle positions. How to use this. To test the theory, gradually increase which digits are unmasked
during training: you should see C;/C,, saturate early and C3/C3 improve only when their requisite digits
are revealed, matching the phase progression in Fig.

Takeaway. Q(s) is a computable lens on shortcut viability under token constraints. Figures and
together show the mechanism: models first exploit low-k / high-Q edge subgroups, then progressively
integrate more digits to master the middle—yielding the observed U-shaped accuracy curve and its evolution
over training. Plain language. Edges are easy because there exist “cheap but good” rules for them; the middle
is hard because it needs “expensive” rules that combine more digits, so the model learns those later.

4 From Subgroup Quality to Subgroup Entropy

Although subgroup quality Q(s) is a useful measure for revealing a language model’s tendency to use minimal
tokens, it has limitations when compared to Kolmogorov complexity in a UTM. Specifically:
o The O(2™ x n) complexity of calculating QQ(s) makes it computationally costly for long sequences.
o It is difficult to compare arithmetic across tasks, and the connection between subgroup quality and

error estimation is not clear [T

Therefore, we propose subgroup entropy as a complementary measure. It is computationally efficient, and we
plan to investigate its error estimation capabilities across tasks.

Hn SI (Solomonoff, [1964al), Solomonoff shows that the MSE of M (x) is upper-bounded by K (u)in2 upon convergence.
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Table 1: Label space statistics with different rule perturbations. H (L) represents the entropy of the label
space, and |L£| is the size of the label space. {C;}!; represents all positions in output digits.

C Ca Cs Csy Cs {Ci}in

Task Format H(L) H(L) H(L) H(L) H(L) |L] H(L)

fla,b) =a+b A1As + B1By = C1C2C3 0.9710 3.3215 3.3219 - - 179 7.2130
fla,b)=a+b+1 A1As + B1By = C1C2C3 0.9649 3.3215 3.3219 - - 179 7.2130
fla,b)=a+b+15 A1As + B1By; = C1C2C3 0.9280 3.3214 3.3219 - - 179 7.2130
fla,b) =a+b+115 A1As + B1By; = C1C2C3 0.9280 3.3214 3.3219 — — 179 7.2130
F(a,b) = (a+b) mod 100 Ay As + ByBy = C1Cs 33214 33219  — - ~ 100 6.6432
Fla,b) = (a+b)mod50  AyAs + ByBy = C1Cs 23217 33219 - - 50 5.6436
Fla,b) = (a+b)mod10  A1As + BiBs = Cy 33219 - - - 10 3.3219
fla,b) =axb A1Az X B1By = C1C2C3Cy 2.8979  3.3215 3.3160 3.0340 - 2621 11.1172
fla,b) =axbx2 A1Az X B1By = C1C2C3C4Cs  0.6873  3.2173  3.3215  3.2964 2.2227 2621 11.1172
fla,b) =axbx4 A1As X B1By = C1C2C3C4C5s 1.6030  3.3020 3.3204 3.2234 2.2227 2621 11.1172
fla,b) =axbx8 A1As X B1By = C1C2C3C4Cs 25811 3.3202  3.3151  3.2235 2.2227 2621 11.1172
F(a,b) = (a x b) mod 100 Ay Ay x ByBy = C1Cs 33160 3.0340  — - ~ 100 62912
Fla,b) = (a x b)mod50 Ay Ay x ByBy = C1Cs 23210 3.0340  — - - 50 5.3404
Fla,b) = (a x b)mod10 A A x ByBy = Cy 3.0340  — - - - 10 3.0340

4.1 Subgroup Entropy as a “Cheap” Error Estimation

Settings. We first deliberately perturb the underlying data generation function f to observe the correlation
between subgroup entropy H’ (s)E| and accuracy. We consider addition f(a,b) = a 4+ b and multiplication
f(a,b) = a x b as our baselines. For addition, the perturbation is defined as f(a,b) = a + b + Ac, where
Ac € {1, 15,115} corresponds to offsets at different positions/magnitudes. For multiplication, the perturbation
is defined as f(a,b) = a x b x A with A € {2,4,8} for analogous reasons. Additionally, we incorporate modular
addition and multiplication as further perturbations. Table [I] summarizes the label-space statistics after
applying perturbations. We then fine-tune Gemma-2-2B (Team et al., 2024)) and Llama-3.1-8B (Dubey et al.,
2024) on data generated by these perturbation functions to analyze how subgroup entropy H'(s) evolves.

Entropy—Accuracy Analysis. The results in
Table @l show that b_Oth Gemma-2-2B and Llama- Table 2: Test Accuracy difference A on perturbed opera-
3.1-8B produce consistent outcomes across two rule tions

perturbation methods and three setups. Interest- ~p.ta Generation Function H(s)
ingly, LLMs handle arithmetic like 13 x 10 = 520

Gemma-2-2B Llama-3.1-8B

fla,b)=a+b 7.21 — —
similarly to 13 x 10 = 130 when the subgroup en-  f(a,b) =a+b+1 7.21 —-0.1% —0.1%
/ : : fla,b) =a+b+15 7.21 —0.9% +0.1%
tropy H. (s) remains ﬁ/xed. This demonstrates that ok —atbi1ls 7ol L 0%
tasks with similar H’(s) share comparable error —
L. L. K f(a,b) = (a+ b) mod 100 6.64 +10.1% +3.7%
bounds. For modular addition and multiplication (4 4) = (a + b) mod 50 564 1131% 16.7%
with varying modulus values, reducing the entropy  f(a,b) = (a +b) mod 10 3.32 +26.1% +13.7%
size improves performance in both cases. These  f(a,b)=axb 11.12 - =
. . . : fla,b) =axbx2 1112 —-1.1% —-2.7%
ﬁn/dlng.s suggest that arithmetic tasks. with lower Hab)—axbxd 1112 i 0%
H'(s) in the subgroup space are easier to learn  f(a,b)=axbx8 11.12 +0.2% —-3.7%
and result in fewer errors. This phenomenon con-  f(a,b) = (a x b) mod 100 6.29 +7.1% +3.8%
firms that subgroup entropy is a better measure  f(a,b) = (a x b) mod 50 5.35 +12.1% +5.3%
f(a,b) = (a x b) mod 10 3.03 +18.9% +10.7%

for estimating errors in arithmetic learning tasks.

What Table (1) reveals (entropy shifts under

perturbations). Three consistent patterns emerge. (i) Additive translations preserve total label entropy
while redistributing it across positions. For f(a,b) = a + b and a + b + Ac, the total entropy remains
H(L£)=7.2130, but the lowest digit becomes slightly more predictable as Ac grows (e.g., Cy drops from 0.9710
to 0.9280), whereas Cy/C3 stay near 3.32; this reflects a carry pattern shift localized to early positions. (ii)

2H'(s) represents H(s) summed over all output positions C.
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Multiplicative scalings largely conserve total entropy while shifting where entropy lives. For a X b vs. a X b X A,
the total stays H(L)=11.1172, but entropy mass migrates toward higher positions (a new C5 appears with
~22.22 bits) and the units digit entropy rises monotonically with A (Cy: 0.69—1.60—2.58 for A = 2,4,8),
capturing how scaling changes residue classes and carry dispersion across digits. (iii) Modular reductions
compress the label space and thus the total entropy roughly to log, |£|. For addition, (mod 100, 50, 10) yields
totals 6.64,5.64,3.32 (very close to log, 100, log, 50, log, 10), consistent with nearly uniform residues; for
multiplication the totals are slightly smaller (6.29,5.35,3.03) due to non-uniform multiplicative residue
distributions (e.g., last-digit biases), explaining why modular tasks empirically become easier as |£| shrinks.

4.2 Extend Study on CoT: A Symbolic View

Building on subgroup entropy’s effectiveness in error estimation for arithmetic tasks, we extend our experiments
from simple arithmetic to a chain-of-thought (CoT) setting (Wei et al., 2023)). CoT involves a multi-step
reasoning to solve a single problem. For example, in arithmetic learning, solving a multiplication problem
using CoT means breaking it down into smaller steps to arrive at the correct answer. Recent studies have
shown that RL-based CoT improves reasoning abilities in advanced LMs such as OpenAl ol (OpenAll |2024)
and DeepSeek-r1 (DeepSeek-Al et al., [2025)).

Settings. We still take multiplication as the baseline. While multiplication is mathematically well-defined,
there are multiple methods to perform the calculation. Historically, four methods stand out as the most
representative: Standard Multiplication, Repetitive Addition, the Lattice Method, and Egyptian Multiplication
(details in Appendix . These methods correspond to four distinct CoT paths. We fine-tune Gemma-2-2B
and Llama-3-8B on data from these CoT paths to observe how H’(s) evolves.

Table 3: Performance comparison of different CoT paths. Different CoT split the original tasks into
different CoT steps.

CoT Type # CoT Step Avg. H'(s) Avg. Q(s) Accuracy (%)
Original 1 11.1172 9.87 73.12
Standard Multiplication 3 7.8431 7.12 86.32
Repetitive Addition 3 5.8313 6.03 91.31
Lattice Method 5 5.1130 5.41 94.41
Egyptian Multiplication 8 3.2130 4.02 98.31

Results. The results of the performance comparison between four different CoT methods are shown in
Table Using no intermediate steps (Original), the task yields an average entropy of 11.12 and a test
set accuracy of 73.12%. This serves as a baseline to compare the effectiveness of CoT methods. Two key
observations can be drawn:

o Splitting into More Steps Improves Performance: Decomposing a task into multiple steps, as
demonstrated by the Egyptian Multiplication method, leads to improved performance compared to
the baseline. This likely occurs because splitting the task results in lower average entropy H'(s) per
sub-task.

o Strategic CoT Splitting is Crucial: Comparing standard multiplication to repetitive addition reveals
that even when a task is split into a fixed number of steps, the choice of splitting strategy significantly
impacts performance. Choosing a split that yields lower average entropy H'(s) per sub-task results
in superior overall performance.

The subgroup quality H’(s) proves to be effective at estimating and correlating CoT errors. By focusing on
the entropy of individual steps in the reasoning process, this approach offers a more detailed and effective way
to evaluate and optimize performance in complex reasoning tasks. These findings demonstrate the potential
of the subgroup induction framework to advance reasoning-intensive math tasks.
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4.3 Discussions

Overall, we propose two measures to assess subgroup complexity: subgroup quality Q(s) and subgroup
entropy H(s). These measures complement each other. Subgroup quality is best suited for understanding
learning mechanisms, revealing how LMs initially try to use fewest tokens and gradually incorporate more
tokens if needed. However, it is computationally expensive and less effective for error estimation. On the
other hand, subgroup entropy is less effective at capturing learning dynamics but excels in error estimation
across tasks, including both simple arithmetic and CoT settings. Together, these two measures provide a
robust framework for evaluating subgroup complexity.

5 Related Work

Understanding Arithmetic Learning in Transformer Research on understanding arithmetic primarily
in previous work is to identify causal correlations between model components and outputs. [Stolfo et al.| (2023)
identify key attention layers responsible for arithmetic learning using causal mediation analysis (CMA), a
weight perturbation method that observes changes in output. Similarly, [Hanna et al. (2023) and [Wu et al.
(2024) explore causal abstraction concepts at different model scales, specifically 0.1B and 7B parameters,
respectively. More recently, |Zhang et al.| (2024]) isolate attention heads and fine-tune them for improved
performance at a lower cost. While these studies have made progress in understanding how LMs perform
arithmetic at a component level, our research provide another perspective from algorithm learning theory.

Large Language Models and Solomonoff Induction Solomonoff induction is widely regarded as one of
the most powerful predictors in the field of universal prediction, providing a theoretical foundation for optimal
Bayesian inference in algorithmic probability (Solomonoff], [1964ajb)). Meanwhile, large language models have
sparked discussions about whether they approximate universal Turing machines (Chen et al. 2018} [Lu &
Lu, 2020; Stogin et al., 2022; [Mali et al. 2023)) and whether their learning behavior resembles Bayesian
updating (Ortega et al., 2019; |Arora et al., 2024). And some previous work also discuss the relationship
between transformer’s behavior and Solomonoff induction (Young & Witbrockl 2024} |Grau-Moya et al., 2024)).
These debates have inspired us to develop a practical framework for understanding the mechanisms underlying
language models.

Arithmetic Reasoning in LLMs Mathematical reasoning has been a longstanding area of research in
natural language processing (NLP) (Kushman et all [2014} [Huang et al.| [2016; [Wang et al., 2017 Thawani
et al., [2021; Sundaram et al.l 2022; |Guo et al., |2024). However, LLMs still face challenges with basic
calculations and remain vulnerable to adversarial examples or perturbations, where minor changes in problems
can result in incorrect answers (Zhou et al., [2023; Xie et al) 2024)). Several previous efforts have aimed to
improve arithmetic learning in LLMs. [Lee et al|(2023) trained a 10.6M NanoGPT (Karpathy, [2022]) model
to learn arithmetic by carefully curating the data format, explicitly expanding each step using a method
termed Scratchpad, which achieved remarkable performance compared to GPT-2 XL (Radford et al., |2019).
Yang et al.|(2023) fine-tuned MathGLM with a sufficient training dataset, demonstrating its capability to
solve 5-digit multiplication. Deng et al.| (2023 |2024) further advanced this field by internalizing the CoT
process, hiding detailed steps in a scheduled manner, enabling GPT-2 small to solve 9-digit multiplication
after multiple training runs.

6 Conclusions

In conclusion, our work introduces the novel framework of subgroup induction, offering a pragmatic adaptation
of Solomonoff induction tailored to arithmetic learning in language models. By leveraging subgroup quality
and entropy as complementary measures, we uncover a U-shaped learning pattern that reflects Occam’s
Razor principles in LMs. This innovative approach bridges theoretical universal prediction with modern
neural architectures, providing robust insights into arithmetic learning mechanisms. Our findings emphasize
the practicality of our framework in addressing complexity and advancing reasoning research, establishing a
foundational step forward in understanding and improving the capabilities of LMs in arithmetic tasks.
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A Experiment Setup

In this section, we detail the experiment setup used in the main body of our work. Our experiments are
designed to investigate the capabilities of language models in learning and performing arithmetic tasks, with a
focus on understanding the underlying mechanisms of arithmetic reasoning. By carefully selecting the domain,
models, training methodologies, and datasets, we aim to provide a comprehensive analysis of how language
models can be adapted to handle arithmetic operations effectively. Below, we describe each component of our
setup in detail.

Domain. We select addition and multiplication as the fundamental operations for our experiments, following
previous work (Lee et al.l 2023} [Deng et al., |2023; 12024). We do not consider division or subtraction, as
subtraction can be viewed as a similar operation to addition, and division introduces floating-point numbers,
which involve more complex formatting issues in this task. Therefore, we primarily focus on multiplication
and aim to understand it in depth. However, by definition, our subgroup induction framework is suitable for
all arithmetic tasks.
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Figure 6: Subgroup quality for 3/4/5-digits multiplication given different node.

Model. To investigate arithmetic learning at scale, we selected two open-source LLMs, Gemma-2-2B (Team
et al., 2024) and Llama-3.1-8B (Dubey et al. [2024]). Both models are top performers in their respective
categories and excel at language-related tasks. We did not choose GPT-40 (OpenAl et al., |2024)) or other
proprietary LLMs due to concerns that they may internally integrate function calling (e.g., invoking APIs or
executing Python programs), which could affect the experimental setup.

Training Details. We use LoRA Hu et al.| (2021)) to optimize memory usage during the training of language
models. The LoRA rank is set to 8, and we employ rank-stabilized LoRA in our setup. We set the learning
rate to 3e-4, the number of epochs to 12, and the batch size to 16. Additionally, we use gradient checkpointing
with a step size of 4 to save memory.

Data. For n-digit arithmetic, we consider the optimal dataset size. Specifically, for 2-digit multiplication,
we have 8,100 data points in total, and for 3-digit multiplication, we have 810,000. We split the dataset into
train, development, and test sets with a ratio of 8:1:1. We train the language models on the training set,
select the best checkpoints based on validation loss, and use them to evaluate the test set accuracy.

Conventional Data Format. We directly train the model to predict the output (e.g., 130) given the
input operands and the operator (e.g., 13 x 10). e add one space between each digit to ensure tokens are split
into individual digits We do not use chain-of-thought (CoT) (Wei et al., 2023) or other prompting strategies
to enforce the model to focus on arithmetic learning in main experiment body. But we will discuss how
subgroup entropy could be a suitable metrics for quantifying CoT path.

B Subgroup Quality for High-digits Multiplication

B.1 Criteria for Low/Middle/High Node Selection

We define the low node as subgroups with two token positions, such as A Bj, which are located closest to
the leaf nodes in the tree structure. The middle node is selected as subgroups with [n] token positions in
n—digit arithmetic. Subgroups with n — 1 token positions are classified as high nodes, which are positioned
closer to the root node. In summary, the middle node resides at the intermediate level of the tree structure,
the low node is near the leaf level, and the high node is near the root level.

B.2 Subgroup Quality for 3/4/5-digits Multiplication

As shown in Figure [6] we can also observe a similar trend in these multiplications with the language model
(LM) learning arithmetic, characterized by U-shaped learning. In high-digit multiplications, the subgroup
quality for the middle digits remains very low for lower nodes, while higher nodes exhibit better quality. This
phenomenon strongly reveals the underlying mechanism of language models’ learning dynamics: they tend to
use more and more tokens in predictions to reduce the loss during gradient descent. We believe this is an
important finding that may be helpful for future research.
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C Are Large Language Models Implicit Calculators?

In this section, we explore whether LLMs utilize partial products to enhance their arithmetic calculation
capabilities, particularly in the context of multiplication. It is important to note that while multiplication is
well-defined mathematically, the process of multiplication calculation is not limited to traditional methods
defined in textbook. Thus, examining only one calculation method presents a flawed experimental design
that is vulnerable to exploitation. We selected four calculation methods that are representative to cover the
major approaches to multiplication.

C.1 Historical and Modern Multiplication

In terms of multiplication, four different calculation methods are most representative from history to now:
Standard Multiplication, Repetitive Addition, Lattice Method, and Egyptian Multiplication.

M1: Standard Multiplication In standard multiplication, we multiply each digit of one number by each
digit of the other number, and then sum the results appropriately:

12x34=12x(30+4)=12x30+ 12 x 4
= 360 + 48 = 408

M2: Repetitive Addition Multiplication can be interpreted as repeated addition. For 12 x 34, we add 12
thirty-four times:
12x34=124+12+12+---+12 (34 times)
= 408
M3: Lattice Method In the lattice method (or grid method), we place the numbers along the top and

side of a grid, perform single-digit multiplications, and then sum along the diagonals:

12 x 34 =10 x 30 = 300

10 x 4 =40
2 x 30 =60
2x4=28

Summing the results: 300 + 40 4+ 60 4+ 8 = 408

M4: Egyptian Multiplication Egyptian multiplication computes the product by doubling the multiplicand
and adding the results corresponding to the powers of two that sum to the multiplier. For 12 x 34:

12x34=12x1=12

12x2=24
12 x4 =148
12 x 8 =96
12 x 16 = 192
12 x 32 = 384

Summing the selected results: 24 + 384 = 408

Since 34 = 2 + 32, we select the results for 12 x 16 and 12 x 8, and summing these gives the final product.

C.2 Examining Partial Product in Arithmetic Learning

To investigate whether LLMs generate partial products during arithmetic learning, we employ a set of
diagnostic tasks as an approach to trace. We fine-tune Gemma-2-2B and Llama-3.1-8B on two-digit
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Table 4: Inductive and deductive accuracy difference A.

Gemma-2-2B Llama-3.1-8B
Standard  Lattice  Repetitive Egyptian Standard Lattice Repetitive Egyptian
Task — Partial P. +4.1% +6.8% —29.0% +3.6% +40.6%  +40.8% —59.0% +29.6%
Partial P. — Task —6.1% —-10.7% —20.3% —-9.6% -3.7% —0.2% —0.9% —2.7%

Partial Products Identication Accuracy

1.0 0.975 0.939

0.6 0.562

Rep add. Lattice Egyptian

Before FT B After FT
Figure 7: Partial products identification accuracy before and after fine-tuning on tasks. Scores are reported
on average of Gemma-2-2B and Llama-3.1-8B.
multiplication, observing changes in accuracy on diagnostic sets before and after fine-tuning (Task — Partial

Products). Subsequently, we fine-tune the LLMs on these diagnostic sets and examine how their accuracy on
the multiplication task changes (Partial Products — Task).

Table 5: Diagnostic sets with four calculation methods.

Method Diagnostic Sets

Standard Multiplication Pstd = {Al X BlBQ, A2 X BlBQ, Bl X AlAg, B2 X AlAQ}
Repetitive Addition Pra = {30172 4, 4,, 2?21{42 B1Bs}

Lattice Method Plattice = {A10 X B10, A10 X BQ, A2 X 310,A2 X BQ}

Egyptian Multiplication Pegyptian = 128 x A1A2 |k €0,1,..., [logy(B1B2)]}

We probe language models’ partial product in four different directions. As shown in Table [f] for a task
formatting like A1 Ay x B1 By = C1C2C3Cy, we would generate diagnostic test for each algorithm.

Accuracy on Identifying Partial Products According to the results in Figure[7] we found that standard
multiplication, the lattice method, and the Egyptian method significantly improved in identifying partial
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products after fine-tuning, with gains of +17.45%, +18.35%, and +10.45%, respectively. However, for
repetitive addition tasks, LLMs failed to identify partial products, achieving an accuracy of only about 5%
after fine-tuning.

A Deeper Look into Calculations Do the results showing increased accuracy across three paths really
imply that partial products are used in arithmetic learning? We have two arguments against this interpretation.
First, if LLMs genuinely use partial products to learn arithmetic, it is likely that they only use one calculation
path at a time. Thus, the simultaneous improvement across three paths (standard, lattice, and Egyptian)
is unusual. Second, if LLMs employ a specific path to compute partial products, this process should be
demonstrated as bidirectional. Specifically, LLMs fine-tuned on a task should be able to identify partial
products (inductive), and conversely, mastering partial products should enhance task learning (deductive).
However, we currently have results for only one direction, lacking evidence for the other. Therefore, we
extend our experiments to another direction.

Accuracy on Identifying Tasks We fine-tune two LLMs on diagnostic sets and present the results of
identifying tasks before and after fine-tuning in Table [4] Our findings reveal that, fine-tuning specifically
on partial products does not enhance task learning. Instead, it results in a performance drop across all
four calculation paths for both models. This indicates that pre-learning partial products does not aid in
arithmetic learning. The improved ability to recognize partial products appears to stem from the symbol
learning process (note that the standard partial product A; x By Bs is a sub-portion of A; Ay X B Bs, similar
to lattice and Egyptian methods) rather than being an intrinsic computational method used by the models.
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