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ABSTRACT

We present StructMoE, a drop-in augmentation for standard Transformer MLPs
that improves model performance. Each MLP hosts a router that selects a
token-specific top-k subset from a bank of low-rank matrices. Their combined
contribution is injected into the up-projection, yielding a dynamic, per-token rank-
k update to the base weight and executed in parallel with the up-projection via
grouped GEMMs. To compare with dense baselines, we match the parameter
budget of StructMoE by shrinking the base expansion factor to offset the router
and low-rank experts’ parameters. Overall FLOPS decrease because the low-rank
branch is sparsely activated. StructMoE delivers token-level specialization by
routing each token to structured experts inside a single dense MLP. We observe
consistent quality improvements on benchmark tasks for models with upto 1.6B
parameters trained on 400B tokens.

1 INTRODUCTION

Large language models have expanded at an extraordinary pace. Underlying this growth has been the
development of the Transformer architecture (Vaswani et al., 2017) which underpins today’s large
language and multimodal models. Guided by empirical scaling laws (Kaplan et al., 2020) that relate
loss to model size, dataset size, and compute, each new generation has pushed one or more axes
by multiples, moving from hundreds of millions of parameters in early GPT variants to hundreds
of billions and mixture-based trillion-parameter models(Radford et al., 2018; Brown, 2020; Smith
et al., 2022; Zoph et al., 2022a; Du et al., 2022; Liu et al., 2024; Achiam et al., 2023; Comanici
et al., 2025). Training runs now consume trillions of tokens, and inference increasingly targets
long-context regimes with API services offering context windows on the order of 106 tokens (Ope-
nAI; Anthropic; Gemini). This growth has been enabled by steady hardware improvements, better
parallelization and kernels, and data/optimization advances but these improvements have started to
saturate (Hooker, 2025; Sutskever, 2024). Consequently, there is practical interest in methods that
deliver more quality per FLOP while preserving the basic workload of the transformer architecture.

Within each transformer block, the position-wise feed-forward network (FFN/MLP) consumes about
two-thirds of the total parameters and FLOPs because the MLP expands the hidden size H to a larger
Dff and projects back, so it owns two matrices H × Dff and Dff ×H , totaling 2HDff parameters
whereas self-attention has four H ×H projections (Q, K, V, O), i.e., ≈ 4H2 parameters. The FFN
is uniform as every token undergoes the transformation and is dominated by large dense matrix
multiplications, which are a near-ideal workload for modern accelerators. Our goal is to improve
model performance at a fixed FLOP and parameter budget while preserving the GPU-friendly dense
GEMMs of the MLP and adding a small token-specific computation.

With regard to preserving the dense workload of FFNs while offering specialized compute,
Mixture-of-Experts (MoE) has become a popular technique which involves routing tokens to a small
subset of experts to expose much larger capacity without increasing the per-token budget (Shazeer
et al., 2017; Fedus et al., 2022; Du et al., 2022; Jiang et al., 2024; Zoph et al., 2022a; xAI, 2024).
While MoEs achieve compelling gains over dense models, they introduce signifcant parameter spar-
sity and change the systems profile by introducing expert parallelism, cross-GPU communication,
capacity management and routing stabilization which can complicate training and model serving.

We borrow the routing intuition from MoEs and introduce StructMoE, a drop-in augmentation to
the standard MLP that adds a routed low-rank path inside each layer. A router scores each token
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against a bank of low-rank matrices, which we call low-rank experts (LoRE), and selects a fixed
top-k subset whose combined contribution is injected before the up-projection’s nonlinearity. All
tokens follow the same computation pattern which includes one dense MLP and k routed LoREs
per-token.

We evaluate StructMoE in parameter-matched settings on 0.9B and 1.6B Transformers and observe
improvements on language modeling benchmark tasks. In parameter-matched settings, StructMoE
yields a higher accuracy of +2.20% at 0.9B and +3.99% at 1.6B (Table 2). Beyond benchmark
scores, we run two ablations: (i) how to optimally split a fixed LoRE budget between the number of
components L and their rank r; and (ii) how to fuse the routed path with the base MLP (additive vs.
GEGLU-style gating).

2 RELATED WORK

Mixture-of-Experts (MoE) extends the Transformer by replacing the dense FFN with a set of N
experts and a learned router that maps token hidden states to expert scores. At training and inference
time, a Top-k gate selects a small subset of experts per token; their outputs are weighted and com-
bined to produce the layer output. Under FLOP-matched settings, MoE models outperform dense
Transformers. They leverage sparsity by activating only k ≪ N experts per token allowing them
to access greater parameter capacity while keeping per-token compute the same as a dense model
with the same FLOP budget(Shazeer et al., 2017; Fedus et al., 2022; Du et al., 2022; Jiang et al.,
2024; Zoph et al., 2022a; xAI, 2024). In practice, experts are distributed across devices (expert
parallelism) and tokens are shuffled via all-to-all collectives to their selected experts; routers are
regularized with auxiliary load-balancing objectives (and sometimes z-loss for larger models), and
capacity factors upper bound tokens per expert with potential overflow (token dropping) to maintain
throughput when not using dropless MoEs. Recent work explores finer-grained experts (DeepSeek-
MoE, 2024), estimation of outputs from non-activated experts (Panda et al., 2025), aux-loss free
load balancing (Wang et al., 2024) along with development of optimized kernels and libraries to
improve training efficiency and stability of MoEs (Gale et al., 2022; Hwang et al., 2023; Gro, 2024).

A standard formulation of MoEs includes the router as p(x) = softmax(Wrx) ∈ RN with a Top-k
index set Ωk(x). Each expert i is a position-wise MLP:

Ei(x) = (σ
(
xW1,i

)
)W2,i, W1,i ∈ RH×Dff ;W2,i ∈ RDff×H , (1)

and the MoE layer aggregates the top-k expert outputs using the softmax weights as follows:

MoE(x) =
∑

i∈Ωk(x)

pi(x), Ei(x). (2)

Parameter-efficient adaptation and low-rank structure. Adapters and low-rank methods reduce
fine-tuning cost by adding small trainable modules to a frozen backbone (Houlsby et al., 2019;
Hu et al., 2022). LoRA models weight updates as a low-rank product added to the base matrix,
yielding strong downstream performance with far fewer trainable parameters. Subsequent work
explores variants such as IA3, prefix/prompt tuning, and adapter fusion/ensembles (Pfeiffer et al.,
2020a;b; Wang et al., 2022; Liu et al., 2022). These methods are largely static: the same adapters
are applied to all tokens during inference. In contrast, StructMoE integrates a routed bank of low-
rank components into the MLP and trains it from scratch during pretraining (no frozen backbone),
so token-level specialization is learned as part of the base model rather than added post-hoc for task
adaptation.

Design of MLP blocks and gated activations. Gated MLPs such as GLU/GEGLU/SwiGLU
(Dauphin et al., 2017; Shazeer, 2020) improve the FFN by modulating the up-projection before
the nonlinearity. StructMoE adopts the same principle but instantiates the modulator as a routed,
low-rank signal: a router selects a fixed top-k subset from a bank of low-rank components and adds
their contribution to the base up-projection. Unlike classic gated MLPs, the modulation here is
low-rank and token-dependent rather than a fixed gate shared by all tokens.

Memory layers. Product-Key Memory (PKM) augments a network with a very large trainable
key–value store while keeping lookup cost small by factorizing keys into a Cartesian product of two
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sub-key codebooks (Lample et al., 2019). Given a query q ∈ Rd, PKM splits it as q = [q1; q2] with
q1, q2 ∈ Rd/2 and maintains two codebooks K1 ∈ Rd/2×N1 and K2 ∈ Rd/2×N2 . Each memory slot
corresponds to a product key (i, j) with score

si,j(q) = q⊤1 K1,:,i + q⊤2 K2,:,j ,

and an associated value vector Vi,j . Instead of scoring all N1N2 keys, PKM retrieves the top-k
entries in K1 and K2, forms the tk × tk Cartesian product, computes si,j only on this shortlist, and
returns a softmax-weighted sum of the corresponding values. This gives memory capacity |M| =
N1 ×N2 with lookup cost proportional to O((

√
|M|+ k2)× d), enabling billions of parameters at

near-constant FLOPs (Lample et al., 2019; Berges et al., 2024). In practice, the memory layer can
replace an FFN in a Transformer block, providing sparse, retrieval-style capacity that complements
compute-heavy dense MLPs.

Our contribution. StructMoE sits at the intersection of conditional computation and
parameter-efficient adaptation. It adopts the routing principle from MoE but applies it to low-rank
components localized within a dense MLP, yielding token-level specialization. Relative to static
adapters, it introduces content-aware selection and does not introduce the parameter growth and the
associated overhead of MoEs.

3 METHOD

3.1 MOTIVATION AND OVERVIEW

Dense Transformers allocate the same MLP computation to every token. MoEs shows that routing
can between MLPs can improve model performance. Our goal is to borrow the routing intuition
while maintaining most of the simplicity of a single dense MLP per layer.

StructMoE. Inside each MLP, we add a layer-local bank of low-rank matrices, which we refer to as
low-rank experts (LoREs), and a router that selects a fixed top-k subset per token; their combined
contribution is injected before the nonlinearity of the up-projection. This yields token-level special-
ization with fixed per-token cost and no expert capacity or all-to-all communication. We illustrate
the overall idea of StructMoE in Figure 1.

3.2 STRUCTMOE LAYER

Let x ∈ RH be a token representation. A standard MLP computes

MLP(x) = (σ
(
xW1

)
)W2, W1 ∈ RH×Dff , ;W2 ∈ RDff×H , (3)

with activation σ. StructMoE augments the up-projection with a routed low-rank update drawn from
a bank of L components (Aℓ, Bℓ)ℓ = 1L, where

Aℓ ∈ RH×r, Bℓ ∈ Rr×D′
ff , r ≪ min(H,D′

ff). (4)

A router WR ∈ RH×L produces scores for every token followed by a softmax to obtain a distribution
over the components: s(x) = σ(xWR) ∈ RL. Finally, we select a fixed top-k index set Ωk(x) from
s(x) which introduces sparsity in the LoREs. The StructMoE up-projection is then

z(x) = xW ′
1 +

∑
ℓ∈Ωk(x)

sℓ(x)xAℓBℓ, W ′
1 ∈ RH×D′

ff (5)

followed by the activation and down-projection

StructMoE(x) = σ
(
z(x)

)
W ′

2, W ′
2 ∈ RD′

ff×H . (6)

We treat D′
ff < Dff as a design knob to match a parameter budget with the dense baseline (§3.3).

Crucially, k is fixed, so every token uses the same number of LoREs, keeping FLOPs identical across
the batch. The pseudocode for StructMoe can be found in Algorithm B.3.
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(a) Overall StructMoE layer. (b) Inner workings in the up-projection.

Figure 1: StructMoE: overview and inner mechanism (left to right). Left: For each token x,
a router produces scores over a bank of low-rank experts (LoRE) {Li}Li=1 with Li ≡ (Ai, Bi),
rank(AiBi) = r. A fixed top-k subset Ωk(x) with weights {si(x)} is selected, and the combined
low-rank contribution

∑
i∈Ωk(x)

si(x)xAiBi is injected before the nonlinearity of the MLP’s up-
projection and then passed through the down-projection to produce the residual output x̂. Right:
The detailed computation inside the MLP: the dense up-projection xWup-proj runs in parallel with the
routed low-rank path factored as (A(ℓ), B(ℓ)), yielding z = xWup-proj +

∑
ℓ∈Ωk(x)

sℓ(x)xA(ℓ)B(ℓ),
followed by activation z = σ(z) and the standard down-projection x̂ = zWdown-proj.

LoRE-MLP interaction modes. We consider two ways to combine the routed path with the base:
(i) Additive (Eq. 5), and (ii) GLU-style gating in which the routed path modulates the activated base
σ(xW ′

1) multiplicatively. Empirically, we find pre-activation integration (combining before σ) to be
most effective, as it lets the routed path influence the activation’s activation dynamics.

3.3 PARAMETER AND COMPUTE ACCOUNTING

We match the dense baseline’s parameter budget and analyze FLOPs to ensure a fair comparison.

Parameters. Ignoring biases, a dense MLP has Pdense = 2HDff parameters. The StructMoE layer
has

PStructMoE = 2HD′
ff + Lr(H +D′

ff) +HL (7)
parameters where the last term accounts for the router WR computation. Solving PStructMoE = Pdense
for D′

ff gives

D′
ff =

2HDff −HL(r + 1)

2H + Lr
. (8)

This trades a reduction in the base expansion for the router and LoRE parameters.

FLOPs. Counting multiply–adds as 2 FLOPs, the dense MLP costs Fdense = 4HDff per token.
StructMoE costs

FStructMoE = 4HD′
ff + 2HL+ 2kr(H +D′

ff), (9)
covering the base MLP, the router’s matrix-vector multiplication, and k LoREs. Substituting Eq. 8,
the ratio ρ = FStructMoE/Fdense < 1 as k < L and (Aℓ, Bℓ) are always low rank.
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3.4 EXECUTION: GROUPED GEMMS

Evaluating
∑

ℓ∈Ωk(x)
sℓ(x)xAℓBℓ efficiently is the key systems question. We execute the low-rank

path with Grouped GEMM operations.

1. Token grouping. For a batch of tokens, we compute Ωk(x) and gather tokens by selected
component index to form contiguous mini-batches per ℓ.

2. First low-rank multiply. For each active ℓ, compute XℓAℓ where Xℓ stacks the grouped
tokens; this produces shape (nℓ × r).

3. Second multiply. Multiply by Bℓ to obtain (nℓ ×D′
ff) and scatter back to token positions

with weights βℓ(x).

4. Fuse with base. Add to xW ′
1 and proceed with activation and W ′

2.

This pattern avoids materializing AℓBℓ.

3.5 DESIGN CHOICES AND INTUITION

Why routed low rank? Our motivation follows the MoE intuition: when different parts of the
data distribution are handled by specialized mappings, quality improves at similar per-token com-
pute. StructMoE aims to capture a lightweight version of that specialization inside a dense MLP,
without introducing separate experts. Concretely, we view the up-projection as a shared base plus
a token-conditioned, low-rank adjustment, The bank {AℓBℓ}Lℓ=1 acts like a set of small “low-rank
experts,” and the router chooses a fixed top-k of them per token. Injecting this adjustment before the
nonlinearity modulates which features are amplified by the activation, while keeping the workload
as dense GEMMs and the per-token FLOPs fixed. We do not claim full equivalence to MoE; rather,
this is a low-rank approximation to content-dependent specialization that trades a modest reduction
in base expansion D′

ff for a routed bank of low-rank updates. Our ablations (Sec. B.1, B.2) inform
practical settings of (r, L, k) and the fusion choice at the scales we study.

Pre-activation integration. Injecting the routed path before ϕ lets it interact with the activation’s
gating, which we find more effective than post-activation addition.

Where to attach LoREs. In our main experiments, we only attach LoREs to the up-projection.
We experimented with attaching them to the down-projection as well but we found that it offers a
weaker compute–quality trade-off and introduces additional overhead.

3.6 TRAINING DETAILS

Routing, fixed k, and auxiliary losses. Fixing k keeps per-token compute identical across the
batch. Without additional regularization, however, the router can collapse—concentrating most
tokens on a small subset of LoREs while leaving others rarely selected—which wastes parameters,
reduces specialization/diversity, and creates tiny per-LoRE micro-batches that hurt kernel efficiency.
To prevent collapse, we add a Switch-style load-balancing loss on the router’s probabilities (Fedus
et al., 2022) with a coefficient of 0.01. This loss encourages the routing scores to remain close
to a uniform target. In practice, this maintains relatively balanced utilization across the L LoREs
(Sec. 4.5; Fig. 4). We initially experimented with a z-loss (Zoph et al., 2022b) on router logits to
discourage large values, but it had a negligible impact on performance and thus we did not use it for
our actual experiments.

Initialization. We use SmallInit (Nguyen & Salazar, 2019) for W ′
1, Aℓ, Bℓ, and WR: weights are

drawn N
(
0, σ2

)
with σ =

√
2/(5d) for input dimension d. For W ′

2 we use the DeepNorm (Wang
et al.) initializer: N

(
0, σ2

)
with σ = 2/(Nlayers

√
d).

Hyperparameters. We tuned L (number of LoREs), r (rank), and k (active per token) under a fixed
parameter budget using Eq. 8. Empirically, we obtain the best results when k = 1, r = 16, and
L = 16. Section B.1 contains more details regarding this choice.
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Variant Layers Hidden H FFN
Dim

Num
LoREs

LoRe
Rank

Parameters Tokens

Dense 8 2048 Dff = 7168 - - 0.9B 345B
StructMoE 8 2048 D′

ff = 6618 16 16 0.9B 345B

Dense 24 2048 Dff = 7168 - - 1.6B 400B
StructMoE 24 2048 D′

ff = 6618 16 16 1.6B 400B

Table 1: Model sizes and parameter matching. We evaluate two decoder-only Transformers at
0.9B and 1.6B parameters. StructMoE matches the dense parameter budget at each scale by reducing
the MLP expansion from Dff=7168 to D′

ff=6618 while adding the routed LoREs.

3.7 COMPLEXITY AND MEMORY

Per token, StructMoE adds a router cost HL and k low-rank matrices (kr (H+D′
ff)) on top of the

base MLP cost (2HD′
ff). We reduce D′

ff to keep the total parameter budget matched.

Practical overhead. StructMoE adds a small set of extra steps around the base MLP: we bin tokens
by their selected LoRE, gather them into per-LoRE batches, run the two low-rank GEMMs per batch,
and then scatter results back. Let T be the number of tokens in the layer, k the router’s top-k and nℓ

as the per-LoRE batch size. Aggregating across all LoREs, the low-rank intermediates and outputs
are tensors of shape (Tk)×r and (Tk)×D′

ff before we scatter back to the original token order.

Memory footprint. We need to store the LoREs {Aℓ, Bℓ}Lℓ=1 and the router WR, plus (i) top-k
routing tensors of size Tk, (ii) the gathered per-LoRE batches totaling THk activations in feature
space, and (iii) the low-rank intermediates/outputs kept as tensors (Tk)×r and (Tk)×D′

ff prior to
the scatter. In our setting (k = 1, r = 16, L = 16), this leads to a small increase in activations.
In all our runs we were able to keep the same per-GPU batch size and sequence length as the dense
baseline. The main runtime cost remains the extra gather/scatter traffic and the launches for many
small grouped GEMMs. See Sec. 4.6 for more details.

4 EVALUATION

4.1 MODELS

We evaluate two decoder-only Transformer sizes—900M and 1.6B—each with a parameter-matched
Dense and StructMoE variant (Table 1). The 900M models use 8 layers; the 1.6B models use 24
layers. Across all variants we hold the backbone fixed: hidden size H=2048, 32 attention heads,
rotary position embeddings (Su et al., 2024) and LayerNorm. We use the Llama3 tokenizer (3, 2024)
for both models without weight-tying resulting in approximately 525M embedding parameters.

StructMoE matches the dense parameter budget at each scale by reducing the MLP expansion from
Dff=7168 to D′

ff=6618 while adding the routed low-rank bank (see Eq. 7 in §3.3); all other archi-
tectural choices are identical between Dense and StructMoE. Training settings are also shared. We
train with a sequence length of 2048 and a global batch size of 221 tokens per step.

4.2 DATA

Pretraining uses the FineWeb-Edu dataset (Penedo et al., 2024), an education-oriented subset of
FineWeb with heuristic quality filters and deduplication which we tokenize using Llama-3 Tok-
enizer 3 (2024).

4.3 TRAINING SETUP

Implementation. We train with Megatron-LM (Shoeybi et al., 2019) and Deepspeed Aminabadi
et al. (2022), integrating StructMoE’s routed LoREs using grouped-GEMM kernels provided in
Megablocks. (Gale et al., 2022). Routing uses Top-k (k = 1) with a load-balancing coefficient of
0.01.
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Hardware and parallelism. We used 32 NVIDIA A100 40GB GPUs for training, connected via
AWS EFA. The setup consisted of 4 nodes with 8 GPUs per node. Our models fit on a single
GPU, so we disable tensor and pipeline parallelism and use data parallelism (DP) only. We use the
DeepSpeed ZeRO Stage 1 optimizer (Rajbhandari et al., 2020).

Optimization and schedules. For optimization and schedules, we use Adam with a base learning
rate of 3× 10−4 and a minimum learning rate of 3× 10−5. The learning rate follows a cosine decay
schedule with a linear warm-up of 0.1%.

4.4 RESULTS

Benchmark
0.9B Parameter Transformer 1.6B Parameter Transformer

Score Score
Baseline StructMoE Diff (%) Baseline StructMoE Diff (%)

ARC-Challenge 31.8 33.2 +4.40% 34.6 36.6 +5.78%

ARC-Easy 64.4 66.6 +3.42% 70.5 72.1 +2.27%

BoolQ 61.7 61.9 +0.32% 62.8 64.1 +2.07%

HellaSwag 38.3 38.6 +0.78% 57.4 59.6 +3.83%

Lambada 35.2 37.9 +7.67% 45.5 48.5 +6.59%

MNLI 35.3 35.9 +1.70% 36.4 37.8 +3.84%

OpenBookQA 26.0 25.0 -3.85% 27.0 28.2 +4.44%

PubMedQA 53.6 56.4 +5.22% 55.6 60.0 +7.91%

SciQ 77.7 79.7 +2.57% 83.6 86.7 +3.71%

TruthfulQA 23.0 23.1 +0.43% 19.2 20.9 +8.85%

Winogrande 53.1 52.8 -0.56% 58.0 59.8 +3.10%

Average 45.5 46.5 +2.20% 50.1 52.1 +3.99%

Table 2: The table compares StructMoE against parameter-matched dense baselines for two decoder-
only Transformers (0.9B and 1.6B) on standard downstream benchmark tasks (higher is better). All
models are trained under identical data and optimization settings. At 0.9B, StructMoE improves
over the dense baseline by 2.20%. At 1.6B, the gain increases to 3.99%.

Table 2 reports the benchmark scores for StructMoE and the parameter-matched dense baselines at
both scales. At 0.9B, StructMoE improves over the dense baseline by 2.20%. At 1.6B, the gain
increases to 3.99%. StructMoE outperforms the dense baselines in the majority of cases at both
model sizes, suggesting that the routed low-rank path provides useful token-specific specialization.

Figure 2 compares the token-scaled training loss for the parameter-matched dense and StructMoE
models at 1.6B (Fig. 2a) and 0.9B (Fig. 2b). All runs use the same backbone (hidden size 2048,
32 heads, sequence length 2048) and optimizer/schedule; the only architectural change is replacing
the dense MLP with StructMoE while reducing D′

ff to match parameters. These curves mirror the
benchmark gains reported in Table 2: relative improvements over the dense baseline are higher for
the 1.6B model.

4.5 ROUTING ANALYSIS ACROSS LORES

To assess utilization and check for router collapse, we measure the fraction of tokens for which
each low-rank expert (LoRE) is selected by the router. For every layer, we count how often a LoRE
appears in the token’s top-k set (with k ∈ {1} in our runs), normalize by the total number of to-
ken–selections at that layer, and plot the distribution across depth. As shown in Fig. 4, routing
is relatively balanced among LoREs within each layer indicating that router collapse does not oc-
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Figure 2: Training curves (Dense vs. StructMoE) at two scales. Loss vs. tokens for parameter-
matched models.
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Figure 3: Breakdown of StructMoE over-
head Most of the overhead comes from rout-
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the low-rank multiplies themselves.
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Figure 4: Layerwise token–LoRE routing dis-
tribution. For each Transformer layer (x-axis),
the stacked areas show the share of token selec-
tions assigned to each low-rank expert (LoRE)
after top-k routing (y-axis sums to 1 per layer).
We observe relatively balanced utilization of
LoREs across model layers.

cur. This balance is consistent with the Switch-style load-balancing loss used during training and
indicates that StructMoE leverages the full bank of LoREs rather than over-relying on a few.

4.6 STRUCTMOE OVERHEAD

StructMoE introduces a measurable runtime overhead: at 0.9B it increases iteration time by 6.53%
and reduces achieved TFLOPs by 4.23%; at 1.6B, the overhead is 5.77% in iteration time and
a 6.52% reduction in TFLOPs (Table 3). To understand where this comes from, we break the
incremental cost into five parts: routing, binning, gather, grouped GEMM, and scatter. Figure 3
shows their relative shares. The striking observation is that the majority of overhead is not the
matrix-multiplications for the LoRE computations but the orchestration and data movement around
them.

Why this overhead appears. (i) Router: a per-token matrix multiplication xWr and Top-k selec-
tion are small, but they run every layer. (ii) Binning: building token groups for each selected LoRE
requires sorting/histograms and per-LoRe token counts. (iii) Gather/Scatter: moving tokens into
per-LoRE batches and then restoring the original order adds extra reads/writes and memory traffic.
(iv) Grouped GEMM: we compute the low-rank updates as Grouped GEMMs over the per-LoRE
batches. We borrowed this approach from modern MoE implementations.
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Scale Avg. Iter time (ms/step) Avg. TFLOPs
Dense StructMoE Diff (%) Dense StructMoE Diff (%)

0.9B 1.99 2.12 +6.53 197 189 -4.23
1.6B 4.85 5.13 +5.77 196 184 -6.52

Table 3: Runtime and throughput at two scales, with overhead. Per-step wall-clock time and
achieved TFLOPs for parameter-matched Dense vs. StructMoE models.

Design implications. Since the overhead per layer is dominated by fixed orchestration rather than
the LoRE arithmetic, the most effective way to amortize it is to increase per-layer compute. The
added cost is paid once per layer (routing, binning, gather/scatter) and thus deeper models incur it
more times. For a fixed parameter/compute budget, it is therefore better to shift capacity into wider
layers (larger H and D′

ff ) and use fewer layers, so we pay the overhead fewer times and the grouped
GEMMs are larger and more arithmetically intense. Additionally, this overhead becomes smaller
as model size increases (by way of wider models) as the time spent in the standard transformer
operations dominates the overall computation in the model. Consequently, the LoRE orchestration
becomes a smaller fraction of total step time.

5 LIMITATIONS

While StructMoE improves quality at matched parameters and lower theoretical FLOPs, our study
has several limitations.

Scale of evaluation. We report results at 0.9B and 1.6B parameters (Sec. 4.4). The observed gains
grow across these two scales, but we have not yet validated the trend beyond 1.6B parameter models.
Larger models (e.g., 7B) may exhibit different interactions between routing, LoREs and the MLP.

Dense-Transformer–only evaluation. We restrict our study to dense Transformers—one MLP
per layer augmented with routed low-rank components—so results are directly comparable to a
dense baseline. We do not stack StructMoE on top of a traditional MoE, and it is unclear how two
kinds of sparsity/routing would interact. Combining full experts with in-expert low-rank experts
could unlock finer specialization and provide many more routing combinations offering a potentially
better scaling path than simply adding more full experts. However, it will also compound overheads
(two routers, extra gathers/scatters etc). We leave the exploration of this to future work.

Implementation overhead masks some practical gains. The current megablocks grouped-
GEMM path adds real routing/packing costs (binning, gather/scatter, many small-group matmuls)
that reduce achieved TFLOP/s versus a plain dense MLP masks practical gains. We believe that
improvements in MoE style kernels should help trim the overhead.

6 CONCLUSION

We introduced StructMoE, a drop-in modification to dense Transformers that routes a fixed number
of low-rank components inside the MLP, enabling token-level specialization. In parameter-matched
settings, StructMoE improves on benchmark scores over dense baselines at two scales: +2.20%
(0.9B) and +3.99% (1.6B) and shows balanced routing across components. Ablations indicate that
a mid-rank/mid-count setting (r=16, L=16) is most effective and that additive and GEGLU fusions
converge to similar final loss.

On the implementation side, the current grouped-GEMM implementation introduces nontrivial rout-
ing/packing overhead that reduces achieved TFLOPs compared to the dense baseline. Fewer but
wider layers help amortize this cost, and kernel/library improvements should further trim it.

9
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7 ETHICS

This work focuses on methods for improved pretraining techniques for large language models
through routed low rank experts. As such, this work does not raise novel ethical or societal risks
beyond those already associated with large language models.

8 REPRODUCIBILITY

We have made significant the following efforts to ensure the reproducibility of our results.

1. Model details Details for our models are included in Section 4.1

2. Dataset. The dataset is described in Section 4.2.

3. Hyperparameters & training. Optimizer, training schedule, batch sizes, hardware setup
and experimental details are in Section 4.3.

4. Code. We use publicly available libraries for training (details in 4.3 and we will release our
code upon acceptance.
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fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020a.
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A USE OF LLMS

We used LLMs for plotting code, latex formatting and finding relevant work.

B ABLATIONS

B.1 CHOOSING RANK AND NUMBER OF LORES

We study how to allocate the LoRE budget between rank (r) and count (L). In a small-scale setting,
we sweep four configurations while keeping the total LoRE budget and overall parameters constant
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Figure 5: LoRE rank–count sweep at constant
budget. Training loss vs. total training tokens for
four StructMoE configurations with fixed LoRE
budget L × r = 256 and matched overall pa-
rameters. Curves correspond to r=1, L=256 ,
r=8, L=32 , r=16, L=16 , and r=32, L=8 .
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Figure 6: Additive vs. GEGLU fusion for
StructMoE. Training loss (y-axis) vs. seen to-
kens in billions (x-axis) with identical (k, r, L)
and parameter budgets. Both fusion strategies
converge to the same final loss, but GEGLU
starts with a higher initial loss.

by fixing L × r = 256 and adjusting D′
ff via Eq. (8). The four settings are: (r=1, L=256),

(r=8, L=32), (r=16, L=16), and (r=32, L=8). Figure 5 plots training loss vs. tokens for these
variants. Empirically, r=16, L=16 provides the best trade-off, consistently achieving the lowest
loss at matched tokens. Therefore, we use (r=16, L=16) in all our large-scale experiments.

B.2 ADDITIVE VS. GEGLU FUSION

We compare two ways of combining the routed LoRE path with the base up-projection: additive
(pre-activation sum) and GeGLU fusion (the routed path modulates the activated base). Keeping
(k, r, L), D′

ff , and all optimization settings identical, both variants converge to essentially the same
training loss at matched tokens. However, as shown in Fig. 6, GeGLU exhibits a higher initial loss
compared to additive fusion. We used the additive fusion for all our large-scale experiments.

B.3 STRUCTMOE PSEUDOCODE

Algorithm 1 StructMoE MLP forward (per layer)

Require: Input Batch X ∈ RT×H , weights W ′
1,W

′
2,WR, (Aℓ, Bℓ)ℓ = 1L, top-k, activation ϕ, softmax σ

1: s(X)← σ(XWR) (router scores)
2: For each token t, select Ωk(Xt) and weights sℓ(Xt)
3: Group tokens by selected index ℓ; form mini-batches Xℓ

4: Z0 ← XW ′
1 (base up-projection)

5: for each active ℓ do
6: Rℓ ← (XℓAℓ)Bℓ (grouped GEMMs)
7: Scatter sℓ(·)Rℓ back into token positions
8: end for
9: Z ← Z0 +

∑
ℓ scatter(sℓRℓ)

10: Y ← ϕ(Z)W ′
2 return Y
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