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ABSTRACT

Although deep learning-based segmentation models have achieved impressive per-
formance on public benchmarks, generalizing well to unseen environments re-
mains a major challenge. To improve the model’s generalization ability to the new
domain during evaluation, the test-time training (TTT) is a challenging paradigm
that adapts the source-pretrained model in an online fashion. Early efforts on TTT
mainly focus on the image classification task. Directly extending these methods to
semantic segmentation easily experiences unstable adaption due to segmentation’s
inherent characteristics, such as extreme class imbalance and complex decision
spaces. To stabilize the adaptation process, we introduce contrastive loss (CL),
known for its capability to learn robust and generalized representations. Never-
theless, the traditional CL operates in the representation space and cannot directly
enhance predictions. In this paper, we resolve this limitation by adapting the CL
to the output space, employing a high temperature, and simplifying the formula-
tion, resulting in a straightforward yet effective loss function called Output Con-
trastive Loss (OCL). Our comprehensive experiments validate the efficacy of our
approach across diverse evaluation scenarios. Notably, our method excels even
when applied to models initially pre-trained using domain adaptation methods on
test domain data, showcasing its resilience and adaptability.

1 INTRODUCTION

Over the last few years, deep neural networks (DNNs) have exhibited impressive performance on
standard benchmark datasets for semantic segmentation, such as Cityscapes and PASCAL VOC
Long et al. (2015); Ronneberger et al. (2015); Chen et al. (2017); Xie et al. (2021); Strudel et al.
(2021). However, DNNs often struggle to generalize under distribution shifts, and their performance
degrades considerably when the training data differs from the test data. Unfortunately, in real-world
scenarios such as autonomous driving, domain shifts are inevitable due to variations in weather
conditions, illumination, sensor sensitivity, and so on.

Domain adaptation (DA) methods Hoffman et al. (2018); Luo et al. (2019); Yang & Soatto (2020);
Tranheden et al. (2021); Zou et al. (2018); Vu et al. (2019); Hoyer et al. (2022a;b) attempt to improve
model performance on the target domain in the presence of a distribution shift between the source
and target domains. However, DA methods require offline model tuning using the entire set of
target samples, which is impractical when collecting the entire set of target samples in advance is
unfeasible or when immediate predictions are needed. To address this issue, test-time training (TTT)
adapts a well-trained source model with currently available test data during evaluation. Resorting to
self-supervised regularization Sun et al. (2020); Liu et al. (2021b); Gandelsman et al. (2022), entropy
regularization Wang et al. (2020); Zhang et al. (2021a); Wang et al. (2022); Brahma & Rai (2023),
consistency regularization Zhang et al. (2021a); Wang et al. (2022); Chen et al. (2022), diversity
regularization Chen et al. (2022); Döbler et al. (2022); Jang et al. (2022), distillation regularization
Döbler et al. (2022); Chen et al. (2022); Wang et al. (2022) or the combination of those terms Zhang
et al. (2021a); Döbler et al. (2022); Chen et al. (2022); Wang et al. (2022), TTT methods have
achieved significant progress in the field of image classification. However, recent studies Wang
et al. (2022); Gao et al. (2022a); Niu et al. (2023); Lim et al. (2023) revealed that the existing TTT
methods may be unstable in challenging scenarios like small test batch sizes, class imbalance, and
continual domain shift.
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Segmentation tasks present unique challenges when applying existing TTT methods. Unlike clas-
sification tasks, segmentation often encounters more severe class imbalance issues, which leads
to biased decision boundaries towards majority classes while overlooking minority classes. Addi-
tionally, segmentation is a complex task involving structured prediction. Unlike classification, its
decision function is more intricate because it must make predictions within an exponentially large
label space Zhang et al. (2017); Tsai et al. (2018). These differences can easily result in error accu-
mulation Wang et al. (2022) and even mode collapse Niu et al. (2023) when applying existing TTT
methods to segmentation tasks. Both prior research Shin et al. (2022); Song et al. (2022); Wang et al.
(2022) and our own experimental findings confirm that existing techniques proven may not necessar-
ily enhance segmentation performance effectively. Furthermore, the design of the encoder-decoder
architecture in segmentation tasks is more complex than the encoder-only design in classification
tasks. Therefore, certain advanced techniques commonly applied in classification, such as those
dependent on feature statistics estimated from a large batch of test samples Liu et al. (2021b), or
those requiring additional self-supervised heads Sun et al. (2020); Liu et al. (2021b), may not be
well-suited for segmentation tasks.

In pursuit of enhanced adaptation stability in the TTT for segmentation, this study introduces a
novel objective derived from the principles of contrastive learning. The effectiveness of contrastive
learning in developing robust and versatile representations has been well-established in both pre-
training Chen et al. (2020); He et al. (2020) and adaptation Liu et al. (2021a); Chen et al. (2022);
Wang et al. (2021b) scenarios. These methods typically apply the contrastive loss (CL) within the
representation space, necessitating the integration of fine-tuning or additional regularization tech-
niques to align the task head with the learned representation effectively. However, in the context
of TTT for segmentation, fine-tuning with labeled data is restricted, and introducing extra regular-
ization demands intricate adjustments and limits the method’s applicability. To relieve dependence
on fine-tuning or intricate regularization, we expand the utility of the CL. This expansion involves
a shift from its original application in the representation space (post-encoder) to the output space
(post-task-head). Moreover, choosing a high temperature is required as employing the CL on the
output space to avoid too uniform class distribution. By employing an infinitely high temperature,
we simplify the formulation and then use it in our task. We coin our newly proposed loss formula-
tion as Output Contrastive Loss (OCL), with a primary focus on exploring the applicability of CL in
the output space.

Our comprehensive experimental results consistently illustrate that the OCL improves the model’s
generalization across various architectures, task settings (including TTT and continual TTT), and
benchmark datasets. Surprisingly, our method demonstrates the ability to further boost model per-
formance when the model has been initially trained using DA techniques. Compared with the regular
setting where TTT methods fine-tune a model trained on the source domain, a model trained using
DA techniques has been exposed to data sampled from the target domain. Consequently, the baseline
model’s performance closely approaches the upper performance bound in this scenario.

2 RELATED WORK

Domain adaptation for semantic segmentation. DA is a common technique used to improve
the performance of semantic segmentation models when being applied to data from new, unseen
domains. The majority of popular methods in this field can be divided into three categories: dis-
crepancy minimization, image translation, and self-training. Discrepancy minimization methods
aim to reduce the performance drop caused by domain shift by minimizing the difference between
the source and target domains. One example of this is domain adversarial training, which trains a
feature encoder to generate features that are indistinguishable by a domain discriminator Vu et al.
(2019); Hoffman et al. (2018). Image translation generates target-like source images for model
adaptation, either through simple alteration of low-frequency components Yang & Soatto (2020) or
via conditional generative adversarial learning Hoffman et al. (2018); Dou et al. (2018); Chen et al.
(2017). Self-training involves iteratively generating pseudo labels for target data and refining the
model with them to improve performance. To increase the robustness of the self-training, multiple
regularization techniques like class-balanced sampling strategy Zou et al. (2018), confidence regu-
larization Zou et al. (2019); Vu et al. (2019), domain-mixup Tranheden et al. (2021) and consistency
regularization Hoyer et al. (2022a;b); Tranheden et al. (2021), are introduced.
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DA methods inevitably require access to both the entire set of labeled source images and unlabeled
target images to tune the model. Although recently proposed source free domain adaptation (SFDA)
Liu et al. (2021a); Kundu et al. (2021) is able to deal with the scenario where source data are
unavailable, collections of target images are indispensable for the offline model tuning. To be more
applicable to real-world scenarios, this paper focuses on the TTT, a scenario that adapts the model
to the incoming test data in an online fashion. Moreover, we emphasize that the TTT can also be
combined with DA methods to achieve more accurate adaptation.

Test-time training for classification. In recent years, a variety of methods have been proposed to
address the TTT problem in the field of image classification, each with distinct objectives. One line
of studies mainly relies on the self-supervised loss Sun et al. (2020); Liu et al. (2021b); Gandelsman
et al. (2022), which leverages the strong correlation between the main task and a self-supervised task.
Specifically, the self-supervised task is used to replace the main task to adapt the model at test time,
after jointly optimizing the main task and the auxiliary self-supervised task during training. Another
line of work seeks and utilizes hints behind predictions. For instance, TENT Wang et al. (2020); Niu
et al. (2022) employs entropy as an objective due to its connections to error and shift, while CL Liu
et al. (2021b); Chen et al. (2022); Döbler et al. (2022); Gao et al. (2022b), consistency loss Zhang
et al. (2021a); Wang et al. (2022); Döbler et al. (2022), and diversity loss Döbler et al. (2022); Wang
et al. (2020) are also introduced. Usually, these terms are combined for the better performance.
Our method shares similar insights with the prior work in devising a loss for enhancing model
generalization on unlabeled test data, but we find a majority of existing methods cannot stabilize
training in the context of semantic segmentation. To address this issue, we propose a simple loss
formulation tailored to enhance training stability. Moreover, some methods Wang et al. (2020);
Döbler et al. (2022); Boudiaf et al. (2022); Zhang et al. (2021b); Chen et al. (2022); Niu et al. (2022)
assume that a large batch of test data is available to adapt the model at a time, while others Sun et al.
(2020); Zhang et al. (2021a); Gao et al. (2022a); Bartler et al. (2022); Gandelsman et al. (2022);
Lim et al. (2023) tackle a more challenging yet practical scenario where only a small batch of data
is available. Our study follows the latter setting, as this is more practical in semantic segmentation.

Test-time training for segmentation. There has been a limited amount of research focused on
exploring TTT for segmentation. One such approach is the MM-TTA framework Shin et al. (2022),
which is designed for 3D semantic segmentation and employs multiple modalities to provide self-
supervisory signals to one another. However, the requirement for multiple modalities also limits
their applications to the single modality scene. Another approach, CD-TTA Song et al. (2022), also
explores TTT for urban scene segmentation but differs in setting where it trains the model on a
training set and then validates on a separate validation set, whereas our method makes predictions
and adapts the model simultaneously.

Contrastive learning. Recently, there has been a surge of interest in contrastive learning Chen
et al. (2020); Khosla et al. (2020); Wu et al. (2018); He et al. (2020); Oord et al. (2018), which
aims to learn effective representations by aligning positive pairs and separating negative pairs in the
embedding space. Due to its ability to learn high-quality representations, contrastive learning has
been extensively explored in various fields such as semi-supervised learning Chen et al. (2020); He
et al. (2020); Wang et al. (2021b); Zhong et al. (2021), class-imbalanced classification Yang & Xu
(2020), TTT Liu et al. (2021b); Chen et al. (2022); Döbler et al. (2022), and domain adaptation Kang
et al. (2019); Thota & Leontidis (2021); Chen et al. (2022). In this paper, we analyze the limitation
of applying traditional CL in the task of TTT for segmentation. Then, we introduce the solution by
adapting the CL to the output space, adjusting the temperature, and simplifying the formulation.

3 METHOD

In Section 3.1, we provide a concise introduction to the contrastive loss (CL) and adapt it to the
output space, resulting in the Output Contrastive Loss (OCL). Section 3.2 elaborates on the specific
implementation of OCL. Moving to Section 3.3, we present the integrated framework, unifying OCL
with two established techniques, BN statistics modulation Schneider et al. (2020), and stochastic
restoration Wang et al. (2022), aimed at stabilizing the test-time training (TTT) process.

3.1 ADAPTING CONTRASTIVE LOSS TO OUTPUT SPACE

The CL has become a widely used technique for representation Chen et al. (2020) and supervised
Khosla et al. (2020) learning tasks, as it facilitates the learning of representations by aligning positive
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pairs together and separating negative pairs in the embedding space. Given a collection of points C,
the positive set Pi, for a given anchor point i ∈ C, consists of points whose predictions are similar
to those of i. The CL can then be defined as follows:

L = −Ei∈C,j∈Pi
log

exp(sim(zi, zj)/τ)∑
k∈C I[k ̸=i] exp(sim(zi, zk)/τ)

, (1)

where I[k ̸=i] ∈ {0, 1} is an indicator function evaluating to 1 iff k ̸= i, sim(zi, zj) denotes the
similarity between representation zi and zj , and τ is a scalar temperature parameter.

Here, we examine the issue associated with the direct application of the traditional CL formulation
to our task and propose solutions. We argue that using the CL to tune the model in the embedding
space is sub-optimal. This practice primarily modifies the encoder layers, leaving the classifier head
layers unchanged. As a result, merging the modified encoder with the unaltered classifier head can
yield unpredictable outcomes. One common solution to this issue involves fine-tuning with labeled
data following pre-training with the CL Chen et al. (2020); He et al. (2020). Another solution is to
introduce the extra complex regularization designed to dynamically align the task header with the
learned representations Chen et al. (2022). However, in the context of TTT for segmentation, fine-
tuning with labeled data is unfeasible, and introducing additional complex regularization requires
intricate adjustments, limiting the method’s versatility. To avoid fine-tuning with labeled data or the
complex extra regularization, we propose applying the CL to the output space instead.
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Figure 1: Class ratio when setting different τ on
GTA→Cityscapes.

In the traditional CL, a small temperature value
(e.g., the default τ = 0.1 in SimCLR Chen
et al. (2022)) is commonly employed to ensure
the uniformity of feature distributions Wang &
Liu (2021); Wang & Isola (2020). However,
this practice can be detrimental when apply-
ing CL to the output space. A low temperature
results in a uniform class distribution, which
can disrupt the imbalanced class distribution of-
ten found in segmentation datasets, as visually
demonstrated in Fig. 1. To address this is-
sue, we propose employing a high temperature,
which helps maintain the original class distri-
bution. Additionally, employing a high temper-
ature can simplify the CL formulation as fol-
lows:

L = lim
τ→+∞

Ei∈C,j∈Pi
− log

exp(sim(pi,pj)/τ)∑
k∈C I[k ̸=i] exp(sim(pi,pk)/τ)

= lim
τ→+∞

Ei∈C,j∈Pi
− 1

τ
sim(pi,pj) + Ei,k∈CI[k ̸=i]

1

τ
sim(pi,pk) + log(N − 1),

(2)

where N represents the total number of points in C. pi refers to the prediction of point i, which
replaces the representation zi in Eq. 1. Derivation details of Eq. 2 are present in Supplementary
Materials A. By removing two constant values, τ and log(N − 1), we can write it as:

L = −Ei∈C,j∈Pisim(pi,pj)︸ ︷︷ ︸
positive term

+Ei,k∈CI[k ̸=i]sim(pi,pk)︸ ︷︷ ︸
negative term

, (3)

In this simplified form, we use positive and negative terms to achieve alignment and separation,
respectively. The positive term maximizes the similarity between positive pairs, while the negative
term minimizes the similarity between negative pairs. Since this simplified CL formulation is suit-
able for the output space, we name it as output contrastive loss (OCL). Next, we apply the OCL to
our task by defining the positive and the negative terms.

3.2 DETAILED IMPLEMENTATION OF OUTPUT CONTRASTIVE LOSS

The traditional CL is applied to the image classification task. Due to the absence of labels, the
traditional CL defines the positive set as the different augmented views of the anchor image and the
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negative set as different images. This paper studies the segmentation task that necessitates a slight
adjustment in how we define the positive and negative sets. We define the positive set as the anchor
pixel from different augmented views and define the negative set as the different pixels within the
same image. According to this, the positive term in Eq. 3 can be written as:

Lpos = −Eisim(pi
s1,p

i
s2), (4)

where pi
s1 and pi

s2 are prediction probability of i-th pixel in two augmented views.

Augmentations. Only the horizontal flipping is used to augment the test sample. While stronger
augmentations have the potential to enhance a model’s generalization to unseen data Xie et al.
(2020); Berthelot et al. (2019), they also pose the risk of destroy the knowledge acquired during
training. Horizontal flipping, on the other hand, is regarded as a conservative test augmentation
technique. Many studies Zou et al. (2018; 2019) have demonstrated its effectiveness in boosting test
performance by aggregating predictions from both original and horizontally flipped images. Thus,
we chose to focus on horizontal flipping in this work, leaving the exploration of more elaborate
augmentation techniques to future research.

The positive term is similar to the well-known consistency loss in aligning the predictions of aug-
mentation views Tarvainen & Valpola (2017); Laine & Aila (2016). However, Eq. 3 suggests that
solely relying on this term is not enough to achieve optimal predictions.

Then, the negative term in Eq. 3 is defined as:

Lneg =
1

2
Ei ̸=j(sim(pi

s1,p
j
s1) + sim(pi

s2,p
j
s2)). (5)

Intuitively, reducing the prediction similarity between different pixels can disperse the predictions
and prevent the mode collapse Yang et al. (2022), playing a similar role to the diversity loss in the
existing studies Chen et al. (2022); Choi et al. (2022); Wang et al. (2021a). This means that the OCL
naturally combines the consistency loss and diversity loss.

Because of the high resolution of the output, calculating the similarity for a huge number of pixel
pairs in Eq. 5 consumes significant computational and memory resources Zhong et al. (2021). To
improve efficiency, we calculate Eq. 5 on a subset of all pixels. For example, we downsample the
original output resolution of 1024 × 512 by a factor of 8 to a map with a resolution of 128 × 64
before performing the calculation Eq. 5.

3.3 INTEGRATED FRAMEWORK

Integrating two regularization terms, the overall loss function can be written as:

L = λposLpos + λnegLneg, (6)

where λpos and λneg are two loss weights to balance their importance. In practice, we keep the
loss weight λneg fixed at 1 and focus on adjusting the λpos to simplify the hyperparameter selec-
tion process. The cosine distance is chosen to measure the similarity between two predictions:
sim(pi,pj) =

pi·pj

∥pi∥2·∥pj∥2
. To further improve the adaptation performance, our integrated frame-

work combines the OCL with two near-computation-free techniques, BN Statistics Modulation and
Stochastic Restoration.

BN Statistics Modulation. BN layer Ioffe & Szegedy (2015) is a fundamental unit in modern
DNNs, significantly accelerating convergence while improving the ultimate performance. BN statis-
tics estimated during training time will be used for inference by default. However, these estimated
statistics may not accurately reflect the test distribution when applied to out-of-distribution (OOD)
data. To address this mismatch, previous studies Li et al. (2016); Schneider et al. (2020) have
successfully improved the model’s generalization ability by adapting BN statistics to OOD data.
Here, we adopt an approach from recent research Schneider et al. (2020) and estimate channel-wise
mean and variance [µ,σ2] by mixing training and test normalization statistics. Specifically, for
υ ∈ µ,σ2, we define:

υ ≜ αυtrain + (1− α)υtest, (7)
where υtrain and υtest represent the normalization statistics estimated during the training and on
currently available test points, respectively. The prior strength α ∈ [0, 1] controls the trade-off
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Table 1: Experimental setting for three benchmarks.

Benchmark Task pre-trained method Architecture BN Modu.

Synthia→CS
GTA→CS

TTT
Source SegNet-VGG16 No

Source, FDA DeepLab-ResNet101 Yes
DAFormer SegFormer-B5 No

CS→ACDC continual TTT Source SegFormer-B5 No

between source and estimated target statistics. It’s important to note that the modulation of BN
statistics is build on the BN layer. This technique cannot be applied to architectures such as VGG
and ViT that lack a BN layer.

Stochastic Restoration. To mitigate the error accumulation, we introduce the stochastic restoration
that restores the knowledge from the pre-trained model Wang et al. (2022). Specifically, following a
gradient update at iteration t, the stochastic restoration involves an additional update to the weights
W according to the following scheme:

M ∼ Bernoulli(p), (8)
Wt+1 = M ⊙W0 + (1−M)⊙Wt+1, (9)

where ⊙ represents element-wise multiplication. Here, p is a small probability for restoration, and
M is a mask tensor with the same shape as Wt+1. This mask tensor determines the elements in
Wt+1 that are reverted to the source weight W0.

Evaluation. In the OCL framework, both evaluation and adaptation take place concurrently in each
iteration. Specifically, when a new test image is presented, the model produces a prediction for that
image and subsequently is updated using Eq. 6. It is important to note that the updating process
with respect to the current point aims to enhance the model’s generalization performance on future
data and does not influence the prediction for the current point.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We assess the performance of our framework using two synthetic-to-real benchmarks:
GTA Richter et al. (2016) → Cityscapes (CS) Cordts et al. (2016) and Synthia Ros et al. (2016) →
CS, as well as one clear-to-adverse-weather benchmark: CS → ACDC Sakaridis et al. (2021). These
benchmarks encompass diverse task settings, architectures, and pre-trained methods. You can find
the specific details in Table 1.

Hyperparamters. In pursuit of a universal hyperparameter configuration adaptable across various
scenarios, we employ a consistent set of hyperparameters for all experiments unless otherwise spec-
ified. Specifically, we assign a positive loss weight of 3.0, configure the BN modulation prior to
0.85 when the model includes the BN layer (as viewed in Table 1), and set the masking proportion
p to 0.01.

4.2 MAIN RESULTS

Results on synthetic-to-real benchmarks. We evaluate the performance of our method against
three simple and commonly used baselines in TTT studies, namely TENT Wang et al. (2020),
MEMO Zhang et al. (2021a), and CoTTA Wang et al. (2022). The results of these methods are
reproduced using the official code they provide under the same settings. In addition, we provide a
comparative analysis of our OCL approach against several DA methods.

In Table 2, Row “Source only” reports the performance of source-pretrained models, and Row
“Source only + OCL” reports the results of our OCL. The results demonstrate that our proposed
OCL significantly improves model generalization compared to the “Source only” baseline across
both benchmarks. Specifically, on the GTA→CS benchmark, our OCL method results in an impres-
sive increase of 7.5 mIoU. On the Synthia→CS benchmark, the mIoU is boosted from 31.5 mIoU
to 36.9 mIoU, showcasing a substantial gain of 5.4 mIoU. For the other TTT methods, the MEMO
degrades the mIoU of most classes close to zero, indicating mode collapse. The TENT degrades per-
formance slightly compared with the baseline on both two benchmarks, 1.8 mIoU on the GTA→CS
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Table 2: Comparison of the mIoU (%) on the Cityscapes validation set for GTA→Cityscapes and
Synthia→Cityscapes. All results are based on DeepLab with ResNet101. The gray line reports the
results of our OCL.
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mIoU
GTA→CS (Val.)

AdaptSegNet

DA

86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdvEnt 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CBST 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
DACS 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
Source only - 71.9 15.6 74.4 22.4 14.8 22.9 35.4 18.4 81.1 22.0 68.3 57.3 27.9 68.1 33.1 5.8 6.5 30.5 35.3 37.5
+TENT

TTT

71.5 22.6 76.9 20.0 17.1 21.6 29.2 15.3 78.4 33.9 75.3 50.8 3.5 80.9 29.5 31.7 4.3 13.7 2.1 35.7
+MEMO 82.6 0.1 68.0 0.0 0.2 1.3 1.7 0.2 78.3 0.3 82.3 1.3 0.3 77.9 6.2 1.8 0.0 0.8 0.1 21.3
+CoTTA 74.4 13.5 75.3 24.1 14.0 22.9 31.1 16.1 81.8 22.6 69.7 57.3 26.7 71.9 33.4 6.2 8.1 27.2 31.7 37.3
+OCL 87.1 42.1 81.6 29.7 20.2 27.5 37.8 18.3 83.8 33.8 74.7 60.5 24.8 85.3 36.3 46.7 4.4 29.6 31.7 45.0
FDA DA 92.1 52.3 80.7 23.6 26.4 35.5 37.7 38.6 81.2 32.4 73.2 61.2 34.0 84.0 32.2 51.2 8.0 26.8 44.1 48.2
+OCL +TTT 93.2 57.0 83.5 31.5 31.5 38.6 41.3 39.4 85.0 42.6 76.8 63.1 34.2 85.5 34.2 51.5 9.0 26.6 46.1 51.1
DAFormer DA 96.5 74.0 89.5 53.4 47.7 50.6 54.7 63.6 90.0 44.4 92.6 71.8 44.8 92.6 77.8 80.6 63.6 56.7 63.4 68.8
+OCL +TTT 96.6 74.7 89.6 53.5 48.1 51.3 55.3 64.0 90.0 44.5 92.5 72.3 45.4 92.8 78.6 81.4 66.8 59.0 64.0 69.5

Synthia→CS (Val.)
AdvEnt

DA

85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 - 84.1 57.9 23.8 73.3 - 36.4 - 14.2 33.0 41.2
CBST 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 - 78.3 60.6 28.3 81.6 - 23.5 - 18.8 39.8 42.6
MRKLD 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 - 80.5 60.8 29.1 82.8 - 25.0 - 19.4 45.3 43.8
DACS 80.6 25.1 81.9 21.5 2.9 37.2 33.7 24.0 83.7 - 90.8 67.6 38.3 82.9 - 38.9 - 28.5 47.6 48.3
Source only - 45.2 19.6 72.0 6.7 0.1 25.4 5.5 7.8 75.3 - 81.9 57.3 17.3 39.0 - 19.5 - 7.0 25.7 31.5
+TENT

TTT

38.1 18.9 57.5 1.1 0.2 24.7 7.1 9.0 74.5 - 81.4 47.0 17.0 67.7 - 8.6 - 5.9 29.7 30.5
+MEMO 63.9 0.7 65.4 0.0 0.0 2.1 0.3 0.3 66.4 - 78.1 6.7 0.5 15.5 - 0.8 - 0.5 0.1 19.0
+CoTTA 48.5 20.8 73.1 8.4 0.2 24.3 12.6 11.0 76.0 - 82.2 56.6 17.3 40.2 - 21.1 - 9.2 27.7 33.0
+OCL 66.6 27.5 78.8 8.0 0.2 29.0 8.1 11.3 80.1 - 82.4 55.9 16.5 58.9 - 28.3 - 11.8 28.4 36.9
FDA DA 76.2 33.3 74.8 8.3 0.3 32.2 19.8 24.5 62.6 - 83.8 58.2 27.3 82.2 - 40.3 - 31.5 45.1 43.8
+OCL +TTT 78.0 33.8 78.9 10.9 0.3 34.1 21.9 26.1 75.7 - 84.8 60.8 28.6 84.3 - 43.1 - 32.5 45.3 46.2
DAFormer DA 82.2 37.2 88.6 42.9 8.5 50.1 55.1 54.3 85.7 - 88.0 73.6 48.6 87.6 - 62.8 - 53.1 62.4 61.3
+OCL +TTT 81.6 36.5 88.7 43.1 8.4 50.8 55.8 55.1 86.2 - 88.4 74.2 49.5 87.8 - 63.2 - 54.5 62.8 61.7

and 1.0 mIoU on the Synthia→CS. The CoTTA achieves comparable performance to the baseline,
improving 1.5 mIoU on the Synthia→CS but decreasing 0.2 mIoU on the GTA→CS.

We also compare our proposed OCL method with several existing DA methods. Some classical
DA methods are selected as our baselines, including AdaptSegNet Tsai et al. (2018), CLAN Luo
et al. (2019), AdvEnt Vu et al. (2019), CBST Zou et al. (2018), MRKLD Zou et al. (2019), and
DACS Tranheden et al. (2021). It’s important to note that the TTT setting is inherently more chal-
lenging than standard DA due to its real-time decision-making and online learning requirements.
In the GTA→CS benchmark, our proposed OCL method even outperforms some methods that are
specifically designed for DA segmentation tasks, such as AdaptSegNet and CLAN. However, on the
Synthia→CS benchmark, our OCL’s performance is understandably not as competitive as dedicated
DA methods.

Results on the clear-to-adverse-weather benchmark. In the CS→ACDC benchmark, we establish
a continual TTT scenario following Wang et al. (2022). This involves repeating the same sequence
group, comprising the four weather conditions (Fog→Night→Rain→Snow), a total of 10 rounds
(resulting in a sequence like Fog→Night→Rain→Snow→Fog. . . ). The adaptation results obtained
during the first, fourth, seventh, and last rounds are summarized in Table 3. These results underscore
the stable improvement in model performance facilitated by our method in this continuous setting.
When considering all rounds and weather conditions, our proposed method achieves 58.9 mIoU,
surpassing the baseline by 2.2 mIoU. Then, the average performance in the tenth round remains
similar to that in the first round. In contrast, the TENT method exhibits a continuous degradation in
performance as the rounds progress. Moreover, when compared with CoTTA, our OCL demonstrates
better performance in more challenging scenarios like “night” and “snow” while delivering slightly
lower performance in easier scenarios like “fog”. The overall performance superiority makes our
OCL a robust choice for continual TTT in complex and evolving environments.

Results for combining DA methods and OCL. As our baseline, we select models pre-trained using
FDA Yang & Soatto (2020) and DAFormer Hoyer et al. (2022a). FDA is a straightforward DA tech-
nique that addresses domain shift by manipulating the spectral characteristics of the source image.
When applying our OCL method to these pre-trained models, we observed notable improvements
in mIoU. Specifically, as shown in Table 2, our OCL improved mIoU by 2.9 percent on GTA→CS

7



Under review as a conference paper at ICLR 2024

Table 3: Comparison of the mIoU (%) on the Cityscapes-to-ACDC online continual test-time adap-
tation task. We evaluate the four test conditions continually for ten rounds to evaluate the long-term
adaptation performance. All results are evaluated based on the Segformer-B5 architecture.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All
Condition Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean
Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7
BN Stats Adapt 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0
TENT-continual 69.0 40.2 60.1 57.3 66.5 36.3 58.7 54.0 64.2 32.8 55.3 50.9 61.8 29.8 51.9 47.8 52.3
CoTTA 70.9 41.2 62.4 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.8 59.7 70.8 41.0 62.8 59.7 58.6
OCL (ours) 70.2 42.7 62.5 61.0 69.4 42.7 62.1 60.2 69.7 42.9 62.0 60.5 69.7 42.9 62.9 60.8 58.9

and 2.4 percent on Synthia→CS compared to the FDA baseline. On the other hand, DAFormer rep-
resents a more advanced DA approach that enhances network architectures and training strategies.
Table 2 shows that the performance gains achieved with DAFormer were 0.7 mIoU on GTA→CS
and 0.4 mIoU on Synthia→CS, for the same two benchmarks. In summary, our findings indicate that
OCL can effectively complement existing DA methods, particularly when the pre-trained model is
not well adapted to the test data. Even as the model’s generalization ability improves, OCL continues
to provide slight performance gains.

Table 4: Results of GTA→CS and
Synthia→CS pre-trained on SegNet-
VGG16 network.
Method GTA→CS Synthia→CS
Source only 29.9 26.5
+OCL 32.4(+2.5) 28.0(+1.5)

Results on FCN-8s-VGG16. We replaced the segmen-
tation model with an FCN based on the VGG16 archi-
tecture. The results, as shown in Table 4, indicate that
our proposed OCL method led to a notable improve-
ment in mIoU. Specifically, we observed an increase of
2.5 percent on the GTA→CS benchmark and 1.5 per-
cent on the Synthia→CS benchmark.

4.3 ABLATION STUDY

In this section, we perform a comprehensive examination to further assess the individual effective-
ness of each component within our proposed method. Additionally, we investigate the model’s
sensitivity to changes in hyperparameters. These analyses are carried out on the synthetic-to-real
benchmarks using the DeepLab-ResNet101 architecture.

Table 5: Ablation of the components of the integrated
framework on GTA→CS and Synthia→CS. BN. and
S.R. denotes BN statistic Modulation and stochastic
restoration, respectively.

No OCL BN. S.R. GTA→CS Synthia→CS
1 - - - 37.5 31.5
2 ✓ - - 39.6(+2.1) 32.8(+1.3)
3 ✓ ✓ - 42.1(+4.6) 35.2(+3.7)
4 ✓ - ✓ 40.9(+3.4) 34.1(+2.6)
5 ✓ ✓ ✓ 45.0(+7.5) 36.9(+5.4)

Components Ablation. We conducted an
empirical analysis to assess the impact of our
design choices and to dissect the effects of
different components within the integrated
framework. The results of this analysis are
presented in Table 5. By comparing Row
1 and 2, it’s evident that relying solely on
the OCL effectively enhances model perfor-
mance, a noteworthy outcome in these chal-
lenging scenarios. Rows 3 and 4 further
improve performance when building upon
the results of Row 2, demonstrating that the
OCL is compatible with BN statistic modu-
lation and stochastic restoration. In comparing Row 5 with the preceding four rows, it becomes
evident that the combination of all three components yields the best performance.

Sensitivity Analysis of Hyperparameters. In our sensitivity analysis, we explore how different
hyperparameter choices affect the performance of our integrated method. Specifically, we investigate
the impact of three hyperparameters: BN prior (α), masking proportion (p), and positive weight
(λpos). The results of this analysis are presented in Table 6.

Upon comparing the performances under varying hyperparameters, we observe that our method is
most sensitive to changes in λpos. When λpos = 1, there is a significant drop in performance.
This occurs because the negative term in Eq. 6 becomes dominant, distorting the class distribution.
Conversely, setting λpos to a high value yields opposing effects on the two benchmarks: enhancing
performance on Synthia→CS while degrading it on GTA→CS. Hence, choosing an appropriate λpos

is crucial for achieving optimal results on diverse scenarios..
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Table 6: Parameter study of the BN prior α, Masking proportion p, and positive weight λpos on
Synthetic-to-Real benchmarks using the DeepLab-ResNet101. The color indicates the performance
differences compared to default hyperparameters (α = 0.85, p = 0.01, λpos = 3.0). The perfor-
mance achieved with the default hyperparameters listed in the last column for reference.

Benchmark BN prior α Masking proportion p positive weight λpos Default
0.75 0.8 0.9 0.95 0.005 0.015 0.02 0.03 1.0 2.0 5.0 6.0

GTA→CS 44.0 44.6 45.5 45.4 44.5 45.4 45.3 44.9 36.6 43.2 44.8 44.0 45.0
Synthia→CS 37.5 37.3 36.2 35.4 36.1 37.3 37.4 37.3 35.4 36.3 38.2 38.7 36.9
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Figure 2: The accumulated MIoUs (i.e.,
MIoUs is calculated over all previous test
samples) during adaptation process.
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Figure 3: Class-wise Performance compar-
ison on GTA→CS and Synthia→CS with
DeepLab-ResNet101 network.

Regarding α, we note an interesting contrast in its impact on the two benchmarks. A larger α leads
to improved performance in the GTA→CS scenario, while a smaller α yields better results in the
Synthia→CS scenario. This suggests that Synthia→CS experiences a more significant domain shift
than GTA→CS.

Finally, we examine the effects of p. Both extremely small and extremely large values for p neg-
atively affect performance. This underscores the importance of preserving moderate information
from the pre-trained model to maintain good results.

4.4 FURTHER ANALYSIS

MIoUs changing. To analyze the evolving performance trend throughout the adaptation process, we
monitor the trend of the accumulated MIoU during the adaptation. The results are reported in Fig.
2. Our observations reveal that the proposed OCL significantly boosts the model’s generalization
ability, especially in the early stages of adaptation (within the first 30 iterations). Then, it contin-
ues to enhance performance gradually during subsequent adaptation phases across both benchmark
datasets. Furthermore, the cumulative mIoU curve of OCL follows a similar trajectory to the cumu-
lative mIoU curve of the pre-trained model, highlighting that OCL retains certain information from
the pre-trained model.

Class-wise performance comparison. We further discuss the strengths and bottlenecks of our OCL
by analyzing the class-wise performance. The results are shown in Fig. 3. We find that the OCL
can improve the performance across majority classes. Specifically, the OCL improves the IoU on
15 out of 19 classes in GTA→CS whereas the OCL improves the IoU on 14 out of 16 classes in
Synthia→CS. For the classes with degraded performance, we find that them are easily confused in
semantic, like ’Rider’ and ’Person’ classes.

5 CONCLUSION

This paper investigates a practical and challenging task of TTT for semantic segmentation, which
enable models to quickly adapt to new domains during evaluation. To stabilize the adaptation pro-
cess, we present a simple and novel loss, OCL, that adapts the CL to our task. Specifically, we
extend the CL from the representation space to the output space, utilizing a high temperature and
simplifying the formulation. Our comprehensive experimentation consistently verifies the effective-
ness of the OCL across multiple evaluation scenarios. These results underline the potential of the
OCL as a valuable tool in the quest for more robust and adaptable semantic segmentation models,
bridging the gap between training and real-world deployment in diverse environmental conditions.
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A MORE DEVIATION DETAILS OF EQUALITY 2

L = lim
τ→+∞

Ei∈C,j∈Pi − log
exp(sim(pi,pj)/τ)∑

k∈C I[k ̸=i] exp(sim(pi,pk)/τ)

= lim
τ→+∞

Ei∈C,j∈Pi
− 1

τ
sim(pi,pj) + Ei∈C log

∑
k∈C

I[k ̸=i] exp(sim(pi,pk)/τ)

= lim
τ→+∞

Ei∈C,j∈Pi −
1

τ
sim(pi,pj) + Ei∈C log(

∑
k∈C I[k ̸=i] exp(sim(pi,pk)/τ)

N − 1
∗ (N − 1))

= lim
τ→+∞

Ei∈C,j∈Pi
− 1

τ
sim(pi,pj) + log(N − 1) + Ei∈C

∑
k∈C I[k ̸=i] exp(sim(pi,pk)/τ)

N − 1
− 1

= lim
τ→+∞

Ei∈C,j∈Pi
− 1

τ
sim(pi,pj) + log(N − 1) + Ei∈C

∑
k∈C I[k ̸=i]sim((1 + pi,pk)/τ)

N − 1
− 1

= lim
τ→+∞

Ei∈C,j∈Pi −
1

τ
sim(pi,pj) + Ei,k∈CI[k ̸=i]

1

τ
sim(pi,pk) + log(N − 1),

(10)
where the fourth step and fifth step utilize the tylor expansion of the log() and exp(), respectively.

B MORE EXPERIMENTAL DETAILS

B.1 DATASETS

Our evaluation encompasses a total of four datasets, each of which is introduced below:

Cityscapes. Cityscapes Cordts et al. (2016) is a dataset consisting of 5,000 densely annotated images
with a resolution of 2048× 1024. In the GTA5→CS and Synthia→CS benchmarks, we utilize 500
validation images as the unseen target domain. Following the standard domain adaptation (DA)
setting Yang & Soatto (2020), the images are resized to 1024× 512, with no random cropping.

GTA5. GTA5 Richter et al. (2016) is a dataset comprising 24,966 synthetic images extracted from
a video game, each with a resolution of 1914 × 1052. It shares 19 classes with Cityscapes. In line
with the standard DA setting Hoyer et al. (2022a), we resize the images to 1280× 720.

Synthia. We employ the SYNTHIA-RANDCITYSCAPES partition from the Synthia dataset Ros
et al. (2016), which includes 9,400 images with a resolution of 1280× 760. These images share 16
classes with Cityscapes.

ACDC. ACDC Sakaridis et al. (2021) is a real-world street scene dataset with 19 common categories
overlapping with Cityscapes. It includes images captured under adverse conditions such as foggy,
nighttime, rainy, and snowy scenarios. For adaptation, we use 400 unlabeled images from each
adverse condition.

Table 7: The origin of pre-trained model checkpoints.

Benchmark Pre-trained method Architecture Provider Url

GTA→CS

Source SegNet-VGG16 FDA Yang & Soatto (2020) https://drive.google.com/open?id=
1pgHtwBKUcbAyItnU4hgMb96UfY1PGiCv&authuser=0

Source DeepLab-ResNet101 MaxSquareChen et al. (2019) https://drive.google.com/open?id=1KP37cQo_
9NEBczm7pvq_zEmmosdhxvlF&authuser=0

FDA DeepLab-ResNet101 FDAYang & Soatto (2020) https://drive.google.com/open?id=
1HueawBlg6RFaKNt2wAX__1vmmupKqHmS&authuser=0

DAFormer SegFormer-B5 DAFormerHoyer et al. (2022a) https://drive.google.com/open?id=
1pG3kDClZDGwp1vSTEXmTchkGHmnLQNdP&authuser=0

Synthia→CS

Source SegNet-VGG16 FDAYang & Soatto (2020) https://drive.google.com/open?id=1KP37cQo_
9NEBczm7pvq_zEmmosdhxvlF&authuser=0

Source DeepLab-ResNet101 MaxSquareChen et al. (2019) https://drive.google.com/open?id=
1wLffQRljXK1xoqRY64INvb2lk2ur5fEL&authuser=0

FDA DeepLab-ResNet101 FDAYang & Soatto (2020) https://drive.google.com/open?id=1FRI_
KIWnubyknChhTOAVl6ZsPxzvEXce&authuser=0

DAFormer SegFormer-B5 DAFormerHoyer et al. (2022a) https://drive.google.com/open?id=
1V9EpoTePjGq33B8MfombxEEcq9a2rBEt&authuser=0

CS→ACDC Source SegFormer-B5 CoTTAWang et al. (2022) https://drive.qin.ee/api/raw/?path=/cv/
cvpr2022/acdc-seg.tar.gz
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Image Pred. of Source Pred. of OCL Ground Truth

Road Sidew. Build. Wall Fence Polr Tr.light Sign Veget. N/A.

Terrain Sky Person Rider Car Truck Bus Train M.bike Bike

Figure 4: Illustrative predictions, organized into seven rows, showcasing enhanced segmentation
accuracy for wall, car, terrain, sidewalk, sky, road, and bus. These results were obtained through
experimentation on the GTA→CS benchmark. For a closer look, refer to the white dotted box.

B.2 IMPLEMENTATION DETAILS

The Test-Time Training (TTT) process is composed of two main phases: pre-training and fine-
tuning. Let’s delve into each of these phases.

Pre-training. The outcome of TTT is strongly influenced by the performance of the pre-trained
model. To ensure consistency with prior studies, we opt to utilize pre-trained model checkpoints
provided in their respective research works. Table 7 provides information regarding the origins of
all pre-trained models utilized in our study.

Fine-tuning. The proposed Output Contrastive Loss (OCL) necessitates an optimization process.
For the GTA→CS and Synthia→CS benchmarks, we employ the SGD optimizer with a learning
rate of 2e-5 for GTA→Cityscapes and 1e-5 for Synthia→Cityscapes, a momentum value of 0.9, and
a weight decay rate of 5e-4. In the case of the CS→ACDC benchmark, following the CoTTA Wang
et al. (2022) setting, we use the Adam optimizer with a learning rate of 0.0006/8, β1 of 0.9, and β2

of 0.999.
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Image Pred. of Source Pred. of OCL Ground Truth

Road Sidew. Build. Wall Fence Polr Tr.light Sign Veget. N/A.

Terrain Sky Person Rider Car Truck Bus Train M.bike Bike

Figure 5: Illustrative predictions, organized into five rows, showcasing enhanced segmentation accu-
racy for road, sidewalk, cars, trees, and sign. These results were obtained through experimentation
on the Synthia→CS benchmark. For a closer look, refer to the white dotted box.

Road Sidew. Build. Wall Fence Polr Tr.light Sign Veget. N/A.

Terrain Sky Person Rider Car Truck Bus Train M.bike Bike

Image Pred. of Source Pred. of OCL Ground Truth

Figure 6: Failure cases of OCL on GTA→CS and Synthia→CS benchmarks, presented in two rows.
In these cases, the OCL tends to misclassify other classes as sidewalks.

C MORE EXPERIMENTAL RESULTS

C.1 QUALITATIVE RESULTS

Supplementing the example predictions in the main paper, we show further representative examples
of the strength and weaknesses of OCL in comparison with the baseline. Next, first two paragraphs
introduce examples with improved performance on the GTA→CS and Synthia→CS, respectively.
The third paragraph introduces the failure cases on two benchmarks.

On the GTA→CS benchmark, we present seven examples demonstrating improved segmentation for
the following classes: wall, car, terrain, sidewalk, sky, road, and bus (Fig. 4). Here’s a breakdown
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of these improvements: Wall (Fig. 4, first row): OCL recognizes entire walls while the pre-trained
model misclassifies parts as fences. Car (Fig. 4, second row): The pre-trained model fails to rec-
ognize car windows, but OCL corrects this. Terrain (Fig. 4, third row): The pre-trained model
confuses terrain and sidewalk, while OCL correctly distinguishes between them. Sidewalk (Fig.
4, fourth row): The pre-trained model mixes up sidewalks and roads, but OCL correctly identifies
them. Sky (Fig. 4, fifth row): The pre-trained model confuses sky and buildings, but OCL accurately
distinguishes between them. Road (Fig. 4, sixth row): The pre-trained model falsely predicts roads
as cars, whereas OCL correctly classifies them. Bus (Fig. 4, seventh row): The pre-trained model
misclassifies parts of buses as buildings, while OCL correctly classifies them.

On the Synthia→CS benchmark, we provide five examples highlighting improved segmentation for
the following classes: road, sidewalk, cars, trees, and signs (Fig. 5). Here’s a detailed breakdown
of these improvements: Road (Fig. 4, first row): The pre-trained model incorrectly classifies most
roads as sidewalks and cars, while OCL corrects these misclassifications. Sidewalk (Fig. 4, second
row): The pre-trained model fails to recognize entire sidewalks, but OCL successfully identifies
them. Car (Fig. 4, third row): The pre-trained model misclassifies other classes as cars, but OCL
rectifies these errors. Tree (Fig. 4, fourth row): The pre-trained model confuses trees with buildings,
but OCL correctly distinguishes between them. Sign (Fig. 4, fifth row): The pre-trained model
struggles to recognize signs within buildings, while OCL successfully identifies a portion of them.

Fig. 6 shows one common failure mode seen in the OCL, that is the OCL may misclassify the classes
like terrain (first row) and road (second row) as the sidewalk.

C.2 EXPERIMENT RESULTS ON CS→ACDC

The full experimental results for the continual test-time adaptation task from CS→ACDC are pro-
vided in Table 8. These experiments clearly demonstrate that the proposed OCL model consistently
maintains strong performance over extended periods.

Table 8: Semantic segmentation results (mIoU in %) on the CS-to-ACDC online continual test-time
adaptation task. We evaluate the four test conditions continually for ten times to evaluate the long-
term adaptation performance. All results are evaluated based on the Segformer-B5 architecture.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Condition Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow cont.
Round 1 2 3 4 5 cont.
Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 cont.
BN Stats Adapt 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 cont.
Tent-continual 69.0 40.2 60.1 57.3 68.3 39.0 60.1 56.3 67.5 37.8 59.6 55.0 66.5 36.3 58.7 54.0 65.7 35.1 57.7 53.0 cont.
COTTA 70.9 41.2 62.4 59.7 70.9 41.1 62.6 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.8 59.7 cont.
OCL 70.2 42.7 62.5 61.0 69.6 42.7 62.6 60.9 69.4 42.6 62.8 60.6 69.4 42.7 62.1 60.2 69.3 42.6 62.9 60.6 cont.
Round 6 7 8 9 10 Mean
Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7
BN Stats 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0
Tent-continual 64.9 34.0 56.5 52.0 64.2 32.8 55.3 50.9 63.3 31.6 54.0 49.8 62.5 30.6 52.9 48.8 61.8 29.8 51.9 47.8 52.3
CoTTA 70.9 41.0 62.8 59.7 70.9 41.0 62.8 59.7 70.9 41.0 62.8 59.7 70.8 41.0 62.8 59.7 70.8 41.0 62.8 59.7 58.6
OCL 69.3 42.6 62.7 60.9 69.7 42.9 62.0 60.5 70.2 41.6 62.3 60.7 69.4 42.7 62.8 60.8 69.7 42.9 62.9 60.8 58.9

C.3 COMPUTATION EFFICIENCY

Table 9: Efficiency comparison for
processing 500 images with resolution
512× 1024 on DeepLab-ResNet101.

Method GPU Memo. Times
Baseline 8.1G 59secs
OCL(our) 10.1G 339secs

In real-time adaptation scenarios, computational effi-
ciency is a crucial consideration. This involves not only
the ability to adapt quickly to data streams but also the ef-
ficient use of GPU memory, which can be vital for practi-
cal applications. Table 9 provides information about GPU
memory usage and processing times for various methods.
Compared to the conventional testing process, our OCL
exhibits a similar GPU memory footprint but significantly
increased processing times. The primary reason for this
discrepancy is that our OCL entails both forward and backward processes for the input image and
its augmented view, while the traditional testing process only requires a forward pass for the input
image.
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D LIMITATION

One limitation of the OCL lies in its potential inefficiency, which may hinder its application in real-
time scenarios. As shown in Table 9, our OCL takes approximately five times longer than the regular
testing process. To enhance efficiency, future work could focus on selecting a subset of informative
samples for model adaptation.

Furthermore, there is room for investigation regarding the choice of augmentation techniques. Aug-
mentation plays a vital role in enhancing a model’s generalization to unseen domains, but in our
study, we restricted ourselves to using only basic horizontal flipping as an augmentation technique.
This simplistic form of augmentation has its limitations in terms of improving generalization. On the
other hand, it’s essential to consider task-specific knowledge and how it can be incorporated through
the use of more specialized augmentation techniques. For instance, when adapting a model from a
daytime domain to a nighttime one, employing color augmentation could substantially enhance the
model’s ability to generalize effectively.
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