
Published as a Tiny Paper at ICLR 2024

A FRAMEWORK FOR POLICY EVALUATION ENHANCE-
MENT BY DIFFUSION MODELS

Tao Ma & Xuzhi Yang ∗
London School of Economics and Political Science

ABSTRACT

Reinforcement learning plays an important role in various fields, and has fast de-
velopment in policy evaluation and learning methods, enjoying the advantages
of large data size. However, when data are limited, directly applying evaluation
methods does not necessarily result in a good policy evaluation. In this work, we
provide a framework to generate synthetic data with diffusion models, to enhance
data-efficient policy evaluation, which is supported by experiments.

1 INTRODUCTION AND RELATED WORK

Reinforcement learning (RL, Sutton & Barto, 2018) provides a comprehensive approach for an agent
to find the optimal policy in a data-driven way, and has successfully boosted the development of
many fields, including biology (Jumper et al., 2021), games (Silver et al., 2017), finance (Deng
et al., 2016) and education (Park et al., 2019). In general, the RL problem concerns an agent trying
to optimize her long-term return by adjusting the policy, according to interactions with the unknown
environment. To achieve such a goal, many algorithms contain two important components, policy
evaluation and policy learning (Levine et al., 2020). With either online interactions or a large pool
of offline data, the performances of policy evaluation and learning are impressive, both empirically
and theoretically (Riedmiller, 2005; Mnih et al., 2015; Kumar et al., 2020). But there are numerous
cases where data availability is quite limited (Dulac-Arnold et al., 2019; Nie et al., 2022), largely
influencing the effectiveness of algorithms, which is the first challenge.

On the other side, generative models provide a powerful tool to understand the possible distribu-
tion, from which data are sampled, and generate more similar data (Oussidi & Elhassouny, 2018).
Successful methods have been proposed, like Generative Adversarial Nets (Goodfellow et al., 2014)
and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), with analysis
of the resulting distribution (Chen et al., 2022). Given a diffusion model, one can generate more
data to improve training. Such successes have been observed in the accuracy of image classification
(Azizi et al., 2023), the pre-training for transfer learning (He et al., 2022), digital pathology (Pozzi
et al., 2023) and brain computer interface (Tosato et al., 2023). There are also a few works in RL to
regularize the learned policy using diffusion models (Wang et al., 2022). However, most work focus
on specific applications and lack for theoretical discussion, which is the second challenge.

Facing above significant challenges, we propose a framework to generate high-quality synthetic data
by diffusion models, to enhance policy evaluation. Contributions are two-fold: 1) our method results
in data-efficient policy evaluation; 2) by pointing out both advantages and limitations of diffusion
models, our method serves as a framework for further theoretical investigation and implementations.

2 BACKGROUND

RL. Define a Markov Decision Process (MDP, Puterman, 2014) M = {S,A, P,R, γ, T}, where S
denotes the state space, A is the action space and P (s′|s,a) : S × S × A → R is the transition
kernel. R(s,a) is the reward function, with γ ∈ [0, 1] the discount factor. Finally, T specifies the
horizon of one episode. Given M, the policy of an agent is π(a|s), the distribution over A given
s ∈ S . With the above, an episodic MDP scenario is as follows. In the first episode, the agent
starts at the fixed initial state s0 (it can be generalized to the case with initial distribution). She

∗Equal contribution. Correspondence to: Tao Ma (t.ma9@lse.ac.uk).

1

mailto:t.ma9@lse.ac.uk

Published as a Tiny Paper at ICLR 2024

Table 1: Average errors and standard deviations of the estimated values based on SYN and REAL.

REAL SYN

m / 100 500 1000
Average error 0.527 0.557 0.577 0.562
Standard deviation 0.629 0.435 0.448 0.469

selects action a0 according to π, receives reward r0 ∼ R(s0,a0) and is moved to the next state
s1 ∼ P (s1|s0,a0). Following that, at time t, the agent has a transition tuple (st,at, rt, st+1). Such
process goes on until t = T . Then a new episode starts again from s0. The value of π is V π(s0),
with V π(s) := Eπ[

∑T
i=0 γ

trt|s0 = s]. RL aims to evaluate the values of policies, and then find the
optimal policy to maximize the value. Our work is to enhance the first step with less real data.

Diffusion Models. Diffusion models, given data from unknwon distribution q, slowly diffuse such
distribution, through Markov chain {xi}Ni=0, towards a known prior N (xN ;0, I), and then perform
a reverse process to generate more data that approximately follow q. Here we focus on one version,
called Denoising Diffusion Probabilistic Model (DDPM, Ho et al., 2020), with details in Section A.

Problem Settings. Given a policy π, and n episodes of transition tuples according to π, we aim
to evaluate V π(s0). One significant problem is the lack of enough data, i.e. n is small. In the
following, we would use DDPM to generate more episodes for better evaluation of V π(s0).

3 FRAMEWORK FOR POLICY EVALUATION WITH DIFFUSION MODELS

Framework. Here we only store the reward in each step, meaning that the i-th data point is a vector
of T +1 consecutive rewards from the i-th episode, denoted by r(i) := (r

(i)
0 , ..., r

(i)
T), and dataset is

D = {r(i)}ni=1. The method consists of three steps. To begin with, the data are randomly partitioned
into two parts D1,D2, each with size n/2. Second, we use D1 to train a DDPM and generate a set
of synthetic data Dsyn = {r̃(i)}mi=1. Finally, we concatenate D2 and Dsyn, and compute our value
estimator V̂ = (

∑m
i=1 Ṽi+

∑n/2
i=1 Vi)/(m+n/2), where Ṽi =

∑T
j=0 γ

j r̃
(i)
j for generated trajectories

i ∈ [m] and Vi =
∑T

j=0 γ
jr

(i)
j for i ∈ [n/2] from D2 (other evaluation methods can also be used,

like FQE (Munos & Szepesvári, 2008)). In Appendix the outline is provided in Algorithm 1.

Experiments. We implement our method in the Pendulum environment (Seno & Imai, 2022) with
DDPM module (Wang, 2023). A near-optimal policy π is trained by CQL (Kumar et al., 2020).
First we evaluate π on n/2 real data concatenated with m synthetic data, i.e. D2∪Dsyn (SYN), with
n = 10 and m ∈ {100, 500, 1000} respectively. Then perform evaluation on n real data D1 ∪ D2

(REAL). Repeat this procedure for 10 times, we compute the average gap from each method to the
true value, together with standard deviations (see Table 1). Further interpretations are in Section C.
Observably, involving only half real data in mean calculation, our methods provides an estimation
comparable to those from more real data with even lower standard deviations.

Theoretical analysis. For DDPM, it can be proved that the total variation distance between the
generated distribution and the underlying distribution, from which real data are sampled, is small.
However, such bound is not enough to restrict the estimation gap |V̂ − V | in terms of either high
probability or expectation, because the total variation is not strong enough to bound Lp-norm. We
want to point out this limitation since it shows how far in current theory diffusion models can go.
Therefore, future work can either try to show the bound in Lp-norm for current models or design
new methods to accommodate such guarantees. See Section D for detailed discussions.

4 CONCLUSION AND FUTURE WORK

In this work, we propose a general framework to improve policy evaluation by synthetic data. We
are aware that the scale of numerical experiments is not enough, due to our very limited computing
resources. So the implementation of our method later in large-scale settings is expected.

2

Published as a Tiny Paper at ICLR 2024

URM STATEMENT

Both authors meet the URM criteria of ICLR 2024 Tiny Papers Track.

REFERENCES

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet.
Synthetic data from diffusion models improves imagenet classification. arXiv preprint
arXiv:2304.08466, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforcement
learning for financial signal representation and trading. IEEE Transactions on Neural Networks
and Learning Systems, 28(3):653–664, 2016.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems, 27, 2014.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiao-
juan Qi. Is synthetic data from generative models ready for image recognition? arXiv preprint
arXiv:2210.07574, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

Allen Nie, Yannis Flet-Berliac, Deon Jordan, William Steenbergen, and Emma Brunskill. Data-
efficient pipeline for offline reinforcement learning with limited data. Advances in Neural Infor-
mation Processing Systems, 35:14810–14823, 2022.

3

Published as a Tiny Paper at ICLR 2024

Achraf Oussidi and Azeddine Elhassouny. Deep generative models: Survey. In International Con-
ference on Intelligent Systems and Computer Vision, pp. 1–8. IEEE, 2018.

Hae Won Park, Ishaan Grover, Samuel Spaulding, Louis Gomez, and Cynthia Breazeal. A model-
free affective reinforcement learning approach to personalization of an autonomous social robot
companion for early literacy education. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 687–694, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Matteo Pozzi, Shahryar Noei, Erich Robbi, Luca Cima, Monica Moroni, Enrico Munari, Evelin
Torresani, and Giuseppe Jurman. Generating synthetic data in digital pathology through diffusion
models: a multifaceted approach to evaluation. medRxiv, 2023.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European Conference on Machine Learning, pp. 317–328. Springer,
2005.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, pp.
234–241. Springer, 2015.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 23(315):1–20, 2022.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354–359, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Giulio Tosato, Cesare M Dalbagno, and Francesco Fumagalli. Eeg synthetic data generation using
probabilistic diffusion models. arXiv preprint arXiv:2303.06068, 2023.

Phil Wang. Denoising-diffusion-pytorch. https://github.com/lucidrains/
denoising-diffusion-pytorch, 2023.

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

4

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/lucidrains/denoising-diffusion-pytorch

Published as a Tiny Paper at ICLR 2024

A DETAILS FOR BACKGROUND

A.1 POLICY EVALUATION

As introduced in Section 2, for an episodic MDP with a time-homogeneous transition kernel and
reward function, together with an agent adopting a time-homogeneous policy π, the evaluation of
such policy is by V π(s0). To generalize the case from fixed initial state to initial distribution, we
consider s0 ∼ ν0, then the value can be summarized as

V π := V π(ν0) = ⟨V π(·), ν0(·)⟩,

where ⟨·, ·⟩ denotes the inner product by taking the sum of all element-wise multiplications. On
the other hand, if the MDP M is a trajectory with infinite horizon, the evaluation can be defined as
either the average reward,

⟨dπ(·), V π(·)⟩

or by average reward per time step, i.e.

⟨dπ(·),
∑
a∈A

π(a|·)R(·, a)⟩,

where dπ(s) is the stationary distribution. Here we want to emphasize that even with such gen-
eralization, the proposed framework need no modification in terms of evaluation. The reason is
that with real data containing multiple trajectories, the randomness due to initial distribution is also
considered, so our value estimator is then a consistent estimator of V π .

There are many approaches in policy evaluation, both for on-policy or off-policy, and examples
include Conservative q-learning (Kumar et al., 2020) and Fitted q evaluation (Munos & Szepesvári,
2008). Especially, better/efficient evaluation serves as the foundation for policy learning, which, in
the general sense, is to choose the policy that has the largest evaluation of value.

A.2 DDPM

For each given data x0 ∼ q, we construct a Markov chain {xi}Ti=0 with

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1),

where Gaussian noises are gradually injected by

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI),

with a pre-specified variance schedule {βt}Tt=1. Then the diffusion model is by a model of latent
variables {xt}Tt=1, sharing the same dimensionality with real data, so that we can construct the
reverse process pθ(x0:T) parameterized by θ, which is still a Markov chain from time index T
towards 0 by

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt),

where the starting distribution is p(xT) = N (xT ;0, I) and transitions are still normal with

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)).

Then to make pθ(x0) as close as possible to q, we need to optimize the choice of θ, and we refer
readers to the details of training such model in Ho et al. (2020).

A.3 THEORETICAL GUARANTEE OF DDPM

For theoretical analysis of the resulting distribution, the forward and backward processes can be
accordingly expressed by stochastic differential equations (SDE), as in Chen et al. (2022). First,
given the forward process (xt)t∈[0,T], for clarity, we denote the reverse process by x←t for t ∈ [0, T],

5

Published as a Tiny Paper at ICLR 2024

Algorithm 1 Evaluation with Synthetic Data by DDPM

Input: Real data D = {r(i)}ni=1, where r(i) = (r
(i)
0 , ..., r

(i)
T).

1: Randomly split D into two halves D1 and D2, where WLOG, assume the first half of D are
exactly the D2.

2: Train a DDPM with D1, and generate a new synthetic data set Dsyn with |Dsyn| = m.
3: Compute V̂ based on a specific evaluation method, like Monte Carlo, FQE, or conservative q,

using data Dsyn ∪ D2.

Return: V̂

so that x←0 follow a standard normal distribution and serves as the starting point of the reverse
process to generate finally x←T . Then it can be shown that the reverse process has the form

dx←t = {x←t + 2∇ ln qT−t(x
←
t)}dt+

√
2 dBt

where qt, for t ≥ 0, is the law of xt from the forward process, and with abuse of notation, (Bt)t∈[0,T]

is the reversed Brownian motion. The insight here is that to perform the above reverse process,
we need to know the so-called score functions ∇ ln qt. Since all laws qt are unknown due to the
unknown starting distribution q, we first discretize the reverse process with step size h > 0 and total
steps N , so that T = Nh, and in the k-th step of discretized process, i.e. t ∈ [kh, (k+1)h], its SDE
is

dx←t = {x←t + 2wT−kh(x
←
kh)}dt+

√
2 dBt, t ∈ [kh, (k + 1)h],

where wt is the estimator of score function (chosen from a class of neural networks) by
min
wt

Eqt [∥wt −∇ ln qt∥22].

Then such generation can be realized, corresponding to the original definition of DDPM. Especially,
some theoretical guarantees hold.

According to Chen et al. (2022), if we assume ∇ ln qt is L-Lipschitz, q has finite second moment
and the above score estimation error is uniformly bounded by ϵ2score, then by choosing specific T and
h (both dependent on target error level ϵ), hiding logarithmic factors, we can have

TV(pT , q) ≤ Õ(ϵ+ ϵscore), for N = Θ̃

(
L2d

ϵ2

)
,

where pT is the law of x←T and d is the dimension of each data point.

B METHOD IMPLEMENTATION DETAILS

Here we provide the outline of our method described in Section 3, by the following Algorithm 1. It
should be emphasized that we train our DDPM using the first half of D but concatenate synthetic
data with the second half to guarantee independence, which could potentially lead to the theoretical
properties of the estimator. In addition, although in this work we focus on Monte Carlo estimators,
any appropriate evaluation method can be incorporated, justifying our proposal as a framework.

C EXPERIMENT DETAILS AND FURTHER RESULTS INTERPRETATIONS

C.1 ENVIRONMENT SETTINGS

The concerned environment has a pendulum with one end fixed, and an agent needs to sequentially
apply torque to the other free-swinging end to have it closer to the upright position. At each time
the reward measures the gap away from such an optimal position. The observation data is a three-
dimensional vector which indicates the x-y coordinate of the pendulum’s free end and the angular
velocity. The action space is the torque applied to the free end of the pendulum and can range from
-2.0 to 2.0. The reward function is defined as r(θ, v, t) = −(θ2 + 0.1v2 + 0.001 ∗ t), where θ is
the pendulum’s angle, v denotes the angular velocity and t is the applied torque. Thus the maximal
possible reward is zero.

6

Published as a Tiny Paper at ICLR 2024

C.2 IMPLEMENTATION DETAILS

Our model is implemented using PyTorch version 2.1.1+cu121 (Paszke et al., 2017), d3rlpy version
2.3.0 (Seno & Imai, 2022), and denoising diffusion pytorch (Wang, 2023). We collect 500 episodes
from the pendulum environment, and then based on this dataset, train a near-optimal policy π using
CQL (Kumar et al., 2020). With this trained policy π, we first generate Dtrue with 8000 real episodes
from the pendulum environment as the benchmark dataset to compute approximately the true value
of π. Then we sample n real episodes again from the environment as D1 ∪D2, with n = 10, |D1| =
|D2| = 5, and all episodes have the same horizon 128. To accommodate the randomness when
splitting n real episodes into two sets, we apply a similar manner as cross-validation in the following.
We first use respectively D1 and D2 to train two DDPMs, and then generate two synthetic sets of
trajectories in rewards, each with size m, i.e. Dsyn,1 and Dsyn,2, where m ∈ {100, 500, 1000}, and
each trajectory contains 128 simulated rewards. Then, we calculate two estimated values based on
D2∪Dsyn,1 and D1∪Dsyn,2 respectively, and take the average of them. Finally, treating the average
reward based on the benchmark dataset Dtrue as the underlying truth, we compare the absolute value
gaps due to our estimations (SYN dataset) with the gaps based on D1 ∪ D2 (REAL dataset). We
repeat this procedure for 10 times to get the average errors and standard deviations. Given the 1D
nature of the data, we employ Unet1D to estimate the score function (Ronneberger et al., 2015),
and the diffusion model is trained using GaussianDiffusion1D and Trainer1D, as detailed in Wang
(2023). While most tuning parameters are maintained at their default values, we set the number of
iterations to train the diffusion model to 8000 due to limited computation resources.

C.3 FURTHER INTERPRETATIONS OF RESULTS

As the synthetic data are generated by diffusion models, even with larger sizes of synthetic data, it
should still be checked if the estimation is robust enough. In additional to average estimation errors,
here we have also provided further results in the standard deviations of estimations in Table 1. It can
be seen that, across different choices of m (the size of generated data), the standard deviations due
to the proposed method, using the augmented data (with a smaller number of real data, i.e. n/2),
tend to be lower than those due to using solely real data (n), which shows the robustness of the
proposed estimation method. As discussed in the above, the total number of diffusion steps we use
is not perfectly high enough, due to the limited computing resources. And with future improvement
in such aspect, the proposed method is expected to have even better performances.

D THEORETICAL DISCUSSIONS

D.1 TRAINING ON REWARDS

One possibly asked question is that why we train the generative models only on rewards, instead of
transition tuples? Actually they are the same. Given fixed policy and environment, the stream of
transition tuples (s0,a0, r0, ..., sT ,aT , rT) would follow a high dimensional joint distribution f0.
At the same time, the vector of rewards (r0, r1, ..., rT) follows another joint distribution f1. It can
be seen that f1 is the marginal distribution of rewards, from the primary joint distribution f0. When
we try to directly use all transition tuples to train a generative model, we are in fact approximating
f0, and V̂ (s0) would be an estimator of

V π
truth1(s0) := E(s0,a0,r0,...,sT ,aT ,rT)∼f0

[
T∑

t=0

γtrt

∣∣∣ s0

]

On the other hand, the defined V̂ (s0) in our proposed method is an estimator of

V π
truth2(s0) := E(r0,r1,...,rT)∼f1

[
T∑

t=0

γtrt

∣∣∣ s0

]

7

Published as a Tiny Paper at ICLR 2024

Without loss of generality, we assume all variables take values continuously and all density functions
are well-defined. Then notice, according to Fubini’s Theorem,

V π
truth1(s0) = E(s0,a0,r0,...,sT ,aT ,rT)∼f0

[
T∑

t=0

γtrt

∣∣∣ s0

]

=

∫ [
T∑

t=0

γtrt

]
f0(s0,a0, r0, ..., sT ,aT , rT) d(s0,a0, r0, ..., sT ,aT , rT)

=

∫ [
T∑

t=0

γtrt

]{∫
f0(s0,a0, r0, ..., sT ,aT , rT) d(s0,a0, ..., sT ,aT)

}
d(r0, ..., rT)

=

∫ [
T∑

t=0

γtrt

]
f1(r0, ..., rT) d(r0, ..., rT) = V π

truth2(s0)

leading to the following result:

Lemma 1 (Training on rewards) For any initial state s0, we have V π
truth1(s0) = V π

truth2(s0).

As a result, training on just rewards would not introduce bias, but is be more efficient, which is the
reason we train our DDPM only on rewards.

D.2 PERFORMANCE GUARANTEE QUESTIONS

Regarding the theoretical assurance provided by the proposed data enhancement framework related
to Section A.3, we present several favourable statements arranged in descending order of strength
(which, we hope, can possibly hold) and the main difficulties that hinder us from proving them
rigorously. As a result, this subsection mainly serves as a standard list of goals for future work.

We first recall that the average reward based on the synthetic dataset is calculated as V̂ = (
∑m

i=1 Ṽi+∑n/2
i=1 Vi)/(m + n/2). Then the most straightforward statistical guarantee is to prove that for any

η > 0, the following event {∣∣∣ 1
n

n∑
i=1

Vi − V π
∣∣∣− ∣∣∣V̂ − V π

∣∣∣ > η

}
(1)

holds with high probability. In essence, this asserts that the proposed estimator is likely to out-
perform an average constructed solely from n true data points. The establishment of this high
probability event requires the Lp-convergence of DDPM, however, to the best of our knowledge,
the existing works concentrate on the convergence in the total variation distance or the Wasserstein
distance (De Bortoli et al., 2021; Chen et al., 2022; De Bortoli, 2022; Lee et al., 2022), which are
metrics only metrize weak-topology on the space of probability distributions and are not enough to
imply the Lp-convergence.

The second desirable statement to come down to is to prove for any V ⊂ Rn/2,

P
(∣∣V̂ − V π

∣∣ < η
∣∣ (Vi)

n
i=n

2 +1 ∈ V
)
≥ P

(∣∣∣ 1
n

n∑
i=1

Vi − V π
∣∣∣ < η

∣∣∣ (Vi)
n
i=n

2 +1 ∈ V
)
, (2)

where the condition is on the source data (Vi)
n
i=n/2+1 for training the DDPM. This statement is note-

worthy for two reasons: 1) it provides a statistical guarantee not for each instance but for the overall
policy evaluation problem; 2) the conditional probability ensures that regardless of the behaviour of
the source dataset, the proposed data enhancement method is likely to outperform the trivial average
of the original dataset. Because V̂ is constructed partially from Ṽi’s, through the average of DDPM
generated rewards, to prove (2), we first need to investigate the following∣∣∣P(1

m

m∑
j=1

r̃(j) ∈ G
∣∣ (Vi)

n
i=n

2 +1 ∈ V
)
− P

(2

n

n∑
i=n/2+1

r(i) ∈ G
∣∣ (Vi)

n
i=n

2 +1 ∈ V
)∣∣∣, (3)

8

Published as a Tiny Paper at ICLR 2024

for some set G, where r(i) is the real reward vector of the i-th episode and r̃(j) is the j-th DDPM
generated reward vector. We point out that the closeness between the distributions of 1

m

∑m
j=1 r̃

(j)

and 2
n

∑n
i=n/2+1 r

(i) in TV-distance only implies that, by taking expectation over all possible values
of source data, the distributions of 1

m

∑m
j=1 r̃

(j) and 2
n

∑n
i=n/2+1 r

(i) will be close. Specifically,
write µ̃ and µ as the distribution of 1

m

∑m
j=1 r̃

(j) and 2
n

∑n
i=n/2+1 r

(i) respectively, what we can
have due to the bound on TV-distance is∣∣∣∣∣E

[
P
(

1

m

m∑
j=1

r̃(j) ∈ G
∣∣∣ (Vi)

n
i=n

2 +1

)
− P

(
2

n

n∑
i=n/2+1

r(i) ∈ G
∣∣∣ (Vi)

n
i=n

2 +1

)]∣∣∣∣∣ ≤ ∥µ̃− µ∥TV.

However, a control on the average (or expectation) does not provide a control on each specific
choice of source dataset. For instance, given some poor-quality source data, the distance (3) can be
unreasonably large. All the existing error bounds on the TV-distance between the source distribution
and the diffusion-generated distribution are too weak to provide an upper bound for (3). Therefore,
statement (2) might also be hard to obtain given current theories on DDPM.

Finally, a weaker unconditional statement is the following,

P
(∣∣V̂ − V π

∣∣ < η
)
≥ P

(∣∣∣ 1
n

n∑
i=1

Vi − V π
∣∣∣ < η

)
. (4)

The limitation of this unconditional statement, compared to (2), lies in its dependence on both the
generated data and the source data, which may hinder the proposed method from surpassing the
original average if the source data quality is low. Now recall that V̂ = (

∑m
i=1 Ṽi +

∑n/2
i=1 Vi)/(m+

n/2). According to the denoising process, {Ṽi}mi=1 are generated from independent white noises,
but with the same model, trained from the same source data. As a result, due to the randomness of
sources data, {Ṽi}mi=1 are not exactly independent. Since the dependence structure is mysteriously
introduced by the diffusion model, the traditional statistical tools could not be easily implemented.

In summary, there is currently lack of effective tools to prove any statistical guarantees about the
performance of the DDPM synthetic data on policy evaluation. We look forward to future works on
the diffusion model that can provide an error bound in a stronger metric. Especially, our systematic
discussion here could hopefully inspire the path to complete theories.

9

	Introduction and Related Work
	Background
	Framework for Policy Evaluation with Diffusion Models
	Conclusion and Future Work
	Details for Background
	Policy Evaluation
	DDPM
	Theoretical guarantee of DDPM

	Method Implementation Details
	Experiment Details and Further Results Interpretations
	Environment Settings
	Implementation Details
	Further Interpretations of Results

	Theoretical Discussions
	Training on Rewards
	Performance Guarantee Questions

