
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RAPA: RECURSIVELY ALIGNED PATHWAY ADAPTA-
TION OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) adapts large language models (LLMs)
by training only a small fraction of parameters. Adapter-based approaches reduce
compute per step but introduce practical overhead from the additional adapter path
(e.g., extra kernel launches and activation storage). Adapter-free approaches avoid
this structural overhead by directly updating pretrained weights; however, per-layer
random index selection can fragment the trainable subspace, attenuating gradient
flow and limiting accuracy. We propose Recursively Aligned Pathway Adapta-
tion (RAPA), an adapter-free PEFT method that forms index-consistent pathways
through depth. RAPA follows two principles: (i) selecting balanced submatrices
that maximize the number of weights alignable across layers, and (ii) recursively
aligning these indices across layers and residual connections. In experiments,
RAPA matches or surpasses strong PEFT baselines across most benchmarks while
preserving adapter-free efficiency with minimal memory and compute overhead.
Code is available at https://anonymous.4open.science/r/rapa.

1 INTRODUCTION

Large Language Models (LLMs) now match or surpass expert-level performance in many natural
language processing tasks (Zhao et al., 2024b; Team et al., 2024; Dubey et al., 2024; DeepSeek-AI
et al., 2025; Jiang et al., 2024a; Chowdhery et al., 2023). In particular, to specialize these LLMs
for downstream applications, fine-tuning is commonly employed to adjust their parameters using
task-specific data (Wolpert & Macready, 1997). However, fine-tuning these large-scale models for
specific tasks demands substantial computational resources and memory (Brown et al., 2020; Achiam
et al., 2023; Kaplan et al., 2020), posing significant challenges to practical applications.

To address these challenges, a wide range of Parameter-Efficient Fine-Tuning (PEFT) schemes have
been proposed, aiming at reducing computational costs and memory footprints required during
fine-tuning. Representative techniques such as Adapter Tuning (Houlsby et al., 2019; Pfeiffer et al.,
2020), Low-Rank Adaptation (LoRA) (Hu et al., 2022) and its variants (Liu et al., 2024; Wu et al.,
2024a) significantly improve efficiency by freezing pre-trained weights and introducing a small
number of trainable adapter parameters.

In theory, adapters introduce only a small amount of additional computation, but they can result in
significant training-time overhead in practice; the base and adapter paths are executed sequentially,
and computing gradients for adapter parameters typically requires retaining full input activations,
which can increase kernel launches and activation memory. By contrast, adapter-free approaches
do not require the adapter modules and hence may avoid these structural sources of overhead, at
the expense of different trade-offs: BitFit (Zaken et al., 2021b) and LayerNorm tuning (Zhao et al.,
2024a) prioritize simplicity and stability over capacity, and PaCA (Woo et al., 2025) selects trainable
coordinates at the layer level without explicit cross-layer structure, limiting expressiveness and
slowing down convergence in some settings. Our study focuses on characterizing these trade-offs and
designing an improved PEFT approach.

In this paper, we first analyze the sources of training overhead in widely used adapter-based methods.
We then introduce Recursively Aligned Pathway Adaptation (RAPA), an adapter-free PEFT
algorithm that selects and aligns indices across all layers so that the updated weights form a consistent
gradient pathway (Figure 1(a)). By aligning the trainable coordinates through depth (and, when
applicable, choosing shape-balanced submatrices), RAPA aims to enhance representational capacity
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(b) Comprehensive PEFT Comparison

Figure 1: Performance comparison of proposed RAPA method with other PEFTs. (a) 5-shot MMLU
accuracy compared with other PEFT methods on different tuning parameter budgets. (b) Compre-
hensive comparison of PEFT methods across accuracy, efficiency, and memory usage, highlighting
RAPA’s overall superiority.

and stabilize gradient flow while avoiding both adapter-induced overhead and per-layer re-sampling
costs.

We evaluate RAPA across diverse models and tasks. Specifically, we conduct 5-shot MMLU fine-
tuning (Hendrycks et al., 2020) (Figure 1(b)), commonsense reasoning benchmarks, and instruction
tuning followed by MT-Bench evaluation. All experiments are run on a single NVIDIA A100 80 GB
GPU under matched trainable-parameter budgets and comparable optimization settings to ensure fair
comparison with prior PEFT baselines. Full datasets, hyperparameters, and evaluation protocols are
provided in the experimental setup for reproducibility.

2 BACKGROUND AND MOTIVATION

2.1 CHALLENGES IN ADAPTER-BASED PEFT

Fine-tuning LLMs typically incurs significant memory and computation costs. This is mainly
because back-propagation requires storing all intermediate activations and updating a massive set
of parameters. These requirements hinder practical deployment of LLMs, especially on resource-
constrained hardware.

To address these challenges, PEFT methods aim to reduce the number of trainable parameters while
maintaining task accuracy. One widely used approach is LoRA (Hu et al., 2022), which introduces
additional rank-constrained matrices to the existing pre-trained weights as below:

W = W0 +∆W = W0 + s ·BA

where A ∈ Rr×d, B ∈ Rd×r, and s is a scaling factor. While LoRA reduces the number of trainable
parameters, it still requires storing all input activations in memory, as the gradients for the low-rank
adapter matrices must be computed with respect to the original input activation. In addition, LoRA
introduces sequential computation steps and hence suffers from latency overhead during training; the
forward propagation of LoRA proceeds sequentially through the pre-trained weights and the low-rank
adapter, which hinders hardware-level parallelism. It was reported that LoRA incurs approximately
33% training-time overhead compared to full fine-tuning, as the forward pass must compute both the
pre-trained weight and the low-rank adapter in series rather than in parallel (Hu et al., 2022; Woo
et al., 2025). In addition, its low-rank structure limits representational capacity on complex tasks.
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2.2 APPROACHES TO WEIGHT SELECTION IN ADAPTER-FREE PEFT

The central challenge in adapter-free PEFT is selecting which subset of weights to update. Existing
strategies range from simple random selection, which prioritizes speed and simplicity (Woo et al.,
2025), to importance-based approaches that score weights via gradient magnitudes or activation
sensitivities. However, these importance-driven methods typically require a costly precalibration step
to compute these scores, introducing additional overhead and potential sensitivity to the calibration
data (He et al., 2025).

In this work, we propose a calibration-free, structure-aware selection strategy that aligns trainable
coordinates across layers (Section 3.2). By leveraging the inherent model architecture, our method
avoids precomputation overhead while yielding tight seed-to-seed variability (Appendix A) and
achieving high performance across tasks.

3 OUR WORK

In this section, We first characterize the training-time overhead of adapter-based PEFT. We then
introduce Recursively Aligned Pathway Adaptation (RAPA), a calibration-free, structure-aware weight
selection method. The alignment is applied recursively across all layers—mirroring the top-down
flow of backpropagation—to form coherent pathways. This is achieved by tuning balanced square
submatrices of pretrained weights, enforcing cross-layer consistency in the chosen coordinates, and
maximizing shared indices across layers under a fixed parameter budget. In experiments, RAPA
achieves faster convergence and higher accuracy while preserving adapter-free training efficiency and
avoiding calibration or per-layer resampling overhead.

3.1 REVISITING THE OVERHEAD OF ADAPTER-BASED PEFT

(a) Forward GEMM kernel launches. (b) Forward-time overhead.

(c) GEMM kernel count ratio. (d) GEMM-time overhead.

Figure 2: (a) Forward GEMM kernel launches. Adapter-based (AB) issues ∼3× more kernels than
the baseline. (b) Forward-time overhead. AB increases latency by ∼ 40%, whereas adapter-free
(AF) closely matches baseline. (c) Kernel-count ratio (AB/baseline). The overhead pattern is largely
insensitive to adapter rank r. (d) GEMM-time ratio (AB/baseline). Overhead depends more on batch
size b and sequence length s.
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To motivate our adapter-free (AF) approach, we conduct a controlled microbenchmark to isolate
the sources of overhead in adapter-based (AB) methods. On a single linear layer (4096×4096,
bfloat16) using an NVIDIA A100 (80 GB) GPU, we compare an AB setup (LoRA (Hu et al.,
2022)) against an AF setup and a frozen baseline, keeping the trainable parameter budget identical
for both AB and AF. We measure throughput with CUDA events and collect CUDA-kernel statistics
using torch.profiler; results are aggregated over multiple trials (median, with 95% bootstrap
confidence intervals).

As illustrated in Figure 2(a), the AB method substantially increases the number of General Matrix
Multiplication (GEMM) kernel launches—by over 3× on average, which corresponds to a forward-
time overhead of ∼40% (Figure 2(b)). In contrast, AF keeps the kernel count essentially unchanged
and incurs only a small overhead (∼4%).

These results indicate that the dominant inefficiency is not added FLOPs but the proliferation of
small, sequential kernel launches that underutilize the GPU (Shi et al., 2016). In Figure 2(c), the
kernel-count ratio is largely insensitive to adapter rank r. By contrast, Figure 2(d) shows that the
GEMM-time ratio depends more on batch size b and sequence length s. Simply scaling b or s to
improve utilization is often impractical due to activation-memory growth in deep models. This
structural overhead of separate adapter modules motivates our method RAPA, which aims to retain
high performance without incurring this computational burden.

3.2 RAPA: RECURSIVELY ALIGNED PATHWAY ADAPTATION

Input

  

Output

Layer (l)

Layer (l+1)

Finetuning
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(a) Random index selection
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(3) Global
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Output: I Input: I

Output: J

(b) Recursively Aligned Pathway (Ours)

Figure 3: Comparison between the naive random index selection and the proposed recursively aligned
fine-tuning. (a) The naive method randomly selects indices for fine-tuning, resulting in partially
frozen weights that disrupt gradient flows and lead to inefficient convergence. (b) The proposed
approach selects square-shaped submatrices for fine-tuning, structurally aligning connections across
layers to maintain continuous gradient propagation and accelerate loss convergence.

3.2.1 BALANCED SUBMATRIX SELECTION

Let W ∈ Rd×d be a pretrained weight matrix. LoRA has rank r, updating 2× r × d parameters. We
keep the same parameter budget but reshape it into a k × k square block:

# Trainable Params: k2 = 2 r d =⇒ k =
√
2 r d, rankbalance = k >r (when r<d). (1)

We propose selecting a square-shaped block of weights of size k × k when tuning k2 weights (Eq. 1).
Thus the rank increases from r to

√
2 r d without affecting the rest of the matrix. This rank expansion

typically endows the fine-tuned subspace with greater expressive capacity, enabling the adapter to
capture more complex task-specific patterns (Jiang et al., 2024b).

Since we still update exactly 2 r d parameters, the per-step FLOPs and optimizer memory are
unchanged; only their 2-D locations differ. Unlike column-only or row-only selections, this square-
shaped selection balances input and output dimensions and leads to an increased rank of the fine-tuned
subspace. As a result, it provides richer expressiveness.
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Experimental results in Section 4.1 demonstrate a steady improvement in accuracy as the row-
to-column ratio approaches a balanced state. Optimal scores are achieved within a range closely
centered around, but not precisely at, 1:1 ratio. This trend confirms that increasing the rank of the fine-
tuned subspace is a critical factor in improving fine-tuning accuracy. Furthermore, balanced-shaped
selection maximizes the opportunity for index alignment with adjacent layers, thereby reinforcing
coherent cross-layer learning pathways.

3.2.2 STRUCTURAL INDEX ALIGNMENT: OPTIMIZING GRADIENT FLOW

RAPA enhances training dynamics by structurally aligning the indices—the selected row and column
positions—of fine-tuned weights across layers. This strategy promotes coherent gradient propagation
by reducing discontinuities, which accelerates convergence.

Throughout this paper, we use the term block to denote a Transformer sub-module, namely an
attention block or a feed-forward network (FFN) block. For notational clarity, we model each block
as two consecutive linear layers whose input and output are linked by a residual connection (He
et al., 2016b;a).

In this section, we describe three types of index alignment strategies:

• Layer-wise Alignment: Align output indices of a layer with input indices of the next.
• Block-wise Alignment: Align indices across both linear layers and the residual connection

inside each attention or FFN block.
• Global Alignment: Align indices consistently across multiple residual-connected blocks.

Method. An overview of the index alignment method is provided in Figure 3. Since we update only
a k×k sub–matrix per layer, which weights are selected determines whether the back-propagated
gradient can continue propagating through trainable paths or is blocked by frozen weights. The core
idea is therefore simple:

(i) Choose a fixed index set for the trainable subspace.
(ii) Apply it consistently across all residual-compatible layers.

This single decision simultaneously enforces layer, block, and global alignment. To implement
this strategy, we begin by selecting a fixed index set I, J ⊂ {1, . . . , d} of size k from the hidden
dimension d. In each transformer layer l, we update only the square of the weight matrix W

(l)
I,J .

x
(l+1)
I = W

(l)
I,Jx

(l)
J , x

(l+2)
J = x

(l)
J +W

(l+1)
J,I x

(l+1)
I (2)

As shown in Eq. 2, the layer-wise alignment is achieved by selecting the same index set across two
consecutive layers, highlighted in blue. The red-colored indices represent block-wise alignment,
which matches the index sets of the input at layer l and the output at layer l+2, taking into account
the residual connection within the block.

We express global alignment across residual-connected blocks as

x
(b+1)
J = x

(b)
J +W

(b+1)
J,I

(
W

(b)
I,J , x

(b)
J

)
= x

(b)
J + F

(
W

(b)
J,J , x

(b)
J

)
(3)

=⇒ x
(b+m)
J = x

(b)
J +

m−1∑
j=0

F
(
W

(b+j)
J,J , x

(b+j)
J

)
(4)

Eq. 3 describes the forward propagation of a block indexed by b, and its generalization to m
consecutive blocks in Eq. 4, where F(·) denotes the transformation through the two linear layers
within each block. These alignment strategies enhance direct gradient propagation through residual
shortcuts and inter-layer connections.

As a result, Figure 4 shows that the training loss converges noticeably faster when the trainable weight
indices are aligned. As demonstrated in Table 1, alignment not only accelerates convergence but also
improves final accuracy. To confirm the robustness of this trend, we present the detailed training loss
curves across multiple random seeds in Appendix C. The full strategy is summarized in Appendix E.
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Figure 4: Comparison of training loss curves
for index alignment strategies.

Table 1: Effect of index alignment strategies on 5-shot
MMLU accuracy.

Method Hums. STEM Social. Other Avg.

Random 48.2 41.3 60.2 59.4 51.7
Layer Align 49.3 42.1 59.8 58.4 52.0
Block Align 49.4 41.5 59.9 57.9 51.8
Block+Global 49.3 42.1 60.3 59.1 52.3

Why alignment works. We provide a simple back-propagation analysis to illustrate how the index
alignment method facilitates more effective loss convergence. The chain rule for any trainable element
of W (l)

I,J yields
∂L

∂W
(l)
I,J

=
∂L

∂x
(l+2)
J

W
(l+1)
J,I x

(l)
J . (5)

As shown in Eq. 5, when index alignment includes W (l+1)
J,I in the trainable subspace, its update at

layer l+1 is immediately reflected in the gradient of layer l. This leads to more consistent gradient
directions and faster convergence.

We further strengthen this connection by choosing the same set J for both the block input and the
output connected via the residual path. This yields

∂L
∂x

(l)
J

=
∂L

∂x
(l+2)
J

(
1 +W

(l+1)
J,I W

(l)
I,J

)
(6)

where the identity term in Eq. 6 arises from the residual shortcut. The loss gradient at the block output
x
(l+2)
J is directly reflected in the gradient of the block input x(l)

J through the residual connection. As
a result, the model can respond to the loss signal more quickly, leading to faster convergence.

Finally, we propagate the alignment globally across blocks by fixing the index set J and reusing it as
both the input and residual-output weights in every residual block.

∂L
∂x

(b)
J

=
∂L

∂x
(b+m)
J︸ ︷︷ ︸

direct shortcut

+
∂L

∂x
(b+m)
J

∂

∂x
(b)
J

m−1∑
j=0

F
(
W

(b+j)
J,J , x

(b+j)
J

)
(7)

Back-propagating through m such blocks results in Eq. 7. The equation above suggests that the
gradient at block b+m reaches block b both directly through the residual shortcut and through the
aligned subspace shared by all trained blocks (a detailed analysis is provided in Appendix B).

4 EXPERIMENTS

We conducted comprehensive experiments to evaluate the effectiveness and generalization capability
of RAPA, along with the impact of critical design decisions. All experiments were performed on a
single NVIDIA A100 80GB GPU, using 16-bit mixed precision (Micikevicius et al., 2017) and the
AdamW (Loshchilov & Hutter, 2017) optimizer unless otherwise specified.

We measured accuracy on the MMLU benchmark and on eight commonsense reasoning tasks (Clark
et al., 2018; 2019; Zellers et al., 2019; Mihaylov et al., 2018; Bisk et al., 2020; Sap et al., 2019; Sak-
aguchi et al., 2020). Additionally, we conducted instruction tuning and evaluated the conversational
capabilities of the model using the MT-Bench benchmark (Zheng et al., 2023). We also analyzed the
effects of weight shape selection and index alignment strategies introduced in Section 3.2. Detailed
experimental settings and hyperparameter configurations are provided in Appendix F.
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4.1 EFFECTS OF BALANCED WEIGHT SELECTION AND ALIGNMENT
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Figure 5: Effects of weight shape (row/column ratio) and index alignment on MMLU accuracy.

We investigated how the row-to-column ratio of trainable weights influences task accuracy and
how this relationship changes after index alignment is applied. Figure 5 plots MMLU accuracy as a
function of the selected row-to-column ratio on x-axis, comparing cases without index alignment (blue
curve) and with index alignment (yellow curve). We fine-tuned the LLaMA2-7B model (Touvron
et al., 2023) on the MMLU dataset for this analysis; the detailed experimental setup is provided in
Appendix F (Table 7).

As shown in Figure 5, selecting a symmetric subset of weights yields higher task accuracy compared
to extreme cases where only row or column weights are selected. Focusing on the random selection
case (blue curve), a balanced (50/50) ratio achieves an accuracy of 47.4%, outperforming the extreme
column-only case (100/0) and row-only (0/100) configurations by 1.8% and 4.2%, respectively.

This trend remains consistent when the index alignment method is applied: balanced selection
again achieves the highest accuracy. Moreover, the aligned variant consistently outperforms the
random baseline across all settings. In the balanced case, index alignment improves performance to
48.9%, 1.5% higher than the random selection method at 47.4%. Even in the column-only setting,
alignment increases accuracy from 45.6% to 47.3%, and in the row-only setting, from 43.2% to
45.1%, confirming that alignment enhances performance even under asymmetric or suboptimal weight
configurations.

4.2 FINE-TUNING FOR DOWNSTREAM TASK

Table 2: Comparisons of memory usage (Mem), training time (Time), and 5-shot accuracy on MMLU
dataset when fine-tuning the LLaMA2-7B and LLaMA2-13B models using various PEFT algorithms.

Model Method # Params Mem Time
Accuracy (%)

Hums. STEM Social. Other Avg.

LLaMA2-7B

Baseline - - - 43.6 37.1 51.4 53.0 45.9
LoRA 319.8M 53.4G 3.3h 50.6 43.3 61.9 59.5 53.4
DoRA 321.1M 75.3G 6.2h 51.8 43.1 61.9 60.1 53.9

MosLoRA 323.5M 53.4G 3.5h 50.7 42.4 60.5 58.2 52.6
PaCA 348.1M 41.7G 2.8h 50.7 43.3 63.5 60.1 53.9

RAPA (Ours) 319.6M 41.5G 2.9h 51.4 44.4 64.3 60.2 54.6

LLaMA2-13B

Baseline - - - 53.2 44.2 62.8 60.8 55.0
LoRA 500.7M 60.3G 5.9h 56.4 47.5 67.9 64.2 58.6

MosLoRA 505.3M 60.6G 6.1h 55.5 46.0 67.4 64.2 57.9
DoRA 502.8M 80.3G 12.0h 57.0 47.8 67.6 64.6 58.9
PaCA 545.3M 52.7G 5.1h 57.2 47.5 67.5 65.1 59.0

RAPA (Ours) 501.5M 52.9G 5.2h 57.9 48.1 67.6 65.9 59.6

We validate the task accuracy and efficiency of RAPA using the MMLU 5-shot benchmark, which
evaluates complex reasoning across 57 academic subjects. RAPA was compared against several
PEFT baselines, including LoRA (Hu et al., 2022), DoRA (Liu et al., 2024), MosLoRA (Wu et al.,
2024a), as well as PaCA (Woo et al., 2025), using the MMLU dataset (Hendrycks et al., 2020). All
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PEFT schemes were evaluated on both LLaMA2-7B and LLaMA2-13B. For fair comparisons, the
LoRA baseline was configured with a rank of 128, and RAPA was adjusted to match the trainable
parameter count. The results from additional experiments across various rank settings are reported in
Appendix D, and the detailed configurations are provided in Appendix F.

On the MMLU benchmark, RAPA consistently outperforms other PEFT methods (Table 2). It
achieves higher accuracy than PaCA (+0.7 % on LLaMA2-7B, +0.6 % on LLaMA2-13B) with
similar efficiency, and surpasses LoRA and MosLoRA in both accuracy and training speed. While
DoRA reaches competitive accuracy, it exhibits significantly longer training time, highlighting the
computational efficiency of RAPA. Among all compared methods, RAPA achieves the highest average
accuracy on both models, demonstrating the effectiveness of the structured weight selection and index
alignment strategies proposed in this work.

4.3 COMMONSENSE REASONING

Table 3: Comparison of PEFT methods on commonsense reasoning benchmarks.

Method Mem Time ARC-c ARC-e BoolQ HellaS. OBQA PIQA SIQA WinoG. Avg.

Baseline - - 43.3 74.6 77.7 76.0 44.2 79.1 46.1 69.1 63.8
LoRA 53.2G 4.8h 43.0 72.6 80.6 67.8 44.6 76.6 54.9 74.3 64.3
DoRA 75.3G 8.8h 52.1 80.0 73.7 76.4 49.0 80.4 58.4 82.0 69.0

MosLoRA 53.4G 5.0h 53.0 81.2 70.7 76.3 50.2 80.8 58.8 82.1 69.1
PaCA 41.5G 4.0h 51.0 78.5 73.7 75.4 48.8 80.2 57.5 80.3 68.2

RAPA (Ours) 42.1G 4.1h 53.1 81.1 76.4 77.1 49.8 80.4 58.9 80.8 69.7

We further evaluated RAPA on eight canonical commonsense reasoning tasks (ARC Challenge,
ARC Easy, BoolQ, HellaSwag, OpenbookQA, PIQA, Social IQA, and Winogrande), comparing
its accuracy against LoRA, DoRA, MosLoRA, and PaCA. All experiments were conducted on the
LLaMA2-7B model and we fine-tuned it on a commonsense reasoning dataset consisting of 170k
samples. Detailed hyperparameters are listed in Appendix F.

Table 3 reports that RAPA achieves the highest macro-average accuracy of 69.7%, outperforming the
strongest adapter-based baseline, DoRA (69.0%), by 0.7% and the strongest adapter-free baseline,
PaCA (68.2%), by 1.5%.

Despite higher accuracy, RAPA keeps the computational footprint essentially flat: 42.1 GB peak
GPU memory usage and 4.1 hour of wall-clock time, nearly identical to PaCA (41.5GB and 4.0 hour)
and approximately 20% lower than those of LoRA and MosLoRA (53 GB), while requiring less than
half the GPU time compared to DoRA (8.8 hours). Since RAPA remains adapter-free, its per-step
FLOPs and optimizer state size are unchanged relative to PaCA.

These results reinforce the findings from the experiments on MMLU and underscore two key
benefits of combining structured square selection with cross-layer index alignment: (i) a higher rank
under a fixed parameter budget, which expands the hypothesis space sufficiently to model diverse
commonsense reasoning tasks, and (ii) uninterrupted gradient flow across layers, which accelerates
convergence without incurring additional memory overhead. Together, these results demonstrate that
principled subspace design, rather than simply increasing parameter count, is a key to generalization
performance in low-rank, adapter-free fine-tuning.

4.4 INSTRUCTION TUNING

We evaluated RAPA on the Mistral-7B model, which was instruction-tuned for one epoch on the
OASST1 dataset using a single NVIDIA A100 GPU. Performance was subsequently measured
using the MT-Bench benchmark, which averages scores over two conversational turns. We used
GPT-4o-mini as the evaluator for this benchmark (see Table 10 in Appendix F for further details).

As shown in Table 4, RAPA achieved the highest average score of 4.84. Notably, compared to PaCA,
another adapter-free method with nearly identical training efficiency, outperforms PaCA by almost
0.9 points (4.84 vs. 3.96). This demonstrates that RAPA overcomes the performance limitations of
prior adapter-free approaches while also outperforming strong adapter-based methods like LoRA
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(4.55) and DoRA (4.63). Furthermore, this high performance is achieved with remarkable efficiency,
requiring less than half the training time of DoRA.

Table 4: Performance comparison of instruction tuning on Mistral-7B (Jiang et al., 2023).

Model Method Time Mem # Params Human STEM Role Extract Writing Reason Coding Math Avg.

Mistral-7B

Baseline - - - 1.85 3.20 2.95 3.15 2.50 1.70 2.30 1.40 2.38
LoRA 47m 52G 168M 6.40 5.75 4.35 5.20 5.25 4.20 3.30 1.95 4.55
DoRA 93m 69G 169M 6.70 5.60 4.30 4.40 5.75 4.50 3.85 1.95 4.63

MosLoRA 48m 52G 169M 5.80 6.05 4.85 5.00 5.00 3.75 3.65 2.00 4.51
PaCA 41m 47G 176M 5.35 5.45 4.15 4.50 4.55 2.55 3.20 1.95 3.96

RAPA (Ours) 42m 48G 168M 6.70 5.82 5.65 5.20 5.85 4.20 3.22 2.05 4.84

5 RELATED WORK

Parameter-Efficient Fine-tuning (PEFT) A range of PEFT methods have been proposed to
adapt large pre-trained models to downstream tasks while minimizing the number of trainable
parameters (Han et al., 2024; Zaken et al., 2021a; Liu et al., 2022). Early approaches introduced
adapter modules within each transformer layer (Houlsby et al., 2019; Pfeiffer et al., 2020), inserting
small bottleneck networks that are trained while keeping the backbone frozen. Although being
effective, these methods incur both training and inference overheads due to the additional network
components. To address the inference inefficiency, LoRA (Hu et al., 2022) was proposed, which
employs low-rank decomposed matrices during training and merges them back into the original
weights during inference. This scheme enables LoRA and its variants (Liu et al., 2024; Wu et al.,
2024b) to achieve zero inference-time overhead while maintaining high accuracy.

Parameter-efficient Column-wise Adaptation (PaCA) PaCA (Woo et al., 2025) is a lightweight
fine-tuning method that randomly selects and updates a subset of column-wise weights from the
pre-trained model without introducing additional adapter modules. Unlike LoRA-based schemes
that utilize additional trainable low-rank adapters, PaCA performs adapter-free fine-tuning, thereby
reducing both training time and memory consumption. However, the use of random index selection
without structural alignment across layers lead to suboptimal gradient propagation and degraded
convergence behavior in some cases.

Sparse Matrix Tuning (SMT) SMT (He et al., 2025) suggests gradient-based importance esti-
mation to selectively fine-tune substructures within the pre-trained model, demonstrating improved
accuracy and faster convergence compared to conventional PEFT schemes. However, SMT relies
on performing full fine-tuning over the entire model for a number of iterations to obtain importance
scores, incurring substantial computational and memory overhead. Furthermore, since the importance-
based tuning modifies a subset of the full model parameters directly, it necessitates storing the entire
model after adaptation, rather than storing only the lightweight adapter modules. This characteristic
limits the scalability of SMT in multi-task or multi-domain scenarios (Sheng et al., 2023; Li et al.,
2024; Zhao et al., 2024c; Zeng et al., 2025), where deploying only a specialized adapter for each task
or domain is a key advantage of PEFT.

6 CONCLUSION

We presented RAPA, an adapter-free PEFT method that expands capacity and stabilizes optimization
without added computational or memory cost. RAPA reallocates a fixed parameter budget to a
balanced square submatrix and aligns the corresponding indices across residual-connected layers,
yielding a higher rank of the weight update and coherent gradient pathways. The design is motivated
by a simple backpropagation analysis and incurs no extra modules or calibration passes. Across
MMLU, commonsense reasoning, and MT-Bench, RAPA improves accuracy and convergence under
matched budgets while keeping time and memory near the adapter-free baseline. We summarize
limitations and broader impacts in Appendices G and H.
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ETHICS STATEMENT

Our research aims to make the fine-tuning of large language models more computationally efficient
and accessible. By reducing the resources required for parameter-efficient fine-tuning, our method,
RAPA, can help democratize access to advanced AI technologies, enabling a wider range of re-
searchers, startups, and organizations to develop specialized models for beneficial applications. We
acknowledge that any technology that lowers the barrier to entry for powerful models also carries the
risk of misuse. More efficient fine-tuning techniques could potentially be leveraged by malicious
actors to generate harmful content, such as high-quality disinformation or spam, at a larger scale.
Furthermore, while RAPA is a general optimization method, the models fine-tuned with our technique
will inherit any social biases present in the base model and the fine-tuning data. We believe the bene-
fits of enabling broader access for legitimate research and innovation are substantial. We encourage
the community to continue developing robust safeguards and responsible deployment practices for
fine-tuned models. We have conducted our work in full adherence to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of our research. All experiments were conducted with a
rigorous methodology, ensuring fair comparisons across methods under identical trainable-parameter
budgets. We report our findings transparently, detailing performance across all benchmarks. To
enable other researchers to verify and build upon our work, we provide our source code in the
supplementary material. Furthermore, all datasets used are publicly available, and the complete
experimental configurations and hyperparameters for each experiment are detailed in Appendix F.
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A ROBUSTNESS OF FINE-TUNING VS. INITIAL WEIGHT SENSITIVITY

Table 5: MMLU 5-shot accuracy comparison. The rows with the lowest (blue) and highest (red)
average scores for each method are highlighted.

Method Setting Accuracy (%)
Hums. STEM Social. Other Avg.

Baseline - 43.6 37.1 51.4 53.0 45.9

Pruning to Zero

Seed #1 34.0 31.8 38.5 42.8 36.4
Seed #2 39.9 35.9 48.3 49.9 43.0
Seed #3 39.5 38.3 47.4 49.1 43.1
Seed #4 40.4 37.5 49.6 50.6 44.0

Fine-tuning

Seed #1 50.2 44.1 63.2 60.4 54.0
Seed #2 51.3 43.2 62.6 60.9 54.1
Seed #3 51.2 42.6 62.1 60.5 53.7
Seed #4 51.2 44.3 62.8 60.6 54.3

To determine whether the initial weight sensitivity of a model to a downstream task could predict
its final fine-tuning performance, we used the performance degradation from our "Pruning to Zero"
experiment as a proxy for sensitivity (Table 5). The results revealed a high variance in sensitivity
depending on the random seed; for instance, the accuracy drop from the baseline ranged from a
minimal 1.9 % (Seed #4 from the previous table) to a substantial 9.5 % (Seed #1), indicating that
different sets of weights with varying importance were pruned.

Notably, we observed no correlation between this initial weight sensitivity and the final fine-tuning
accuracy. Despite the wide disparity in the pruning outcomes, all fine-tuning runs converged to a
narrow and high-performance bracket (e.g., 53.7 % to 54.3 %). This suggests that the fine-tuning
process is highly robust and capable of overriding the initial weight state of the model to find a
consistent solution.

B GRADIENT ANALYSIS OF INDEX ALIGNMENT

Input

  

Output

Layer (l) Layer (l+1)

Finetuning

Finetuning

Output: I

Input: J

Input: T

Output: K

Figure 6: Example of disrupted gradient flow in the absence of index alignment

In this section, we analytically demonstrate the benefit of index alignment in RAPA through a formal
mathematical formulation. As defined in Section 3.2.2, we consider a simplified structure in which
a single block consists of two consecutive linear layers connected via a residual connection. Let
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I, J,K, T ⊂ {1, . . . , d} denote the selected index subsets over the hidden dimension d, where each
subset corresponds to the input/output subspaces involved in fine-tuning.

Mathematically, the forward propagation through a block without applying any alignment can be
defined as:

x
(l+1)
I = W

(l)
I,Jx

(l)
J (8)

x
(l+2)
K = W

(l+1)
K,T x

(l+1)
T + x

(l)
K (9)

B.1 LAYER-WISE ALIGNMENT: ALIGNING OUTPUT-INPUT INDICES ACROSS LAYERS

In layer-wise alignment, the output indices of a layer are matched with the input indices of the next
layer to enhance gradient propagation. Based on the forward propagation defined in Eqs. 8 and 9,
the loss gradient with respect to the trainable weight W (l+1)

K,T at layer l + 1 is given by

∂L
∂W

(l+1)
K,T

=
∂L

∂x
(l+2)
K

∂x
(l+2)
K

∂W
(l+1)
K,T

(10)

The weights corresponding to the selected subspace of the layer l + 1 are updated during back-
propagation as follows:

W
(l+1)
K,T ←W

(l+1)
K,T − η

∂L
∂W

(l+1)
K,T

(11)

where η is the learning rate. By applying the chain rule, we can similarly compute the gradient of the
selected subspace weights at layer l, W (l)

I,J as

∂L
∂W

(l)
I,J

=
∂L

∂x
(l+2)
K

∂x
(l+2)
K

∂x
(l+1)
I

∂x
(l+1)
I

∂W
(l)
I,J

(12)

where ∂x
(l+2)
K

∂x
(l+1)
I

= W
(l+1)
K,I (note that W (l+1)

K,I is not included in the selected trainable subspace), and

∂x
(l+1)
I

∂W
(l)
I,J

= x
(l)
J . Accordingly, the gradient becomes:

∂L
∂W

(l)
I,J

=
∂L

∂x
(l+2)
K

W
(l+1)
K ,I x

(l)
J (13)

The gradient in Eq. 13 reveals that the update of W (l)
I,J is modulated by the factor W (l+1)

K,I from the
subsequent layer. Since Eq. 9 assumes that only the weights indexed by (K,T ) are included in the
trainable subspace of layer l+1, the element W (l+1)

K,I remains frozen during the update step of layer l

when T ̸= I . Consequently, the back-propagated gradient that reaches W (l)
I,J is scaled by this fixed

weight.

When the index sets are aligned (T = I), the factor W (l+1)
K,I is updated at every iteration, allowing the

gradient to flow more directly into W
(l)
I,J and accelerating convergence, as discussed in Section 3.2.2.

B.2 BLOCK-WISE ALIGNMENT: ALIGNING WITHIN RESIDUAL-CONNECTED LAYERS

The residual connection within the block transmits both activations and gradients directly across
layers. Such residual paths preserve gradient magnitude and stabilize the training of deep neural
networks (He et al., 2016b).

Gradient decomposition For clarity, we focus on a single residual block, referred to as the target
block, whose final layer index is l+2. The gradient arriving at the output of the target block during
back-propagation can be decomposed into two additive parts:

∂L
∂x

(l+2)
K

= gK
linear + gK

residual (14)
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where gKlinear is the gradient that has passed through all layers after the target block, and gK
residual

flows along the residual connection.

Why align indices inside the block? As defined in Appendix B.1, the layer-wise alignment method
aligns index sets between successive layers (T = I).

In this section, to motivate the need for block-wise alignment, we consider a block with a residual
connection from input to output. We denote the input index set as J and the output index set as K.
When the output index subspace K and input index subspace J of the block are not aligned, the
back-propagation gradient expands as follows:

∂L
∂x

(l)
J

=
∂L

∂x
(l+2)
K

∂x
(l+2)
K

∂x
(l+1)
I

∂x
(l+1)
I

∂x
(l)
J

(15)

=
∂L

∂x
(l+2)
K

(
W

(l+1)
K,I W

(l)
I,J + δr; J,K

)
, δr;J,K =

{
1 if r ∈ J ∩K

0 if r /∈ J ∩K
(16)

where δr;J,K is the indicator function. If we align the output and shortcut index sets such that K = J ,
the expression simplifies to:

∂L
∂x

(l)
J

=
∂L

∂x
(l+2)
J

(
W

(l+1)
J,I W

(l)
I,J + 1

)
(17)

The additive identity term arises only when the same index set is used on both sides of the residual
connection (K = J). This identity term creates a direct gradient path from the output of the block
back to its input layer (l), as formalized in Eq. 14, effectively shortening the gradient route.

As a result, it helps preserve gradient magnitude and reduces training loss by approximately 3% (see
Figure 4 in Section 3.2.2).

B.3 GLOBAL ALIGNMENT: INDEX ALIGNMENT ACROSS RESIDUAL BLOCKS

The benefits of residual connections extend not only within a block but also across multiple sequential
blocks. To fully exploit this, we align indices between adjacent blocks. Global alignment extends the
index-selection rule of RAPA so that the same index set T is used for fine-tuning in all consecutive
blocks.

For forward propagation of block b (refer to Eq. 3 in Section 3.2.2 for notation), we write

x
(b+1)
J = x

(b)
J + F

(
W

(b)
J,J , x

(b)
J

)
(18)

where F(·) is the two-layer transformation inside the block. Repeating this for m successive blocks
yields

x
(b+m)
J = x

(b)
J +

m−1∑
i=0

F
(
W

(b+i)
J,J , x

(b+i)
J

)
. (19)

Applying the chain rule, the gradient back-propagated to the initial input is represented by

∂L
∂x

(b)
J

=
∂L

∂x
(b+m)
J︸ ︷︷ ︸

direct shortcut

1 + ∂

∂x
(b)
J

m−1∑
i=0

F
(
W

(b+i)
J,J , x

(b+i)
J

)
︸ ︷︷ ︸

via learned weights

 . (20)

As in block-wise alignment, the term "1" directly links the final loss back to the shallow block without
traversing intermediate weights. This direct gradient path:

• Shortens the effective back-propagation path length.
• Strengthens early-layer updates.
• Mitigates vanishing gradients even across many blocks.
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C DETAILED TRAINING LOSS CURVES

Figure 7: Detailed training loss curves for aligned vs. random index selection across four different
random seeds. The grouped colors (blue hues for aligned, green hues for random) and unique markers
identify each individual run. This demonstrates that the faster convergence of the aligned method is
consistent and robust across various initializations.
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D 5-SHOT MMLU ACCURACY COMPARISONS UNDER VARIOUS RANKS

Table 6: 5-shot accuracy (%) on MMLU dataset by rank and method.

Method Rank # Params(M)
Accuracy (%)

Hums. STEM Social. Other Avg.

Baseline - - 43.6 37.1 51.4 53.0 45.9

LoRA N/A - - - - - -
DoRA N/A - - - - - -

MosLoRA N/A - - - - - -
PaCA 1 1.4M 44.6 38.1 54.0 53.8 47.2

RAPA (Ours) 60 1.4M 46.7 40.6 56.3 56.4 49.6

LoRA 1 2.5M 46.7 42.6 57.9 57.6 50.6
DoRA 1 3.9M 47.5 41.8 58.8 58.0 51.0

MosLoRA 1 2.5M 48.2 40.9 59.8 58.6 51.4
PaCA 2 2.7M 46.5 39.8 55.7 54.7 48.8

RAPA (Ours) 80 2.5M 47.6 41.8 58.8 58.4 51.1

LoRA 8 20.0M 48.5 41.2 57.3 56.5 50.6
DoRA 8 21.4M 48.7 42.3 58.3 57.6 51.3

MosLoRA 8 20.0M 46.6 42.2 60.8 57.4 51.1
PaCA 16 21.8M 48.7 41.7 58.7 57.6 51.2

RAPA (Ours) 228 20.1M 50.1 42.6 60.8 59.1 52.8

LoRA 64 159.9M 51.2 43.1 61.7 60.1 53.6
DoRA 64 161.3M 51.0 43.6 61.8 60.1 53.7

MosLoRA 64 160.8M 50.4 42.8 61.5 59.5 53.1
PaCA 128 174.1M 50.7 43.3 63.5 60.1 53.9

RAPA (Ours) 644 160.1M 51.2 44.3 62.8 60.6 54.3

E IMPLEMENTATION DETAILS

Algorithm 1 instantiates all three alignment rules in a single pass over the residual blocks.

Algorithm 1 Index Alignment of Trainable Weights
1: Input: residual blocks (B1, . . . ,BL), hidden size d, square side k, seed s
2: I ← RANDOMPICK(d, k, s)
3: for b = 1 to L do
4: Bb.input← I // block-wise and global alignment
5: prevOut← I
6: for all linear layer ℓ in Bb do
7: ℓ.input← prevOut // layer-wise alignment
8: ℓ.output← RANDOMPICK(d, k)
9: prevOut← ℓ.output
10: end for
11: Bb.output← I // last layer output of a block
12: end for
13: return mapping

{
ℓ.input, ℓ.output

}
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F EXPERIMENTAL DETAILS

Table 7: Hyperparameters for the row/column weight ratio sweep experiment on LLaMA2-7B.

Fixed Hyperparameters

Method RAPA
Training Precision 16-bit mixed precision
Total Trainable Weights 4,096 per layer
Optimizer AdamW
LR Scheduler Cosine
Batch Size 8
Sequence Length 512
Epochs 1
Target Modules Q, K, V, O layers in Attention

Sweep Configuration
Rank (column) is swept through powers of two from 1 to 4096. Rank (row) is set such

that Rank (row) × Rank (column) = 4096. Below are representative examples.

Rank (column) Rank (row) Ratio (column:row) alpha

1 4096 100/0 4
2 2048 92/8 8

...
64 64 50/50 64

...
2048 2 8/92 8192
4096 1 0/100 16384

Table 8: Hyperparameters for fine-tuning LLaMA2-7B and LLaMA2-13B on MMLU using PEFT
(parentheses indicate settings for LLaMA2-13B).

Hyperparameters LoRA DoRA MosLoRA PaCA RAPA

Training Precision 16-bit mixed precision (Micikevicius et al., 2017)
Rank 128 128 128 256 910 (1018)
α 64 64 64 128 455 (509)

DropOut 0.1 0.1 0.1 - -
Optimizer AdamW (Loshchilov & Hutter, 2017)

LR 1e-4, 2e-4, 3e-4
LR Scheduler cosine

Batch Size 8 (4)
Gradient Accumulation Steps 1 (2)

Sequence Length 512
Warmup Steps 100

Epochs 1
Target Modules Q, K, V, O, Up, Down, Gate
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Table 9: Hyperparameters for fine-tuning LLaMA2-7B on Commonsense Reasoning using PEFT.

Hyperparameters LoRA DoRA MosLoRA PaCA RAPA

Training Precision 16-bit mixed precision (Micikevicius et al., 2017)
Rank 128 128 128 256 910
α 64 64 64 128 455

DropOut 0.1 0.1 0.1 - -
Optimizer AdamW (Loshchilov & Hutter, 2017)

LR 2e-4, 3e-4
LR Scheduler cosine

Batch Size 8
Gradient Accumulation Steps 1

Sequence Length 512
Warmup Steps 100

Epochs 1
Target Modules Q, K, V, O, Up, Down, Gate

Table 10: Hyperparameters for instruction tuning Mistral-7B-v0.1 on OASST1 dataset using PEFT.

Hyperparameters LoRA DoRA MosLoRA PaCA RAPA

Training Precision 16-bit mixed precision (Micikevicius et al., 2017)
Rank 64 64 64 128 602
α 1

DropOut 0.1 0.1 0.1 - -
Optimizer AdamW (Loshchilov & Hutter, 2017)

LR 1e-3, 5e-4
LR Scheduler linear

Batch Size 4
Gradient Accumulation Steps 4

Sequence Length 1024
Warmup Steps 61

Epochs 1
Target Modules Q, K, V, O, Up, Down, Gate
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G LIMITATION

While RAPA demonstrates strong empirical accuracy and training efficiency across a variety of
fine-tuning tasks, several limitations remain. First, our method is evaluated solely in the context
of fine-tuning pretrained language models; its applicability to other adaptation paradigms, such as
continual learning or multi-stage pretraining, remains an open question. Second, although RAPA
improves gradient propagation via structured index alignment, its effectiveness may be sensitive
to model architecture and depth, particularly in transformer variants that diverge from standard
residual block structures. Finally, RAPA employs a fixed global index set shared across layers. While
this promotes implementation simplicity and structural coherence, it may limit the potential for
layer-specific specialization. Exploring more flexible alignment strategies that adaptively tailor index
sets per layer is a promising direction for future work.

H BROADER IMPACTS

H.1 MULTI-RAPA: EFFICIENT MULTI-ADAPTER SERVING WITHOUT MERGING

Recent works such as S-LoRA (Sheng et al., 2023) has highlighted the importance of supporting
multiple fine-tuned adapters simultaneously in deployment environments. These systems aim to
improve inference scalability by avoiding the need to merge adapter weights back into the base model,
dynamically switching between LoRA modules to support various tasks.

Our proposed method, RAPA, complements this trend by further reducing the memory and computa-
tional demands of each adapter. Unlike LoRA-based methods that apply low-rank updates across
all input dimensions, RAPA fine-tunes only a small square-aligned subset of weights. This makes
each adapter lighter in both parameter count and run-time footprint, which in turn enables more
adapters to be hosted concurrently in constrained environments. During inference, RAPA requires
fewer compute and memory resources per step, an advantage particularly relevant to multi-tenant
inference servers, on-device deployment, and cost-sensitive applications.

In summary, RAPA not only improves parameter-efficient fine-tuning but also enables more scalable,
sustainable, and inclusive model serving, advancing the field of adaptive language modeling.

H.2 MOE-COMPATIBLE ADAPTATION WITH RAPA

RAPA supports Mixture-of-Experts (MoE) architectures by allowing each expert to update only a
small square-aligned subspace of weights, requiring only 0.1 to 0.5% additional parameters per expert.
This results in significantly reduced memory and computation overhead during both training and
inference. When combined with sparse activation of MoE, the active parameter count per forward
pass drops further, enabling low-latency and memory-efficient adaptation. Previous work such as
MixLoRA (Li et al., 2024) and Mixtral (Jiang et al., 2024a) shows that lightweight adapters can
improve multitask accuracy without compromising efficiency; RAPA achieves similar gains with
even smaller experts and no merging overhead. Since each expert is only a few megabytes, hundreds
of domain-specific RAPA experts can be held in memory simultaneously, supporting scalable and
sustainable deployment. This design reduces entry barriers for low-resource settings, facilitates
localization, and mitigates interference between tasks, offering a modular and future-proof approach
to continuous customization of large models.
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