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ABSTRACT

Language models are increasingly applied to biological sequences like proteins
and mRNA, yet their default Euclidean geometry may mismatch the hierarchical
structures inherent to biological data. While hyperbolic geometry provides a better
alternative for accommodating hierarchical data, it has yet to find a way into lan-
guage modeling for mRNA sequences. In this work, we introduce HyperHELM,
a framework that implements masked language model pre-training in hyperbolic
space for coding regions of mRNA sequences. Using a hybrid design with hy-
perbolic layers atop Euclidean backbone, HyperHELM aligns learned represen-
tations with the biological hierarchy defined by the relationship between mRNA
and amino acids. Across multiple multi-species datasets, it outperforms Euclidean
baselines on 9 out of 10 tasks involving property prediction, with 10% improve-
ment on average, and excels in out-of-distribution generalization to long and low-
GC content sequences; for antibody region annotation, it surpasses hierarchy-
aware Euclidean models by 3% in annotation accuracy. Our results highlight
hyperbolic geometry as an effective inductive bias for hierarchical language mod-
eling of the CDS regions of mRNA sequences.

1 INTRODUCTION

Language models have been increasingly applied to biological sequence data, fueled by the growth
of large-scale omics datasets (Lin et al., 2023; Celaj et al., 2023; Brixi et al., 2025). While originally
designed for natural language, these models demonstrate promising performance in capturing de-
pendencies within DNA (Zhou et al., 2024; Nguyen et al., 2024b;a; Brixi et al., 2025), RNA (Celaj
et al., 2023; Prakash et al., 2024; Yazdani-Jahromi et al., 2025a;b), and protein sequences (Lin et al.,
2023; Ferruz et al., 2022). The biological sequences, however, are structured differently from natu-
ral language, particularly in their hierarchical organization, where nucleotides or amino acids form
motifs that can be nested within larger functional groups (Buhr et al., 2016). In this work, we take
the rapidly expanding therapeutic domain of RNA, where the codon–amino acid hierarchy plays a
key role in determining the biophysical properties of mRNA sequences and their expressed proteins
(Clancy & Brown, 2008), and we focus on encoding this hierarchy directly into the representation
space of a bio-language model by leveraging hyperbolic geometry.

While standard language models rely on Euclidean geometry, the number of concepts in hierarchies
grows exponentially, outpacing the polynomial expansion of Euclidean volumes (Matoušek, 1996;
1999). This can severely limit the representation capacity of a model and hinder generalization (Liu
et al., 2020). In contrast, the volume of hyperbolic space expands exponentially, maintaining well-
separated representations across different branches of the hierarchy and reducing distortion in hier-
archical relationships. The advantages of hyperbolic geometry are demonstrated in graph represen-
tation learning (Chami et al., 2019) and computer vision (Mettes et al., 2024), and are beginning to
inform natural language modeling (He et al., 2024; 2025), though they have yet to be systematically
applied to mRNA data.

In this work, we present Hyperbolic Hierarchical Encoding for mRNA Language Modeling (Hy-
perHELM), a hyperbolic language-modeling framework for the CDS regions of mRNA sequences.
In HyperHELM, we project token representations onto the Poincaré ball and pre-train a language
model with the masked language modeling (MLM) objective directly in hyperbolic space (Figure 1).
Rather than making the entire model hyperbolic, we keep the backbone Euclidean and project only
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Figure 1: High-level overview of the HyperHELM method for MLM. The method consists of
three main components: 1) the language modeling of mRNA, where a sequence transformer is
used to obtain token representations, as shown in the left; 2) a hyperbolic embedding of the codon
hierarchy (large version in Appendix B) is generated to serve as prototypes for guiding the language
model during pre-training, shown on the right; and 3) hyperbolic hierarchical prototype learning,
where the prototypes are used to predict the true label of masked tokens using either distances
(green) or entailment cones (blue), visualized in the center.

the final-layer representations, thus retaining hardware efficiency while leveraging the hierarchical
inductive bias of hyperbolic geometry.

For hyperbolic MLM pre-training, we mask a portion of input tokens and use a modular hyper-
bolic prediction head that scores candidates while respecting hierarchical relations. In particular,
we instantiate three head options for hyperbolic learning: hyperbolic multinomial logistic regres-
sion (MLR) (Ganea et al., 2018b), distance-to-prototype learning (Snell et al., 2017), and prototype
classifiers based on hyperbolic entailment cones (Ganea et al., 2018a). While Ganea et al. (2018a)
primarily introduce entailment cones as a means to model hierarchical relations, our work extends
this concept further by exploring its use as a similarity function instead of hyperbolic distances,
aiming to capture richer relational structures. Moreover, the adaptation of these hyperbolic heads
for MLM pre-training of bio-language models has never been explored before. The resulting hy-
perbolic latent space with hierarchy-aware MLM pre-training aligns representation geometry with
the codon–amino-acid structure, clustering synonymous codons under their amino-acid parents and
separating non-coding tokens (Figure 1). To our knowledge, HyperHELM is the first systematic
development of hyperbolic language models for mRNA sequence data.

We conduct experiments to compare our HyperHELM with its standard Euclidean hierarchical lan-
guage modeling counterparts. We keep the language model backbone architecture and pre-training
dataset fixed for all models, to isolate the impact of hyperbolic geometry on hierarchy learning. We
evaluate the pre-trained models on 11 diverse multi-species mRNA datasets for downstream property
prediction and region annotation tasks. Across 9 out of 10 property prediction tasks, the hyperbolic
approach consistently outperforms its Euclidean counterparts, even when the latter is trained to be
hierarchy-aware (Yazdani-Jahromi et al., 2025a), achieving an average improvement of 10%. We
also observe that in property prediction tasks, our hyperbolic language model generalizes exception-
ally well to out-of-distribution data, maintaining strong performance even on long sequences with
low GC-content, where standard bio-language models tend to struggle. Moreover, for the task of
antibody region annotation, our HyperHELM surpasses hierarchy-aware Euclidean baseline by 3%.
Our experimental results suggest that hyperbolic geometry provides a powerful inductive bias for
capturing hierarchical structures in CDS regions of mRNA sequences.

To sum up, we make the following contributions:
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• We explore hierarchical learning for bio-language models through the lens of hyperbolic
geometry, aiming to align the structure of its representation space with the hierarchical
structure of CDS regions of mRNA.

• We propose, implement, and evaluate multiple hierarchy-guided hyperbolic learning meth-
ods for masked language pre-training of a language model on CDS regions of mRNA.

• We experimentally demonstrate the benefits of hyperbolic language models on downstream
mRNA property prediction and antibody region annotation, where it outperforms Euclidean
models, and excels in out-of-distribution settings.

2 RELATED WORKS

RNA and mRNA Models Several supervised models for RNA and mRNA modeling exist, such
as RiboNN (Zheng et al., 2025), which uses a convolutional model for predicting the translation
efficiency of mature mRNA sequences; or Optimus 5-Prime (Sample et al., 2019), which is a con-
volutional model aimed at predicting the regulatory activity of 5’ UTRs of mRNA sequences. Our
focus is on unsupervised pre-training, for which the common approach is language modeling. RNA
and mRNA language models enable diverse downstream tasks in property prediction, annotation,
and generation. These include foundation models trained for different RNA regions such as non-
coding RNA (RNA-FM (Chen et al., 2022a), RINALMO (Penić et al., 2025), and AIDO.RNA-
CDS (Zou et al., 2024) which is afterwards fine-tuned to coding regions within mRNA), splice sites
(SpliceBERT (Chen et al., 2023)) or UTRs (UTR-LM (Chu et al., 2024)), as well as methods using
transfer learning from DNA and protein models (Prakash et al., 2024; Mollaysa et al., 2025; Garau-
Luis et al., 2024) for mRNA-focused downstream tasks. For mRNA, codon-level models such as
CodonBERT (Li et al., 2023) use codon tokenization with MLM to optimize coding-region embed-
dings. Others employ nucleotide-level tokenization, such as Orthrus (Fradkin et al., 2024), which is
a Mamba-based RNA model that is pre-trained on mature RNA sequences; LoRNASH Saberi et al.
(2024), which is a Hyena-based RNA model pre-trained on pre-mRNA; or Helix-mRNA (Wood
et al., 2025) which employs hybrid attention and state-space architectures for improved sequence
resolution and generation. Several recent models incorporate domain priors. Equi-mRNA (Yazdani-
Jahromi et al., 2025b) promotes hierarchy in Euclidean space (HELM (Yazdani-Jahromi et al.,
2025a)). Moskalev et al. (2024); Xu et al. (2025a;b) link sequence to structure. Despite these
advances, all existing methods are confined to Euclidean spaces. To our knowledge, this is the first
work to explore language model pre-training for RNA or mRNA in hyperbolic space.

Hyperbolic learning The exponential growth of hyperbolic space makes it a suitable domain for
learning on data with an inherent hierarchical structure (Sarkar, 2011; Chamberlain et al., 2017;
Nickel & Kiela, 2017). This realization has led to a surge in the popularity of hyperbolic learn-
ing (Peng et al., 2021). Deep hyperbolic architectures have been developed (Ganea et al., 2018b;
Shimizu et al., 2021; Chen et al., 2022b) alongside the algorithms for optimizing such networks
(Bonnabel, 2013; Bécigneul & Ganea, 2019). As a result, hyperbolic geometry has seen successful
applications across many areas of machine learning, such as in computer vision (Khrulkov et al.,
2020; Liu et al., 2020; Long et al., 2020; Ghadimi Atigh et al., 2021; van Spengler et al., 2023a;
Mettes et al., 2024), graph learning (Liu et al., 2019; Chami et al., 2019; Zhang et al., 2021; Yang
et al., 2022), Natural Language Processing (Tifrea et al., 2019; Dhingra et al., 2018) and multi-
modal learning (Desai et al., 2023; Pal et al., 2025). These have shown the potential of hyperbolic
learning, particularly in scenarios where the data has a clear hierarchical structure. Recently, a first
work has explored the application of fully hyperbolic convolutional networks for DNA modeling
Khan et al. (2025), finding that hyperbolic geometry improves genomic sequence understanding.
While the structuring of mRNA is highly hierarchical in nature, existing mRNA language modeling
approaches do not leverage hyperbolic geometry.

Prototype learning The prototype learning setting (Snell et al., 2017) has become a commonly
used approach for classification tasks, where each class is represented by a prototype, resembling
in some way the perfect instance of its corresponding class. Within hyperbolic learning, prototype
learning approaches are mostly distinguishable by their method of obtaining prototypes (Mettes
et al., 2024). Many works follow the original approach for generating prototypes based on labeled
input data (Khrulkov et al., 2020; Gao et al., 2021; 2022; Guo et al., 2022). These typically create
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prototypes by aggregating features of labeled instances of the corresponding class using, for ex-
ample, the Fréchet mean. Another approach is to use prior knowledge of the label set to generate
prototypes. Examples are (Ghadimi Atigh et al., 2021) and (Long et al., 2020), which create pro-
totypes using a known hierarchy over the labels, or (Yu et al., 2022), which optimizes prototypes
concurrently with their model through the use of known hierarchical relations. Concurrent work by
(Fonio et al., 2025) generates prototypes using maximal separation, not making use of any known
hierarchies. While each of these works deals with an image classification setting, we instead focus
on masked language modeling. Moreover, unlike our work, none of these works explore the use of
recent low-distortion embedding methods for generating prototypes from hierarchies. Lastly, except
for the concurrent work by (Fonio et al., 2025), these works restrict the use of similarity functions
to hyperbolic distances.

3 BACKGROUND ON HYPERBOLIC SPACE

In this paper we make use of the n-dimensional Poincaré ball model (Dn
c , g) of hyperbolic space

with constant negative curvature −c and Riemannian metric gnc , where

Dn
c =

{
x ∈ Rn : ||x||2 < 1

c

}
, gnc = λcxIn, λcx =

2

1− c||x||2
, (1)

with In being the n-dimensional identity matrix. For an extensive background on other isometric
models and on hyperbolic geometry in general, we refer the reader to (Cannon et al., 1997; Ander-
son, 2006). Here, we introduce the operations that are used throughout the paper.

Using the Riemannian metric, one can compute the distances between any two points x,y ∈ Dn
c as

dcD(x,y) =
1√
c
cosh−1

(
1 + 2c

||x− y||2

(1− c||x||2)(1− c||y||2)

)
. (2)

Using the Möbius addition operation (Ungar, 2022), defined as

x⊕c y =
(1 + 2c⟨x,y⟩+ c||y||2)x+ (1− c||x||2)y

1 + 2c⟨x,y⟩+ c2||x||2||y||2
, (3)

we can define exponential and logarithmic maps (Ganea et al., 2018b)

expcx : TxDn
c → Dn

c , expcx(v) = x⊕c

(
tanh

(√cλcx||v||
2

) v√
c||v||

)
, (4)

logcx : Dn
c → TxDn

c , logcx(y) =
2√
cλcx

tanh−1
(√

c|| − x⊕c y||
) −x⊕c y

|| − x⊕c y||
, (5)

which are used to map tangent vectors from the tangent space TxDn
c at x onto Dn

c and vice versa,
respectively.

(Ganea et al., 2018b) have generalized multinomial logistic regression (MLR) to the Poincaré ball
model by interpreting the MLR scores as signed distances to hyperplanes. The resulting hyperbolic
MLR computes scores as

ℓk(x) =
2√
c
||zk|| sinh−1

(
λcx

〈√
cx,

zk
||zk||

〉
cosh(2

√
crk)− (λcx − 1) sinh(2

√
crk)

)
, (6)

where zk and rk are the parameters corresponding to the k-th class. This MLR has been further
extended into a hyperbolic fully connected layer Fc : Dn

c → Dm
c by (Shimizu et al., 2021), which

is computed as

Fc(x;Z, r) =
w

1 +
√
1 + c||w||2

, w =
( 1√

c
sinh

(√
cℓk(x)

))n
k=1

, (7)

where Z and r contain the learnable parameters.
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4 HYPERHELM

The setting that we consider is the pre-training of a CDS region of mRNA sequence model through
masked language modeling (MLM) with the goal of obtaining a strong backbone for any down-
stream predictive task. For our approach, we take the HELM method – a language model for the
hierarchical modeling of mRNA that operates fully in Euclidean space – (Yazdani-Jahromi et al.,
2025a) as a starting point and replace the classifier to help guide the backbone model more effec-
tively. More specifically, we replace the Euclidean multinomial logistic regression classifier by a
hyperbolic prototypical classifier, inspired by works such as (Snell et al., 2017; Yu et al., 2022). The
prototypes are generated directly from the codon-amino acid hierarchy which is shown in Figure
1 and, more clearly, in Figure 4 in Appendix B. A high-level overview of our method is given in
Figure 1. Each individual component will be discussed in detail in the following subsections.

4.1 LANGUAGE MODELING OF MRNA SEQUENCES

Our goal is to train some sequence transformer model f of CDS regions of mRNA sequences through
MLM. Following recent works (Li et al., 2023; Yazdani-Jahromi et al., 2025a;b), we first apply
codon-level tokenization to the mRNA sequences, where each triplet of nucleotides is represented
as a single token, giving 43 = 64 potential tokens, excluding special tokens. During MLM, we mask
15% of the tokens in sequences and feed these into model f , which outputs a representation in Rn

for each individual token. Then, we use a classifier g : Rn → [64] to predict the true label of the
masked tokens. Following the HELM approach (Yazdani-Jahromi et al., 2025a), the hierarchical
cross-entropy loss (Bertinetto et al., 2020) with respect to the codon hierarchy shown in Figure 1 is
computed and used to update f and g.

4.2 HYPERBOLIC EMBEDDINGS OF HIERARCHIES

The manner in which mRNA encodes for proteins can be understood through a hierarchy defined
over the codons, visualized in Figure 1. Yazdani-Jahromi et al. (2025a) softly enforce this hierarchy
in their model in Euclidean space by using the hierarchical cross-entropy loss. Here, we explicitly
structure our token representation space by directly embedding the hierarchy. A hierarchy typically
consists of a tree T = (V,E), where the nodes V contain the relevant concepts and the edges E
the relations between these. Moreover, we denote the leaf nodes of the tree by L. The tree metric
dT , resulting from T , defined as the length of the path between 2 nodes, contains the information
of how strongly related any pair of concepts is. Therefore, the goal of embedding some hierarchy
into a continuous space is to keep this tree metric intact. More formally, we want an embedding
ϕ : V →M into some connected Riemannian manifoldM such that ϕ is approximately an isometry
onto ϕ(V ), i.e.,

dM
(
ϕ(u), ϕ(v)

)
≈ dT (u, v). (8)

The amount by which the metric is changed by the embedding is called the distortion. It can be
shown that Euclidean spaces are unsuitable as targets for embedding trees (Sarkar, 2011), generally
leading to highly distorted embeddings. Therefore, we opt to use hyperbolic space instead.

Several methods exist for embedding graphs or trees into hyperbolic space (Sarkar, 2011; Nickel
& Kiela, 2017; Sala et al., 2018; van Spengler & Mettes, 2025). We embed the codon hierarchy
using the HS-DTE method (van Spengler & Mettes, 2025), as it achieves the lowest distortion and
thus most effectively preserves the underlying hierarchical structure, while also being very fast.
Empirically, we find that the model is quite insensitive to the choice of tree embedding method (see
Appendix H). We use the embeddings of the leaf nodes obtained with HS-DTE, corresponding to
individual codons, as prototypes within the classifier g. A 2-dimensional example embedding of the
entire codon hierarchy obtained with HS-DTE is shown in Figure 1.

4.3 PROTOTYPE LEARNING IN HYPERBOLIC SPACE

From the hierarchy embedding, we have a set of prototypes ϕ(L) ⊂ Dnp
c where each prototype

corresponds to a particular codon and where np is the prototype dimension. Since the embedding ϕ
respects the tree metric dT , these prototypes structure the space according to the hierarchy, without
having seen any sequence data. We want to define a classifier that uses these prototypes to generate
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token-level predictions. Since our backbone model f outputs representations in Rn, these are first
projected onto Dnp

c through two steps: 1) the representations are projected into hyperbolic space Dn
c

and 2) a hyperbolic linear layer is used to project to Dnp
c . Following the convention in hyperbolic

learning (Mettes et al., 2024), the first step is performed by treating the representations as tangent
vectors at the origin and applying the corresponding exponential map. The second step is performed
using the hyperbolic linear layer Fc : Dn

c → Dnp
c from equation 7. So, the projection can be written

as
zi = Fc

(
expc0(hi)

)
, hi = f(t∗)i, (9)

where t∗ is the masked token sequence.

Generally, to generate token-level predictions using prototypes, softmaxed pairwise similarities be-
tween representations and prototypes are computed (Snell et al., 2017):

p(ti = u|t∗) =
exp

(
β · s(zi, ϕ(u))

)∑
v∈L exp

(
β · s(zi, ϕ(v))

) , (10)

where β > 0 is a temperature hyperparameter (set to 1.0), ti is the true i-th token and where
s : Dnp

c × Dnp
c → R is some similarity function. Typically, negative distances s = −dD are used as

similarities, which leads the model to simply assign a token to its closest prototype. This approach
is shown in Figure 2 left.

Alternatively, we can compute similarities using the hyperbolic entailment cone energy (Ganea et al.,
2018a). Entailment cones are a geometric approach to defining hierarchical relationships in hyper-
bolic space. These are defined for any point z ∈ Dnp

c as the hyperbolic cone with z as its apex and
with the axis of symmetry being the Euclidean straight line segment from z perpendicular onto the
boundary of the manifold. The half aperture of the cone is

ψ(z) = sin−1

(
K(1− c||z||2)√

c||z||

)
, (11)

where K is a hyperparameter which we set to K = 0.1. The hyperbolic entailment cone energy is
then computed as

E(x,y) = max(0,Ξ(x,y)− ηψ(x)), (12)
where η > 0 is a threshold hyperparameter (Pal et al., 2025) (set to 1.05) and where

Ξ(x,y) = cos−1

(
⟨x,y⟩(1 + c||x||2)− ||x||2(1 + c||y||2)

||x|| · ||x− y||
√
1 + c2||x||2||y||2 − 2c⟨x, y⟩

)
, (13)

is the aperture required for y to be within the entailment cone at x. In other words, the hyperbolic
entailment cone energy is the angle by which y is removed from x’s entailment cone. Examples of
entailment cones and a visualization of the entailment cone energy are shown in Figure 2 right. The
hyperbolic entailment cone energy has recently grown in popularity in areas such as vision-language
learning (Desai et al., 2023; Pal et al., 2025) for encoding hierarchical relations. We propose to use
both distance-based prototypes and energy-based prototypes. For both approaches, we set the neg-
ative curvature to c = 1.0. We also present a sensitivity analysis for the key hyperparameters in
Appendix I. Lastly, we experiment using both fixed and learnable prototypes, where the prototypes
are considered learnable parameters of the model, which allows learning further data-driven refine-
ments of the hierarchy embedding. For the optimization of the learnable hyperbolic prototypes we
use Riemannian SGD Bonnabel (2013). Further details regarding the optimization can be found in
Appendix C.

5 EXPERIMENTS

In our experiments, we follow the pre-training guidelines established in HELM (Yazdani-Jahromi
et al., 2025a), adopting codon-level tokenization and the masked language modeling (MLM) ob-
jective. We use the same curated OAS pre-training corpus (Olsen et al., 2022), codon vocabulary,
and standard transformer backbone released in their official HELM repository 1, ensuring full com-
parability (detailed in Appendix C). Note that all sequences in the pre-training corpus are CDS-
only sequences, with an identified open reading frame. The key difference lies in the MLM head

1https://github.com/johnsonandjohnson/HELM
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Figure 2: Hyperbolic prototype learning. The center part presents a Poincaré disk where either
distances (green) or entailment cone energies (blue) are used to predict the label of embedded tokens.
On the left, a close up of a masked token representation with its closest prototype, together with the
geodesic between these is shown. The right part takes a closer look at one of the entailment cones,
showing the geometric interpretation of equations 11, 12 and 13.

where we evaluate three hyperbolic variants: hyperbolic multinomial logistic regression, hyperbolic
distance-based prototypes, and hyperbolic prototypes based on entailment cones discussed in Sec-
tions 3 and 4. We keep the rest of the method unchanged, allowing us to isolate the effect of learning
the hierarchy in hyperbolic space for mRNA. For downstream tasks, we freeze the pre-trained back-
bone and probe the learned representations by training a TextCNN head (Kim, 2014), following
standard practice (Harmalkar et al., 2023; Li et al., 2023; Yazdani-Jahromi et al., 2025a; Mollaysa
et al., 2025; Yazdani-Jahromi et al., 2025b). Further experimental details are in Appendices C and
E. Note that, since we only change the head of the model, the overall complexity is dominated by
the backbone for each method. As a result, the difference in runtimes of the different methods is
negligible (Appendix D).

Datasets and evaluation metrics We use 10 datasets spanning diverse organisms and label types:
Ab1 (662 antibody-encoding mRNAs) and Ab2 (2,672 antibody-encoding mRNA sequences) both
with protein expression labels from Prakash et al. (2024); mRFP (1,459 sequences with protein
production levels) (Nieuwkoop et al., 2023); COVID-19 Vaccine (2,400 degradation-labeled se-
quences) Wayment-Steele et al. (2022); Drosophila melanogaster (10,338 mRNA sequences) and
Saccharomyces cerevisiae (4,937 mRNA sequences) with protein abundance labels, and Pichia pas-
toris (4,682 mRNA sequences) with transcript abundance from Outeiral & Deane (2024); Fungal
(7,056 genome-derived sequences with expression labels) (Wint et al., 2022); E. coli (6,348 mR-
NAs labeled with low/medium/high protein expression) (Ding et al., 2022); and iCodon (65,357
sequences with thermostability profiles from humans, mice, frogs, and fish) (Diez et al., 2022). Ex-
cept for the E. coli classification task, all datasets provide regression labels for evaluating property
prediction. Following prior works (Yazdani-Jahromi et al., 2025a; Li et al., 2023; Yazdani-Jahromi
et al., 2025b), we use predefined train/val/test data splits and report Spearman rank correlation for
regression and accuracy for classification tasks. Note that mRNA sequences in all of the downstream
datasets are CDS-only, and hence contain valid codons. In general, for the sequences without identi-
fied Open Reading Frame (ORF), standard ORF-identification tools can be used (Hyatt et al., 2010;
Singh & Wurtele, 2021; O’Leary et al., 2016).

Baselines We evaluated HyperHELM against multiple baselines, including non-hierarchical mod-
els (Transformer XE (Yazdani-Jahromi et al., 2025b;a), Helix-mRNA (Wood et al., 2025), mRNA-
FM (Chen et al., 2022a), AIDO.RNA-CDS (Zou et al., 2024) and CodonBERT (Li et al., 2023))
and the state-of-the-art, hierarchy-aware Euclidean HELM (Yazdani-Jahromi et al., 2025a). Results
for additional baselines are shown and discussed in Appendix G. To ensure a fair comparison, our
HyperHELM, HELM, and Transformer XE models share the same 50M-parameter backbone ar-
chitecture, pre-training data, and tokenization strategy. Consequently, any observed performance
differences among these models can be attributed solely to the impact of hyperbolic prototype learn-
ing.
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5.1 HYPERHELM IMPROVES DOWNSTREAM MRNA PROPERTY PREDICTION PERFORMANCE
OVER EUCLIDEAN MODELS

Table 1 summarizes the performance of HyperHELM variants across 10 mRNA property predic-
tion datasets. Of these, the four HyperHELM variants achieve the best performance on 8 out of 10
datasets and the best or second best performance on 9 out of 10 datasets, demonstrating the bene-
fits of modeling hierarchical relationships in hyperbolic spaces for mRNA sequences. Compared to
the non-hierarchical Transformer XE baseline, HyperHELM improves downstream performance by
2.8–35.6%, with the largest gains observed for D. melanogaster (35.5%) and S. cerevisiae (35.6%).
When compared to HELM, performance improvements range up to 32%, with particularly strong
improvements on D. melanogaster (32.0%) and S. cerevisiae (20.6%) datasets. Interestingly, simple
hyperbolic MLR (HyperHELM MLR) only performs well on the S.cerevisiae dataset while under-
performing on all other tasks even relative to the Euclidean baselines, indicating that the combination
of hyperbolic geometry with prototype-based heads is crucial for capturing hierarchical structure in
mRNA embeddings. Lastly, learnable prototypes yield the best performance in 5 out of 10 datasets
and either the best or second best performance in 9 out of 10 datasets, which shows that the model
benefits from the freedom to refine the hierarchical embeddings during pretraining. More details on
the performance of hyperbolic MLR can be found in Appendix F.

Table 1: Accuracy (for E.coli) and Spearman rank correlation (for all other datasets). Bold indicates the best
performing model per dataset and underline indicates second best model. The missing values indicate models
unable to process datasets due to sequence length limitations or OOM issues because of models being too large.

Non-hierarchical FMs Hierarchical Euclidean Hierarchical hyperbolic (Ours)

Dataset Transformer XE Helix-mRNA mRNA-FM AIDO.RNA-CDS CodonBERT EVO-2 HELM MLR Proto Dist. Proto Entail. Proto Dist. Learnable Proto Entail. Learnable

Ab1 0.701 0.535 0.656 0.663 0.686 0.141 0.714 0.650 0.713 0.751 0.743 0.736
Ab2 0.507 0.283 0.373 0.398 0.557 0.129 0.548 0.532 0.575 0.569 0.603 0.589
mRFP 0.825 0.432 0.739 0.787 0.770 0.239 0.848 0.744 0.819 0.802 0.800 0.820
COVID-19 0.757 0.643 0.762 0.804 0.780 0.386 0.775 0.411 0.785 0.807 0.822 0.822
D. melanogaster 0.332 - - - - - 0.341 0.374 0.394 0.450 0.442 0.447
S. cerevisiae 0.354 - - - - - 0.398 0.465 0.434 0.397 0.424 0.480
P. pastoris 0.596 - - - - - 0.620 0.605 0.676 0.671 0.672 0.672
Fungal 0.690 0.689 0.722 - - 0.400 0.702 0.712 0.735 0.741 0.742 0.754
E. coli 44.7 40.0 53.3 - - 40.0 45.8 40.0 50.8 48.4 53.0 50.9
iCodon 0.503 0.157 0.520 - - - 0.525 0.517 0.535 0.539 0.545 0.536

5.2 CODON USAGE BIAS/PATTERN IS AN INDICATOR FOR HYPERBOLIC MODEL GAINS

We observed that HyperHELM’s performance gains vary significantly across datasets (Table 1).
Building on prior work that links gains from hierarchical learning to codon usage bias (Yazdani-
Jahromi et al., 2025a), we investigated if this holds for models trained in hyperbolic spaces.

To this end, we measured each dataset’s synonymous codon usage bias using the Effective Number
of Codons (ENC) metric (Wright, 1990). This metric quantifies codon diversity: a low ENC value
signifies high bias (a strong preference for specific codons for a given amino acid), while a high
value indicates codons are used more uniformly. As shown in Figure 3, our results confirm the hy-
pothesis: datasets with greater codon usage bias (lower ENC) consistently achieve larger gains with
both HyperHELM prototype based variants. Intuitively, this is because a strong codon bias creates
a stronger learnable hierarchical pattern even among synonymous codons beyond the hierarchy de-
fined by codons and amino acids. This additional hierarchy is naturally suited to the geometry of
hyperbolic space, allowing HyperHELM to capture these dependencies from data more effectively
than non-hierarchical models.

5.3 HYPERHELM IMPROVES ANTIBODY SEQUENCE ANNOTATION

We further assess HyperHELM on the task of antibody (Ab) sequence region annotation, a bench-
mark introduced in prior work (Yazdani-Jahromi et al., 2025a), important for immunological stud-
ies (Briney & Burton, 2018). This task involves predicting the identity of nucleotides in Ab-coding
mRNA into one of four biologically meaningful regions: signal peptides, V, DJ, or constant regions.

We use the same held-out test set of 2000 curated antibody sequences as used in Yazdani-Jahromi
et al. (2025a) for this task and compare our prototype based HyperHELM models against the HELM
baseline. As shown in Table 2(a), both HyperHELM variants outperform Euclidean HELM, with
the prototype distance model achieving the best accuracy of 76.48%, and the prototype entailment
variant being second best with accuracy of 75.21%, compared to 73.48% achieved by HELM. The

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

58.5 59.0 59.5 60.0 60.5
Effective Number of Codons

20

10

0

10

20

30
Im

pr
ov

em
en

t (
%

)

r = 0.47

ENC vs HyperHELM (entailment) Improvement %

58.5 59.0 59.5 60.0 60.5
Effective Number of Codons

r = 0.54

ENC vs HyperHELM (distance) Improvement %
COV-19 E.Coli Fungal Ab1 Ab2 dmelanogaster iCodon mRFP ppastoris scerevisiae

Figure 3: Relationship between codon usage metric (ENC) and HyperHELM performance gains.
Hyperbolic gains are largest for sequences with higher codon usage bias indicated by lower ENC.

results highlight the advantage of hierarchy-aware learning in hyperbolic space to effectively capture
the structure of antibody mRNA regions.

5.4 IMPACT OF SEQUENCE LENGTH AND GC CONTENT ON MODEL PERFORMANCE

We examine model robustness across different biologically meaningful mRNA sequence character-
istics by stratifying datasets according to sequence length and GC content. These factors are known
to be relevant for mRNA engineering (Courel et al., 2019; Zhang et al., 2011; Jia & Qian, 2021) and
have been linked to differences in model generalization (Castillo-Hair & Seelig, 2021; Qiu, 2023;
Szikszai et al., 2022). Longer sequences often contain more complex dependencies and are under-
represented in training data, while extreme GC content alters secondary structure; both scenarios
making it challenging for models to learn effectively.

Sequence Length Analysis We analyzed performance on the Pichia pastoris dataset by divid-
ing sequences into three length categories: short (30–1000 nucleotides), medium (1000–2000 nu-
cleotides), and long (2000–3000 nucleotides). Since the pre-training data consists of sequences
around 1400 nucleotides (a typical range for mRNA vaccines (Gunter et al., 2023)), the long se-
quences represent an out-of-distribution (OOD) challenge.

As shown in Table 2(b), Euclidean HELM’s performance degrades sharply with increasing length,
consistent with prior findings (Yazdani-Jahromi et al., 2025a). In contrast, both HyperHELM vari-
ants reverse this trend, with performance improving on long sequences compared to medium ones.
The entailment-based variant reached a Spearman correlation of 0.70 (a +0.24 absolute improve-
ment over HELM), while the distance-based variant showed a +0.19 improvement. This indicates
that HyperHELM’s hyperbolic-space representation is beneficial even for out-of-distribution length
shifts, a trend also reported for hyperbolic models in other domains (Ibrahimi et al., 2024; Kasarla
et al., 2025).

GC Content Analysis For the COVID-19 dataset, we categorize sequences based on GC content
into: low (GC ≤ 47%), medium (47% < GC ≤ 55%), and high (GC > 55%). These thresholds
align with widely used biological definitions, where GC content below 47% is considered low and
above 55% is high (Brown, 2007; Courel et al., 2019).

Performance for both HELM and HyperHELM (shown in Table 2(c)) is reasonably high in the low
GC range but diminishes for high GC content sequences due to their relative scarcity in the pre-
training corpora. Notably, the entailment-based HyperHELM attains a Spearman rank correlation
of 0.62 in the high GC category compared to HELM’s 0.56, and achieves a strong Spearman rank
correlation of 0.73 in the medium GC category, a gain of +0.09 over HELM.
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Table 2: (a) Accuracy of antibody sequence region annotation, (b) Spearman rank correlation across sequence
lengths for P. pastoris, (c) Spearman rank correlation across GC content for the COVID-19 dataset. Best
performance is shown in bold.

Model Acc. (%)

HELM 73.48
HyperHELM (Dist.) 76.48
HyperHELM (Entail.) 75.21

(a) Antibody annotation

Model Short Med. Long

HELM 0.54 0.58 0.46
HyperHELM (Dist.) 0.65 0.59 0.65
HyperHELM (Entail.) 0.61 0.56 0.70

(b) Sequence length analysis

Model Low Med. High

HELM 0.78 0.64 0.56
HyperHELM (Dist.) 0.77 0.62 0.54
HyperHELM (Entail.) 0.78 0.73 0.62

(c) GC content analysis

6 CONCLUSION

The strong performance of our hyperbolic prototype based models indicates that explicitly model-
ing hierarchical mRNA relationships in hyperbolic space is more effective than standard Euclidean
approaches, even when the latter are made hierarchy-aware. Hyperbolic embeddings not only im-
prove downstream property prediction but also offer a more faithful reflection of codon-amino-acid
relationships, particularly in sequences with strong codon usage bias. Results also demonstrate that
hyperbolic hierarchy-aware modeling can help generalization to out-of-distribution settings such
as modeling long sequence lengths and low GC contents. The observed improvements highlight
the potential of hybrid language models for biological sequences, where Euclidean backbones are
paired with hyperbolic heads, as a practical strategy to integrate hierarchical inductive biases without
incurring the computational overhead of fully hyperbolic networks.

Limitations and Future Work Our current HyperHELM variants use fixed prototypes; future
work will explore making these prototypes learnable during training. We also plan to extend our
methods to Causal Language Modeling for generative applications. Other promising directions in-
clude applying hyperbolic models to different biological modalities, such as protein and genomic
sequences, and investigating adaptive or mixed-geometry latent spaces.
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embeddings. In International conference on machine learning, pp. 4460–4469. PMLR, 2018.

Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and
Georg Seelig. Human 5’ utr design and variant effect prediction from a massively parallel trans-
lation assay. Nature biotechnology, 37(7):803–809, 2019.

14

https://openreview.net/forum?id=dicOSQVPLm


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International
symposium on graph drawing, pp. 355–366. Springer, 2011.

Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In Interna-
tional Conference on Learning Representations, 2021.

Urminder Singh and Eve Syrkin Wurtele. orfipy: a fast and flexible tool for extracting orfs. Bioin-
formatics, 37(18):3019–3020, 2021.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.
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A STATEMENT OF REPRODUCIBILITY

All datasets evaluated in this work were introduced in previously published studies, which are prop-
erly cited in the main text. Upon acceptance of the paper, we will release the codebase required to
reproduce the experiments, including data preprocessing scripts, training and evaluation pipelines,
and configuration files, along with the pretrained model weights. This will ensure full transparency
and enable exact reproduction of our results.

B HIERARCHICAL RELATIONSHIP OF CODONS AND AMINO ACIDS IN MRNA

Figure 4: The codon hierarchy that is used for creating prototypes and structuring the representation
space.

C PRE-TRAINING DETAILS

Model and training All our experiments were run with a transformer backbone, consisting of 10
transformer layers with an intermediate size of 2560 and a hidden size of 640, resulting in a total
of ∼50M parameters. All models were pretrained for 40 epochs with a batch size of 1024 spread
across 8 Nvidia A100 GPUs using the hierarchical cross-entropy (HXE) loss with respect to the
codon hierarchy shown in Figure 4 following (Yazdani-Jahromi et al., 2025a).

Sequences were tokenized using codon-level tokenization, resulting in vocabulary size of 70, includ-
ing special tokens. The maximum context-length was set to 444, which is enough to accommodate
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all sequences in the pretraining dataset. However, the positional embedding layer was configured
to support up to 2048 tokens, as such longer sequences can appear in certain downstream tasks.
Positional embedding was applied following the strategy from GPT-2 (Radford et al., 2019).

Optimization was performed using the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight
decay of 1e-1. The learning rate was scheduled using linear warmup, followed by cosine decay,
using an initial learning rate of 1e-4 which decayed to a minimum of 1e-5. Following (Yazdani-
Jahromi et al., 2025a), the α of the HXE loss was set to 0.2.

For the prototype classifiers, we used a prototype embedding dimension of 128 and used a scaling
factor τ = 2.0 for the embedding with h-MDS (van Spengler & Mettes, 2025). A hyperbolic
linear layer (Shimizu et al., 2021) was used to project to the representation space. The temperature
β was set to 10. When the prototypes are made learnable, their optimization is performed using
Riemannian SGD Bonnabel (2013), which performs updates as

p
(t+1)
i = expc

p
(t)
i

(α∇
p

(t)
i
L), (14)

where p
(t)
i is the i-th prototype at t iterations, where ∇

p
(t)
i
L is the gradient of the loss evaluated at

p
(t)
i and where α is the learning rate. The learning rate is scheduled identically to the learning rate

of the AdamW optimizer. The hyperbolic operations were implemented using the HypLL library
van Spengler et al. (2023b).

Pre-training corpus The pre-training corpus consists of the curated OAS database (Olsen et al.,
2022) adopted from HELM (Yazdani-Jahromi et al., 2025a). For completeness and self-consistency,
the curation procedure is summarized here.

The full OAS database contains more than two billion unpaired and around two million paired
antibody sequences from various species, each with a known open reading frame. However, the
raw database exhibits a high degree of sequence redundancy and includes a non-trivial fraction
of functionally invalid sequences (e.g., sequences with frameshifts, truncations, or non-canonical
residues). To obtain a high-quality pre-training corpus, the filtering strategy introduced in HELM is
followed.

First, filtering based on the ANARCI status annotation provided in OAS is applied, excluding se-
quences with unusual residues, indels, truncations, or missing conserved cysteines, all of which are
often indicative of problematic or non-functional sequences. Sequences with V and J gene iden-
tity below 0.7 are then discarded, ensuring a high degree of similarity to known reference germline
genes. Only sequences labeled as productive and complete vdj are retained, indicating that the cor-
responding sequences are fully functional.

The corpus is subsequently restricted to human antibodies by applying a species filter. To reduce
redundancy, sequence similarity clustering using Linclust (Steinegger & Söding, 2018) is performed
independently on paired and unpaired sequences with a sequence identity threshold of 0.5, and only
the cluster centroids are kept as representatives. Because paired sequences are much fewer in number
than unpaired ones, paired antibodies are split into their heavy and light chains and further treated as
unpaired. Finally, heavy chains are subsampled to approximately match the number of light chains
while maintaining realistic gene frequency distributions.

This process yields a curated pre-training corpus of 15.3 million mRNA sequences, comprising 7.7
million heavy-chain and 7.6 million light-chain CDSs.

D RUNTIME COMPARISON OF PRE-TRAINING METHODS

Table 3 shows the runtime in minutes per epoch for each of the methods on 8×Nvidia A100 GPUs as
obtained using the pre-training setting discussed in detail in Appendix C. As expected, the runtimes
of each method are rather similar, due to the identical backbones dominating the computational
complexity.
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Table 3: Comparison of the runtime between the different methods that were used for pre-training.

Transformer XE HELM MLR Proto Dist. Proto Entail.
Runtime (min/epoch) 73.2 71.1 71.7 72.2 73.1

E DOWNSTREAM TASKS DETAILS

For downstream evaluation, we used a TextCNN (Kim, 2014) for each downstream task, following
(Marquet et al., 2022; Chen et al., 2024; Outeiral & Deane, 2024; Harmalkar et al., 2023; Yazdani-
Jahromi et al., 2025a). Our downstream configuration exactly matches that of (Yazdani-Jahromi
et al., 2025a). So, we use a hidden size of 640 and 100 channels in the convolutions. The pretrained
weights of the backbone are frozen during training. For each model we perform a hyperparameter
search on the grid spanned by learning rates of 3e-4, 1e-4, 1e-5 and batch sizes 8, 16, 32, 64.
The optimal hyperparameter configuration was chosen based on an unseen validation set. The final
reported performance is determined on a separate test set. Each downstream dataset is split into 70%
training, 15% validation and 15% test data.

F PERFORMANCE OF HYPERBOLIC MLR

As shown in the results in Table 1, hyperbolic MLR performs poorly even when compared to the
Euclidean baselines, showcasing that simply replacing the geometry by hyperbolic geometry is not
sufficient for improving performance. This poor performance is likely due to the numerical problems
that occur near the boundary of the space. Training using MLR causes the representations of each
token to be pushed towards the hyperplane corresponding to their class and then beyond it. As a
result, as training progresses, the representations obtained by MLR rapidly grow in norm, causing
these to end up in the region of numerical instability. HypLL van Spengler et al. (2023b) and other
hyperbolic libraries deal with this potential numerical problem by clipping points to a region within
which numerical issues will certainly not arise. However, this means that when training with MLR,
representations often get clipped after a few iterations, destroying all the information stored in the
norms. This effect can be seen in Figure 5. We suspect that this severely hinders further learning
past this point, resulting in poor performance.

Note that both our proposed prototype methods do not suffer from this issue, as observed for the
entailment method in Figure 5. For distance prototypes this is quite straightforward, since token
representations are pushed towards their corresponding prototype, which itself has a relatively small
norm. For entailment cones, once a token representation lies within the cone of its corresponding
prototype, the embedding is no longer pushed away from the origin.

Figure 5: The mean hyperbolic norm of representations at each training step during pretraining using
prototypes with entailment cones or hyperbolic MLR.
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G ADDITIONAL BASELINES

Table 4 contains results for the downstream prediction tasks with additional baselines: linear re-
gression with 1-hot embeddings at codon-level, Euclidean and hyperbolic CNNs with codon-level
tokenization, RNA-FM (Chen et al., 2022a), SpliceBERT (Chen et al., 2023) and EVO 2 (7B) (Brixi
et al., 2025). Because of the large sizes of the foundation models, not all experiments were feasible
due to hardware constraints. Moreover, SpliceBERT cannot be applied to several datasets due to
the maximal sequence length that it can handle. Our method performs best in all cases. Note that
the foundation model baselines were pretrained on different corpora, making the comparison less
relevant than the comparison shown in Table 1. The particularly poor performance of EVO 2 (7B)
can be explained by it being a general model not specialized to mRNA.

Table 4: Accuracy (for E.coli) and Spearman rank correlation (for all other datasets) for additional baselines.
Bold indicates the best performing model per dataset and underline indicates second best model. The missing
values indicate inability to perform experiment due to hardware constraints.

Dataset Linear regression Euclidean CNN Hyperbolic CNN RNA-FM SpliceBERT EVO 2 (7B) Proto Dist. Proto Entail.

Ab1 0.582 0.421 0.518 0.595 0.652 0.129 0.713 0.751
Ab2 0.499 0.243 0.252 0.515 0.542 0.141 0.575 0.569
mRFP 0.687 0.474 0.193 0.527 0.596 0.239 0.819 0.802
COVID-19 0.545 0.602 0.480 0.742 0.757 0.386 0.785 0.807
D. melanogaster 0.123 0.103 0.037 - - - 0.394 0.450
S. cerevisiae 0.285 0.143 0.121 - - - 0.434 0.397
P. pastoris 0.553 0.301 0.229 - - - 0.676 0.671
Fungal 0.475 0.606 0.580 - - 0.400 0.735 0.741
E. coli 37.7 40.0 40.0 - - 40.0 50.8 48.4
iCodon 0.391 0.152 0.143 - - - 0.535 0.539

H SENSITIVITY ANALYSIS WITH RESPECT TO THE HYPERBOLIC TREE
EMBEDDING METHOD

Table 5 shows results on several downstream datasets obtained when using fixed entailment proto-
types generated using either Poincaré embeddings Nickel & Kiela (2017) or HS-DTE van Spengler
& Mettes (2025). As can be seen, both approaches result in similar performance, showcasing that
our method is insensitive to the quality of the embdding method.

Table 5: Spearman rank correlation for several datasets obtained using fixed entailment prototypes generated
using either Poincaré embeddings or HS-DTE.

Dataset Poincaré Embeddings HS-DTE

Ab1 0.752 0.751
Ab2 0.546 0.569
mRFP 0.829 0.802
COVID-19 0.820 0.807
Fungal 0.728 0.741

I SENSITIVITY ANALYSIS WITH RESPECT TO CHOICE OF HYPERPARAMETERS

To evaluate the robustness of our hyperbolic modeling approach, we performed a sensitivity analysis
examining variations in curvature and threshold hyperparameters. The results, summarized in Table
6, indicate that the model’s performance is relatively stable across the tested ranges.

Across most datasets, changes in hyperparameters lead to minor fluctuations in performance, demon-
strating that the model does not rely heavily on precise hyperparameter tuning within this scope. For
example, the performance on COVID-19, Ab1, and Fungal, the performance varies by a few per-
centage points across different hyperparameter settings.
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Table 6: Sensitivity of model performance to hyperparameter variations.

Dataset c=0.20, η=1.05 c=0.50, η=1.05 c=1.00, η=1.1 c=1.00, η=1.2 c=1.00, η=1.05
COVID-19 0.779 0.816 0.800 0.806 0.807
Ab1 0.739 0.742 0.717 0.724 0.751
Ab2 0.593 0.584 0.578 0.583 0.569
Fungal 0.733 0.748 0.733 0.732 0.741
P. pastoris 0.667 0.650 0.678 0.680 0.671

J RELATION TO HYPERBOLIC GENOME EMBEDDINGS

While both Hyperbolic Genome Embeddings (HGE) (Khan et al., 2025) and HyperHELM explore
the use of hyperbolic geometry for biological data, the settings and goals differ in several impor-
tant ways. Firstly, HGE is a DNA model while HyperHELM specifically focuses on mRNA. Sec-
ondly, HGE proposes a fully hyperbolic architecture trained directly on specific downstream tasks,
whereas HyperHELM is designed as a self-supervised language model for large-scale pre-training
on unlabeled mRNA sequences, with the goal of learning general-purpose representations that can
be reused across many downstream tasks. Consequently, our primary conceptual and experimental
comparisons are to other bio-language models that perform MLM-style pre-training, rather than to
task-specific supervised architectures. This focus on large-scale pre-training also drives key tech-
nical choices that differ from HGE: in particular, we find that hyperbolic prototype-based heads
are crucial for MLM performance, while hyperbolic MLR alone underperforms, and we adopt a
projection-based approach (Euclidean backbone with hyperbolic heads) rather than a fully hyper-
bolic network to maintain scalability and compatibility with standard transformer pre-training.

K ABLATION ON “DOUBLE-DIPPING”

We want to verify that our method is not “double-dipping” on hierarchical information by using
hierarchical cross-entropy loss, and potentially introducing redundancy or conflicting optimization
signals. To evaluate this, we performed an ablation comparing our method when used with (i) stan-
dard cross-entropy (XE) loss and (ii) hierarchical cross-entropy (HXE) loss. We trained the same
model architecture under both loss configurations, keeping all other training conditions identical.
This allows us to isolate the effect of the loss function on performance and determine whether hier-
archical information is being over-used or inconsistently exploited. The results show that combining
our method with standard XE leads to lower performance in general. In contrast, pairing our method
with HXE yields improved performance. This confirms that HXE provides a more coherent opti-
mization signal and does not introduce conflicting gradients with our method. In other words, the
hierarchical supervision is complementary rather than redundant.

Dataset Proto Dist. (HXE) Proto Dist. (XE)
ppastoris 0.676 0.666
scerevisiae 0.434 0.342
mRFP 0.819 0.752
E. Coli 50.8 48.6
Fungal 0.735 0.740
COVID-19 0.785 0.775

Table 7: Comparison of Proto Distance under hierarchical cross-entropy (HXE) and standard cross-
entropy (XE).
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L EFFECT OF THE BASE POINT OF THE EXPONENTIAL MAP

To examine whether centering the exponential map at the origin may introduce an information bot-
tleneck, we conducted additional experiments in which the base point was made fully learnable.
For a fair comparison, we fixed the entailment prototypes and directly compared this learnable–base
model with the origin-centered mapping used in the main paper. Across nine datasets, the origin-
centered model performs better in 4 out of 9 cases, is on par in 4 out of 9, and is worse in only 1 out
of 9. These results indicate that learning the base point does not yield consistent improvements, and
that the origin choice is not a bottleneck in practice. These findings support our choice of using the
origin as the base point: it aligns naturally with the hierarchical geometry and performs as well as,
or better than, a learnable alternative.

Dataset Origin base Learnable Base
Ab1 0.751 0.701
S. cerevisiae 0.397 0.369
COVID-19 0.807 0.783
Fungal 0.741 0.724
E. Coli 48.4 50.6
D. melanogaster 0.450 0.451
Ab2 0.569 0.570
mRFP 0.802 0.805
P. pastoris 0.671 0.671

Table 8: Comparison between a learnable base point and the origin-centered exponential map.
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