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Abstract—The concept of Software Defined Networking (SDN)
represents a modern way to organize computer network as it
decouples the control plane from the data plane through network
abstraction. However, countering Distributed Denial-of-Service
(DDoS) attacks aimed at controllers has become a major issue in
SDNs, as the controller responsible for managing network traffic
is a sensitive failure point in the entire network architecture.
This article mainly introduces a method for extracting traffic
packet features in SDN Networks and utilizing machine learning
algorithm for their classification. This technology can be used to
identify packets in SDNs that are utilized for conducting DDoS
attacks to the network and protect the network from failing. In
our testing on a simple SDN Network using KDD-CPU99 dataset,
this method demonstrated acceptable performance.

Index Terms—Software Defined Networking, DDoS attack,
Machine learning, Network attack protection, SYN Flood.

I. INTRODUCTION

SOSTWARE Defined Networking (SDN) offers a higher
level of network automation compared to traditional net-

work architectures. This is primarily due to the decoupling
of network functions into control plane and data plane, as
well as the centralized management and control of network
logical views through dedicated SDN controllers. However,
this renders the controller a sensitive failure point within
SDN networks. The controller is responsible for managing
the operational logic of the entire network, meaning that
attacks targeting any part of the network could potentially
impact its functioning. Moreover, its malfunction could inflict
catastrophic damage to the network.

In this circumstances, malicious cyber attacks, particularly
Distributed Denial-of-Service (DDoS) attacks, mainly exert
affection on SDN controllers through the following two ways:

(i)Directly. Sending a flood of nonlegitimate packets to
the controller, causing congestion, impairing its operational
capacity, or even causing it to crash. However, the control
plane of SDN is usually not exposed to public networks.
The controller is situated behind firewalls or even unreachable
outside of the network it belongs to, reducing the efficiency
of such attacks.

(ii)Indirectly. Sending a flood of random packets to the
data plane, causing the network to redirect numerous packets
that don’t match existing forwarding rules to the controller,
thereby affecting its performance. This method is particularly
effective in stateless SDN networks with complex structures or
forwarding rules, which is inpossible to set default forwarding
settings making it a popular way for attacking SDN networks.
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Normally, the packets of DDoS attacks share some certain
features, which are often embedded within multiple packet
features and possess a certain temporal pattern. Traditional
networks struggle to differentiate and effectively block them
as they usually can only distinguish packet by one or some
certain feature, disregarding their interconnections and tem-
poral changes. Fortunately, the flexibility of SDN facilitates
the extraction of these features and targeted mitigation of
attack packets. Additionally, machine learning (ML) algorithm
offers a relatively effective means to discern such packets from
normal traffic.

In this paper we introduce a way to extract features from
packs in SDN network with Ryu controller [1] and classify
them using ML algorithms. along with related Experiment
results. Fig. 1 shows the framework of our job.

Fig. 1. The framework of our job.

The rest of the paper is organized as follows. Section 2
provides a brief overview of the background of SDN and
DDoS attack, and related work. In Section 3 we show how we
extract and summarize packet features and manage different
connections in the network using Ryu controller. In Section 4
we describe ML algorithms we use to classify packets. Section
5 shows our experiment on a simple simulated network and
evaluation datas. Section 6 gives the limitations of our work
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in this paper and our future work plan. Finally, Section 7
concludes the paper.

II. BACKGROUNDS

A. DDoS Attack

Denial-of-Service (DoS) attacks are malicious attempts to
disrupt the normal traffic of a targeted server, service or
network by overwhelming the target and its surrounding
infrastructure with a flood of Internet traffic. It achieves such
effectiveness by utilizing multiple compromised computer
systems as sources of attack traffic. Exploited machines can
include computers and other networked resources such as
IoT devices. The Distributed version of DoS (or DDoS), are
often launched by a network of remotely controlled, well
organized, known as “Botnet” or “Zombies”, sending a flood
of traffic or a large amount of service requets to victim through
direct connections or/and third-party hosts, causing target hosts
network congestion or computational malfunctioning (e.g.,
CPU overload). Blocking these types of attacks based on static
policies such as IP-address blacklist is diffcult since distributed
attackers often have different and dynamic IP addresses. The
most utilized DDoS attacks are typically grouped in the
following categories: TCP/TCP-SYN flood, UDP flood, ICMP
flood and HTTP flood. These attacks can be further categorized
into Transport Layer attacks and Application Layer attacks
based on the network layer at which they are executed.

Note that Transport Layer attacks, includeing TCP(-SYN)/
UDP/ICMP flood, besides overloading transmission, comput-
ing and memory resources in the attack targets, also afect
other network elements (i.e., routers and network gateways)
in the transmission path. Some of them can even be reflectd
and amplified by innocent public service provider. Particularly,
DNS amplification attack can generates a huge UDP flood by
sending relatively few false DNS query requets to public DNS
providers. Causing not only malfunction of target network but
also damage to public service.

According to previous studies [2], classifed based on the
location of where the detection engine is implemented, there
are three defense strategies are typically employed to mitigate
DDoS attacks, fig.2 shows how to perform and detect a DDoS
attack:

• Source-based detection, detect illegal packets sending
from local network, implemented at the attacking hosts
and their Internet Service Providers (ISPs). Hard to
deploy to all hosts in botnet as they are all around the
world.

• Destination-based detection, filter all malicious packets
from incoming traffic, implemented at the victim hosts.
A high performance filter is needed to handle massive
traffic.

• Network-based detection, detect and filter all suspicious
packets passing the network, implemented at the interme-
diate network nodes. Acceptable load for every nodes and
cover a wide range of hosts.

Due to the aforementioned reasons, in this paper we focus
on how to detect Transport Layer attacks. Which is convenient
for intermediate network to detect and causing the most of

Fig. 2. Perform and detect a DDoS attack.

all damage in various kinds of DDoS attacks. The objective
of this paper is to detect attacks in network by deploying
defense mechanisms directly at the SDN controllers, which
is hopefully to be used by ISPs and Internet exchange points.

B. Related work

A number of ML-based methods for DDoS detection have
been introduced in a series of papers. Several studies proposed
to use Support Vector Machine (SVM) classifiers to detect
DDoS packets. Such as [3], which gives a prototype, and
[4]–[6]. Some [7], [8] use other methods such as kNN and
Random Forest algorithms. Some papers narrow their work
down into some specifc context or application of network to
increase performance, such as [9], detect TCP-SYN particu-
larly in P4 SDN. Meanwhile, [10] focus on bandwidth control
mechanism. And more attempts [11]–[13] work fine in the
context they concern about. Further on, reinforcement learning
has been also adopted [14] to this task. As deep learning and
artificial intelligence develops, some attempts [15], [16] deploy
neural network to their classifier to mitigate DDoS attacks.

C. Dataset

KDD-CUP99 [17] is the data set used for The Third
International Knowledge Discovery and Data Mining Tools
Competition. [18] This database contains a standard set of
data to be audited, which includes a wide variety of in-
trusions simulated in a military network environment. The
KDD training dataset comprises approximately 4.9 million
individual connection records, each consisting of 41 features
and labeled as either normal or attack, with only one specific
attack type per record. Simulated attacks are categorized into
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the following four types:(i) User to Root Attack, (ii) Remote
to Local Attack, (iii) Probing Attack and (iv) Denial of Service
Attack [19] which is what we need.

III. FEATURE EXTRACTOR

The aim of this paper is to perform DDoS attack de-
tection(DAD), The first step is to extract features from the
network. If we define window:

w = {ci|ci[addr] = (< IP addr1 >,< IP addr2 >)}

as a set of all connections c between two exactly address,
the Internet along with all private networks can be denoted
as the universe W which contains all possible connections
in the cyber space. Considering that we are deploying de-
tectors in intermediate network, we treat the data plane as a
integrated unit, which can be abstracted as a set of windows
W , W = {wi|wi ∈ W}Nw

i=1. As each window contains only
packets with the same address, the SDN controller can easily
shut down a window by modify flow table of data plane. This
provide the possibility to treat each window individually and
form a temporal sequences of packets features within each
window. For a single window, each connection in this window
is denoted as a 1x5 vector fpi(pi ∈ w), which is consisted as
follows.

(Bytes, TCP flag, SY N flag,

UDP flag, ICMP flag)

For each window wt
T of duration T start at given time

offset t, count all packets transfered in T , we get the vector of
features for as fwt = ({fi}7i=1), each fi stands for a feature
defined and calculated by as follow:

• Size: Bytes transfered in window, normalsized by total
traffic size in network.

f1 =
Sum({fpi[Bytes]|fpi ∈ wt

T })
Sum({fpj [Bytes]|fpj ∈ Wt

T })
• Average length: Average length of packets in the window,

not normalsized.

f2 =
Sum({fpi[Bytes]|fpi ∈ wt

T })
Len({fpi|fpi ∈ wt

T })
• TCP rate: The percentage of TCP packets out of the total.

f3 =
Sum({fpi[TCP flag]|fpi ∈ wt

T })
Len({fpi|fpi ∈ wt

T })
• SYN rate: The percentage of TCP-SYN packets out of

the total TCP packets.

f4 =
Sum({fpi[SY N flag]|fpi ∈ wt

T })
Sum({fpi[TCP flag]|fpi ∈ wt

T })
• UDP rate: The percentage of UDP packets out of the

total.

f5 =
Sum({fpi[UDP flag]|fpi ∈ wt

T })
Len({fpi|fpi ∈ wt

T })
• ICMP rate: The percentage of ICMP packets out of the

total.

f6 =
Sum({fpi[ICMP flag]|fpi ∈ wt

T })
Len({fpi|fpi ∈ wt

T })

Fig. 3. Features extraction and window classification.

• Network flag: A flag stands if the network under attack.
To predict such flag we define a set of special windows
wui for whole network as each of them stand for a remote
host connected to any local address.

wui = {cj |cj ∈ W, cj[addr] ⊂
(< IP addr1 > ∪Local addr)}

Extract features from wui using above methods and set
this network flag from last special window prediction,
and send such vectors to ML-classifier, set the prediction
answers to all related network flag.

f7 = classifier(wui), (wui[IP addr1] ∈ ci[addr])

IV. ML-BASED CLASSIFIER

In our work we consider three different machine learning
algorithms as follows, Decision Tree (DT), Random Forest
(RF) and Deep Neural Network (DNN), to implement our
binary classifiers. The classifier accept the features of each
window mentioned above and output a bool value which stand
if the window is used for attack, Fig.3 shows how this work.

A. Decision Tree

As a famous algorithm for classifiers, we briefly introduce
DT as a directed acyclic graph with three kinds of nodes: (i)
Decision nodes, (ii) Chance nodes,(iii) End nodes. In which
each chance node represents a “test” on an input features ,
each branch and decision nodes represents the outcome of the
test, and each end node represents a class label. The paths
from root to end represent classification rules. The train of a
DT is to find the best attribute to split the data and form the
structure of the tree. We use the following entropy provided in
Toolkit as the criterion, and also other parameters of the DT
classifier implemented by scikit-learn [20] are listed in Table.
I

IE(i) = −
m∑
j=1

f(i, j) log2 f(i, j)
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TABLE I
PARAMETERS FOR DT

criterion entropy
split best

max depth 20
min samples split 2
min samples leaf 1

TABLE II
PARAMETERS FOR RF

criterion entropy
n estimators 300

verbose True
max depth 20

TABLE III
PARAMETERS FOR DNN

hidden layer sizes (100,200,50)
max iter 300
verbose True

max depth 20

B. Random Forest

Random Forest, first introduced in 1995 by Tin Kam Ho
[21], operates by constructing a multitude of DTs at training
time. Each tree in the forest is trained by a randomly and
repeatedly selected subsets of the train dataset. For binary
classification tasks, the output of the random forest is the flag
selected by most trees. It can help correct for DTs’ habit of
overfitting to their training set [22]. we expect it will perform
better in low-rate attack. The parameters for RF classifier is
listed in Table. II

C. Deep Neural Network

Neural Network is a expansion of perceptron, while Deep
Neural Networks (DNN) can be understood as neural networks
with multiple hidden layers between the input and output layer
[23]. The value of each node in a layer is determined by the
values of the nodes in the previous layer and the weights of
the related edges. For nodes in layer k + 1, we use all n nodes
in layer k and weights between them to compute their values.

vk+1
i =

n∑
j=1

vkj ∗ wk
ij

Table.III lists the parameters we use for DNN classifier
implemented by scikit-learn.

V. EXPERIMENT & TEST RESULT

A. Methodology for Test

Considering that our method for extracting traffic features
considers the data plane as a whole, we use a simple network
architecture contains only 2 switchs for Simulating input and
output gateways. Meanwhile, as a simulated test network, a
single host can handle the task of sending packets from all
incoming addresses without requiring a separate host for each
address. so we use only two virtual hosts in our network, one

for sending incoming traffic, another for outgoing. Fig. 4 show
our test network.

Fig. 4. The architecture of our test network.

We implement binary classifiers using each of the aforemen-
tioned three methods and test it using KDD-CUP99 dataset
separately. The classifiers was trained on a 40% split of the
dataset. And the rest part of dataset is used for generate
simulated packets for test.

Note that the KDD-CUP99 dataset does not contain the
address information, it is impossible to generate the packets
with addresses directly. Fortunately, it contains the flags indi-
cate the the relationship between packets and windows, so we
preprocessed the dataset, split the packets in same windows
and faked the addresses for each windows, it works well in
our test.

B. Evaluation Metrics

As we expect a bool output from our binary classifier, it is
easy to define indicators of evaluation as follows:

• true positives (TP): classifier prediction give “True” in
where we expect it.

• true negatives (TN): classifier prediction give “False” in
where we expect it.

• false positives (FP): classifier prediction give “True”
which should be “False”.

• false negatives (FN): classifier prediction give “False”
which should be “True”.

Based on these defnitions, it is easy to give the formula for
following popular evaluation metrics in machine learning:

• Accuracy: The proportion of correctly classified in-
stances.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: The fraction of correctly-classifed positive
windows out of the total number of windows classifed
as positive. A higher value of this metric indicates fewer
normal packets being misclassified as attacks.

Precision =
TP

TP + FP

• Recall: The fraction of correctly-classifed positive win-
dows out of the total number of windows which are
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TABLE IV
TEST RESULTS

algorithm Accuracy Precision Recall f-1 score
Decision Tree 0.97520 0.97531 0.96217 0.96864

Random Forest 0.97791 0.97791 0.95877 0.96824
DNN 0.99721 0.99715 0.99662 0.99689

actually positive. This is very important beacause any leak
of attack traffic is fatal to the network.

Rcall =
TP

TP + FN

• f-1 score: The fraction considers both precision and recall.
Can evaluate the result in a balanced way.

f1Score =
2 ∗ Precision ∗Recall

Precision +Recall

C. Test Results

We test the workbench using above methods the Table.IV
shows the result.

Our testing results on KDD-CUP99 dataset are acceptable,
all of three ML algorithm tested get the evaluation metrics over
0.95 which shows that we have over 95% of confidence we can
detect a DDoS attack. In detail, DT and RF algorithms exhibit
relatively same performance as they are similar algorithms.
And DNN performs better and get all metrics over 0.99.

VI. LIMITATIONS & PLANS

Although our testing has shown promising results, there
is still a considerable gap between this result and practical
application. The main limitations of current work will be
discussed in following.

A. Limitations of Dataset

The KDD-CUP99 a well-known dataset in DAD tasks.
But it was created in year 1999 and can now be considered
outdated. It only contains the attack of simple DoS but without
distributed data. Although we revised this by faking different
addresses, it still different from real DDoS attack.

The critical weakness of this dataset is its severe inadequacy
in comparison to the real traffic of modern Internet and DDoS
attack. According to the survey [19] on KDD-CUP99, it con-
tains 4, 176, 086 records of packets and only 291, 556 distinct
records. But according to technical report [24], the typical
DDoS attack in year 2023 often transfers more than 1.9Tbit
in a second, which is approximately 1.3 trillion packets as
the default MTU for Ethernet is 1500. It is a gaint difference.
Also the high discrepancy in quantity between total records
and distinct records means a high reduction rate in data which
may leads a overfitting of classifiers.

B. Limitations of Methodology

Besides from dataset, our method also have limitations. The
most obvious one is the way how packets were groupd. We
simply distinguish packets by the concept of “window”, which
means once a DDoS attack is detected, all of the connections

between the two address this window related will be shutdown.
It is not a big deal in the past, but may will cause a big
accessibility issue nowadays beacause a massive hosts are
connecting behind many NAT networks and share the same
IP address of NAT gateways [25].

Moreover, our method is take the data plane as a unified
entity and unable to use the information of route forwarding
within network, which is a good way to detect malicious
packets as normal traffic between two address usually follow a
explicit path and will never reach some nodes in the network.

Last, the test bench is only implemented by a software
simulated network simply formed by 4 node and only capable
for a very light traffic, so it is impossible to test in a
more realistic scenarios. As a result, the real-time detection
capability can not be tested as both network and controller is
lack of performance.

C. Future Works

The most crucial future task is to conduct testing using
newer datasets. In the short term, we have decided to replace
the existing dataset with the CICDoS2019 [26] dataset for
our testing purposes. In further, we plan to generate our own
dataset using Spirent N4U traffic generator [27] as what other
paper [9] did. Additionally, if possible, deploying improved
and more realistic testing equipment and platforms will be
beneficial. In such situation, every switchs in the network will
be treated separately and hopefully a better performance will
show in further tests.

VII. CONCLUSION

In this paper, we introduced a workable detector prototype
for DDoS attack. In our testing, all three machine learning
algorithms exhibited acceptable performance, with all metrics
over 0.95. Due to implementation limitations, this proto-
type cannot yet be used in real-world networks. However, it
demonstrates good potential for improvement and has broad
applicability.
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“Distributed denial of service (ddos) attacks detection using machine
learning prototype,” in Distributed Computing and Artificial Intelligence,
13th International Conference, S. Omatu, A. Semalat, G. Bocewicz,
P. Sitek, I. E. Nielsen, J. A. Garcı́a Garcı́a, and J. Bajo, Eds. Cham:
Springer International Publishing, 2016, pp. 33–41. II-B

[4] A. Ramamoorthi, T. Subbulakshmi, and D. S. M. Shalinie, “Real time
detection and classification of ddos attacks using enhanced svm with
string kernels,” 2011 International Conference on Recent Trends in
Information Technology (ICRTIT), pp. 91–96, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:7146786 II-B

[5] K. S. Sahoo, B. K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy,
M. Khari, and D. Burgos, “An evolutionary svm model for ddos attack
detection in software defined networks,” IEEE Access, vol. 8, pp.
132 502–132 513, 2020. II-B

https://ryu-sdn.org/
https://api.semanticscholar.org/CorpusID:7146786


COMPUTER SCIENCE UNDERGRADAUTE CONFERENCE, XJTU, APRIL 2024 6

[6] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, “A ddos attack detection
method based on svm in software defined network,” Security and
Communication Networks, vol. 2018, p. 9804061, Apr 2018. [Online].
Available: https://doi.org/10.1155/2018/9804061 II-B

[7] A. Aljuhani, “Machine learning approaches for combating distributed
denial of service attacks in modern networking environments,” IEEE
Access, vol. 9, pp. 42 236–42 264, 2021. II-B
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