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Abstract

In machine learning, a loss function measures the difference between model predictions and
ground-truth (or target) values. Visualizing how this loss changes as a neural network’s
parameters are varied can provide insights into the local structure of the so-called loss land-
scape (e.g., smoothness) and global properties of the underlying model (e.g., generalization
performance). While various methods for visualizing the loss landscape have been pro-
posed, many approaches limit sampling to just one or two directions, ignoring potentially
relevant information in this extremely high-dimensional space. This paper introduces a new
representation based on topological data analysis that enables the visualization of higher
dimensional loss landscapes. In addition to this new topological landscape profile represen-
tation, we present an interactive tool for users to explore these landscapes across different
models and hyperparameters, enabling more systematic comparisons and informed model
exploration. We highlight several use cases, including image segmentation (e.g., UNet) and
scientific machine learning (e.g., physics-informed neural networks), showing how visual-
izing higher-dimensional loss landscapes can provide new insights into model performance
and learning dynamics. Through these examples, we provide new insights into how loss
landscapes vary across distinct hyperparameter spaces, finding that the topology of the loss
landscape is simpler for better-performing models. Interestingly, we observe more variation
in the shape of loss landscapes near transitions from low to high model performance.

Keywords: Topological data analysis, loss landscapes, model diagnosis

1. Introduction

A central aim of machine learning (Devlin et al., 2018; Liu et al., 2019; Vaswani et al.,
2017; Krizhevsky et al., 2017; Simonyan and Zisserman, 2014; He et al., 2016) is to learn
the underlying structure of data. This learning process is governed by a loss function,
denoted as L(θ), where θ is the set of parameters (or weights) defining a neural network.
The loss function measures the difference between the outputs of a neural network and
ground-truth values. In this way, the loss reflects how good (or bad) the current weights are
at making correct predictions and how to adjust these weights during training. Given the
important role that the loss function plays during learning, examining it with respect to a
neural network’s weights—by visualizing the so-called loss landscape—can provide valuable
insights into both network architecture and learning dynamics (Goodfellow et al., 2014; Im
et al., 2016; Li et al., 2018; Yao et al., 2020; Martin and Mahoney, 2021; Martin et al.,
2021; Yang et al., 2022b, 2021; Zhou et al., 2023). Indeed, the loss landscape has been
essential for understanding certain aspects of deep learning, including, but not limited to,
test accuracy, robustness in transfer learning (Djolonga et al., 2021), robustness to out-of-
distribution detection (Yang et al., 2022a), robustness to adversarial attack (Kurakin et al.,
2016), and generalizability (Cha et al., 2021). In addition, the loss landscape has been
characterized in the context of scientific machine learning, e.g., to understand why different
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physics-informed architectures and loss functions are often brittle, exhibiting failure modes,
and are hard to optimize (Krishnapriyan et al., 2021).

Despite its promise and appeal, loss landscape visualization is a complex and often
bespoke process. Indeed, exploring and extracting insights from a loss landscape—which
is inherently high-dimensional, with as many dimensions as the number of parameters in
the model—is challenging to do, especially when trying to visualize directly on a two-
dimensional screen. Goodfellow et al. (2014) proposed a random-direction-based approach,
where model parameters are interpolated along a one-dimensional path to see how the loss
changes. In a later work by Im et al. (2016), an extension of this method was introduced,
which involves projecting the loss landscape onto a two-dimensional space using barycen-
tric interpolation between triplets of points and bilinear interpolation between quartets of
points. Li et al. (2018) continued improving the resolution of loss landscapes by introducing
filter-wise normalization to remove the scaling effects incurred by previous approaches. A
more sophisticated approach to visualizing the loss landscape leverages the Hessian to define
more relevant directions along which the model can be interpolated. More recently, Yao
et al. (2020) used the top two Hessian eigenvectors as directions, thereby capturing more
important changes in the underlying loss landscape. While various methods have been pro-
posed, most applications have limited sampling to just one or two directions. Importantly,
by restricting the sampling of loss landscapes to two dimensions, whether it be using ran-
dom or Hessian-based directions, we ignore potentially informative information captured
by additional dimensions (e.g., the eigenvectors associated with the third or fourth top
eigenvalues of the Hessian matrix).

Towards characterizing higher dimensional loss landscapes, here we take inspiration
from topological data analysis. Specifically, we use a merge tree to encode the critical
points of a k-dimensional neural network loss landscape, and we represent the merge tree as
a topological landscape profile. The merge tree allows us to capture important features in an
arbitrary dimensional loss landscape, and using the topological landscape profile, we are able
to re-represent this information in two dimensions. We demonstrate the utility of our new
topological landscape profile representation by exploring higher dimensional loss landscapes,
i.e., sampling along more directions and representing these higher dimensional subspaces
as topological landscape profiles. This approach allows us to extract more information
from the additional dimensions we consider. While our approach technically can work with
arbitrary dimensional loss landscapes, in practice we are limited by sampling. As such, here
we limit ourselves to three and four-dimensional loss landscapes.

We demonstrate the versatility of our new topological profile representations of loss
landscapes and our complementary visualization tool through several use case scenarios.
Through these examples, we show the many different ways our tool can be used to extract
insights about neural network models based on our topological landscape profiles and by
comparing loss landscapes across different hyperparameters. In doing so, we also provide
new insights into how loss landscapes vary across distinct hyperparameter spaces, finding
that (1) the topology of loss landscapes is simpler for better-performing models, and (2)
this topology is often less consistent near transitions from low to high model performance.
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2. Background

2.1. Topological Data Analysis

Topological data analysis (TDA) aims to reveal the global underlying structure of data.
TDA is particularly useful for studying high-dimensional data or functions, where direct
visualization (in two or three dimensions) is inherently not possible. We leverage ideas
and algorithms from TDA to study the global structure of the loss function—that is, the
shape of the so-called loss landscape. Much of TDA is based on the more general idea
of “connectedness.” In the context of a loss function, we are interested in the number of
minima (i.e., unique sets of parameters for which the loss is locally minimized) and how
“prominent” they are (i.e., measuring how many other sets of neighboring parameters have
a higher loss than the parameter set that minimizes the loss function). Such information can
be obtained from a persistence diagram (i.e., captured by the zero-dimensional persistent
homology) and the so-called merge tree.

A merge tree (Carr et al., 2003; Heine et al., 2016) tracks connected components of
sub-level sets L−(v) = {x ∈ D;x ≤ v} as a threshold, v, is increased. The merge tree
encodes changes in the loss landscape as nodes in a tree-like structure. The local minima
are represented by degree-one nodes, which are connected to other local minima through
a single saddle point. The saddle points connecting different minima are represented by
degree-three nodes (each connecting two local minima and one other saddle point). Loss
functions often display many shallow local minima with low barriers (i.e., the value difference
between the minima and connecting saddle point is small) corresponding to “short-lived”
connected components that merge quickly with other connected components.

In our work, we use the merge tree to extract the underlying structure of a loss land-
scape. We then use this extracted information to construct our topological landscape profile
representations. Since the merge tree can be computed for an arbitrary dimensional loss
landscape, we can use it to construct our representation for higher dimensional loss land-
scapes, which would otherwise be difficult to visualize.

2.2. Topological Landscape Profiles

To enable the visualization of higher-dimensional loss landscapes, we introduce a new topo-
logical landscape profile representation that captures the minima and saddle points encoded
by merge trees. This work builds upon Oesterling et al. (2013), who first introduced the idea
of representing high-dimensional data clusters (and their nesting) as hills (and their spatial
proximity) in a landscape, where the height, width, and shape of these hills correspond to
the coherence, size, and stability of the cluster, respectively. To construct the landscape
profile, a merge tree is first computed based on the data to encode the distribution (or
density) of points. This merge tree is then used to construct the landscape profile, by rep-
resenting maxima in the merge tree as hills in the landscape, where the size and shape of
each hill are determined by characteristics like persistence and the number of points along
the corresponding branch. In the context of loss functions, we are more interested in min-
ima than maxima, so here we introduce a new version of this topological landscape profile,
using the metaphor of valleys (or basins) rather than hills.

3



Proceedings Track
3. Methods

To construct our new topological landscape profile representations, we build on traditional
loss landscape sampling approaches and leverage tools from TDA to capture the underlying
shape (or topology) of the sampled loss landscapes. First, we select d vectors (d ≤ n) to
define a d-dimensional subspace (Figure 1.1), where n is the dimension of model weights.
This subspace can be represented by a d-dimensional loss cube, where each point corresponds
to a specific set of parameters. We can therefore calculate the loss for a set of points
sampled from this d-dimensional subspace. The sampled points can be represented as an
unstructured grid (Figure 1.2). We compute a merge tree to capture the topology of the
k-dimensional loss landscape (Figure 1.3). We construct our topological landscape profile
based on this merge tree (Figure 1.4). We then visualize these new representations using
a complementary interactive visualization tool that makes it easy to explore and compare
different topological landscape profiles. In this section, we go into more detail about each
of these steps.
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Figure 1: Our topological landscape profiles enable the visualization of higher dimensional
loss landscapes by capturing their underlying shape (or topology). Here we show
loss landscapes based on the top k Hessian eigenvectors. See Section 3 for details.

3.1. Loss Landscape Construction and Representation

In this work, we limit our analysis to Hessian-based loss landscapes. We calculate the top
d Hessian eigenvectors using PyHessian (Yao et al., 2020) (Figure 1.1) and then sample
along the subspace spanned by these directions (Figure 1.2). The idea is that by using
the eigenvectors associated with the top d largest eigenvalues, we can visualize the most
significant local loss fluctuations for a given model. Given the d orthogonal directions, we
generalize the approach taken by Li et al. (2018) by expanding the subspace beyond two
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dimensions. Formally, we perturb trained model parameters along the d directions and
evaluate the loss L as follows:

f(α1...αd) = L(θ∗ + Σd
i=1(αiδi)), (1)

where α1...αd are the coordinates in the d-dimensional subspace, δi is the i-th direction in
that subspace, and θ∗ is the original model. As such, each coordinate will correspond to a
point that contains a computed loss value, and the entire point set forms an d-dimensional
loss landscape.

Given a d-dimensional loss landscape, we can represent the sampled points as an un-
structured grid, where each vertex in the grid is associated with d coordinates and a scalar
loss value. Before we can characterize how the loss changes throughout the landscape (i.e.,
as parameters are perturbed from one vertex to the next), we need to define the spatial
proximity (or connectivity) of vertices in the grid based on the similarity of their coor-
dinates. Here we use a scalable, approximate nearest neighbor algorithm to construct a
neighborhood graph representation of the loss landscape (Dong et al., 2011). The neigh-
borhood graph, proposed by Jaromczyk and Toussaint (1992), of a dataset D is a graph
G = (D,E) where two points u and v are connected by an edge (u, v) ∈ E if they are
similar. Here we focus on the k-nearest neighbor graph, where each point is connected to
the k most similar points. We also use a symmetric version of this graph, where points
are only considered neighbors if each point is a neighbor of the other. In this case, an edge
(u, v) is pruned from the graph if u is not one of the k nearest points to v, or vice versa. We
note that this approach involves selecting an appropriate value for the k parameter. Here
we use k = 4 × d, such that the connectivity is similar to the spatial proximity of pixels
in an image (i.e., each pixel having k = 8 neighbors, corresponding to the left, right, top,
bottom, and all four corners).

3.2. Topological Structures and Landscape Profiles

After defining the subspace and computing the loss landscape, we perform topological data
analysis to extract and summarize the most important features. In this work, we use a
merge tree to extract key information from the loss landscape, which we then use to define
our topological landscape profile. We compute the merge tree for each loss landscape using
Topology ToolKit (TTK), developed by Bin Masood et al. (2021).

Given a merge tree, we then construct the topological landscape profile using the method
proposed by Oesterling et al. (2013). In this representation, each branch (in the merge tree)
ending in a local minimum is represented by a basin (in the landscape profile), and each
sub-branch ending in a saddle point is represented as a sub-basin, below which other basins
are placed. In either case, each basin (or sub-basin) is represented by a set of rectangles
encoding the cumulative size of the branch (or sub-branch), from bottom to top, such that
the top of the basin is as wide as the number of points found along the corresponding branch
in the merge tree.

We introduce this topological landscape profile representation of loss functions to ef-
fectively capture more information from higher-dimensional loss landscapes, in such a way
that can still be visualized. While this topological representation and the merge tree used
to create it both capture important features of the high-dimensional space, it also discards
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Figure 2: Representing the merge tree as a topological landscape profile. In (A) we show
a single basin corresponding to a merge tree with a single branch, and in (B) we
show multiple basins corresponding to multiple branches. In (C) we color the
basins based on their average loss.

some important information by design. Here, we reincorporate some of this discarded in-
formation back into our representation, for example, by using the loss values to color the
different basins. As shown in Figure 2.C, we compute the average loss across the points in
each basin, and we use darker blues to represent lower average loss values. Thus, deeper
basins are represented by a darker blue color, evoking the idea of deeper ocean depths. In
addition to coloring the topological landscape profile, we also annotate the basins with the
critical points, including saddle points (orange dots) and minima (red dots). Interestingly,
the distribution (or density) of saddle points and minima reflects local characteristics of the
loss landscape, such as locally sharp or locally flat.

4. Experiments

4.1. Visualizing Different Physical Constraints

In our first experiment, we look at a set of physics-informed neural network (PINN) models
trained to solve simple convection problems (Krishnapriyan et al., 2021). Here we aim to
investigate the PINN’s soft regularization and how it helps (or fails to help) the optimizer
find an optimal solution to a seemingly simple convection problem. We show how the
shape and complexity of our topological landscape profiles change as a physical “wave
speed” parameter is increased and the PINN fails to solve this seemingly simple physical
problem. Specifically, we consider the one-dimensional convection problem, a hyperbolic
partial differential equation that is commonly used to model transport phenomena:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ Ω, t ∈ [0, T ] (2)

u(x, 0) = h(x), x ∈ Ω (3)

where β is the convection coefficient and h(x) is the initial condition. The general loss
function for this problem is

L(θ) =
1

Nu

Nu∑
i=1

(û− ui0)
2 +

1

Nf

Nf∑
i=1

λi(
∂û

∂t
+ β

∂û

∂x
)2 + LB (4)
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Figure 3: Analyzing the loss function of a physics-informed neural network (PINN) trained
to solve simple physical convection problems. See Section 4.1 for details.

where û = NN(θ, x, t) is the output of the NN, and LB is the boundary loss. While increas-
ing the physical wave speed parameter, β, should not necessarily make this a harder problem
to solve, it can make PINN models harder to train. Interestingly, Krishnapriyan et al. (2021)
related these failure modes to changes in the corresponding loss landscape, showing that
it becomes increasingly complicated, such that optimizing the model becomes increasingly
difficult. Here we explore these failure modes in more detail using three-dimensional and
four-dimensional Hessian-based loss landscapes, finding more variability in the shape of loss
landscapes near the transition between high and low-performing models.

In Figure 3, we show a heat map corresponding to the average relative error across
different values of the physical wave speed parameter and across different learning rates.
Interestingly, we observe that the error increases with this physical parameter, but more
slowly for higher learning rates. The smallest learning rate displays higher error rates even
for smaller values of the physical parameter. When looking at the loss landscapes, we observe
consistently more funnel-like loss landscapes for the smaller values of β, corresponding
to lower error (Figure 3.1). In contrast, we observe a consistently more bowl-like loss
landscape for the larger values of β, corresponding to higher error (Figure 3.3). The funnel-
like landscapes likely correspond to when the PINN models find a physically reasonable
solution, albeit constrained to a smaller space of solutions by the physical wave speed
parameter. In other words, since the solution is constrained by the physical parameter,
perturbing the model results in a faster increase in the loss, given that the physical problem
is no longer satisfied. In contrast, the more bowl-like landscapes correspond to the failure to
find a reasonable solution, such that perturbing the model does not immediately change the
already high loss. Note, the landscapes corresponding to these failure modes also include
more saddle points and are otherwise more complex.

To verify that these representations are stable across different model initializations, we
show five different landscapes for each hyperparameter configuration, corresponding to the
same model trained using different random seeds. We see the landscapes look similar across
different random seeds for the low and high values of the physical wave speed parameter.
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Moreover, we observe more variation in the loss landscapes near the transition from low
to high error (Figure 3.2). This suggests that while the error starts to increase near the
transition, only some of the models are failing whereas other may be finding physically
reasonable solutions, as indicated by the funnel-like loss landscapes.

In Figure A.5 we compare the topological landscape profiles based on three- and four-
dimensional loss landscapes. An important insight here is that, in higher dimensions, we
observe many more critical points and that the basins in the much spikier landscape can
be mapped back to the wider basins in the topological landscape profiles based on the
three-dimensional loss landscapes. Overall the global shape of the topological landscape
profile looks similar when comparing the same random seed. Moreover, this highlights an
important feature of our new representations—the ability to visualize higher dimensional
loss landscapes, i.e., sampling along more than just one or two dimensions.

4.2. Visualizing Loss Landscapes Over Training

In our second experiment, we explore how loss landscapes change throughout training and
across different learning rates. To do this, we study UNet models with a learnable CRF-RNN
layer (Avaylon et al., 2022) trained on the Oxford-IIIT Pet dataset (Parkhi et al., 2012).
We trained the models using five different random seeds across seven different learning rates
for 30 epochs. For each checkpoint, we computed two-dimensional loss landscapes based on
the top two Hessian eigenvectors. The model was perturbed using a distance of 0.01 and
layerwise normalization was adopted (Li et al., 2018).
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Figure 4: Loss landscapes over training for UNet models with a CRF layer trained on the
Oxford-IIIT Pet dataset. See Section 4.2 for details.
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In Figure 4 and Figure B.6, we show the same heat map corresponding to average
test accuracy over training and across different learning rates. We observe that the test
accuracy improves over training, with some variation across the different learning rates. In
Figure 4, we consider how the loss landscape changes over training. When looking at the
loss landscapes for three different random seeds, after zooming in, we observe an initially
shallow loss landscape but with the global minimum at a much higher loss compared to the
end of training. As training proceeds, we see that the global minimum becomes lower, but
the basin itself becomes deeper with the edges remaining at much higher loss values. As the
global minimum continues to drop, we also observe additional flattening of the basin, such
that all points have a much lower loss compared to the beginning of training. Interestingly,
the flat basin at a much higher loss corresponds to a phase of learning where perturbing the
model in any one direction doesn’t really increase the already high loss. After five epochs,
the much deeper basin reflects a less stable model, where perturbing the model results in
relatively higher loss. As training proceeds, we observe a flattening of the basin, which
means the model becomes more stable, as perturbations result in smaller changes in loss.
In Figure B.6, we consider how the loss landscape changes across different learning rates.
When looking at the loss landscapes for three different random seeds, after zooming in, we
observe consistent variation in the depth and shape of the loss landscape as the learning
rate is varied. This variation is also reflected in the test accuracy scores shown in the heat
map. Interestingly, we observe deeper basins when the learning rate is too small or too big,
indicating that the trained models are less stable compared to those with shallower basins.

5. Conclusion and Future Work

In this paper, we introduced a new topological landscape profile representation of neural
network loss landscapes. To demonstrate the many different ways this new representa-
tion of loss landscapes can be used, we explored several different machine learning exam-
ples, including image segmentation (e.g., UNet-CRF) and scientific machine learning (e.g.,
PINNs). Along the way, we provided new insights into how loss landscapes vary across dis-
tinct hyperparameter spaces, finding that the topology of the loss landscape is simpler for
better-performing models and that this topology is more variable near transitions from low
to high model performance. Moreover, by using a merge tree to extract the most important
features from a computed loss landscape, we are able to construct a new representation
encoding these features. By separating this new representation from the original space
in which the loss landscape was sampled, our approach opens up the door to visualizing
higher-dimensional loss landscapes.

While we only explore up to four dimensions here, our approach can be extended to much
higher dimensional spaces. The limiting factor is sampling, which requires exponentially
many more resources as the number of dimensions increases. However, future advances
towards more efficient sampling could be combined with our current approach to reveal
the higher dimensional structure of loss functions. Complementary advances in sampling
more global loss landscapes (combining multiple independently trained models) could also
be combined with our tool. In that case, we would expect to see more distinct basins in our
topological landscape profiles.
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Visualizing Loss Functions as Topological Landscape Profiles

Appendix A. Visualizing Different Physical Constraints

In Figure A.5, we show topological landscape profiles for two different random initializations
(from left to right) of a physics-informed neural network (PINN). Note, that the landscapes
look different for the different random initializations because we are looking at a model
corresponding to the transition from low to high error. Overall the global shape of the
topological landscape profile looks similar when comparing the same random seed across
three- and four-dimensional loss landscapes. In four dimensions, we observe many more
critical points and that the basins in the much spikier landscape can be mapped back to the
wider basins in the topological landscape profiles based on the three-dimensional loss land-
scapes. These visualizations also highlight an important feature of our topological landscape
profile representations—the ability to visualize higher dimensional loss landscapes.

(A) Topological Profile of a 3D Loss Landscape

(B) Topological Profile of a 4D Loss Landscape

Figure 5: Comparing topological landscape profiles based on (A) three-dimensional and (B)
four-dimensional loss landscapes. See Section 4.1 for details.

13



Proceedings Track
Appendix B. Visualizing Loss Landscapes Over Training

In Figure B.6, we show the loss landscape changes across different learning rates. When
looking at the loss landscapes for three different random seeds, after zooming in, we observe
consistent variation in the depth and shape of the loss landscape as the learning rate is
varied. See Section 4.2 for details.
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Figure 6: Loss landscapes across learning rates for UNet models with a CRF layer trained
on the Oxford-IIIT Pet dataset. See Section 4.2 for details.
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