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ABSTRACT

Test-time Scaling (TTS) has been demonstrated to significantly enhance the rea-
soning capabilities of Large Language Models (LLMs) during the inference phase
without altering model parameters. However, existing TTS methods are largely in-
dependent, implying that LLMs have not yet evolved to progressively learn how to
scale more effectively. With the objective of evolving LLMs to learn “how to scale
test-time computation,” we propose LatentEvolve, a self-evolving latent TTS
framework inspired by the complementary learning system (CLS) theory. Analo-
gous to the human brain’s dual system of a fast-recall hippocampus and a slow-
consolidating neocortex, LatentEvolve comprises two evolutionary compo-
nents: daytime scaling, which rapidly retrieves historical latent representations to
better guide current LLM reasoning; and nighttime scaling, which integrates past
latent optimizations in a manner akin to the human brain’s consolidation of expe-
riences during sleep. The alternation of daytime and nighttime processes facili-
tates a fast and slow evolution of LLM TTS, mirroring human cognitive dynamics
in a fully unsupervised manner. Extensive experiments across eight benchmarks
and five model backbones demonstrate that our LatentEvolve surpasses state-of-
the-art TTS methods such as LatentSeek and TTRL by up to 13.33% and exhibits
exceptional cross-domain and cross-backbone generalization. The codes are avail-
able at https://anonymous.4open.science/r/latent-evolve/.

1 INTRODUCTION

The general capabilities of large language models (LLMs) have been extensively developed and
widely recognized across numerous domains, such as mathematical reasoning (Zeng et al., 2024;
Wu et al., 2025), software engineering (Wei et al., 2025; Luo et al., 2025; Yang et al., 2024), mul-
timodal understanding (Zheng et al., 2025b; Su et al., 2025), and embodied action (Wang et al.,
2023a), emerging as dominant paradigms that are steadily advancing toward artificial general in-
telligence (AGI) (Bubeck et al., 2023). Much of this success in recent years has been driven by
training-time scaling, wherein increasing the volume of training data and parameters consistently
yields performance improvements (Kaplan et al., 2020; Aghajanyan et al., 2023). However, the
pace of this scaling, particularly in terms of pre-training scale, has begun to slow, constrained by
its resource-intensive nature and the depletion of high-quality training data (Villalobos et al., 2022;
Zhou et al., 2025). Consequently, a growing body of research has shifted attention to test-time scal-
ing (TTS) (Zhang et al., 2025c; Chung et al., 2025), aiming to fully harness the intrinsic knowledge
of LLMs to maximize their real-world utility without additional training during the test phase.

The dimensions of TTS are highly diverse. One prominent form is (I) parallel scaling, wherein mul-
tiple candidate responses are generated for a given query, which are subsequently aggregated via an
appropriate mechanism. This can involve multiple samples from a single LLM (Brown et al., 2024;
Snell et al., 2024) or sampling from multiple heterogeneous LLMs (Zhang et al., 2025d; Ye et al.,
2025). Another form is (II) sequential scaling, where the LLM iteratively refines solutions based
on its own previous outputs, and which underlies many “System 2”-style generation methods (Yu
et al., 2024; Wei et al., 2023; He et al., 2024; Gou et al., 2024). Other variants include hybrid ap-
proaches that integrate both strategies (Wang et al., 2024a; Besta et al., 2024), as well as internalized
scaling, where models like DeepSeek R1 (Guo et al., 2025) and OpenAI o-series (Li et al., 2025b)
are inherently capable of adaptively allocating computational resources during inference.
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Figure 1: The daytime scaling of LatentEvolve functions analogously to the human hippocampus,
rapidly retrieving memory cues, whereas the nighttime scaling mirrors the neocortex during sleep,
performing deep integration of accumulated knowledge.

However, regardless of the specific form, most TTS paradigms lack the capacity for self-evolution,
as inference-time computations for distinct queries are typically treated as mutually independent
events. For example, in verbal reinforcement learning approaches such as Reflexion (Shinn et al.,
2023) and Mind Evolution (Lee et al., 2025), successful reflective strategies are instance-specific and
are not transferred to subsequent tasks. Likewise, in “sampling-and-voting” scaling methods (Brown
et al., 2024; Irvine et al., 2023), prior successes in selecting the correct answer do not inform or refine
future selection strategies. This inter-task independence fundamentally constrains the potential of
TTS paradigms to progressively evolve through continual interaction with the environment. This
raises a natural yet critical research question: How can we design a TTS framework that learns from
experience, enabling its scaling capabilities to evolve and improve as it solves more problems?

To address this challenge, we introduce LatentEvolve, a self-evolving TTS framework inspired
by the Complementary Learning Systems (CLS) theory (McClelland et al., 1995; Kumaran et al.,
2016). CLS theory posits that the brain uses two synergistic systems: a fast-learning hippocampus
for specific episodic memories, and a slow-learning neocortex for consolidating these experiences
into general knowledge. Analogously, LatentEvolve operates through a dual-phase evolution:

☼ Daytime Scaling for fast, episodic adaptation: For each new query, LatentEvolve performs
instance-level latent optimization that steers the LLM toward better reasoning paths. This pro-
cess is initialized by retrieving relevant “episodic traces”, i.e., latent representations from pre-
viously solved problems, mirroring the daytime fast recall of individual memories.

È Nighttime Scaling for slow, procedural consolidation: Mirroring how the brain consolidates
experiences into general skills during sleep, LatentEvolve periodically fine-tunes a compact
knowledge consolidation model (latent weaver) on the collection of daytime traces. This night-
time process distills these specific experiences into procedural knowledge, evolving to generate
superior initial latent representations for future tasks.

Within this continual interplay, LatentEvolve enables LLMs to perform test-time computation
during daytime inference while simultaneously accumulating experiential knowledge. During night-
time reflection, these experiences are periodically consolidated into endogenous procedural memory,
thereby achieving a “fast-slow” evolution of test-time scaling. The entire process operates without
reliance on ground-truth labels or any other external signals.

Experimental Observation. Extensive evaluations across eight benchmarks spanning four do-
mains demonstrate that LatentEvolve provides: ❶ high performance: achieving up to 23.3%
gains on math reasoning, surpassing GRPO and LatentSeek on MATH-500 by 1.75% and 11.40%,
respectively; ❷ cross-domain generalization: test-time scaling on MMLU and MATH transfers
to out-of-domain datasets, yielding gains of 7.07% on GPQA and 5.22% on JAMA; ❸ continual
learning ability: test-time scaling across multiple new domains does not degrade performance on
previously seen domains and can even provide modest improvements.

2 RELATED WORK

Test-time computation is a canonical pathway for transitioning from System 1 to System 2 models,
with two primary branches: test-time training (TTT) and test-time scaling (TTS). The former in-
volves updating model parameters during the test phase in an unsupervised manner, as exemplified

2
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by TTT (Sun et al., 2020; Akyürek et al., 2024), TTT+++ (Liu et al., 2021), and SIFT (Hübotter
et al., 2025). The latter increases computational expenditure without altering parameters, which can
occur in the (I) explicit, natural-language space, as in self-correction (Shinn et al., 2023; Gou
et al., 2024; Kang et al., 2025), feedback modeling (Cobbe et al., 2021; Yu et al., 2025), or repeated
sampling (Gui et al., 2024; Ye et al., 2025); or it may operate in the (II) latent space, where methods
such as Coconut (Hao et al., 2024) and SoftCoT (Xu et al., 2025b;c) perform deep scaling within
the model’s hidden representations. Our proposed LatentEvolve falls primarily within the latent
TTS. Yet, regardless of form, existing approaches are rarely capable of rapid evolution through the
ongoing process of problem solving, a limitation that LatentEvolve is designed to overcome.

Latent Computation & Reasoning seeks to exploit continuous latent representations, rather
than discrete language space, to enable a more machine-native and concise form of reasoning for
LLMs (Zhu et al., 2025). Mainstream approaches can be broadly categorized as: (I) architecturally
enabling native latent reasoning, as exemplified by Coconut (Hao et al., 2024), CoLaR (Tan et al.,
2025), and Recurrent Depth (Geiping et al., 2025); and (II) employing latent computation to steer
LLM generation, as in LatentSeek (Li et al., 2025a), SoftCoT (Xu et al., 2025c;b), and otherss (Liu
et al., 2024; Sun et al., 2025), which leverage latent representations as an intervention to modulate the
quality of generated outputs. Other methods, such as IMM (Orlicki, 2025) and MemoryLLM (Wang
et al., 2024c; 2025a), employ latent tokens as a means of preserving contextual memory. Distinct
from these approaches, LatentEvolve implements a dual-stage test-time evolution within the latent
space, whereas prior strategies generally remain inter-task independent.

Self-Evolving LLM & Agent. How to evolve LLMs during their interactions with the environ-
ment has drawn increasing attention from the research community (ang Gao et al., 2025; Fang
et al., 2025). Existing approaches generally employ certain carriers for evolution, including: (I)
parametric update, wherein prior experiences are encoded directly into model parameters (Zeng
et al., 2023; Chen et al., 2024; Zhao et al., 2025; Chen et al., 2025b); (II) experience databases, in
which past problem-solving trajectories (Zhao et al., 2024; Song et al., 2024) or distilled experiential
knowledge (Zhang et al., 2025a; Wang et al., 2025b; Tang et al., 2025) are leveraged to contextually
enhance LLM capabilities; and (III) skill condensation, where reusable tools (e.g., APIs, MCPs)
are encapsulated as functional assets (Zheng et al., 2025a; Suzgun et al., 2025; Zhang et al., 2025b;
Qiu et al., 2025b;a). Distinct from these paradigms, LatentEvolve performs test-time evolution
within the latent space, treating the latent sequences as a compact and adaptable skill repository.

3 PRELIMINARY

In this section, we formally describe the procedure of current latent-based TTS methods, which
manage to steer LLM’s generative process by introducing adaptable, continuous vectors.

Latent-Space Aided Reasoning. Let πθ be a language model with frozen parameters θ. For a
given problem context c, the standard generative process produces an output sequence y by sam-
pling from the conditional probability distribution p(y|c;θ). The core principle of this paradigm is
to introduce an auxiliary sequence of continuous vectors, z = (z1, z2, · · · , zL), which we refer to
as a latent token sequence. These vectors act as a dynamic, instance-specific control signal that con-
ditions the generative process of the frozen LLM. The generation is thus reformulated as sampling
from a new distribution, conditioned on both the original context and the latent intervention:

y ∼ p(y|c, z;θ) (1)

The latent sequence z can be introduced through various mechanisms, such as being prepended to
input embeddings, directly augmenting the model’s internal key-value (KV) cache, or representing
a latent thought process for subsequent decoding (Xu et al., 2025c; Liu et al., 2024; Sun et al.,
2025). The primary objective is to find an optimal latent intervention z∗ that maximizes an objective
function J(z). This objective is formalized as the expected quality of the generated output:

z∗ = argmax
z
J(z), where J(z) = Ey∼p(y|c,z;θ)[Q(y)] (2)

where Q(y) is a scoring function that evaluates the quality of an output y.

Generation of Latent Representations. The mechanism for generating the latent sequence z de-
fines the specific TTS method. Existing work either optimizes a single set of task-specific soft
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Figure 2: The overview of our proposed LatentEvolve.

prompts, ztask, applied across all instances (Xiao et al., 2023; Choi et al., 2023), or performs query-
specific optimization to find a bespoke latent path zi for each individual query ci (Li et al., 2025a;
Peng et al., 2024; Xu et al., 2025c; Sun et al., 2025). Whatever the granularity is, most of these prac-
tices are self-contained, i.e., do not rapidly learn or evolve from one instance to the next, thereby
incapable of on-the-fly adaptation based on cumulative experience.

4 METHODOLOGY

LatentEvolve unfolds as a dual-phase evolving process that enables LLMs to adapt and self-
improve at test time. First, we introduce daytime test-time scaling (▷ Section 4.1), which performs
fast, instance-specific adaptation guided by weighted momentum transfer. Then, nighttime deliber-
ative consolidation (▷ Section 4.2) integrates these episodic traces into a compact parametric prior
through the latent weaver. Finally, dual-phase evolving scaling (▷ Section 4.3) ties the two phases
into a recurrent cycle, ensuring continual interleaved evolution in latent space.

4.1 DAYTIME TEST-TIME OPTIMIZATION

The Daytime Scaling is designed for fast, on-the-fly adaptation, mirroring the brain’s ability to
rapidly recall specific past experiences to navigate a present challenge. This process unfolds in three
key stages for each incoming query: retrieving relevant memories, constructing an informed initial
latent sequence, and refining it through self-guided optimization.

Associative Retrieval. Inspired by the function of episodic memory in cognitive science,
LatentEvolve maintains an episodic buffer, M, which serves as a dynamic archive of specific,
high-quality test-time scaling experiences. Each entry is a triplet (ecj , zbase,j , z

∗
j ), storing a previous

query’s context embedding ecj , its initial latent sequence zbase,j , and its refined latent sequence z∗j .

Upon receiving a new query, which we define as the input prompt ci, we first compute its semantic
embedding eci

using the frozen LLM’s final hidden state. We then perform a similarity search to
retrieve a neighborhood of the top-k most relevant experiences from the buffer:

Nk(ci) = Top-kj{(ecj
, zbase,j , z

∗
j ) ∈M}, based on similarity S(eci

, ecj
), (3)

where S(·, ·) is instantiated via cosine similarity. This allows the upcoming test-time optimization
to benefit from a small, highly relevant subset of its past experiences.

Informed Latent Initialization. A well-informed starting point can substantially improve both
the efficiency and quality of reasoning. For each query ci, we first derive a base initialization zbase,i

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

via an initial Chain-of-Thought (CoT) decoding, taking the prefix of the resulting latent sequence:
zbase,i = Hθ(ci)1:L′ (4)

where Hθ(ci) denotes the full latent sequence produced by πθ under greedy decoding, and the sub-
script 1 : L′ selects the first L′ latent vectors. This base state serves as a preliminary reasoning
trajectory, which can be further refined using the retrieved neighborhood Nk(ci) to form a superior
initialization z0,i. A naive approach might be to simply average the retrieved final latent sequences
z∗j , but this can be misleading as different queries may yield conflicting patterns. Instead, we fol-
low a more intuitive principle: it is not the final latent states that matter most, but the journey
from the initial zbase,j to the refined z∗j . We capture this journey as the optimization “momentum”,
∆zj = z∗j − zbase,j , and introduce weighted momentum transfer: By aggregating these momenta
weightedly, we guide zbase,i toward regions of the latent space that have been fruitful in the past:

z0,i = zbase,i +
∑

j∈Nk(ci)

αj∆zj , where αj ∝ exp(S(eci
, ecj

)). (5)

In this way, the initialization is gently steered not only toward promising regions but also along
trajectories that have historically led to better outputs, allowing reasoning to begin with a well-
informed and contextually grounded foundation.

Self-Supervised Refinement and Archiving. Although the informed initial state z0,i offers a
promising foundation, it is not tailored to the specific context ci and thus requires refinement to
enhance reasoning performance. We adopt a self-rewarding strategy, a paradigm broadly validated
in prior work (Li et al., 2025a; Yuan et al., 2025; Zuo et al., 2025). Concretely, the LLM πθ serves
as its own evaluator by assigning a quality score Q(yk) to the output yk generated under the guid-
ance of z0,i (see the detailed implementation of Q(·) in Appendix B.1). The latent sequence is then
iteratively refined through gradient ascent with respect to this self-supervised signal. The gradient
of J(zk) is estimated via policy gradient (Williams, 1992) as:

∇zkJ(zk) = ∇zkEy∼p(y|ci,zk;θ)[Q(y)] ≈ 1

M

M∑
m=1

Q(y(m))∇zk log p(y(m) | ci, zk;θ), (6)

where {y(m)}Mm=1 are samples drawn from p(· | ci, zk;θ) byM times. Accordingly, the latent state
is iteratively updated as zk+1 ← zk + η∇zk

J(zk), where η is the learning rate. The refinement
terminates either after K iterations or once E[Q(yk)] has failed to increase for three successive
rounds, yielding the final latent state z∗i , under whose guidance πθ produces the ultimate output y.
The triplet (eci , zbase,i, z

∗
i ) is archived intoM whenever E[Q(yk)] exceeds a predefined threshold

τ (see detailed process in Appendix B.2). Thus, the preservation of high-confidence experiences
deepens the repository from which LatentEvolve continually distills its evolving knowledge.

4.2 NIGHTTIME DELIBERATIVE CONSOLIDATION

While the daytime scaling excels at rapid, instance-level adaptation, its knowledge remains frag-
mented within the buffer. To achieve generalizable improvement, these scattered experiences must
be integrated into a coherent procedural skill, which is also the purpose of the nighttime scaling,
analogous to the neocortex’s role in consolidating memories into abstract knowledge during sleep.

Latent Weaver. To perform this consolidation, we introduce the latent weaver Wψ , aimed at
distilling the collective wisdom from the episodic buffer. Technically, Wψ is trained to predict
the refined latent sequence z∗j conditioned on the context embedding ecj

and the base state zbase,j ,
thereby enabling rapid and precise test-time scaling. We instantiate Wψ via a smaller LLM ψ.

Consolidation through Experience Replay. Periodically, after the episodic bufferM has accu-
mulated a sufficient number of high-confidence experiences, the nighttime consolidation is triggered.
The experience triplets {(ecj , zbase,j , z

∗
j )} fromM are leveraged to update the parameters ψ of the

latent weaver. The training objective is to minimize the reconstruction error between the weaver’s
prediction and the archived optimal latent sequence:

L(ψ) = E(ecj
,zbase,j ,z∗

j )∼M

[∥∥Wψ(ecj
, zbase,j)− z∗j

∥∥2
2

]
, (7)

which effectively weaves the sparse, episodic optimization experiences into the continuous paramet-
ric space of the model. Through such nighttime scaling, Wψ is imbued with procedural intuition
and capable of generating superior initial reasoning paths for subsequent LLM reasoning. In the
next section, we illustrate the overall picture of the dual-phase evolving process.
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4.3 DUAL-PHASE EVOLVING SCALING

In this section, we formally describe the dual-phase evolution process of LatentEvolve. The day-
time and nighttime mechanisms, though effective in isolation, realize their full potential when em-
bedded in a recurring cycle that mirrors the brain’s complementary learning systems: the hippocam-
pus for rapid encoding of episodic traces and the neocortex for gradual schema formation. For each
incoming query ci, the latent weaver Wψ first transforms the base latent state (except in the initial
round, when Wψ remains untrained) to yield a refined z′base,i. This is followed by daytime scaling,
which, via momentum transfer, produces z0,i. Iterative refinement then generates the final latent se-
quence z∗i through self-guided optimization, ensuring that each query benefits not only from episodic
recall but also from the procedural insights accumulated during prior nighttime consolidations:

z′base,i = Wψ(eci , zbase,i), z∗i = Φday(ci, z
′
base,i,M;θ), (8)

where Φday denotes daytime optimization of a given query ci under the assistance of M and πθ,
as described in Equation (6). Over time, the episodic bufferM accumulates triplets of adaptations
{(ecj

, zbase,j , z
∗
j )}. At periodic intervals (specifically, we set T = 200 test-time instances as one

cycle), nighttime scaling is invoked to consolidate accumulated experiences by updating Wψ:
Wψ ← Φnight(M,Wψ), (9)

where Φnight denotes experience replay and parametric distillation, as described in Equation (7). The
overall evolution is thus expressed as the alternating transformation

(M,Wψ)
Φday−−−−→ M′ Φnight−−−−→ (M′,W′

ψ), (10)
which continually refreshes the episodic buffer while also imbuing the weaver with generalized
procedural knowledge. In other words, as the essential knowledge has already been integrated
into the weaver, after each nighttime consolidation, the episodic buffer is cleared to prevent un-
bounded growth of the memory space. This perpetual cycle of experience and consolidation allows
LatentEvolve’s reasoning capabilities to self-evolve on the fly, entirely in an unsupervised man-
ner without reliance on any external labels.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

Backbones. To evaluate the generalizability of LatentEvolve, we experiment with LLMs
from different families and of varying sizes, including Llama-3.2-3b (Grattafiori et al.,
2024), Qwen2.5-7b-instruct (Qwen et al., 2025), Qwen3-4b-instruct-2507,
Qwen3-8b (Yang et al., 2025), and Gemma-3-12b-it (Team et al., 2025).

Benchmarks. We conduct a comprehensive evaluation of LatentEvolve across eight bench-
marks from four task domains: ■ general QA, MMLU (Hendrycks et al., 2021a); ■ mathematical
reasoning, including GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021b), and AIME
2024/2025 (Li et al., 2024); ■ scientific reasoning, SciBench (Wang et al., 2024b) and GPQA-
Diamond (Rein et al., 2023); ■ medical reasoning, JAMA Clinical Challenge (Chen et al., 2025a).
Detailed dataset statistics are listed in Appendix B.4.

Evaluation Setup. We apply LatentEvolve independently to each benchmark’s test set, except
for AIME24/25 where the test size is limited, on which we evaluate after applying LatentEvolve
on MATH-500. We set the maximum generation length to 2048 tokens. The small LLM used for
latent weaver Wψ is consistently set as Qwen-2.5-1.5b. The dimension L′ in Equation (4) is set
as 15, the threshold τ equals 0.5, and the dual-evolution period T is 200. The learning rate η is 0.3,
the number of iterations K = 10, and the sampling times M in Equation (6) is 8. For performance
evaluation, we employ Pass@1 accuracy under a sampling temperature of 0 across all benchmarks.

Baselines. We compare against several well-established baselines:
• Prompting (training-free): vanilla model and CoT (Wei et al., 2023);
• Reinforcement Learning: (1) self-rewarding methods, including Self-Rewarding (Yuan

et al., 2025) and Genius (Xu et al., 2025a), and (2) verifiable reward methods, including
GRPO (DeepSeek-AI et al., 2025), Reinforce (Williams, 1992), and Reinforce++ (Hu et al.,
2025). The latter three baselines are trained independently on the training split of each dataset
and evaluated on the corresponding test split. Owing to the limited size of AIME24/25, models
trained on MATH are directly evaluated on these benchmarks. Results on SciBench are omitted
for these baselines due to the absence of a dedicated training set.
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Table 1: Performance Comparison across two LLM backbones (Qwen2.5-7b and
Llama3.2-3b), against thirteen baselines and on eight benchmarks. The best and second best
results are highlighted and underlined, respectively.

Method General QA Mathematical Reasoning Sci. Reasoning Med. Reasoning
MMLU GSM8K MATH-500 AIME24 AIME25 SciBench GPQA JAMA Clinical

Q
w
e
n
2
.
5
-
7
b

Prompting (training-free)
Vanilla Model 55.30 87.72 55.80 0.00 0.00 11.27 27.78 47.72
CoT 69.10 87.04 68.80 6.67 3.33 11.99 30.81 50.96

Reinforcement Learning
Self-Rewarding 63.10 88.30 59.62 0.00 0.00 9.36 23.65 47.07
Genius 58.30 87.93 49.57 0.00 0.00 13.60 29.31 41.78
GRPO 68.90 92.30 75.85 6.67 3.33 - 33.60 51.62
Reinforce 63.77 92.30 76.80 6.67 6.67 - 34.34 49.16
Reinforce++ 65.90 92.60 75.02 13.33 6.67 - 34.34 50.40

Latent Reasoning
Coprocessor 68.10 83.60 53.73 6.67 6.67 - 31.88 43.70
SoftCoT 62.30 80.13 65.80 3.33 0.00 - 28.28 49.70

Test-time Scaling
Self-Consistency 69.80 88.62 69.40 6.67 6.67 12.13 32.32 51.62
Self-Refine 61.40 86.33 59.32 3.33 0.00 9.36 22.65 45.64
LatentSeek 68.50 91.58 66.20 10.00 3.33 14.45 31.31 50.40
TTRL 70.90 92.80 77.39 23.33 13.33 13.92 33.60 49.16
LatentEvolve 72.30 92.98 77.60 23.33 10.00 19.79 34.85 52.94

L
l
a
m
a
3
.
2
-
3
b

Prompting (training-free)
Vanilla Model 60.60 71.65 41.60 0.00 0.00 6.79 26.77 45.14
CoT 57.60 64.90 48.60 0.00 0.00 7.95 26.77 45.60

Reinforcement Learning
Self-Rewarding 57.30 69.22 39.20 0.00 0.00 3.19 23.90 40.16
Genius 58.20 73.61 38.15 0.00 0.00 6.79 21.80 45.60
GRPO 62.70 75.30 50.20 3.33 0.00 - 28.18 46.26
Reinforce 60.60 75.02 49.60 3.33 0.00 - 24.50 45.60
Reinforce++ 62.70 73.61 50.20 3.33 3.33 - 26.26 44.80

Latent Reasoning
Coprocessor 61.50 70.08 44.90 0.00 0.00 - 21.80 42.28
SoftCoT 58.90 73.61 46.40 0.00 0.00 - 25.25 43.35

Test-time Scaling
Self-Consistency 59.10 66.33 49.20 0.00 0.00 8.67 27.27 45.60
Self-Refine 58.90 68.90 44.10 0.00 0.00 4.28 20.10 42.28
LatentSeek 49.30 55.95 38.60 0.00 0.00 5.20 26.26 32.36
TTRL 62.10 75.02 51.00 3.33 6.67 8.07 28.18 44.80
LatentEvolve 64.30 75.51 51.20 6.67 3.33 9.39 29.29 48.44

• Latent Reasoning, including Coprocessor (Liu et al., 2024) and SoftCoT (Xu et al., 2025c).
• Test-time Scaling methods, including Self-Consistency (Wang et al., 2023b), Self-refine (Madaan

et al., 2023), LatentSeek (Li et al., 2025a), and TTRL (Xiang et al., 2025).

5.2 MAIN RESULTS

Obs. ❶: LatentEvolve performs well across most task domains. As shown in Table 1,
most baselines fail to deliver consistent gains across all benchmark types. LatentSeek and TTRL
excel in mathematical reasoning yet fall short in other domains: for instance, LatentSeek with
Llama3.2-3b underperforms the vanilla model on MMLU (−11.3%) and experiences a perfor-
mance drop on SciBench (−1.59%), while TTRL with Qwen2.5-7b yields limited benefit on
JAMA Clinical (+1.44%). In contrast, LatentEvolve not only matches or surpasses TTRL in the
general QA domain (e.g., on Qwen2.5-7b, MMLU +6.4%) but also achieves superior results in
other domains, such as a +8.52% improvement on SciBench+Qwen2.5-7b.

Obs. ❷: LatentEvolve generalizes well across LLM backbones. In contrast to many base-
lines whose gains across different LLMs are highly inconsistent (e.g., Coprocessor on GPQA yields
+4.1% with Qwen2.5-7b but−4.97% with Llama3.2-3b), LatentEvolve consistently deliv-
ers positive improvements across models of varying scales, as clearly illustrated in Table 2. Notably,
its benefits naturally scale with model size: on MATH-500, for example, the improvement rises
from 9.6% with Llma3.2-3b to 20.8% with Gemma-3-12b.
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Table 2: Performance Comparison of the vanilla model versus that enhanced with LatentEvolve
across five LLM backbones. The ∆ row indicates the absolute improvement.

LLM Backbone Method MMLU GSM8K MATH-500 SciBench GPQA JAMA Clinical AIME24 AIME25

Llama3.2-3b
Vanilla 60.60 71.65 41.60 6.79 26.77 45.14 0.00 0.00
+LatentEvolve 64.30 75.51 51.20 9.39 29.29 48.44 6.67 3.33
∆ +3.70 +3.86 +9.60 +2.60 +2.52 +3.30 +6.67 +3.33

Qwen2.5-7b
Vanilla 55.30 87.72 55.80 11.27 27.78 47.72 0.00 0.00
+LatentEvolve 72.30 92.98 77.60 19.79 34.85 52.94 23.33 10.00
∆ +17.00 +5.26 +21.80 +8.52 +7.07 +5.22 +23.33 +10.00

Qwen3-4b
Vanilla 71.90 89.23 61.40 12.28 34.85 51.49 10.00 3.33
+LatentEvolve 73.30 92.42 78.60 31.93 38.89 53.67 23.33 16.67
∆ +1.40 +3.19 +17.20 +19.65 +4.04 +2.18 +13.33 +13.34

Qwen3-8b
Vanilla 72.70 87.94 55.20 6.36 28.82 53.08 3.33 3.33
+LatentEvolve 78.80 90.45 73.80 10.83 32.82 54.60 26.67 23.33
∆ +6.10 +2.51 +18.60 +4.47 +4.00 +1.52 +23.33 +20.00

Gemma-3-12b
Vanilla 65.80 89.23 57.40 10.84 33.33 49.50 0.00 10.00
+LatentEvolve 73.90 91.89 78.20 18.93 41.92 55.06 10.00 13.33
∆ +8.10 +2.66 +20.80 +8.09 +8.59 +5.56 +10.00 +3.33
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Figure 3: The evolving dynamics of LatentEvolve when applied on Gemma-3-12b across two
in-domain and out-of-domain datasets.

5.3 GENERALIZATION AND CONTINUAL LEARNING STUDY

This section investigates the continual learning and generalization capacity of LatentEvolve. Fig-
ure 3 illustrates performance trajectories when LatentEvolve, instantiated with Gemma-3-12b,
sequentially processes test data from MATH and MMLU. In-domain evaluation is conducted on
MATH and MMLU, while out-of-domain evaluation is performed on GPQA and JAMA. Red zones
denote evaluations after a daytime scaling step with updated episodic bufferM′, whereas blue zones
correspond to evaluations after a nighttime scaling step yielding updated latent weaver W′

ψ .

Obs. ❸: LatentEvolve generalizes across domains. As shown in Figure 3, after two rounds
of MATH data, performance improves substantially in-domain (57.6% → 78.6%) while also
transferring gains to distinct domains (JAMA +6.6%, MMLU +1.5%). Notably, nighttime scal-
ing proves more conducive to such cross-domain generalization: the first nighttime scaling on
MATH increases JAMA by +4.5%, compared to only +0.4% from daytime scaling. This high-
lights that nighttime scaling, akin to cortical consolidation in the human brain, integrates experi-
ences into more transferable knowledge, whereas daytime scaling yields more superficial improve-
ments. Moreover, LatentEvolve demonstrates strong continual learning ability: after two rounds
of MMLU data, Gemma-3-12b shows not only no degradation but a slight improvement on MATH
(78.6%→ 80.2%), highlighting the robustness of LatentEvolve in continual adaptation.

5.4 FRAMEWORK ANALYASIS

Sensitivity Analysis. We conduct a sensitivity analysis of the parameter L′, which determines
the dimensionality of each initialized latent representation zbase,i. As shown in Figure 4 (Left), both
MATH and SciBench exhibit similar patterns: as L′ increases from 10 to 50, performance first
improves and then declines, with the best results attained at L′ = 30 (MATH 80.3%, SciBench
33.4%). A plausible explanation is that too few dimensions cannot adequately encode historical
optimization experience, while excessively many dimensions introduce additional parameters that
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Full LatentEvolve w/o Daytime w/o Nighttime

Figure 4: The ablation study and parameter sensitivity analysis of LatentEvolve.

may hinder the self-supervised refinement process during daytime scaling (Equation (6)). Analysis
with more parameters (e.g., the evolution period T ) is provided in Appendix B.6.

Ablation Study. We investigate two variants of LatentEvolve: w/o Daytime and w/o Nighttime.
The former removes Equation (5), meaning that each latent optimization proceeds without retrieving
prior experience, and the latter omits the update of the latent weaver as described in Equation (7).
As shown in Figure 4, removing either daytime or nighttime scaling leads to a substantial perfor-
mance drop compared with the full LatentEvolve, with the effect of w/o Nighttime being more
pronounced. At L′ = 30, w/o Daytime reduces performance on SciBench from 33.4% to 28.5%
(−4.9%), while w/o Nighttime results in a larger decline of 6.8%. This observation aligns with the
findings in Section 5.3. Overall, both components of LatentEvolve are indispensable, mutually
reinforcing, and jointly critical to its effectiveness.

Table 3: Case Studies of LatentEvolve. The questions (from SciBench and GPQA), the answers,
and the LatentEvolve generations are listed. The peculiar reasoning tokens are highlighted in blue.

QUESTION: Express the van der Waals parameters b=0.0226 dm3 mol−1 in SI base units.
ANSWER: 0.0000226
LatentEvlove: To convert parameter b=0.0226 dm3 mol−1 in SI base units. Start unit-conv
dm3-to-m3 step one. Identify 1 dm equal 0.1 m. So, 1 dm3 is 0.001 m3. Then apply
factor-multiplied 0.0226. [. . .] The final value in SI base units is 2.26 * 10−5 m3 mol−1.

QUESTION: Which of the following physical theories never requires regularization at high
energies? A. Quantum Chromodynamics B. Superstring Theory C. Quantum Electrodynamics D.
Classical Electrodynamics
ANSWER: B
LatentEvlove: Which physical theories never never required regularization at high
energies. Need-no-regularization-scan start. QCD, QED, needs. Classical Electrodynamics,
not quantum, so no need. Superstring Theory, this theory no require regularization itself.
[. . .] Based on the above analysis, the theory that never requires regularization at high
energies is Superstring Theory. The correct answer is B.

Case Study. To gain insight into LatentEvolve’s latent optimization, we qualitatively
analyzed its outputs following (Li et al., 2025a). As shown in Table 3, we ob-
served distinctive reasoning tokens and patterns, including fragmented internal commands
(Need-no-regularization-scan start), lexical repetition (never never), and un-
conventional grammar (no require regularization itself). Despite these peculiar to-
kens, LatentEvolve consistently produces correct answers, suggesting it steers the LLM along
more machine-native, efficient reasoning trajectories within latent space. Table 5 further shows that,
relative to vanilla CoT, LatentEvolve concludes the reasoning with fewer decoding tokens.

6 CONCLUSION

In this work, we proposed LatentEvolve, a self-evolving latent test-time scaling framework in-
spired by complementary learning systems. By alternating daytime scaling for fast episodic adap-
tation with nighttime scaling for slow procedural consolidation, our approach enables LLMs to
accumulate and refine experiential knowledge during inference without external supervision. Ex-
periments across eight benchmarks and five model backbones show that LatentEvolve surpasses
state-of-the-art TTS methods (e.g., TTRL, LatentSeek), transfers effectively across tasks, and ex-
hibits steady continual learning ability. Broadly, our work points toward a new path where LLMs
not only scale at test time, but also evolve through it, bringing them closer to the adaptive and
accumulative intelligence seen in human cognition.
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A USE OF LARGE LANGUAGE MODELS

In preparing this work, we made limited use of large language models (LLMs) as auxiliary tools.
Specifically, LLMs were employed to polish the language of early drafts, to assist with literature
exploration, and to support information retrieval.

B METHODOLOGY DETAILS

B.1 SELF-SUPERVISED LATENT REFINEMENT

The self-rewarding function Q(y) in Equation (6) is formally defined as a weighted aggregation of
numerical scores assigned by the LLM to distinct evaluation criteria. Following standard practices
from (Lifshitz et al., 2025; Li et al., 2025a), for each candidate output y, the LLM produces normal-
ized scores sans(y), scomp(y), scalc(y), sform(y), sclar(y) ∈ [0, 1], corresponding respectively to (i)
correctness of the final answer, (ii) accuracy of problem comprehension, (iii) validity of numerical
calculations, (iv) conformity of the answer format to task requirements, and (v) provision of a clear
and explicit answer. The overall reward is then computed as

Q(y) =
1

7

(
sans(y) + scomp(y) + scalc(y) + 2 sform(y) + 2 sclar(y)

)
, (11)

where the weighting scheme 1 : 1 : 1 : 2 : 2 reflects the relative importance of the criteria, placing
greater emphasis on answer format fidelity and clarity of presentation.

Prompt for (i) correctness of the final answer

prompt_s_ans = f"""
INSTRUCTIONS:
Your task is to determine the correctness of the final answer within the PROPOSED

SOLUTION.
Critically verify the final answer against the TASK DESCRIPTION and the reasoning steps

provided in the PROPOSED SOLUTION.
Do NOT use external knowledge. Focus only on internal consistency and accuracy based on

the given problem.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = completely incorrect, 1.0 = perfectly correct)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

Prompt for (ii) accuracy of problem comprehension

prompt_s_comp = f"""
INSTRUCTIONS:
Your task is to evaluate the PROPOSED SOLUTION’s understanding of the TASK DESCRIPTION.
Identify all explicit and implicit constraints, conditions, and specific requests in

the TASK DESCRIPTION.
Assess how accurately and comprehensively the PROPOSED SOLUTION addressed these

elements, demonstrating full comprehension.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = no comprehension, 1.0 = full and accurate comprehension)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""
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Prompt for (iii) validity of numerical calculations

prompt_s_calc = f"""
INSTRUCTIONS:
Your task is to verify the validity of all numerical calculations and logical steps

within the PROPOSED SOLUTION.
For each calculation or logical transition, independently recompute or re-evaluate it.
If any numerical or logical discrepancy is found, it indicates an error.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = many errors, 1.0 = all calculations and logical steps are valid)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

Prompt for (iv) conformity of the answer format to task requirements

prompt_s_form = f"""
INSTRUCTIONS:
Your task is to assess if the PROPOSED SOLUTION conforms to the expected output format

requirements.
Consider if specific units are used, if the answer is structured as implicitly or

explicitly requested (e.g., numeric only, step-by-step, \\boxed{} formatting), and
if all parts of the response are appropriately presented.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = completely incorrect format, 1.0 = perfectly formatted)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

Prompt for (v) provision of a clear and explicit answer

prompt_s_clar = f"""
INSTRUCTIONS:
Your task is to evaluate the clarity and explicitness of the PROPOSED SOLUTION.
Assess if the reasoning is easy to follow, unambiguous, and if all necessary steps and

explanations are provided without missing information.
Consider the overall readability and conciseness.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = very unclear/implicit, 1.0 = exceptionally clear and explicit)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

B.2 NIGHTTIME CONSOLIDATION

When preparing training data for the latent weaver, not all encountered latent representations within
a given cycle are equally valuable or should be retained. Recall that the rationale behind self-
supervised refinement is as follows: although the latent state z0,i, obtained through weighted mo-
mentum transfer, may lie within a promising region of the space, it is not guaranteed to align
perfectly with the current context. To address this, we further scale and update it through a self-
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rewarding mechanism, ensuring that it becomes optimally adapted to support the query at hand.
Therefore, the latent weaver, which provides the initial seeds for reasoning, should itself be trained
with relatively high-quality data. Concretely, for a triplet (eci

, z0,i, z
∗
i ), we include it into the mem-

oryM if and only if the LLM exhibits sufficient confidence in the associated latent representation.
Formally, such confidence is defined as the expected quality score of the final output after itera-
tive refinement. Let y(M)

k denote the response generated at the last refinement step under rollout k
(k = 1, . . . ,M), then the confidence measure is given by

E[Q(y
(M)
k )] =

1

M

M∑
k=1

Q(y
(M)
k ),

and the triplet is retained only if
E[Q(y

(M)
k )] ≥ τ,

where Q(y
(M)
k ) ∈ [0, 1] denotes the numerical score assigned to the generated response according

to task-specific evaluation criteria, and τ is a tunable threshold that governs the admission of latent
experiences. We set τ = 0.5 across all experiments.

B.3 EVALUATION

The evaluation prompts used by LatentEvolve for datasets requiring numerical answers (includ-
ing GSM8K, MATH, AIME 2024/2025, and SciBench) and for multiple-choice datasets (including
MMLU, SciBench, JAMA, and GPQA) are summarized in Table 4.

Table 4: Evaluation prompts for LatentEvolve and other baselines.

Numerical-answer evaluation prompt: {Question Description}. Please reason step by step,
and enclose your final answer within \\boxed{}.

Multiple-choice evaluation prompt: {Question Description}. Please select the correct
option (A, B, C, or D) to answer the question. Your response should be formatted as
follows: The correct answer is {your answer option letter here}.

B.4 DATASET DETAILS

This section provides the fine-grained statistics of each dataset:

• MMLU (Hendrycks et al., 2021a): following prior practice (Yue et al., 2025), we sample
1000 instances.

• MATH (Hendrycks et al., 2021b): we adopt the standard MATH-500 subset.

• GSM8K (Cobbe et al., 2021): we opt for the full test set (1319 problems).

• GPQA (Rein et al., 2023): we employ the GPQA-Diamond subset containing 198
graduate-level questions of elevated difficulty.

• SciBench (Wang et al., 2024b): we include all 692 tasks.

• JAMA Clinical Challenge (Chen et al., 2025a): comprising questions derived from de-
manding clinical cases, we adopt all 1511 test items.

• AIME 2024 and 2025 (Li et al., 2024): each consists of 30 problems.

B.5 MORE RESULTS

B.6 SENSITIVITY ANALYSIS

From Table 6, we observe a clear improvement in performance with iterative refinement under mod-
erate evolution intervals. For example, when T = 200, accuracy steadily increases from 68.3%
at Iter 1 to 73.6% at Iter 5, indicating that frequent daytime and nighttime interactions allow the
latent representations to be progressively aligned with the query context. A similar trend is seen for
T = 300 and T = 500, although the performance gains diminish as the interval grows. In contrast,
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Table 5: Algorithmic Statistics of LatentEvolve. We report the ratio of answer length (when
equipped with LatentEvolve) to vanilla CoT length, under three settings (full LatentEvolve,
w/o Daytime and w/o Nighttime).

Model Qwen2.5
7b

Qwen3
8b

Qwen3
4b

Llama3.2
3b Avg

GSM8K
LatentEvolve 0.89 0.92 0.91 0.96 0.92
w/o Daytime 0.92 0.92 0.90 0.97 0.93
w/o Nighttime 0.98 0.95 0.94 0.94 0.95

MATH-500
LatentEvolve 0.91 0.93 0.95 0.97 0.94
w/o Daytime 0.93 0.93 1.01 0.99 0.97
w/o Nighttime 1.01 0.97 0.97 0.98 0.98

SciBench
LatentEvolve 0.93 0.95 0.94 0.98 0.95
w/o Daytime 0.94 0.98 0.95 1.04 0.98
w/o Nighttime 0.99 0.95 0.92 1.02 0.97

when T = 1000, the evolution becomes excessively coarse-grained, essentially reducing the process
to a single daytime and nighttime interaction. This hinders the model’s ability to perform gradual
refinement, thereby limiting the benefits of the proposed dual-phase evolution. These results sug-
gest that overly sparse consolidation undermines the advantages of iterative scaling, while moderate
intervals strike a balance between stability and adaptability.

Table 6: Results across different iterations with different T on the MMLU dataset (T denotes the
evolution interval controlling the frequency of daytime and nighttime interactions). Smaller T values
allow more iterative refinements within the same training budget, leading to smoother convergence,
while larger T values reduce the number of available iterations, coarsening the evolution process.

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
200 68.3 70.2 72.8 73.3 73.6
300 70.2 71.9 73.3 73.3 -
500 72.1 73.9 - - -

1000 72.8 - - - -

C ADDITIONAL RESULTS

Figure 5: The visualizations of (1) base latent zbase, (2) the weaver-refined latent embeddings z′base,
(3) the latent embeddings after momentum trasfer z0, as well as (4) the final latent vectors z∗ (we
denote those that lead to the final successful reasoning as success latent).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.1 VISUALIZATION OF LATENT-REASONING EVOLUTION

Recall that in LatentEvolve, for each task query we first obtain the base latent vector zbase. The
nighttime weaver then produces the refined latent z′base, which is transformed into z0 after momen-
tum transfer in Equation (5), and after daytime optimization we obtain the final latent z∗, which we
refer to as the success latent when the resulting trajectory is correct. We apply t-SNE to visualize
the distributions of these three latent clusters on SciBench.

As shown in Figure 5, the base latents remain far from the success-latent cluster. Across subse-
quent iterations, the refined latents produced by the nighttime weaver progressively move toward
the region associated with successful reasoning. This indicates that repeated nighttime consolida-
tion enables the weaver to supply latent initializations that lie closer to successful inference regions.
The momentum transfer process also steers the latent representations closer to the success region,
which validates the effectiveness of momentum-based experience transfer.

C.2 QUANTITATIVE COMPARISON OF LATENT-CLUSTER DISTANCES

To complement the qualitative visualization above, we compute the Euclidean distances between the
centroids of the latent clusters at different iterations. The results are summarized below.

Table 7: Euclidean distances between latent-cluster centroids on Llama-3.2-3B + JAMA. Iterations corre-
spond to successive daytime–nighttime cycles.

Llama-3.2-3B + JAMA Iter 1 Iter 2 Iter 3
base latent↔ success latent 2317.401 2466.180 2289.177
refined latent↔ success latent – 1094.228 834.102

Table 8: Euclidean distances between latent-cluster centroids on Qwen2.5-7B + MATH.

Qwen2.5-7B + MATH Iter 1 Iter 2
base latent↔ success latent 1343.296 1308.065
refined latent↔ success latent – 955.109

Across both settings, the refined latents consistently move closer to the success-latent region as day-
time and nighttime phases alternate, while the base latents remain substantially farther away. These
quantitative findings support the conclusion that nighttime consolidation provides a significantly
improved initialization point for downstream reasoning.

C.3 EFFICIENCY ANALYSIS

To further clarify the computational cost of LatentEvolve during nighttime optimization, we re-
port detailed measurements across representative model–dataset configurations. Table 9 and Ta-
ble 10 summarize the nighttime GPU hours, daytime wall-clock time, number of nighttime training
samples, and the corresponding performance across iterations of latent evolution.

Table 9: Nighttime computational cost and performance across iterations for Llama-3.2-3B on
JAMA. Each iteration uses T = 200 test samples.

Metrics Iter 1 Iter 2 Iter 3

Nighttime GPU hours (h) 1.23 1.11 1.33
Daytime wall-clock time (h) 2.5 2.5 2.4
Nighttime training samples 127 133 139
Performance (Acc.) 46.8% 47.2% 47.9%
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Table 10: Nighttime computational cost and performance across iterations for Qwen2.5-7B on
MATH. Each iteration uses T = 250 test samples.

Metrics Iter 1 Iter 2

Nighttime GPU hours (h) 1.3h 1.3h
Daytime wall-clock time (h) 2.07 2.12
Nighttime training samples 188 213
Performance (Acc.) 74.2% 77.8%

Overall, the nighttime computational overhead of LatentEvolve remains modest across models
and domains, while each iteration consistently yields measurable performance gains in a fully unsu-
pervised setting. These results demonstrate that LatentEvolve provides an efficient and practical
optimization procedure without imposing substantial additional resource burden.

C.4 RETRIEVAL SIMILARITY METRIC

To assess the influence of the retrieval module on overall system performance, we further evaluate
several alternative similarity measures beyond the default cosine similarity. Specifically, we compare
cosine similarity, dot product, Pearson correlation, and Euclidean distance within the latent retrieval
component. As summarized in Table 11, LatentEvolve exhibits limited sensitivity to the choice
of similarity function: all variants achieve comparable performance, and cosine similarity remains a
strong and robust default across both settings.

Table 11: Ablation on retrieval similarity metrics.

Metric MATH + Qwen2.5-7B JAMA + Llama-3.2-3B

Cosine similarity 77.8 48.4
Dot product 77.4 47.5
Pearson correlation 76.7 48.0
Euclidean distance 75.9 47.1

C.5 ANALYSIS OF THRESHOLD τ

To examine the effect of the confidence threshold τ used for selecting nighttime training samples,
we perform a sensitivity study across a range of values. Table 12 reports performance under τ ∈
{0.3, 0.5, 0.7, 0.9} for three representative model–data pairs. We observe that both overly small and
overly large thresholds negatively impact performance: a small τ admits many low-confidence or
noisy samples into nighttime consolidation, while a large τ prunes too aggressively and thus reduces
the amount of useful training signal available to the latent weaver. In practice, moderate values
(τ = 0.5 or 0.7) yield consistently stable behavior, and our default choice of τ = 0.5 provides a
robust and broadly effective setting across all evaluated configurations.

Table 12: Sensitivity of LatentEvolve to the confidence threshold τ .

τ 0.3 0.5 0.7 0.9

Qwen2.5-7B + MATH 76.0 77.6 76.5 74.2
Llama-3.2-3B + JAMA 46.2 48.4 48.8 47.1
Qwen3-8B + GPQA 32.6 32.8 31.6 29.2

C.6 AIME AVG@32 RESULTS
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Table 13: AIME datasets supplementary results. Note that for GRPO, Reinforce baselines, the
models are first trained on the MATH training split, and the resulting checkpoints are then used for
inference on AIME datasets.

Method Qwen2.5-7B Llama3.2-3B

AIME24
(Avg@32)

AIME25
(Avg@32)

AIME24
(Avg@32)

AIME25
(Avg@32)

Vanilla Model 11.84 8.31 1.93 1.04
CoT 11.95 8.92 2.03 0.94
Self-Rewarding 6.25 9.89 4.79 2.97
Genius 6.82 9.11 2.92 2.50
GRPO 18.49 15.10 6.20 5.89
Reinforce 17.70 14.27 5.57 5.52
Reinforce++ 18.75 14.94 5.21 5.36
Coprocessor 14.16 10.26 1.25 0.00
SoftCoT 10.78 8.17 1.82 1.61
Self-Consistency 14.94 10.20 3.59 3.02
Self-Refine 13.38 8.64 2.55 2.34
LatentSeek 14.06 15.41 6.15 4.74
TTRL 23.33 16.71 8.65 6.46
LatentEvolve 21.56 18.37 8.85 5.92
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