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Abstract

Whereas the ability of deep networks to produce useful predictions on many kinds of data has
been amply demonstrated, estimating the reliability of these predictions remains challenging.
Sampling approaches such as MC-Dropout and Deep Ensembles have emerged as the most
popular ones for this purpose. Unfortunately, they require many forward passes at inference
time, which slows them down. Sampling-free approaches can be faster but often suffer from
other drawbacks, such as lower reliability of uncertainty estimates, difficulty of use, and
limited applicability to different types of tasks and data.
In this work, we introduce a sampling-free approach that is generic and easy to deploy,
while producing reliable uncertainty estimates on par with state-of-the-art methods at a
significantly lower computational cost. It is predicated on training the network to produce
the same output with and without additional information about it. At inference time,
when no prior information is given, we use the network’s own prediction as the additional
information. We then take the distance between the predictions with and without prior
information as our uncertainty measure.
We demonstrate our approach on several classification and regression tasks. We show that
it delivers results on par with those of ensembles but at a much lower computational cost.

1 Introduction

Though the ability of modern neural networks to generate accurate predictions is now clear, assessing the
trustworthiness of these predictions remains an open problem. This can be addressed by estimating the
potential inaccuracy of the predictions, which is then taken as an uncertainty measure. MC-Dropout (Gal &
Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan et al., 2017) are the most widely methods used
to this end. MC-Dropout involves randomly zeroing out network weights and assessing the effect, whereas
ensembles involves training multiple networks, starting from different initial conditions. They are simple to
deploy and universal. Unfortunately, they induce substantial computational and memory overheads, which
makes them unsuitable for many real-world applications.

An alternative is to use sampling-free methods that estimate uncertainty in one single forward pass of a
single neural network, thereby avoiding computational overheads (Amersfoort et al., 2020; Malinin & Gales,
2018; Tagasovska & Lopez-Paz, 2018; Postels et al., 2019). However, deploying them may require significant
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Figure 1: ZigZaging. At inference time, we make two forward passes. First, we use [x, 0] as input to produce a
prediction y0. Second, we feed [x, y0] to the network and generate y1. We take ∥y0 − y1∥ to be our uncertainty
estimate. In essence, the second pass performs a reconstruction in much the same way an auto-encoder does and a
high reconstruction error correlates with uncertainty.

modifications to the network’s architecture (Postels et al., 2019), substantial changes to the training pro-
cedures (Malinin & Gales, 2018), limiting their application to very specific tasks (Amersfoort et al., 2020;
Malinin & Gales, 2018; Mukhoti et al., 2021a), or lessen the quality of the uncertainty estimate (Postels
et al., 2022; Ashukha et al., 2020). As a result, they have not gained as much traction as MC-Dropout and
ensembles.

To remedy this, we introduce ZigZag, a sampling-free approach that is generic and easy to deploy, while
producing reliable uncertainty estimates on par with sampling-based methods, but at a significantly lower
computational cost. It only requires two forward passes through a single network. The first one simply
predicts the output from the input data. The second one takes the initial prediction as an additional input
to make a second prediction. The consistency between these two predictions is indicative of uncertainty.
This is because we train the network to achieve accurate predictions in the first pass and to precisely
reconstruct these predictions in the second pass, assuming that the first one is correct as shown in Fig.1
(Left). Conversely, if the initial prediction is erroneous, the subsequent reconstruction is likely to fail as
shown in Fig.1 (Right). We will argue that this is analogous to using the reconstruction error of regular
autodecoders to tell in-distribution samples from out-of-distribution ones (Japkowicz et al., 1995; Alain &
Bengio, 2014; Zhou, 2022).

More specifically, given a network M, we modify its first layer to accept a second argument, yielding the
modified architecture M̂. We then train M̂ so that, for all training pairs (x, y), we have y ≈ M̂(x, 0) ≈
M̂(x, y), where 0 is a vector of zeros. At inference time, we first compute y0 = M̂(x, 0) and then y1 =
M̂(x, y0). We refer to this as ZigZagging, as depicted by Fig. 1. Finally, we take the distance between the
two predictions ∥y0 −y1∥ as our error estimate. This exploits the fact that, if y0 is accurate, that is, y0 ≈ y,
y1 = M̂(x, y0) is likely to be close to y as well because that’s what the network has been trained to do.
Thus ∥y0 − y1∥ will be small. A contrario, if y0 is wrong and very different from y, feeding the pair (x, y0)
to the network amounts to giving it an input that is out-of-distribution with respect to the data it has been
trained to handle. Thus, the result is likely to be random and the distance between y0 and y1 large.

Our approach is fast because it only requires performing two forward passes using one single network and
delivers uncertainty results comparable to those of ensembles, which are much more costly but often seen
as the method that delivers the best uncertainty estimates on a wide range of classification and regression
problems. Furthermore, it is very easy to use in conjunction with almost any network architecture with only
very minor changes. Hence, our method is also task-agnostic. We demonstrate its effectiveness across a wide
range of classification and regression tasks, extending to practical applications such as lift-drag regression
for airfoil samples and predicting the drag coefficient of a 3D car.

2 Related work

Uncertainty Estimation (UE) aims to accurately evaluate the reliability of a model’s predictions. Among all
the methods that can be used to do this, MC-Dropout (Gal & Ghahramani, 2016) and Deep Ensembles (Lak-
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shminarayanan et al., 2017) have emerged as two of the most popular ones, with Bayesian Networks (Mackay,
1995) being a third alternative. These methods are sampling-based and require several predictions at infer-
ence time, which slows them down. There is recent work on overcoming this and we discuss both kinds of
approaches below.

Sampling-based Approaches. MC-Dropout involves randomly zeroing out network weights and assess-
ing the effect, whereas ensembles involve training multiple networks, starting from different initial conditions.
The extensive survey of Ashukha et al. (2020) concludes that Deep Ensembles tend to produce the most
decorrelated models, which results in highly diversified predictions and the most reliable uncertainty esti-
mates. Unfortunately, Deep Ensembles also entail the highest computation costs due to the need to train
multiple networks and to run up to dozens of forward passes at inference time. MC-Dropout tends to be less
reliable and also involves making several inferences at inference time. There have been recent attempts at
increasing the reliability of MC-Dropout (Durasov et al., 2021a; Wen et al., 2020) but they do not address the
fact that multiple inferences are required to estimate the uncertainty. Alternative sampling-based methods
such as Mi et al. (2022) rely on noise injections or input augmentations during inference in order to produce
uncertainty from the variance of generated predictions. Bayesian Networks (Blundell et al., 2015; Graves,
2011; Hernández-Lobato & Adams, 2015; Kingma et al., 2015) also require several forward passes to com-
pute uncertainty and rarely outperform Deep Ensembles (Ashukha et al., 2020). In short, for sampling-based
methods, computation time scales linearly with the number of samples and can be prohibitively expensive
for performance-critical applications.

Sampling-free Approaches. When a rapid response is needed, for example for robotic control (Loquercio
et al., 2020) or low-latency applications (Gal, 2016), there is no time to perform many forward passes during
inference. Consequently, there has been much interest for sampling-free approaches that require constant time
for inference. For example, (Amersfoort et al., 2020) describes a clustering-like procedure used to estimate
uncertainty for classification and semantic segmentation purposes. In (Malinin & Gales, 2018; Sensoy et al.,
2018; Amini et al., 2020; Malinin et al., 2020), uncertainty is estimated from Dirichlet and Normal-Wishart
distributions whose parameters are predicted by the network. Unfortunately, it is not obvious how to extend
sampling-free methods designed for specific tasks (Amersfoort et al., 2020; Mukhoti et al., 2021a; Hornauer
& Belagiannis, 2022) to more generic applications. Furthermore, deploying them often requires significantly
changing the network architecture and the training procedures (Liu et al., 2020; Shekhovtsov & Flach, 2019;
Wannenwetsch & Roth, 2020), along with increased memory consumption (Wang et al., 2016; Shekhovtsov
& Flach, 2019; Gast & Roth, 2018), worse uncertainty quality (Tagasovska & Lopez-Paz, 2018; Mukhoti
et al., 2021b) or slower inference (Postels et al., 2019), which limits their appeal.

Regression is handled in (Postels et al., 2019; Gast & Roth, 2018) using an uncertainty estimation method
that relies on uncertainty propagation from one layer to another. During the forward pass, not only activa-
tions but also their variances are estimated in each layer. Thus, the variance of the final predictions can be
estimated in one pass but at the cost of a two-fold memory consumption and we will show that our approach
performs better. Tagasovska & Lopez-Paz (2018) use both quantile regression (Furno & Vistocco, 2018)
and orthonormal certificates to detect out-of-distribution samples during inference. Though being compu-
tationally efficient, this approach also can yield poor uncertainty estimates and miscalibrated predictions.
SNGP (Liu et al., 2020) has been used to estimate uncertainty in a deep learning context, but this requires
adding a Random Features (Rahimi & Recht, 2007) and Spectral Normalization (Miyato et al., 2018) layer
to every convolutional layer, which entails significant modifications of both training dynamic and network
architectures. Similarly, the approaches described by Wang et al. (2016); Shekhovtsov & Flach (2019) require
replacing all of the convolution layers with modified versions and doubling the number of weights, which
significantly impacts memory consumption. Other types of methods such as (Zhang et al., 2019) work only
with specific uncertainty types, either aleatoric or epistemic (Der Kiureghian & Ditlevsen, 2009; Kendall
& Gal, 2017). Furthermore, in some cases, they can yield significantly worse uncertainty calibration than
sampling-based approaches (Postels et al., 2022). We provide more specific comparisons in the experiment
section.

Reconstruction Error in Autoencoders. It has long been known that, for any sample fed as input
to an autoencoder, the reconstruction error can be used to estimate the likelihood of this sample being
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within the model’s training distribution (Japkowicz et al., 1995), as depicted by Fig.2. Given a denoising or
contractive autoencoder R and a sample x the reconstruction error |R(x) − x| is directly connected to the
log-probability of the data distribution pdata(x), as initially shown by Bengio et al. (2013); Alain & Bengio
(2014). This finding was later extended to a wider class of autoencoders (Kamyshanska & Memisevic, 2013),
and eventually to regular autoencoders trained using a stochastic optimization setup (Solinas et al., 2020).
This has been successfully used for out-of-distribution detection (Zhou, 2022; Sabokrou et al., 2016) task.
Our approach is in the same spirit, except for the fact we replace the reconstruction error |R(x) − x| by the
distance between the two ZigZag predictions.

AutoEncoder AutoEncoder

Accurate reconstruction Erroneous reconstruction
Figure 2: Autoencoder Reconstruction Error An autoencoder trained exclusively on cat images yields
accurate reconstructions on other cat images (left) and inaccurate ones on dog images (right). Thus, the
distance between an image and its reconstruction can be used to estimate whether that image is likely to be
a cat image or not.

3 Method

ZigZag is an approach to sampling-free uncertainty estimation that delivers classification and regression
results on par with state-of-the-art sampling-based methods such as ensembles and MC-Dropout while being
far less computationally demanding. It relies on the dual-inference scheme depicted by Fig. 1. Given a
network M̂ and a sample x, we first use M̂ to make a first prediction y0 without any prior information. We
then make a second prediction y1 using y0 as a prior. We train the network so that, if y0 is correct, then
y1 should be similar to y0, whereas it should be different if y0 is inaccurate. In much the same way, an
auto-encoder prediction is accurate for in-distribution samples and inaccurate for out-of-distribution ones.

In other words, the second pass performs a reconstruction of the second input argument. As in an auto-
encoder, we expect the reconstruction error to be low for in-distribution data and high for out-of-distribution
data, thereby providing an estimation of uncertainty. More specifically, when we provide the network M̂(x, 0)
with input (x, y), if the label y is close to the correct answer, then the difference between M̂(x, 0) and
M̂(x, y) is small because the network is trained to behave in this manner and the input (x, y) represents an
in-distribution data point. However, if y is not close to the correct answer, then (x, y) represents something
that the network has never encountered during training: a first argument x and a second argument y that is
neither 0 nor the ground-truth. Essentially, this is an out-of-distribution sample for which the network, like
most networks, can be expected to produce an unpredictable output. Hence, there is no reason for M̂(x, 0)
and M̂(x, y) to be similar. We leverage this property to quantify the model’s uncertainty. In other words,
there are two scenarios when reconstruction fails: 1) when (x, y) is OOD because x is OOD, addressing
epistemic uncertainty and OOD samples, 2) when (x, y) is OOD because y is OOD / errornous. In this
case, the reconstruction issue is due to y, our uncertainty measure is high, we cover aleatoric uncertainty
connected to predicted target.

3.1 Modifying the Original Architecture

Let M be a network that takes as input a vector x and returns a prediction vector M(x) that should be
close to target y. We modify the first layer of M to create a new architecture M̂ that takes as input both
x and a vector of the same dimension as y so that we can compute both M̂(x, 0) and M̂(x, y), where 0 is a
vector of zeros of the same dimension as y. We take M̂(x, 0) to be the prediction without prior information
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and M̂(x, y) one with prior information. In practice, M can be any sufficiently powerful deep architecture,
such as VGG (Simonyan et al., 2014), ResNet (He et al., 2016) or a Transformer (Dosovitskiy et al., 2020).
In all these cases, modifying the first network layer is a simple task.
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Figure 3: Architecture Modification. Given a model with weights W1 ∈ Rd×h, W2 ∈ Rh×1, we modify its first
layer W1 to accept two inputs instead of only one. The modified model consists of W̃1 ∈ R(d+1)×h and W2 ∈ Rh×1

and can process the concatenation of the original input x and additional value y0.

For simplicity, let us first consider the case where M is a simple network with one hidden layer of dimension
h. It takes x ∈ Rd as input and outputs a scalar y ∈ R. To handle a second argument y, the input dimension
of the first trainable layer must become d + 1 to allow the concatenation of the original input vector x and
the additional value y. Similarly, we can add additional channels to convolutional layers to work with RGB
images, for example by adding a fourth channel that represents y. As before, we only need to modify the
first convolutional layer of the network so that it can process 4-dimensional inputs.

3.2 Training

At the heart of our approach is the training of M̂ to yield comparable outputs, whether or not the target y
is provided as input. In practice, we want M̂(x, 0) ≈ M̂(x, y) ≈ y for all training pairs (x, y). To this end,
given a training pair(x, y), we consider the loss

L(M̂(x, 0), y) + L(M̂(x, y), y) , (1)

where L is a domain-dependent loss term whose minimization ensures that the prediction made by M is
close to the target y. By minimizing this loss for all samples, we guarantee that our model can make accurate
predictions when provided either with 0, that is, no prior information, or with accurate prior information in
the form of the full answer y.

3.3 Inference

At inference time, we compute

ŷ = y0 = M̂(x, 0) , (2)
y1 = M̂(x, y0) = M̂(x, M̂(x, 0)) ,

û = ∥y0 − y1∥ , (3)

where ŷ is our final prediction and û our uncertainty estimate. y0 is estimated without prior information,
whereas y1 is computed by using y0 as the prior information. If y0 is accurate, providing it as prior
information should not disturb the inference because M̂ has been trained to return the correct answer when
given the correct answer as prior information. This should result in y1 being similar to y0 and a small
û. Consequently a large û is an indication that supplying y0 as the prior information has disrupted the
inference mechanism and that y0 is probably inaccurate.

This can also be understood in terms of the well-known tendency of networks to return arbitrary answers
for samples that are out-of-distribution (OOD) with respect to the data they were trained on (Zhang et al.,
2021; Lakshminarayanan et al., 2017; Nguyen et al., 2015). The training scheme introduced above is such
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that the in-distribution training pairs are of the form (x, z), where z is either 0 or the ground-truth y. When
y0 is inaccurate and we use it to compute y1 = M̂(x, y0), we are essentially feeding an OOD sample to the
network and the result y1 can be expected to be random, and therefore very different in general of y0. Our
experiments on validation data bear this out, as shown in Fig. 4.

Figure 4: True vs Estimated Error. We use MNIST (left) and CIFAR (right) validation data to plot the
true prediction errors as measured by the loss being minimized against our uncertainty estimates ∥M̂(x, 0)−
M̂(x, M̂(x, 0))∥ for individual samples. In both cases, the correlation is strong and Pearson’s correlation
coefficient is above 90%. The red line represents a linear fit to the data.

4 Experiments

We first introduce our metrics and baselines. We then use simple synthetic data to illustrate the behavior of
ZigZag. Next, we turn to image datasets often used to test uncertainty-estimation algorithms. Finally, we
present real-world applications. Implementation details about the baselines, metrics, training setups, and
hyper-parameters could be found in the appendix.

4.1 Metrics and Baselines

We now introduce the evaluation metrics we use to quantitatively compare our methods against several
baselines.

Accuracy Metric. For classification tasks, we use the standard classification accuracy, i.e. the percentage
of correctly classified samples in the test set. For regression tasks, we use the standard Mean Absolute Error
(MAE) metric.

Uncertainty Metrics. As in (Postels et al., 2022), we use Relative Area Under the Lift Curve (rAULC)
to quantify the quality of calibration of uncertainty measures both for classification and regression tasks.
Unlike other metrics (Brier et al., 1950; Guo et al., 2017), it is suitable for sampling-free approaches to
estimate uncertainty.

Another way to estimate how good uncertainty estimates are is to use them to detect out-of-distribution
samples under the assumption that the network is more uncertain about those than about samples from the
distribution used to train it. As in (Malinin & Gales, 2018; Durasov et al., 2021a), given both in- and out-
of-distribution (OOD) samples, we classify high-uncertainty ones as OOD and rely on standard classification
metrics, ROC and PR AUCs, to quantify the classification performance.

Time, Memory, and Simplicity. The Time and Size metrics measure how much time and memory it
takes to train the network(s) to estimate uncertainty, compared to a single one that does not estimate it.
The Simplicity metric assesses how easy it is to modify a given architecture to obtain uncertainty estimates.
We denote it as simple (✓) if it requires changing less than 10% of layers of the original model and the
training procedures do not need to be substantially modified. We also report Inference Time that represents
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how much time the model takes to compute uncertainties relative to single model inference on Tesla V100
and without considering parallelization for sampling-based approaches.

Baselines. We compare against recent sample-based approaches—MC-Dropout (Gal & Ghahramani, 2016)
(MC-D), Deep Ensembles (Lakshminarayanan et al., 2017) (DeepE), BatchEnsemble (Wen et al., 2020)
(BatchE) and Masksembles (Durasov et al., 2021a) (MaskE) —and sample-free ones—-Single Model (Kendall
& Gal, 2017) (Single)—-predicted variance for regression and entropy of the predictive distribution for
classification, Orthonormal Certificates (Tagasovska & Lopez-Paz, 2019) (OC ), SNGP (Liu et al., 2020)
(SNGP), EDL (Sensoy et al., 2018) (EDL), Variance Propagation (Postels et al., 2019) (VarProp). For all
four sampling-based approaches, we use five samples to estimate the uncertainty at inference time. This
number of samples has been shown to perform well for many tasks (Durasov et al., 2021a; Wen et al., 2020;
Malinin & Gales, 2018). All of the training and implementation details are provided in the appendix. The
evaluation was performed using three random seeds and averaged. For standard deviation results, please
refer to Sec. A.3.

4.2 Simple Synthetic Data.

We use such data to illustrate how ZigZag behaves both for classification and regression.

Classification Task. Let us consider the red and blue 2D points shown in Fig. 5. We use them to train
an MLP with 6 fully-connected layers and LeakyReLU activations to classify other points in the plane as
belonging either to the red or the blue class. The background color in each of the subplots depicts the
uncertainty estimated by Single-Model, MC-Dropout, Deep Ensembles, and ZigZag. The first two only
exhibit uncertainty along a narrow band between the two distributions. This is highly questionable once one
is far away from the data points in the lower left and upper right corners of the range. Both ensembles and
ZigZag deliver more plausible high uncertainties once far from the training points, but ZigZag does it at a
lower computational cost.

(a) (b)

(c) (d)

Figure 5: Uncertainty Estimation for Classifica-
tion. The task is to classify data points drawn in the
range x ∈ [−2, 3], y ∈ [−2, 2] as being red or blue given
the red and blue training samples from two interleaving
half circles with added Gaussian noise. The background
color depicts the classification uncertainty assigned by
different techniques to individual grid points. Violet
is low and yellow is high. (a) Single model, (b) MC-
Dropout, (c) Deep Ensembles, (d) ZigZag.

(a) (b)

(c) (d)

Figure 6: Uncertainty Estimation for Regression.
The task is to regress y-axis values for x-axis data points
drawn in the range x ∈ [−1, 3] from third power poly-
nomial with added Gaussian noise. Red colored area
depicts the uncertainty assigned by different models to
individual points on the x-axis grid. (a) Single model,
(b) MC-Dropout, (c) Deep Ensembles, (d) ZigZag.

Regression Task. Let us now consider the simple regression problem depicted by Fig. 6: We draw values
x in the range [−1, 3], compute values y = f(x) + σ where f is the third order polynomial and σ is Gaussian
noise, and use these pairs to train a regression network. The shaded areas depict the uncertainty estimated
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by Single-Model, MC-Dropout, Deep Ensembles, and ZigZag. For the points outside of the training range,
the last two correctly predict very large uncertainties, unlike the first two. But again, ZigZag does it at a
lower computational cost than Deep Ensembles.

MC-D DeepE BatchE MaskE Single EDL OC SNGP VarProp ZigZag
Accuracy (↑) 0.981 0.990 0.989 0.989 0.980 0.975 0.980 0.984 0.986 0.982

M
N

IST

rAULC (↑) 0.932 0.958 0.941 0.929 0.712 0.955 0.851 0.813 0.731 0.961
Size 1x 5x 1.2x 1x 1x 1x 1.3x 1x 1x 1x

Inf. Time 5x 5x 5x 5x 1x 1x 1.4x 1.7x 1.2x 2x
Time 1.3x 5x 1.4x 1.3x 1x 1x 1.1x 1.1x 1.x 1x

ROC-AUC (↑) 0.953 0.984 0.965 0.963 0.773 0.947 0.934 0.951 0.812 0.982
PR-AUC (↑) 0.962 0.979 0.965 0.966 0.844 0.923 0.923 0.942 0.861 0.981
Accuracy (↑) 0.909 0.929 0.911 0.901 0.8901 0.912 0.892 0.905 0.895 0.928

C
IFA

R

rAULC (↑) 0.889 0.911 0.884 0.889 0.884 0.596 0.583 0.742 0.715 0.897
Size 1x 5x 1.2x 1x 1x 1x 1x 1x 1x 1x

Inf. Time 5x 5x 5x 5x 1x 1x 1.1x 1.1x 1.2x 2x
Time 1.2x 5x 1.4x 1.3x 1x 1x 1.3x 1x 1.2x 1.2x

ROC-AUC (↑) 0.854 0.915 0.877 0.900 0.825 0.864 0.851 0.900 0.831 0.901
PR-AUC (↑) 0.918 0.949 0.919 0.931 0.875 0.903 0.821 0.891 0.861 0.933
Accuracy (↑) 0.74 0.77 0.73 0.74 0.75 0.74 0.75 0.74 0.73 0.75 Im

ageN
et

rAULC (↑) 0.78 0.84 0.78 0.79 0.80 0.76 0.71 0.8 0.69 0.82
Size 1x 5x 1.1x 1.1x 1x 1x 1x 1x 1x 1x

Inf. Time 5x 5x 5x 5x 1x 1x 1.1x 1x 1x 2x
Time 1x 5x 1.1x 1x 1x 1x 1x 1x 1.1x 1.3x

ROC-AUC (↑) 0.52 0.56 0.53 0.52 0.51 0.52 0.52 0.53 0.50 0.54
PR-AUC (↑) 0.16 0.19 0.16 0.14 0.15 0.14 0.17 0.13 0.12 0.17

Simple ✓ ✓ ✗ ✗ - ✓ ✓ ✗ ✗ ✓

Table 1: Classification results on MNIST (top), CIFAR (middle), and ImageNet (bottom). The best
result in each category is in bold and the second best is in bold. Most correspond to ZigZag and DeepE. Hence,
they perform similarly but ZigZag requires far less computation and memory.

4.3 Classification Tasks.

We now compare ZigZag against the baselines on the widely used benchmark datasets MNIST vs FMNIST,
CIFAR vs SVHN, and ImageNet vs ImageNet-O. The images are very different across datasets and exhibit
distinct statistics. For each dataset pair, we use the first to train the network and to evaluate how well
calibrated the methods are the second to perform out-of-domain detection experiments. We report the
results in Tab 1. In all three cases, Deep Ensembles and ZigZag perform similarly and outperform the other
approaches. However, ZigZag does not incur the 5-fold increase in memory and time requirements that
Deep Ensembles does. Even though the other sampling-free approaches tend to yields worse calibration than
sampling-based ones (Postels et al., 2022), ZigZag does not.

MNIST vs FashionMNIST. We train the networks on MNIST (LeCun et al., 1998) and compute the
accuracy and calibration metrics. We then use the uncertainty measure they produce to classify images from
the test sets of MNIST and FashionMNIST (Xiao et al., 2017) as being within the MNIST distribution or
not to compute the OOD metrics introduced above. We use a standard architecture with four convolution
and pooling layers, followed by fully connected layers with ReLU activations.

CIFAR vs SVHN. We ran a similar experiment with the CIFAR10 (Krizhevsky et al., 2014) and
SVHN (Netzer et al., 2011) datasets. This is challenging for OOD detection because many of the CIFAR
32 × 32 images are noisy and therefore hardly distinguishable from each other, which makes the class labels
unreliable. As the training set is relatively small, very large models tend to overfit the training data. We
therefore use the Deep Layer Aggregation (DLA) (Yu et al., 2018) network for our experiments that tends
to outperform standard architectures such as ResNet (He et al., 2016) or VGG (Simonyan & Zisserman,
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MC-D DeepE BatchE MaskE Single SNGP OC VarProp ZigZag
MAE (↓) 4.655 4.472 4.699 4.786 4.724 4.819 4.724 4.682 4.630 U

T
K

FA
C

E
rAULC (↑) 0.034 0.047 0.043 0.033 0.026 0.031 0.025 0.029 0.045

Size 1x 5x 1x 1x 1x 1x 1x 1x 1x
Inf. Time 5x 5x 5x 5x 1x 1x 1x 1x 2x

Time 1.1x 5x 1.3x 1.2x 1x 1.7x 1.1x 1x 1x
ROC-AUC (↑) 0.688 0.755 0.732 0.653 0.564 0.694 0.658 0.662 0.773
PR-AUC (↑) 0.884 0.939 0.846 0.830 0.762 0.890 0.843 0.851 0.959

MAE (↓) 3.376 3.03 3.03 3.26 3.18 3.16 3.20 3.25 3.10 A
IR

FO
ILS

rAULC (↑) 0.065 0.062 0.062 0.034 0.008 0.013 0.01 0.015 0.068
Size 1x 5x 1x 1x 1x 1.05x 1x 1x 1x

Inf. Time 5x 5x 5x 5x 1x 1.3x 1.1x 1.4x 2x
Time 1.2x 5x 1.3x 1.3x 1x 1.7x 1.1x 1.1x 1.2x

ROC-AUC (↑) 0.897 0.972 0.971 0.923 0.690 0.894 0.874 0.78 0.992
PR-AUC (↑) 0.744 0.955 0.942 0.793 0.681 0.767 0.748 0.76 0.987

MAE (↓) 0.129 0.101 0.115 0.115 0.121 0.115 0.120 0.119 0.112

C
A

R
S

rAULC (↑) 0.06 0.10 0.08 0.07 0.03 0.06 0.04 0.03 0.07
Size 1x 5x 1.05x 1.05x 1x 1x 1x 1x 1x

Inf. Time 5x 5x 5x 5x 1x 1.3x 1.1x 1.2x 2x
Time 1.1x 5x 1.2x 1.3x 1x 1.2x 1x 1.1x 1.2x

ROC-AUC (↑) 0.851 0.954 0.921 0.926 0.755 0.872 0.831 0.816 0.956
PR-AUC (↑) 0.734 0.941 0.867 0.832 0.534 0.751 0.723 0.567 0.974

Simple ✓ ✓ ✗ ✗ - ✓ ✗ ✗ ✓

Table 2: Regression results on Age Prediction (top), Airfoils (middle) and Cars (bottom). As in Table 1
the best two results in each category are shown in bold and correspond to ZigZag and DeepE, except in terms of
computation time and memory requirements where ZigZag does much better.

2015) and trained it as recommended in the original paper. We sample our out-of-distribution data from the
SVHN dataset that comprises images belonging to classes that are not in CIFAR10, such as road sign digits.

ImageNet vs ImageNet-O We experimented with the ImageNet dataset (Russakovsky et al., 2015) and
its counterpart, ImageNet-O (Hendrycks et al., 2021). The latter is an extension of the original ImageNet
dataset, which is designed to evaluate the robustness and generalization capabilities of machine learning
models by providing a challenging set of images that are difficult to classify correctly. As in the CIFAR
vs. SVHN scenario, this sets up a challenge for Out-of-Distribution (OOD) detection. We use a standard
ResNet50 architecture and the training setup from (He et al., 2016).

Influence of the Number of Samples. The five-fold increase in computation time that the sampling-
based methods incur is a direct consequence of ours using 5 samples. ZigZag performs two inferences, which
is equivalent to using 2 samples. Thus, in Fig 7, we plot OOD classification performance as a function of the
number of samples used. Given only 2 and 3 samples, all sampling-based methods do worse than ZigZag.
With 4 or 5, Deep Ensembles is the only one that matches or beats us. However, it then needs at least
quadruple the computational budget and memory.

4.4 Regression Tasks.

We report similar results for three very different regression tasks in Tab. 2. As for classification tasks, we use
data samples significantly different from training ones for OOD evaluation. Then, after generating uncer-
tainty for ID and OOD samples, we evaluate standard AUC metrics as for classification problems. The overall
behavior is similar to what we observed for classification. ZigZag performs on par with Deep Ensembles and
better than the others, while being much less computationally demanding than Deep Ensembles.

Age Prediction. First, we consider image-based age prediction from face images. To this end, we use
UTKFace (Zhang et al., 2017), a large-scale dataset containing tens of thousands of face images annotated
with associated age information. We use a network with a large ResNet-152 backbone and five linear layers
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Figure 7: OOD classification performance as a function of the number of samples. The dashed
line represents the performance of ZigZag, which is sampling-free.

with ReLU activations. This architecture yield good performance in terms of accuracy, outperforming the
popular ordinal regression model CORAL (Cao et al., 2020) and matching other state-of-the-art approaches
such as (Berg et al., 2021). As in the classification experiments described above, we use iCartoonFace (Zheng
et al., 2020) dataset as out-of-distribution data. It comprises about 400k images of cartoon and anime
character faces whose pixel statistics are different from those of the UTKFace while exhibiting a semantic
similarity. As before, we train our model on the UTKFace training set and use uncertainty to distinguish
UTKFace test set images from iCartoonFace ones.

Figure 8: Airfoil Samples. Training and
testing profiles (left) have a reasonable level
of aerodynamics, whereas out-of-distribution
samples (right) include only top-notch, but
rare, shapes in terms of the lift-to-drag ratio.
The black arrows represent pressures while
the red lines depict overall lift and drag.

Figure 9: Left: Pressure values. The car dataset comprises many
regular vehicles (left) and a few streamlined ones (right), which we
treat as being out-of-distribution. Red and blue denote high and
low pressures respectively. Right: Pressure differences. Large
differences in predicted pressure are shown in red and low ones in
blue. Ensembles (left) and ZigZag (right) yield the same pattern,
with large values mostly in high-curvature areas.

Predicting Lift-to-Drag Ratios. Our method is generic and can operate with any kind of data. To
demonstrate this, we collected a dataset of 2k wing profiles such as those of Fig. 8 by sampling the widely
used NACA parameters (Jacobs & Sherman, 1937). We then ran the popular XFoil simulator (Drela, 1989)
to compute the pressure distribution along each profile and estimate its lift-to-drag coefficient, a key measure
of aerodynamics performance. The resulting dataset consists of wing profiles xi represented by a set of 2D
nodes and the corresponding scalar lift-to-drag coefficient yi for 1 ≤ i ≤ 2000.
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We took the 5% of top-performing shapes in terms of lift-to-drag ratio to be the out-of-distribution samples.
We took 80% of the remaining 95% as our training set and the rest as our test set. Hence, training and testing
shapes span lift-to-drag values from 0 to 60, whereas everything beyond that is considered to be OOD and
therefore not used for training purposes. We then trained a Graph Neural Network (GNN ) that consists of
25 GMM (Monti et al., 2017) layers with ELU nonlinearities (Clevert et al., 2015) and skip connections (He
et al., 2016) to predict lift-to-drag yi from profile yi for all i in the training set, as in (Remelli et al., 2020;
Durasov et al., 2021b). See additional details in the appendix.

Predicting the Drag Coefficient of a Car. We performed a similar experiment on 3D car models from
a subset of the ShapeNet dataset (Chang et al., 2015) that features car meshes that are suitable for CFD
simulation. We used the same experimental protocol as for the wings except for relying on OpenFOAM (Jasak
et al., 2007) to estimate the drag coefficients and a more sophisticated network to predict it from the
triangulated 3D meshes representing the cars, which we also describe in the supplementary material.

Single MC-D DeepE ZigZag
MAE (↓) 22.9 20.3 17.9 19.2

rAULC (↑) 0.55 0.62 0.68 0.69
ROC-AUC (↑) 0.64 0.74 0.83 0.84
PR-AUC (↑) 0.63 0.77 0.84 0.82

Table 3: Pressure Prediction. Accuracy and calibra-
tion are computed for individual predictions for each node
of the mesh. AUC metrics are computed using averaged
uncertainty of the mesh and the same data splits as for
the drag prediction task.

MNIST MC-D MaskE BatchE DeepE ZigZag
ROC-AUC 0.875 0.911 0.921 0.951 0.982
PR-AUC 0.901 0.921 0.931 0.954 0.981
CIFAR MC-D MaskE BatchE DeepE ZigZag

ROC-AUC 0.844 0.864 0.854 0.873 0.901
PR-AUC 0.893 0.909 0.901 0.913 0.933

Table 4: Two-sample inference evaluation for
sampling-based methods. The tables present ROC-
AUC and PR-AUC scores for the MNIST and CIFAR
datasets, with the highest scores in each category high-
lighted. When constrained to the same computational
requirements, ZigZag outperforms the other approaches.

To experiment with a higher-dimensional task, we used the same data to train a network to predict not only
the drag but also a pressure value at each vertex of a car, as shown at the top of Fig. 9. We used the same
train-test split as before along with a modified version of the network we used for drag prediction in which we
replaced some convolutional layers by transformer layers (Shi et al., 2020), as explained in the supplementary
material. As shown at the bottom of Fig. 9, ZigZag yields per-node uncertainties very similar to those of
Deep Ensembles. The most uncertain regions are high curvature parts where pressure changes rapidly. This
is reflected by the quantitive results of Tab. 3 that, once again, show ZigZag and Deep Ensembles performing
similarly.

Figure 10: Actual error vs uncertainty estimate for Airfoils (left) and Cars (right) test sets. The y = x curve
denotes perfect calibration. ZigZag behaves like ensembles and better than the others.

The rAULC metric we have been reporting aggregates information on how well calibrated the uncertainty
estimates are. To better visualize the calibration characteristics of the various methods, we provide actual
calibration curves for the airfoil and car aerodynamics regression tasks. In Fig. 10, we plot the cumulative
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probability of our estimation error being between zero and its maximum value against the cumulative proba-
bility of our uncertainty estimate similarly being between its minimum and maximum values, as in (Kendall
& Gal, 2017). An ideal result would follow the diagonal. ZigZag and DeepE produce the results closest to
that, which is consistent with the rAULC calibration results of Tab. 3.

4.5 Ablation study

Two-sample Evaluation for Sampling-based Approaches. A major strength of our method is its
inference speed: It only requires two feed-forward passes. Here we conducted additional evaluations where
we limited sampling-based approaches to two samples to compare how each scheme performs under the same
inference cost in terms of uncertainty measurement. In Tab. 4, we present uncertainty estimates for MNIST
(Top) and CIFAR (Bottom), running all sampling-based methods with an inference cost equal to ZigZag’s
— 2x compared to a Single model. Under these computational cost constraints, our method offers superior
uncertainty estimates. For the ImageNet experiments, we evaluated two-sample ensembles, achieving 81%
rAULC, 53% ROC-AUC, and 16% PR-AUC, metrics which are surpassed by ZigZag, as shown in Tab. 1.

Additional Baselines. For completeness sake, we evaluated two additional baselines that can only be run
on a subset of all our testing examples: Temperature Scaling (TempS) for classification (Guo et al., 2017)
and using a separate model for variance prediction in regression (TwoM ) (Nix & Weigend, 1994). As shown
in Tab. 6, temperature scaling improves calibration on the MNIST dataset, as shown by the rAULC metric,
but is less good at evaluating epistemic uncertainty and detecting OOD samples. Tab. 5 includes the TwoM
baseline consisting of a regression network and a separate model predicting the output variance, compared
with our method in aerodynamic cases: airfoils and cars. This approach improves uncertainty metrics over
a single model but does not match our method’s performance, despite similar computational complexity.
Further analysis can be found in Sections A.3 to A.5 of the supplementary material.

Table 5: Two-Model Variance Prediction: TwoM improves uncertainty metrics over single models but
falls short of our method, with comparable computational complexity.

Airfoils Single TwoM DeepE ZigZag
MAE 3.18 3.20 3.03 3.10
rAULC 0.008 0.027 0.062 0.068
Size 1x 2x 5x 1x
Inf. Time 1x 2x 5x 2x
Time 1x 1x 5x 1.2x
ROC-AUC 0.690 0.878 0.972 0.992
PR-AUC 0.681 0.882 0.955 0.987

Cars Single TwoM DeepE ZigZag
MAE 0.121 0.122 0.101 0.112
rAULC 0.03 0.04 0.10 0.07
Size 1x 2x 5x 1x
Inf. Time 1x 2x 5x 2x
Time 1x 1x 5x 1.2
ROC-AUC 0.755 0.849 0.954 0.956
PR-AUC 0.534 0.811 0.941 0.974

Accuracy (↑) rAULC (↑) Size Inf. Time Time ROC-AUC (↑) PR-AUC (↑)
TempS 0.980 0.857 1x 1x 1x 0.768 0.836
ZigZag 0.982 0.961 1x 2x 1x 0.982 0.981

Table 6: Temperature Scaling Evaluation. Although temperature scaling significantly boosts the model’s
calibration, it does not improve and might slightly impair the model’s capacity to detect OOD samples.

5 Conclusion

We have proposed an approach to estimating uncertainty that only requires performing a minor change in
the first layer of network to accept an additional argument that may be either blank or the result of that
prediction. Training the network to yield the same result in both cases enables us to estimate the uncertainty
in a principled way and at low computational cost. This approach is applicable to any practical architecture
and requires minimal modifications. It is easy to deploy, generic, and delivers results on par with ensembles
at a much reduced training budget.
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A Appendices

In this appendix, we describe the calibration metrics we use and provide additional details about the baselines,
training setups, and hyper-parameters used in the experimental section.

A.1 Calibration Metrics

In this section, we will describe metrics used for calibration evaluation both for classification and regression
tasks. Typical calibration metrics such as Expected Calibration Error (ECE) (Guo et al., 2017) require
uncertainties to be express in probabilistic form, which is not the case for many single-shot uncertainty
methods. Therefore, unified calibration should be utilized that suits all of the available methods. One of
such metrics is Relative Area Under the Lift Curve (rAULC) (Postels et al., 2022) which is based on the Area
Under the Lift Curve (Vuk & Curk, 2006).

This metric is obtained by ordering the samples according to increasing uncertainty and calculating the
accuracy of all samples with an uncertainty value smaller than a particular quantile. More formally, producing
uncertainty value ui for every sample in our evaluation set, we also generate an array of uncertainty quantiles
qj ∈ [0, 1], i ∈ [1, ..., S], with the quantile step equal to 1/S. Iterating over quantiles qj , we compute the
performance of our model F (qj) using only samples for which uncertainty is less than this quantile. Finally,
following notation from Postels et al. (2022) we compute the AULC metric as

AULC = −1 +
j=1∑

S

1
S

F (qj)
FR(qj) ,

where FR(qj) represents performance for baseline uncertainty that corresponds to random ordering. Further,
in order to compute rAULC we divide AULC with the value of AULC produced by ideal (optimal) uncertainty
model that perfectly orders all of the samples in order of increasing error. Following Postels et al. (2022),
we use accuracy as F (qj) for classification. Similarly, we extend AULC and rAULC to regression tasks via
using as F (qj) an inverse of Mean Absolute Error (MAE) computed for samples with uncertainties less then
qj .

A.2 Training Details and Baselines

Synthetic Regression For our synthetic regression experiments, we use the architecture that consists
of 6 linear blocks, ELU (Clevert et al., 2015) activations, BatchNorms (Ioffe & Szegedy, 2015) and skip-
connections (He et al., 2016). We train the model for 4000 epochs using Adam (Kingma & Ba, 2015) optimizer
with 10−2 learning rate and mean squared error loss. For Single baseline, we utilize loss from (Kendall &
Gal, 2017) to enable uncertainty estimation. Deep Ensembles baseline uses 5 trained single models to extract
mean and variance from predictions. For MC-Dropout, we apply dropout with 0.2 dropout rate to the last 2
linear layers and sample 5 different predictions during inference. Lastly, for ZigZag we extend the first layer
of single model to take two inputs and train it the same way as original model.

Synthetic Classification For synthetic classification experiments, we adopt simple feed-forward neural
network that comprise of 10 linear layers with ELU activation and skip-connections. As for regression, we
apply Adam optimizer for 300 epochs and 10−2 learning rate. Deep Ensembles also consists of 5 models,
MC-Dropout drops activations from the last two layers with 0.15 drop rate, ZigZag extends the first layer of
the original model so it is able to process additional inputs.

MNIST Model used for MNIST experiments consists of two convolutional layers with max polling followed
by three linear layers with LeakyReLU activations. We also train this model using Adam optimizer for
three epochs with 10−2 learning rate. MC-Dropout, BatchEnsemble and Masksembles are applied to the
last two layers of the model with 0.2 drop rate for MC-Dropout and 1.5 scale factor for Masksembles.
VarProp propagates variance through the last three linear layers as it was described in (Postels et al.,
2019). SNGP applies Random Features (Rahimi & Recht, 2007) to the last layer of the model and Spectral
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Normalization (Miyato et al., 2018) to the rest. OC extracts features after convolutional layers and train
five small models that represent certificates.

CIFAR For CIFAR experiments, we use DLA (Yu et al., 2018) network and adopt original training setup:
network is trained with SGD optimizer with 0.9 momentum for 20 epochs with 10−1 learning rate and 10 more
epochs with 10−2. As before, MC-Dropout, BatchEnsemble and Masksembles are applied to the last three
layers of the model with 0.1 drop rate and 1.5 scale factor. Features for OC are taken after convolutional
part of the model.

ImageNet For ImageNet experiments, we use common ResNet50 (He et al., 2016) architecture and follow
original training procedure. MC-Dropout, BatchEnsemble and Masksembles are applied to the last five
layers of the model with 0.1 drop rate, 2.0 scale factor, and each uses 5 samples during inference. Varprop
propagates variance through the last five layers of the network. OC uses features from the penultimate layer
and trains five small feed-forward networks for certificates.

Age Prediction As an age predictor, we use common Resnet (He et al., 2016) backbone followed by five
linear layers with LeakyReLU activations. As before, MC-Dropout, BatchEnsemble and Masksembles are
applied to the last four layers of the model with 0.1 drop rate and 1.5 scale factor. Varprop propagates
variance through the last five layers of the network. OC uses features from penultimate layer and trains five
small feed-forward networks for certificates.

Airfoils Lift-to-Drag Lift-to-Drag ratio is predicted with custom model that consists of twenty five
GMM (Monti et al., 2017) layers, global max pooling and five linear layers with applied ReLU activations.
The model is trained for 10 epochs with Adam optimizer and 10−3 learning rate. All of the uncertainty
baselines follow the same setup described for age prediction experiments.

Estimating Car Drag To predict drag associated to a triangulated 3D car, we utilize similar model to
airfoil experiments but with increased capacity. Instead of twenty five GMM layers, we use thirty five and
also apply skip-connections with ELU activations. Final model is being trained for 100 epochs with Adam
optimizer and 10−3 learning rate. All of the uncertainty methods are applied to non-graphical part of the
model – last five linear layers. As before, MC-Dropout uses 0.05 drop rate, Masksembles use 1.5 scale factor,
SNGP applies Spectral Normalization to the last five layers and OC extract features right after max pooling
layer.

For pressure prediction task, we modified original architecture and replaced GMM layers with Transformer
layers (Shi et al., 2020) for more fine-grained predictions. In addition, we use GraphNorm (Cai et al., 2021)
after each convolution for faster training and increase total size of the model to seventy layers. The model
is being trained for 1500 epochs with Adam optimizer with 10−3 learning rate. Implemented uncertainty
baselines are replicated from drag prediction experiments.

A.3 Standard deviation of results

Metric Single MC-D MaskE BatchE DeepE ZigZag

M
N

IS
T Accuracy (↑) 0.980 ± 0.002 0.981 ± 0.002 0.989 ± 0.004 0.989 ± 0.007 0.990 ± 0.005 0.982 ± 0.002

rAULC (↑) 0.712 ± 0.008 0.932 ± 0.008 0.929 ± 0.017 0.941 ± 0.004 0.958 ± 0.004 0.961 ± 0.005
ROC-AUC (↑) 0.773 ± 0.006 0.953 ± 0.011 0.963 ± 0.006 0.965 ± 0.003 0.984 ± 0.006 0.982 ± 0.007
PR-AUC (↑) 0.844 ± 0.007 0.962 ± 0.010 0.966 ± 0.011 0.965 ± 0.003 0.979 ± 0.006 0.981 ± 0.007

C
IF

A
R

Accuracy (↑) 0.890 ± 0.004 0.909 ± 0.001 0.901 ± 0.003 0.911 ± 0.003 0.929 ± 0.002 0.928 ± 0.003
rAULC (↑) 0.884 ± 0.005 0.889 ± 0.004 0.889 ± 0.004 0.884 ± 0.005 0.911 ± 0.002 0.897 ± 0.004

ROC-AUC (↑) 0.825 ± 0.017 0.854 ± 0.016 0.900 ± 0.002 0.877 ± 0.006 0.915 ± 0.004 0.901 ± 0.002
PR-AUC (↑) 0.875 ± 0.018 0.918 ± 0.015 0.931 ± 0.002 0.919 ± 0.004 0.949 ± 0.004 0.933 ± 0.002

Table 7: Classification results on MNIST (Top) and CIFAR (Bottom) datasets. Results for training and
evaluation using three different random seeds, presented as averages with standard deviations included in the table.
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All training and evaluation were conducted using three different random seeds, with the results then averaged.
We report these results in two tables below (the top one for MNIST, the bottom for CIFAR), including
standard deviation values for the best-performing baselines. These results show that ZigZag and Ensembles
significantly exceed the performance of other baselines in terms of statistical significance.

A.4 Split MNIST Evaluation

Single MC-D MaskE BatchE DeepE ZigZag
Accuracy (↑) 0.992 0.993 0.992 0.990 0.998 0.993
rAULC (↑) 0.952 0.954 0.991 0.989 0.994 0.992
ROC-AUC (↑) 0.929 0.923 0.945 0.947 0.979 0.994
PR-AUC (↑) 0.923 0.918 0.945 0.947 0.977 0.991

Table 8: Classification results on MNIST-S. The best result in each category is highlighted in bold, while
the second best is in bold, with most of these results attributed to ZigZag and DeepE. This indicates that
while their performance is comparable, ZigZag has the advantage of requiring significantly less computation
and memory. The high performance of ZigZag is consistent across MNIST and MNIST-S results.

In our experiments for the out-of-distribution (OOD) task in Sec.4.3, we employed standard setups from
previous research(Malinin & Gales, 2018; Ciosek et al., 2019; Durasov et al., 2021a). For OOD detection
in MNIST experiments, using FashionMNIST, which contains images markedly different from MNIST, is a
common benchmark. To enhance our evaluation with a more challenging setup, we conducted additional
MNIST experiments—referred to as MNIST-S—using digits 0-4 as in-distribution and 5-9 as OOD. The
results, presented in Tab. 8, were obtained using the same architecture and training setups as the original
MNIST experiments. In these experiments, both Ensembles and ZigZag demonstrated superior performance,
compared to other baselines.

A.5 AutoEncoder Baseline

As discussed in Sections 2 and 3, there is a strong connection between our method and autoencoder models.
This makes the reconstruction error of an autoencoder a relevant baseline for comparison with our method.
Uncertainty metrics for several datasets (MNIST, MNIST-S, CIFAR) have been included for this baseline
below. For this approach, an autoencoder with a standard hourglass architecture was trained independently
from the original classification model. The reconstruction error of the autoencoder is used as an uncertainty
measure for an input x. While this method shows promising results in moderately easy out-of-distribution
(OOD) detection tasks, it struggles in more complex scenarios. Both in terms of uncertainty calibration
and OOD detection, it underperforms, as demonstrated in Tab. 9, significantly lagging behind ZigZag and
other baselines. The poor calibration of the reconstruction error for x arises from its exclusive focus on
x during predictions, only estimating the likelihood of x and not the prediction y. While suitable for
OOD detection, it is inadequate for calibrated uncertainty predictions. Additionally, image reconstruction is
more computationally intensive than classification, substantially adding to the computational burden of the
approach. Therefore, the autoencoder was not deemed a viable baseline in other experiments, due to these
calibration, computational, and aleatoric uncertainty issues.

Accuracy (↑) rAULC (↑) Size Inf. Time Time ROC-AUC (↑) PR-AUC (↑)
MNIST 0.98 0.35 1.5x 3x 2x 0.94 0.96

MNIST-S 0.99 0.46 1.5x 3x 2x 0.60 0.56
CIFAR 0.89 0.26 2x 4x 2x 0.38 0.66

Table 9: Autoencoder reconstruction error baseline. The table shows results for an autoencoder
baseline on MNIST, MNIST-S, and CIFAR datasets. Its limited calibration accuracy stems from focusing
only on x and not y. Though somewhat effective for OOD detection, it’s more computationally costly than
ZigZag due to the complexity of image reconstruction.
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