
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENTEVOLVE: SELF-EVOLVING TEST-TIME SCAL-
ING IN LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time Scaling (TTS) has been demonstrated to significantly enhance the rea-
soning capabilities of Large Language Models (LLMs) during the inference phase
without altering model parameters. However, existing TTS methods are largely in-
dependent, implying that LLMs have not yet evolved to progressively learn how to
scale more effectively. With the objective of evolving LLMs to learn “how to scale
test-time computation,” we propose LatentEvolve, a self-evolving latent TTS
framework inspired by the complementary learning system (CLS) theory. Analo-
gous to the human brain’s dual system of a fast-recall hippocampus and a slow-
consolidating neocortex, LatentEvolve comprises two evolutionary compo-
nents: daytime scaling, which rapidly retrieves historical latent representations to
better guide current LLM reasoning; and nighttime scaling, which integrates past
latent optimizations in a manner akin to the human brain’s consolidation of expe-
riences during sleep. The alternation of daytime and nighttime processes facili-
tates a fast and slow evolution of LLM TTS, mirroring human cognitive dynamics
in a fully unsupervised manner. Extensive experiments across eight benchmarks
and five model backbones demonstrate that our LatentEvolve surpasses state-of-
the-art TTS methods such as LatentSeek and TTRL by up to 13.33% and exhibits
exceptional cross-domain and cross-backbone generalization. The codes are avail-
able at https://anonymous.4open.science/r/latent-evolve/.

1 INTRODUCTION

The general capabilities of large language models (LLMs) have been extensively developed and
widely recognized across numerous domains, such as mathematical reasoning (Zeng et al., 2024;
Wu et al., 2025), software engineering (Wei et al., 2025; Luo et al., 2025; Yang et al., 2024), mul-
timodal understanding (Zheng et al., 2025b; Su et al., 2025), and embodied action (Wang et al.,
2023a), emerging as dominant paradigms that are steadily advancing toward artificial general in-
telligence (AGI) (Bubeck et al., 2023). Much of this success in recent years has been driven by
training-time scaling, wherein increasing the volume of training data and parameters consistently
yields performance improvements (Kaplan et al., 2020; Aghajanyan et al., 2023). However, the
pace of this scaling, particularly in terms of pre-training scale, has begun to slow, constrained by
its resource-intensive nature and the depletion of high-quality training data (Villalobos et al., 2022;
Zhou et al., 2025). Consequently, a growing body of research has shifted attention to test-time scal-
ing (TTS) (Zhang et al., 2025c; Chung et al., 2025), aiming to fully harness the intrinsic knowledge
of LLMs to maximize their real-world utility without additional training during the test phase.

The dimensions of TTS are highly diverse. One prominent form is (I) parallel scaling, wherein mul-
tiple candidate responses are generated for a given query, which are subsequently aggregated via an
appropriate mechanism. This can involve multiple samples from a single LLM (Brown et al., 2024;
Snell et al., 2024) or sampling from multiple heterogeneous LLMs (Zhang et al., 2025d; Ye et al.,
2025). Another form is (II) sequential scaling, where the LLM iteratively refines solutions based
on its own previous outputs, and which underlies many “System 2”-style generation methods (Yu
et al., 2024; Wei et al., 2023; He et al., 2024; Gou et al., 2024). Other variants include hybrid ap-
proaches that integrate both strategies (Wang et al., 2024a; Besta et al., 2024), as well as internalized
scaling, where models like DeepSeek R1 (Guo et al., 2025) and OpenAI o-series (Li et al., 2025b)
are inherently capable of adaptively allocating computational resources during inference.

1

https://anonymous.4open.science/r/latent-evolve/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Daytime Scaling

Nighttime Scaling

Fast hippocampus

Slow neocortex

 Write a 
 kaggle code

tree.py data science
handbook

Superfacial, fast recall of
memory clues

LLM
Backbone

 Write a 
 kaggle code ... 

Episodic Buffer 

Fast Retrieval

  kaggle coding

 use numpy for
statistic course

 use pandas
 for homework

...  ...

Silent, long-term
consolidation of seen tasks

and skills

Human
Brain

 Write a 
 kaggle code

leetcode task

...  ...
 use numpy for
statistic course

LLM
Backbone

Latent
Weaver ... 

coding↑
data
analysis↑

- use tree search
    func(x_node, 1)
- analyze data ...

Consolidate
knowledge and
experiences

Learn to generate

- recall previous Kaggle solutions
- fast adaptation to the codes ...

Latent
Evolve

Figure 1: The daytime scaling of LatentEvolve functions analogously to the human hippocampus,
rapidly retrieving memory cues, whereas the nighttime scaling mirrors the neocortex during sleep,
performing deep integration of accumulated knowledge.

However, regardless of the specific form, most TTS paradigms lack the capacity for self-evolution,
as inference-time computations for distinct queries are typically treated as mutually independent
events. For example, in verbal reinforcement learning approaches such as Reflexion (Shinn et al.,
2023) and Mind Evolution (Lee et al., 2025), successful reflective strategies are instance-specific and
are not transferred to subsequent tasks. Likewise, in “sampling-and-voting” scaling methods (Brown
et al., 2024; Irvine et al., 2023), prior successes in selecting the correct answer do not inform or refine
future selection strategies. This inter-task independence fundamentally constrains the potential of
TTS paradigms to progressively evolve through continual interaction with the environment. This
raises a natural yet critical research question: How can we design a TTS framework that learns from
experience, enabling its scaling capabilities to evolve and improve as it solves more problems?

To address this challenge, we introduce LatentEvolve, a self-evolving TTS framework inspired
by the Complementary Learning Systems (CLS) theory (McClelland et al., 1995; Kumaran et al.,
2016). CLS theory posits that the brain uses two synergistic systems: a fast-learning hippocampus
for specific episodic memories, and a slow-learning neocortex for consolidating these experiences
into general knowledge. Analogously, LatentEvolve operates through a dual-phase evolution:

☼ Daytime Scaling for fast, episodic adaptation: For each new query, LatentEvolve performs
instance-level latent optimization that steers the LLM toward better reasoning paths. This pro-
cess is initialized by retrieving relevant “episodic traces”, i.e., latent representations from pre-
viously solved problems, mirroring the daytime fast recall of individual memories.

È Nighttime Scaling for slow, procedural consolidation: Mirroring how the brain consolidates
experiences into general skills during sleep, LatentEvolve periodically fine-tunes a compact
knowledge consolidation model (latent weaver) on the collection of daytime traces. This night-
time process distills these specific experiences into procedural knowledge, evolving to generate
superior initial latent representations for future tasks.

Within this continual interplay, LatentEvolve enables LLMs to perform test-time computation
during daytime inference while simultaneously accumulating experiential knowledge. During night-
time reflection, these experiences are periodically consolidated into endogenous procedural memory,
thereby achieving a “fast-slow” evolution of test-time scaling. The entire process operates without
reliance on ground-truth labels or any other external signals.

Experimental Observation. Extensive evaluations across eight benchmarks spanning four do-
mains demonstrate that LatentEvolve provides: ❶ high performance: achieving up to 23.3%
gains on math reasoning, surpassing GRPO and LatentSeek on MATH-500 by 1.75% and 11.40%,
respectively; ❷ cross-domain generalization: test-time scaling on MMLU and MATH transfers
to out-of-domain datasets, yielding gains of 7.07% on GPQA and 5.22% on JAMA; ❸ continual
learning ability: test-time scaling across multiple new domains does not degrade performance on
previously seen domains and can even provide modest improvements.

2 RELATED WORK

Test-time computation is a canonical pathway for transitioning from System 1 to System 2 models,
with two primary branches: test-time training (TTT) and test-time scaling (TTS). The former in-
volves updating model parameters during the test phase in an unsupervised manner, as exemplified

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

by TTT (Sun et al., 2020; Akyürek et al., 2024), TTT+++ (Liu et al., 2021), and SIFT (Hübotter
et al., 2025). The latter increases computational expenditure without altering parameters, which can
occur in the (I) explicit, natural-language space, as in self-correction (Shinn et al., 2023; Gou
et al., 2024; Kang et al., 2025), feedback modeling (Cobbe et al., 2021; Yu et al., 2025), or repeated
sampling (Gui et al., 2024; Ye et al., 2025); or it may operate in the (II) latent space, where methods
such as Coconut (Hao et al., 2024) and SoftCoT (Xu et al., 2025b;c) perform deep scaling within
the model’s hidden representations. Our proposed LatentEvolve falls primarily within the latent
TTS. Yet, regardless of form, existing approaches are rarely capable of rapid evolution through the
ongoing process of problem solving, a limitation that LatentEvolve is designed to overcome.

Latent Computation & Reasoning seeks to exploit continuous latent representations, rather
than discrete language space, to enable a more machine-native and concise form of reasoning for
LLMs (Zhu et al., 2025). Mainstream approaches can be broadly categorized as: (I) architecturally
enabling native latent reasoning, as exemplified by Coconut (Hao et al., 2024), CoLaR (Tan et al.,
2025), and Recurrent Depth (Geiping et al., 2025); and (II) employing latent computation to steer
LLM generation, as in LatentSeek (Li et al., 2025a), SoftCoT (Xu et al., 2025c;b), and otherss (Liu
et al., 2024; Sun et al., 2025), which leverage latent representations as an intervention to modulate the
quality of generated outputs. Other methods, such as IMM (Orlicki, 2025) and MemoryLLM (Wang
et al., 2024c; 2025a), employ latent tokens as a means of preserving contextual memory. Distinct
from these approaches, LatentEvolve implements a dual-stage test-time evolution within the latent
space, whereas prior strategies generally remain inter-task independent.

Self-Evolving LLM & Agent. How to evolve LLMs during their interactions with the environ-
ment has drawn increasing attention from the research community (ang Gao et al., 2025; Fang
et al., 2025). Existing approaches generally employ certain carriers for evolution, including: (I)
parametric update, wherein prior experiences are encoded directly into model parameters (Zeng
et al., 2023; Chen et al., 2024; Zhao et al., 2025; Chen et al., 2025b); (II) experience databases, in
which past problem-solving trajectories (Zhao et al., 2024; Song et al., 2024) or distilled experiential
knowledge (Zhang et al., 2025a; Wang et al., 2025b; Tang et al., 2025) are leveraged to contextually
enhance LLM capabilities; and (III) skill condensation, where reusable tools (e.g., APIs, MCPs)
are encapsulated as functional assets (Zheng et al., 2025a; Suzgun et al., 2025; Zhang et al., 2025b;
Qiu et al., 2025b;a). Distinct from these paradigms, LatentEvolve performs test-time evolution
within the latent space, treating the latent sequences as a compact and adaptable skill repository.

3 PRELIMINARY

In this section, we formally describe the procedure of current latent-based TTS methods, which
manage to steer LLM’s generative process by introducing adaptable, continuous vectors.

Latent-Space Aided Reasoning. Let πθ be a language model with frozen parameters θ. For a
given problem context c, the standard generative process produces an output sequence y by sam-
pling from the conditional probability distribution p(y|c;θ). The core principle of this paradigm is
to introduce an auxiliary sequence of continuous vectors, z = (z1, z2, · · · , zL), which we refer to
as a latent token sequence. These vectors act as a dynamic, instance-specific control signal that con-
ditions the generative process of the frozen LLM. The generation is thus reformulated as sampling
from a new distribution, conditioned on both the original context and the latent intervention:

y ∼ p(y|c, z;θ) (1)

The latent sequence z can be introduced through various mechanisms, such as being prepended to
input embeddings, directly augmenting the model’s internal key-value (KV) cache, or representing
a latent thought process for subsequent decoding (Xu et al., 2025c; Liu et al., 2024; Sun et al.,
2025). The primary objective is to find an optimal latent intervention z∗ that maximizes an objective
function J(z). This objective is formalized as the expected quality of the generated output:

z∗ = argmax
z
J(z), where J(z) = Ey∼p(y|c,z;θ)[Q(y)] (2)

where Q(y) is a scoring function that evaluates the quality of an output y.

Generation of Latent Representations. The mechanism for generating the latent sequence z de-
fines the specific TTS method. Existing work either optimizes a single set of task-specific soft

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

 Task       :Write a data analysis code for this
Excel file and visualize the geometric data

LLM
Backbone

(frozen)

Standard decoding

... ...

Initial base 
latent 

Truncate

Frozen
LLM

Optimized 
latent

...

...
... ...

Multiple rollouts

Self
reward

0.5

0.3

0.7

update
Iterative test-time optimization

Episodic Buffer

... ...

Refined 
latent 

query-latent pairs

Momentum
Transfer

merge

Refine
Weave

Nighttime ScalingDaytime Scaling

Consolidation
from experiences

Latent 

Weave

High confidence
latent subset

finetune

Latent
Weaver

Instantiation 
choices

B

A

LoRA

Emb.
Projector

Adapter

SLM

Figure 2: The overview of our proposed LatentEvolve.

prompts, ztask, applied across all instances (Xiao et al., 2023; Choi et al., 2023), or performs query-
specific optimization to find a bespoke latent path zi for each individual query ci (Li et al., 2025a;
Peng et al., 2024; Xu et al., 2025c; Sun et al., 2025). Whatever the granularity is, most of these prac-
tices are self-contained, i.e., do not rapidly learn or evolve from one instance to the next, thereby
incapable of on-the-fly adaptation based on cumulative experience.

4 METHODOLOGY

LatentEvolve unfolds as a dual-phase evolving process that enables LLMs to adapt and self-
improve at test time. First, we introduce daytime test-time scaling (▷ Section 4.1), which performs
fast, instance-specific adaptation guided by weighted momentum transfer. Then, nighttime deliber-
ative consolidation (▷ Section 4.2) integrates these episodic traces into a compact parametric prior
through the latent weaver. Finally, dual-phase evolving scaling (▷ Section 4.3) ties the two phases
into a recurrent cycle, ensuring continual interleaved evolution in latent space.

4.1 DAYTIME TEST-TIME OPTIMIZATION

The Daytime Scaling is designed for fast, on-the-fly adaptation, mirroring the brain’s ability to
rapidly recall specific past experiences to navigate a present challenge. This process unfolds in three
key stages for each incoming query: retrieving relevant memories, constructing an informed initial
latent sequence, and refining it through self-guided optimization.

Associative Retrieval. Inspired by the function of episodic memory in cognitive science,
LatentEvolve maintains an episodic buffer, M, which serves as a dynamic archive of specific,
high-quality test-time scaling experiences. Each entry is a triplet (ecj , zbase,j , z

∗
j ), storing a previous

query’s context embedding ecj , its initial latent sequence zbase,j , and its refined latent sequence z∗j .

Upon receiving a new query, which we define as the input prompt ci, we first compute its semantic
embedding eci

using the frozen LLM’s final hidden state. We then perform a similarity search to
retrieve a neighborhood of the top-k most relevant experiences from the buffer:

Nk(ci) = Top-kj{(ecj
, zbase,j , z

∗
j ) ∈M}, based on similarity S(eci

, ecj
), (3)

where S(·, ·) is instantiated via cosine similarity. This allows the upcoming test-time optimization
to benefit from a small, highly relevant subset of its past experiences.

Informed Latent Initialization. A well-informed starting point can substantially improve both
the efficiency and quality of reasoning. For each query ci, we first derive a base initialization zbase,i

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

via an initial Chain-of-Thought (CoT) decoding, taking the prefix of the resulting latent sequence:
zbase,i = Hθ(ci)1:L′ (4)

where Hθ(ci) denotes the full latent sequence produced by πθ under greedy decoding, and the sub-
script 1 : L′ selects the first L′ latent vectors. This base state serves as a preliminary reasoning
trajectory, which can be further refined using the retrieved neighborhood Nk(ci) to form a superior
initialization z0,i. A naive approach might be to simply average the retrieved final latent sequences
z∗j , but this can be misleading as different queries may yield conflicting patterns. Instead, we fol-
low a more intuitive principle: it is not the final latent states that matter most, but the journey
from the initial zbase,j to the refined z∗j . We capture this journey as the optimization “momentum”,
∆zj = z∗j − zbase,j , and introduce weighted momentum transfer: By aggregating these momenta
weightedly, we guide zbase,i toward regions of the latent space that have been fruitful in the past:

z0,i = zbase,i +
∑

j∈Nk(ci)

αj∆zj , where αj ∝ exp(S(eci
, ecj

)). (5)

In this way, the initialization is gently steered not only toward promising regions but also along
trajectories that have historically led to better outputs, allowing reasoning to begin with a well-
informed and contextually grounded foundation.

Self-Supervised Refinement and Archiving. Although the informed initial state z0,i offers a
promising foundation, it is not tailored to the specific context ci and thus requires refinement to
enhance reasoning performance. We adopt a self-rewarding strategy, a paradigm broadly validated
in prior work (Li et al., 2025a; Yuan et al., 2025; Zuo et al., 2025). Concretely, the LLM πθ serves
as its own evaluator by assigning a quality score Q(yk) to the output yk generated under the guid-
ance of z0,i (see the detailed implementation of Q(·) in Appendix B.1). The latent sequence is then
iteratively refined through gradient ascent with respect to this self-supervised signal. The gradient
of J(zk) is estimated via policy gradient (Williams, 1992) as:

∇zkJ(zk) = ∇zkEy∼p(y|ci,zk;θ)[Q(y)] ≈ 1

M

M∑
m=1

Q(y(m))∇zk log p(y(m) | ci, zk;θ), (6)

where {y(m)}Mm=1 are samples drawn from p(· | ci, zk;θ) byM times. Accordingly, the latent state
is iteratively updated as zk+1 ← zk + η∇zk

J(zk), where η is the learning rate. The refinement
terminates either after K iterations or once E[Q(yk)] has failed to increase for three successive
rounds, yielding the final latent state z∗i , under whose guidance πθ produces the ultimate output y.
The triplet (eci , zbase,i, z

∗
i ) is archived intoM whenever E[Q(yk)] exceeds a predefined threshold

τ (see detailed process in Appendix B.2). Thus, the preservation of high-confidence experiences
deepens the repository from which LatentEvolve continually distills its evolving knowledge.

4.2 NIGHTTIME DELIBERATIVE CONSOLIDATION

While the daytime scaling excels at rapid, instance-level adaptation, its knowledge remains frag-
mented within the buffer. To achieve generalizable improvement, these scattered experiences must
be integrated into a coherent procedural skill, which is also the purpose of the nighttime scaling,
analogous to the neocortex’s role in consolidating memories into abstract knowledge during sleep.

Latent Weaver. To perform this consolidation, we introduce the latent weaver Wψ , aimed at
distilling the collective wisdom from the episodic buffer. Technically, Wψ is trained to predict
the refined latent sequence z∗j conditioned on the context embedding ecj

and the base state zbase,j ,
thereby enabling rapid and precise test-time scaling. We instantiate Wψ via a smaller LLM ψ.

Consolidation through Experience Replay. Periodically, after the episodic bufferM has accu-
mulated a sufficient number of high-confidence experiences, the nighttime consolidation is triggered.
The experience triplets {(ecj , zbase,j , z

∗
j )} fromM are leveraged to update the parameters ψ of the

latent weaver. The training objective is to minimize the reconstruction error between the weaver’s
prediction and the archived optimal latent sequence:

L(ψ) = E(ecj
,zbase,j ,z∗

j )∼M

[∥∥Wψ(ecj
, zbase,j)− z∗j

∥∥2
2

]
, (7)

which effectively weaves the sparse, episodic optimization experiences into the continuous paramet-
ric space of the model. Through such nighttime scaling, Wψ is imbued with procedural intuition
and capable of generating superior initial reasoning paths for subsequent LLM reasoning. In the
next section, we illustrate the overall picture of the dual-phase evolving process.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 DUAL-PHASE EVOLVING SCALING

In this section, we formally describe the dual-phase evolution process of LatentEvolve. The day-
time and nighttime mechanisms, though effective in isolation, realize their full potential when em-
bedded in a recurring cycle that mirrors the brain’s complementary learning systems: the hippocam-
pus for rapid encoding of episodic traces and the neocortex for gradual schema formation. For each
incoming query ci, the latent weaver Wψ first transforms the base latent state (except in the initial
round, when Wψ remains untrained) to yield a refined z′base,i. This is followed by daytime scaling,
which, via momentum transfer, produces z0,i. Iterative refinement then generates the final latent se-
quence z∗i through self-guided optimization, ensuring that each query benefits not only from episodic
recall but also from the procedural insights accumulated during prior nighttime consolidations:

z′base,i = Wψ(eci , zbase,i), z∗i = Φday(ci, z
′
base,i,M;θ), (8)

where Φday denotes daytime optimization of a given query ci under the assistance of M and πθ,
as described in Equation (6). Over time, the episodic bufferM accumulates triplets of adaptations
{(ecj

, zbase,j , z
∗
j )}. At periodic intervals (specifically, we set T = 200 test-time instances as one

cycle), nighttime scaling is invoked to consolidate accumulated experiences by updating Wψ:
Wψ ← Φnight(M,Wψ), (9)

where Φnight denotes experience replay and parametric distillation, as described in Equation (7). The
overall evolution is thus expressed as the alternating transformation

(M,Wψ)
Φday−−−−→ M′ Φnight−−−−→ (M′,W′

ψ), (10)
which continually refreshes the episodic buffer while also imbuing the weaver with generalized
procedural knowledge. In other words, as the essential knowledge has already been integrated
into the weaver, after each nighttime consolidation, the episodic buffer is cleared to prevent un-
bounded growth of the memory space. This perpetual cycle of experience and consolidation allows
LatentEvolve’s reasoning capabilities to self-evolve on the fly, entirely in an unsupervised man-
ner without reliance on any external labels.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

Backbones. To evaluate the generalizability of LatentEvolve, we experiment with LLMs
from different families and of varying sizes, including Llama-3.2-3b (Grattafiori et al.,
2024), Qwen2.5-7b-instruct (Qwen et al., 2025), Qwen3-4b-instruct-2507,
Qwen3-8b (Yang et al., 2025), and Gemma-3-12b-it (Team et al., 2025).

Benchmarks. We conduct a comprehensive evaluation of LatentEvolve across eight bench-
marks from four task domains: ■ general QA, MMLU (Hendrycks et al., 2021a); ■ mathematical
reasoning, including GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021b), and AIME
2024/2025 (Li et al., 2024); ■ scientific reasoning, SciBench (Wang et al., 2024b) and GPQA-
Diamond (Rein et al., 2023); ■ medical reasoning, JAMA Clinical Challenge (Chen et al., 2025a).
Detailed dataset statistics are listed in Appendix B.4.

Evaluation Setup. We apply LatentEvolve independently to each benchmark’s test set, except
for AIME24/25 where the test size is limited, on which we evaluate after applying LatentEvolve
on MATH-500. We set the maximum generation length to 2048 tokens. The small LLM used for
latent weaver Wψ is consistently set as Qwen-2.5-1.5b. The dimension L′ in Equation (4) is set
as 15, the threshold τ equals 0.5, and the dual-evolution period T is 200. The learning rate η is 0.3,
the number of iterations K = 10, and the sampling times M in Equation (6) is 8. For performance
evaluation, we employ Pass@1 accuracy under a sampling temperature of 0 across all benchmarks.

Baselines. We compare against several well-established baselines:
• Prompting (training-free): vanilla model and CoT (Wei et al., 2023);
• Reinforcement Learning: (1) self-rewarding methods, including Self-Rewarding (Yuan

et al., 2025) and Genius (Xu et al., 2025a), and (2) verifiable reward methods, including
GRPO (DeepSeek-AI et al., 2025), Reinforce (Williams, 1992), and Reinforce++ (Hu et al.,
2025). The latter three baselines are trained independently on the training split of each dataset
and evaluated on the corresponding test split. Owing to the limited size of AIME24/25, models
trained on MATH are directly evaluated on these benchmarks. Results on SciBench are omitted
for these baselines due to the absence of a dedicated training set.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison across two LLM backbones (Qwen2.5-7b and
Llama3.2-3b), against thirteen baselines and on eight benchmarks. The best and second best
results are highlighted and underlined, respectively.

Method General QA Mathematical Reasoning Sci. Reasoning Med. Reasoning
MMLU GSM8K MATH-500 AIME24 AIME25 SciBench GPQA JAMA Clinical

Q
w
e
n
2
.
5
-
7
b

Prompting (training-free)
Vanilla Model 55.30 87.72 55.80 0.00 0.00 11.27 27.78 47.72
CoT 69.10 87.04 68.80 6.67 3.33 11.99 30.81 50.96

Reinforcement Learning
Self-Rewarding 63.10 88.30 59.62 0.00 0.00 9.36 23.65 47.07
Genius 58.30 87.93 49.57 0.00 0.00 13.60 29.31 41.78
GRPO 68.90 92.30 75.85 6.67 3.33 - 33.60 51.62
Reinforce 63.77 92.30 76.80 6.67 6.67 - 34.34 49.16
Reinforce++ 65.90 92.60 75.02 13.33 6.67 - 34.34 50.40

Latent Reasoning
Coprocessor 68.10 83.60 53.73 6.67 6.67 - 31.88 43.70
SoftCoT 62.30 80.13 65.80 3.33 0.00 - 28.28 49.70

Test-time Scaling
Self-Consistency 69.80 88.62 69.40 6.67 6.67 12.13 32.32 51.62
Self-Refine 61.40 86.33 59.32 3.33 0.00 9.36 22.65 45.64
LatentSeek 68.50 91.58 66.20 10.00 3.33 14.45 31.31 50.40
TTRL 70.90 92.80 77.39 23.33 13.33 13.92 33.60 49.16
LatentEvolve 72.30 92.98 77.60 23.33 10.00 19.79 34.85 52.94

L
l
a
m
a
3
.
2
-
3
b

Prompting (training-free)
Vanilla Model 60.60 71.65 41.60 0.00 0.00 6.79 26.77 45.14
CoT 57.60 64.90 48.60 0.00 0.00 7.95 26.77 45.60

Reinforcement Learning
Self-Rewarding 57.30 69.22 39.20 0.00 0.00 3.19 23.90 40.16
Genius 58.20 73.61 38.15 0.00 0.00 6.79 21.80 45.60
GRPO 62.70 75.30 50.20 3.33 0.00 - 28.18 46.26
Reinforce 60.60 75.02 49.60 3.33 0.00 - 24.50 45.60
Reinforce++ 62.70 73.61 50.20 3.33 3.33 - 26.26 44.80

Latent Reasoning
Coprocessor 61.50 70.08 44.90 0.00 0.00 - 21.80 42.28
SoftCoT 58.90 73.61 46.40 0.00 0.00 - 25.25 43.35

Test-time Scaling
Self-Consistency 59.10 66.33 49.20 0.00 0.00 8.67 27.27 45.60
Self-Refine 58.90 68.90 44.10 0.00 0.00 4.28 20.10 42.28
LatentSeek 49.30 55.95 38.60 0.00 0.00 5.20 26.26 32.36
TTRL 62.10 75.02 51.00 3.33 6.67 8.07 28.18 44.80
LatentEvolve 64.30 75.51 51.20 6.67 3.33 9.39 29.29 48.44

• Latent Reasoning, including Coprocessor (Liu et al., 2024) and SoftCoT (Xu et al., 2025c).
• Test-time Scaling methods, including Self-Consistency (Wang et al., 2023b), Self-refine (Madaan

et al., 2023), LatentSeek (Li et al., 2025a), and TTRL (Xiang et al., 2025).

5.2 MAIN RESULTS

Obs. ❶: LatentEvolve performs well across most task domains. As shown in Table 1,
most baselines fail to deliver consistent gains across all benchmark types. LatentSeek and TTRL
excel in mathematical reasoning yet fall short in other domains: for instance, LatentSeek with
Llama3.2-3b underperforms the vanilla model on MMLU (−11.3%) and experiences a perfor-
mance drop on SciBench (−1.59%), while TTRL with Qwen2.5-7b yields limited benefit on
JAMA Clinical (+1.44%). In contrast, LatentEvolve not only matches or surpasses TTRL in the
general QA domain (e.g., on Qwen2.5-7b, MMLU +6.4%) but also achieves superior results in
other domains, such as a +8.52% improvement on SciBench+Qwen2.5-7b.

Obs. ❷: LatentEvolve generalizes well across LLM backbones. In contrast to many base-
lines whose gains across different LLMs are highly inconsistent (e.g., Coprocessor on GPQA yields
+4.1% with Qwen2.5-7b but−4.97% with Llama3.2-3b), LatentEvolve consistently deliv-
ers positive improvements across models of varying scales, as clearly illustrated in Table 2. Notably,
its benefits naturally scale with model size: on MATH-500, for example, the improvement rises
from 9.6% with Llma3.2-3b to 20.8% with Gemma-3-12b.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance Comparison of the vanilla model versus that enhanced with LatentEvolve
across five LLM backbones. The ∆ row indicates the absolute improvement.

LLM Backbone Method MMLU GSM8K MATH-500 SciBench GPQA JAMA Clinical AIME24 AIME25

Llama3.2-3b
Vanilla 60.60 71.65 41.60 6.79 26.77 45.14 0.00 0.00
+LatentEvolve 64.30 75.51 51.20 9.39 29.29 48.44 6.67 3.33
∆ +3.70 +3.86 +9.60 +2.60 +2.52 +3.30 +6.67 +3.33

Qwen2.5-7b
Vanilla 55.30 87.72 55.80 11.27 27.78 47.72 0.00 0.00
+LatentEvolve 72.30 92.98 77.60 19.79 34.85 52.94 23.33 10.00
∆ +17.00 +5.26 +21.80 +8.52 +7.07 +5.22 +23.33 +10.00

Qwen3-4b
Vanilla 71.90 89.23 61.40 12.28 34.85 51.49 10.00 3.33
+LatentEvolve 73.30 92.42 78.60 31.93 38.89 53.67 23.33 16.67
∆ +1.40 +3.19 +17.20 +19.65 +4.04 +2.18 +13.33 +13.34

Qwen3-8b
Vanilla 72.70 87.94 55.20 6.36 28.82 53.08 3.33 3.33
+LatentEvolve 78.80 90.45 73.80 10.83 32.82 54.60 26.67 23.33
∆ +6.10 +2.51 +18.60 +4.47 +4.00 +1.52 +23.33 +20.00

Gemma-3-12b
Vanilla 65.80 89.23 57.40 10.84 33.33 49.50 0.00 10.00
+LatentEvolve 73.90 91.89 78.20 18.93 41.92 55.06 10.00 13.33
∆ +8.10 +2.66 +20.80 +8.09 +8.59 +5.56 +10.00 +3.33

MATH (200)

Day Night

80

70

60

50
MATH (200) MMLU (200) MMLU (200)

49.5

30

40

50

60

57.6

65.8

30.7

35.2 35.6
37.3 37.3

39.0
39.9

42.465.0

69.5

Day Night Day Night Day Night

Daytime Scaling

Nighttime Scaling

In-domain Data

Out-of-Domain Data

MATH-500 MMLU

GPQA JAMA

78.6
78.6

80.2 80.2 80.2

49.5
49.8

50.0

49.8

50.4

53.6
58.0

65.8 67.3 67.3

69.4

72.8

72.8

75.3

Figure 3: The evolving dynamics of LatentEvolve when applied on Gemma-3-12b across two
in-domain and out-of-domain datasets.

5.3 GENERALIZATION AND CONTINUAL LEARNING STUDY

This section investigates the continual learning and generalization capacity of LatentEvolve. Fig-
ure 3 illustrates performance trajectories when LatentEvolve, instantiated with Gemma-3-12b,
sequentially processes test data from MATH and MMLU. In-domain evaluation is conducted on
MATH and MMLU, while out-of-domain evaluation is performed on GPQA and JAMA. Red zones
denote evaluations after a daytime scaling step with updated episodic bufferM′, whereas blue zones
correspond to evaluations after a nighttime scaling step yielding updated latent weaver W′

ψ .

Obs. ❸: LatentEvolve generalizes across domains. As shown in Figure 3, after two rounds
of MATH data, performance improves substantially in-domain (57.6% → 78.6%) while also
transferring gains to distinct domains (JAMA +6.6%, MMLU +1.5%). Notably, nighttime scal-
ing proves more conducive to such cross-domain generalization: the first nighttime scaling on
MATH increases JAMA by +4.5%, compared to only +0.4% from daytime scaling. This high-
lights that nighttime scaling, akin to cortical consolidation in the human brain, integrates experi-
ences into more transferable knowledge, whereas daytime scaling yields more superficial improve-
ments. Moreover, LatentEvolve demonstrates strong continual learning ability: after two rounds
of MMLU data, Gemma-3-12b shows not only no degradation but a slight improvement on MATH
(78.6%→ 80.2%), highlighting the robustness of LatentEvolve in continual adaptation.

5.4 FRAMEWORK ANALYASIS

Sensitivity Analysis. We conduct a sensitivity analysis of the parameter L′, which determines
the dimensionality of each initialized latent representation zbase,i. As shown in Figure 4 (Left), both
MATH and SciBench exhibit similar patterns: as L′ increases from 10 to 50, performance first
improves and then declines, with the best results attained at L′ = 30 (MATH 80.3%, SciBench
33.4%). A plausible explanation is that too few dimensions cannot adequately encode historical
optimization experience, while excessively many dimensions introduce additional parameters that

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Full LatentEvolve w/o Daytime w/o Nighttime

Figure 4: The ablation study and parameter sensitivity analysis of LatentEvolve.

may hinder the self-supervised refinement process during daytime scaling (Equation (6)). Analysis
with more parameters (e.g., the evolution period T ) is provided in Appendix B.6.

Ablation Study. We investigate two variants of LatentEvolve: w/o Daytime and w/o Nighttime.
The former removes Equation (5), meaning that each latent optimization proceeds without retrieving
prior experience, and the latter omits the update of the latent weaver as described in Equation (7).
As shown in Figure 4, removing either daytime or nighttime scaling leads to a substantial perfor-
mance drop compared with the full LatentEvolve, with the effect of w/o Nighttime being more
pronounced. At L′ = 30, w/o Daytime reduces performance on SciBench from 33.4% to 28.5%
(−4.9%), while w/o Nighttime results in a larger decline of 6.8%. This observation aligns with the
findings in Section 5.3. Overall, both components of LatentEvolve are indispensable, mutually
reinforcing, and jointly critical to its effectiveness.

Table 3: Case Studies of LatentEvolve. The questions (from SciBench and GPQA), the answers,
and the LatentEvolve generations are listed. The peculiar reasoning tokens are highlighted in blue.

QUESTION: Express the van der Waals parameters b=0.0226 dm3 mol−1 in SI base units.
ANSWER: 0.0000226
LatentEvlove: To convert parameter b=0.0226 dm3 mol−1 in SI base units. Start unit-conv
dm3-to-m3 step one. Identify 1 dm equal 0.1 m. So, 1 dm3 is 0.001 m3. Then apply
factor-multiplied 0.0226. [. . .] The final value in SI base units is 2.26 * 10−5 m3 mol−1.

QUESTION: Which of the following physical theories never requires regularization at high
energies? A. Quantum Chromodynamics B. Superstring Theory C. Quantum Electrodynamics D.
Classical Electrodynamics
ANSWER: B
LatentEvlove: Which physical theories never never required regularization at high
energies. Need-no-regularization-scan start. QCD, QED, needs. Classical Electrodynamics,
not quantum, so no need. Superstring Theory, this theory no require regularization itself.
[. . .] Based on the above analysis, the theory that never requires regularization at high
energies is Superstring Theory. The correct answer is B.

Case Study. To gain insight into LatentEvolve’s latent optimization, we qualitatively
analyzed its outputs following (Li et al., 2025a). As shown in Table 3, we ob-
served distinctive reasoning tokens and patterns, including fragmented internal commands
(Need-no-regularization-scan start), lexical repetition (never never), and un-
conventional grammar (no require regularization itself). Despite these peculiar to-
kens, LatentEvolve consistently produces correct answers, suggesting it steers the LLM along
more machine-native, efficient reasoning trajectories within latent space. Table 5 further shows that,
relative to vanilla CoT, LatentEvolve concludes the reasoning with fewer decoding tokens.

6 CONCLUSION

In this work, we proposed LatentEvolve, a self-evolving latent test-time scaling framework in-
spired by complementary learning systems. By alternating daytime scaling for fast episodic adap-
tation with nighttime scaling for slow procedural consolidation, our approach enables LLMs to
accumulate and refine experiential knowledge during inference without external supervision. Ex-
periments across eight benchmarks and five model backbones show that LatentEvolve surpasses
state-of-the-art TTS methods (e.g., TTRL, LatentSeek), transfers effectively across tasks, and ex-
hibits steady continual learning ability. Broadly, our work points toward a new path where LLMs
not only scale at test time, but also evolve through it, bringing them closer to the adaptive and
accumulative intelligence seen in human cognition.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces a self-evolving latent test-time scaling framework designed to enhance LLM’
adaptability and accumulation of knowledge during inference. Our research is conducted entirely
within the scope of standard academic benchmarks, including general reasoning, mathematical
problem-solving, and scientific question answering, without deploying models in real-world inter-
active or decision-making scenarios. As such, the methods and experiments presented here do not
raise direct ethical concerns.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of this work, we provide an anonymous link to our source codes
in the abstract, detail the parameter settings in Section 5.1, and include the evaluation prompt in
Appendices B.1 and B.3.

REFERENCES

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan
Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for
generative mixed-modal language models, 2023. URL https://arxiv.org/abs/2301.
03728.

Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning. arXiv
preprint arXiv:2411.07279, 2024.

Huan ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
survey of self-evolving agents: On path to artificial super intelligence, 2025. URL https:
//arxiv.org/abs/2507.21046.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, March 2024.
ISSN 2159-5399. doi: 10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Hanjie Chen, Zhouxiang Fang, Yash Singla, and Mark Dredze. Benchmarking large language mod-
els on answering and explaining challenging medical questions. In Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3563–3599, 2025a.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning, 2025b. URL
https://arxiv.org/abs/2505.14970.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models, 2024. URL https://arxiv.org/abs/2403.12881.

10

https://arxiv.org/abs/2301.03728
https://arxiv.org/abs/2301.03728
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2505.14970
https://arxiv.org/abs/2403.12881


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joon-Young Choi, Junho Kim, Jun-Hyung Park, Wing-Lam Mok, and SangKeun Lee. SMoP: To-
wards efficient and effective prompt tuning with sparse mixture-of-prompts. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 14306–14316, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.884. URL https:
//aclanthology.org/2023.emnlp-main.884/.

Ho-Lam Chung, Teng-Yun Hsiao, Hsiao-Ying Huang, Chunerh Cho, Jian-Ren Lin, Zhang Ziwei,
and Yun-Nung Chen. Revisiting test-time scaling: A survey and a diversity-aware method for
efficient reasoning, 2025. URL https://arxiv.org/abs/2506.04611.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu,
Siwei Liu, Zihao Li, Zhaochun Ren, Nikos Aletras, Xi Wang, Han Zhou, and Zaiqiao Meng. A
comprehensive survey of self-evolving ai agents: A new paradigm bridging foundation models
and lifelong agentic systems, 2025. URL https://arxiv.org/abs/2508.07407.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with la-
tent reasoning: A recurrent depth approach, 2025. URL https://arxiv.org/abs/2502.
05171.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing, 2024. URL
https://arxiv.org/abs/2305.11738.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

11

https://aclanthology.org/2023.emnlp-main.884/
https://aclanthology.org/2023.emnlp-main.884/
https://arxiv.org/abs/2506.04611
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2508.07407
https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/2305.11738


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lin Gui, Cristina Gârbacea, and Victor Veitch. Bonbon alignment for large language models and the
sweetness of best-of-n sampling, 2024. URL https://arxiv.org/abs/2406.00832.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

Bolei He, Nuo Chen, Xinran He, Lingyong Yan, Zhenkai Wei, Jinchang Luo, and Zhen-Hua Ling.
Retrieving, rethinking and revising: The chain-of-verification can improve retrieval augmented
generation, 2024. URL https://arxiv.org/abs/2410.05801.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021a. URL https:
//arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.
URL https://arxiv.org/abs/2103.03874.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm
with robustness to both prompt and reward models, 2025. URL https://arxiv.org/abs/
2501.03262.

Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of LLMs. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=NS1G1Uhny3.

Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei
Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, Christie-Carol Beauchamp, Xiaoding Lu,
Thomas Rialan, and William Beauchamp. Rewarding chatbots for real-world engagement with
millions of users, 2023. URL https://arxiv.org/abs/2303.06135.

Minki Kang, Jongwon Jeong, and Jaewoong Cho. T1: Tool-integrated self-verification for test-time
compute scaling in small language models, 2025. URL https://arxiv.org/abs/2504.
04718.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20
(7):512–534, 2016.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
and Xinyun Chen. Evolving deeper llm thinking, 2025. URL https://arxiv.org/abs/
2501.09891.

Hengli Li, Chenxi Li, Tong Wu, Xuekai Zhu, Yuxuan Wang, Zhaoxin Yu, Eric Hanchen Jiang,
Song-Chun Zhu, Zixia Jia, Ying Nian Wu, and Zilong Zheng. Seek in the dark: Reasoning via
test-time instance-level policy gradient in latent space, 2025a. URL https://arxiv.org/
abs/2505.13308.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

12

https://arxiv.org/abs/2406.00832
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2410.05801
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2501.03262
https://openreview.net/forum?id=NS1G1Uhny3
https://arxiv.org/abs/2303.06135
https://arxiv.org/abs/2504.04718
https://arxiv.org/abs/2504.04718
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2501.09891
https://arxiv.org/abs/2501.09891
https://arxiv.org/abs/2505.13308
https://arxiv.org/abs/2505.13308


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models, 2025b. URL
https://arxiv.org/abs/2501.05366.

Shalev Lifshitz, Sheila A McIlraith, and Yilun Du. Multi-agent verification: Scaling test-time com-
pute with multiple verifiers. arXiv preprint arXiv:2502.20379, 2025.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent space via
differentiable cache augmentation. arXiv preprint arXiv:2412.17747, 2024.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? Advances in Neural
Information Processing Systems, 34:21808–21820, 2021.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art
coding agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/
DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33,
2025. Notion Blog.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

José I. Orlicki. Beyond words: A latent memory approach to internal reasoning in llms, 2025. URL
https://arxiv.org/abs/2502.21030.

Zhiyuan Peng, Xuyang Wu, Qifan Wang, and Yi Fang. Soft prompt tuning for augmenting dense re-
trieval with large language models, 2024. URL https://arxiv.org/abs/2307.08303.

Jiahao Qiu, Xinzhe Juan, Yimin Wang, Ling Yang, Xuan Qi, Tongcheng Zhang, Jiacheng Guo, Yifu
Lu, Zixin Yao, Hongru Wang, Shilong Liu, Xun Jiang, Liu Leqi, and Mengdi Wang. Agentdistill:
Training-free agent distillation with generalizable mcp boxes, 2025a. URL https://arxiv.
org/abs/2506.14728.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scal-
able agentic reasoning with minimal predefinition and maximal self-evolution, 2025b. URL
https://arxiv.org/abs/2505.20286.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa bench-
mark, 2023. URL https://arxiv.org/abs/2311.12022.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

13

https://arxiv.org/abs/2501.05366
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2502.21030
https://arxiv.org/abs/2307.08303
https://arxiv.org/abs/2506.14728
https://arxiv.org/abs/2506.14728
https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2303.11366


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, Wenhao Wu, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Agentbank: Towards generalized llm agents via fine-tuning on 50000+ interaction
trajectories, 2024. URL https://arxiv.org/abs/2410.07706.

Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: In-
centivizing pixel-space reasoning with curiosity-driven reinforcement learning, 2025. URL
https://arxiv.org/abs/2505.15966.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning, pp. 9229–9248. PMLR, 2020.

Yuchang Sun, Yanxi Chen, Yaliang Li, and Bolin Ding. Enhancing latent computation in transform-
ers with latent tokens, 2025. URL https://arxiv.org/abs/2505.12629.

Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, and James Zou. Dynamic cheat-
sheet: Test-time learning with adaptive memory, 2025. URL https://arxiv.org/abs/
2504.07952.

Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently, think
fast: Dynamic latent compression of llm reasoning chains, 2025. URL https://arxiv.org/
abs/2505.16552.

Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xinming Wei,
Peng Xia, Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao Wang, Sirui Hong, Chenglin Wu,
Hao Cheng, Chi Wang, and Wangchunshu Zhou. Agent kb: Leveraging cross-domain experience
for agentic problem solving, 2025. URL https://arxiv.org/abs/2507.06229.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Will we run out of data? limits of llm scaling based on human-generated data. arXiv preprint
arXiv:2211.04325, 2022.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023a. URL https://arxiv.org/abs/2305.16291.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R.
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level scien-
tific problem-solving abilities of large language models, 2024b. URL https://arxiv.org/
abs/2307.10635.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023b. URL https://arxiv.org/abs/2203.11171.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, et al. Memoryllm: Towards self-updatable large language models. arXiv
preprint arXiv:2402.04624, 2024c.

Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan Gut-
freund, Rogerio Feris, and Zexue He. M+: Extending memoryllm with scalable long-term mem-
ory, 2025a. URL https://arxiv.org/abs/2502.00592.

14

https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2410.07706
https://arxiv.org/abs/2505.15966
https://arxiv.org/abs/2505.12629
https://arxiv.org/abs/2504.07952
https://arxiv.org/abs/2504.07952
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2507.06229
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2307.10635
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2502.00592


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks, 2025b. URL https:
//arxiv.org/abs/2501.11733.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via re-
inforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/
2502.18449.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Junde Wu, Jiayuan Zhu, and Yuyuan Liu. Agentic reasoning: Reasoning llms with tools for the deep
research, 2025. URL https://arxiv.org/abs/2502.04644.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp Franken, Nick
Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learning how to think with meta
chain-of-thought, 2025. URL https://arxiv.org/abs/2501.04682.

Yao Xiao, Lu Xu, Jiaxi Li, Wei Lu, and Xiaoli Li. Decomposed prompt tuning via low-rank repa-
rameterization, 2023. URL https://arxiv.org/abs/2310.10094.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Qiushi Sun, Kanzhi Cheng, Junxian He, Jun Liu,
and Zhiyong Wu. Genius: A generalizable and purely unsupervised self-training framework for
advanced reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 13153–13167, Vienna, Austria, July 2025a. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.644.
URL https://aclanthology.org/2025.acl-long.644/.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms, 2025b. URL https://arxiv.org/abs/2502.12134.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot++: Test-time scaling with soft chain-
of-thought reasoning, 2025c. URL https://arxiv.org/abs/2505.11484.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Hai Ye, Mingbao Lin, Hwee Tou Ng, and Shuicheng Yan. Multi-agent sampling: Scaling inference
compute for data synthesis with tree search-based agentic collaboration, 2025. URL https:
//arxiv.org/abs/2412.17061.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL
https://arxiv.org/abs/2407.06023.

Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, Chenguang Zhu, Richard Yuanzhe Pang, Yundi
Qian, Xuewei Wang, Suchin Gururangan, Chao Zhang, Melanie Kambadur, Dhruv Mahajan, and
Rui Hou. Self-generated critiques boost reward modeling for language models, 2025. URL
https://arxiv.org/abs/2411.16646.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models, 2025. URL https://arxiv.org/
abs/2401.10020.

15

https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.04644
https://arxiv.org/abs/2501.04682
https://arxiv.org/abs/2310.10094
https://aclanthology.org/2025.acl-long.644/
https://arxiv.org/abs/2502.12134
https://arxiv.org/abs/2505.11484
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2412.17061
https://arxiv.org/abs/2412.17061
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/2411.16646
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyan
Qi. Masrouter: Learning to route llms for multi-agent systems, 2025. URL https://arxiv.
org/abs/2502.11133.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms, 2023. URL https://arxiv.org/abs/
2310.12823.

Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Wei, Liu Yang, Jujie He, Cheng Cheng, Rui
Hu, Yang Liu, Shuicheng Yan, Han Fang, and Yahui Zhou. Skywork-math: Data scaling laws
for mathematical reasoning in large language models – the story goes on, 2024. URL https:
//arxiv.org/abs/2407.08348.

Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory:
Tracing hierarchical memory for multi-agent systems, 2025a. URL https://arxiv.org/
abs/2506.07398.

Jenny Zhang, Shengran Hu, Cong Lu, Robert Lange, and Jeff Clune. Darwin godel machine: Open-
ended evolution of self-improving agents, 2025b. URL https://arxiv.org/abs/2505.
22954.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A survey on test-
time scaling in large language models: What, how, where, and how well?, 2025c. URL https:
//arxiv.org/abs/2503.24235.

Yiqun Zhang, Hao Li, Chenxu Wang, Linyao Chen, Qiaosheng Zhang, Peng Ye, Shi Feng, Daling
Wang, Zhen Wang, Xinrun Wang, et al. The avengers: A simple recipe for uniting smaller
language models to challenge proprietary giants. arXiv preprint arXiv:2505.19797, 2025d.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners, 2024. URL https://arxiv.org/abs/2308.10144.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,
Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with
zero data, 2025. URL https://arxiv.org/abs/2505.03335.

Boyuan Zheng, Michael Y. Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, and Yu Su. Skillweaver: Web agents
can self-improve by discovering and honing skills, 2025a. URL https://arxiv.org/abs/
2504.07079.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing ”thinking with images” via reinforcement learning, 2025b.
URL https://arxiv.org/abs/2505.14362.

Xuanhe Zhou, Junxuan He, Wei Zhou, Haodong Chen, Zirui Tang, Haoyu Zhao, Xin Tong, Guoliang
Li, Youmin Chen, Jun Zhou, Zhaojun Sun, Binyuan Hui, Shuo Wang, Conghui He, Zhiyuan Liu,
Jingren Zhou, and Fan Wu. A survey of llm× data, 2025. URL https://arxiv.org/abs/
2505.18458.

Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang,
Kaiwen Xue, Xuanliang Zhang, Yong Shan, et al. A survey on latent reasoning. arXiv preprint
arXiv:2507.06203, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding,
and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https://arxiv.org/
abs/2504.16084.

16

https://arxiv.org/abs/2502.11133
https://arxiv.org/abs/2502.11133
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2407.08348
https://arxiv.org/abs/2407.08348
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2505.22954
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2308.10144
https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2504.07079
https://arxiv.org/abs/2504.07079
https://arxiv.org/abs/2505.14362
https://arxiv.org/abs/2505.18458
https://arxiv.org/abs/2505.18458
https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS

In preparing this work, we made limited use of large language models (LLMs) as auxiliary tools.
Specifically, LLMs were employed to polish the language of early drafts, to assist with literature
exploration, and to support information retrieval.

B METHODOLOGY DETAILS

B.1 SELF-SUPERVISED LATENT REFINEMENT

The self-rewarding function Q(y) in Equation (6) is formally defined as a weighted aggregation of
numerical scores assigned by the LLM to distinct evaluation criteria. Following standard practices
from (Lifshitz et al., 2025; Li et al., 2025a), for each candidate output y, the LLM produces normal-
ized scores sans(y), scomp(y), scalc(y), sform(y), sclar(y) ∈ [0, 1], corresponding respectively to (i)
correctness of the final answer, (ii) accuracy of problem comprehension, (iii) validity of numerical
calculations, (iv) conformity of the answer format to task requirements, and (v) provision of a clear
and explicit answer. The overall reward is then computed as

Q(y) =
1

7

(
sans(y) + scomp(y) + scalc(y) + 2 sform(y) + 2 sclar(y)

)
, (11)

where the weighting scheme 1 : 1 : 1 : 2 : 2 reflects the relative importance of the criteria, placing
greater emphasis on answer format fidelity and clarity of presentation.

Prompt for (i) correctness of the final answer

prompt_s_ans = f"""
INSTRUCTIONS:
Your task is to determine the correctness of the final answer within the PROPOSED

SOLUTION.
Critically verify the final answer against the TASK DESCRIPTION and the reasoning steps

provided in the PROPOSED SOLUTION.
Do NOT use external knowledge. Focus only on internal consistency and accuracy based on

the given problem.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = completely incorrect, 1.0 = perfectly correct)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

Prompt for (ii) accuracy of problem comprehension

prompt_s_comp = f"""
INSTRUCTIONS:
Your task is to evaluate the PROPOSED SOLUTION’s understanding of the TASK DESCRIPTION.
Identify all explicit and implicit constraints, conditions, and specific requests in

the TASK DESCRIPTION.
Assess how accurately and comprehensively the PROPOSED SOLUTION addressed these

elements, demonstrating full comprehension.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = no comprehension, 1.0 = full and accurate comprehension)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt for (iii) validity of numerical calculations

prompt_s_calc = f"""
INSTRUCTIONS:
Your task is to verify the validity of all numerical calculations and logical steps

within the PROPOSED SOLUTION.
For each calculation or logical transition, independently recompute or re-evaluate it.
If any numerical or logical discrepancy is found, it indicates an error.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = many errors, 1.0 = all calculations and logical steps are valid)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

Prompt for (iv) conformity of the answer format to task requirements

prompt_s_form = f"""
INSTRUCTIONS:
Your task is to assess if the PROPOSED SOLUTION conforms to the expected output format

requirements.
Consider if specific units are used, if the answer is structured as implicitly or

explicitly requested (e.g., numeric only, step-by-step, \\boxed{} formatting), and
if all parts of the response are appropriately presented.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = completely incorrect format, 1.0 = perfectly formatted)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

Prompt for (v) provision of a clear and explicit answer

prompt_s_clar = f"""
INSTRUCTIONS:
Your task is to evaluate the clarity and explicitness of the PROPOSED SOLUTION.
Assess if the reasoning is easy to follow, unambiguous, and if all necessary steps and

explanations are provided without missing information.
Consider the overall readability and conciseness.

Your response must strictly follow the required format:
SCORE: [0.0-1.0]
(0.0 = very unclear/implicit, 1.0 = exceptionally clear and explicit)

TASK DESCRIPTION:
[TASK_DESCRIPTION]

PROPOSED SOLUTION:
[PROPOSED_SOLUTION]
"""

B.2 NIGHTTIME CONSOLIDATION

When preparing training data for the latent weaver, not all encountered latent representations within
a given cycle are equally valuable or should be retained. Recall that the rationale behind self-
supervised refinement is as follows: although the latent state z0,i, obtained through weighted mo-
mentum transfer, may lie within a promising region of the space, it is not guaranteed to align
perfectly with the current context. To address this, we further scale and update it through a self-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

rewarding mechanism, ensuring that it becomes optimally adapted to support the query at hand.
Therefore, the latent weaver, which provides the initial seeds for reasoning, should itself be trained
with relatively high-quality data. Concretely, for a triplet (eci

, z0,i, z
∗
i ), we include it into the mem-

oryM if and only if the LLM exhibits sufficient confidence in the associated latent representation.
Formally, such confidence is defined as the expected quality score of the final output after itera-
tive refinement. Let y(M)

k denote the response generated at the last refinement step under rollout k
(k = 1, . . . ,M), then the confidence measure is given by

E[Q(y
(M)
k )] =

1

M

M∑
k=1

Q(y
(M)
k ),

and the triplet is retained only if
E[Q(y

(M)
k )] ≥ τ,

where Q(y
(M)
k ) ∈ [0, 1] denotes the numerical score assigned to the generated response according

to task-specific evaluation criteria, and τ is a tunable threshold that governs the admission of latent
experiences. We set τ = 0.5 across all experiments.

B.3 EVALUATION

The evaluation prompts used by LatentEvolve for datasets requiring numerical answers (includ-
ing GSM8K, MATH, AIME 2024/2025, and SciBench) and for multiple-choice datasets (including
MMLU, SciBench, JAMA, and GPQA) are summarized in Table 4.

Table 4: Evaluation prompts for LatentEvolve and other baselines.

Numerical-answer evaluation prompt: {Question Description}. Please reason step by step,
and enclose your final answer within \\boxed{}.

Multiple-choice evaluation prompt: {Question Description}. Please select the correct
option (A, B, C, or D) to answer the question. Your response should be formatted as
follows: The correct answer is {your answer option letter here}.

B.4 DATASET DETAILS

This section provides the fine-grained statistics of each dataset:

• MMLU (Hendrycks et al., 2021a): following prior practice (Yue et al., 2025), we sample
1000 instances.

• MATH (Hendrycks et al., 2021b): we adopt the standard MATH-500 subset.

• GSM8K (Cobbe et al., 2021): we opt for the full test set (1319 problems).

• GPQA (Rein et al., 2023): we employ the GPQA-Diamond subset containing 198
graduate-level questions of elevated difficulty.

• SciBench (Wang et al., 2024b): we include all 692 tasks.

• JAMA Clinical Challenge (Chen et al., 2025a): comprising questions derived from de-
manding clinical cases, we adopt all 1511 test items.

• AIME 2024 and 2025 (Li et al., 2024): each consists of 30 problems.

B.5 MORE RESULTS

B.6 SENSITIVITY ANALYSIS

From Table 6, we observe a clear improvement in performance with iterative refinement under mod-
erate evolution intervals. For example, when T = 200, accuracy steadily increases from 68.3%
at Iter 1 to 73.6% at Iter 5, indicating that frequent daytime and nighttime interactions allow the
latent representations to be progressively aligned with the query context. A similar trend is seen for
T = 300 and T = 500, although the performance gains diminish as the interval grows. In contrast,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Algorithmic Statistics of LatentEvolve. We report the ratio of answer length (when
equipped with LatentEvolve) to vanilla CoT length, under three settings (full LatentEvolve,
w/o Daytime and w/o Nighttime).

Model Qwen2.5
7b

Qwen3
8b

Qwen3
4b

Llama3.2
3b Avg

GSM8K
LatentEvolve 0.89 0.92 0.91 0.96 0.92
w/o Daytime 0.92 0.92 0.90 0.97 0.93
w/o Nighttime 0.98 0.95 0.94 0.94 0.95

MATH-500
LatentEvolve 0.91 0.93 0.95 0.97 0.94
w/o Daytime 0.93 0.93 1.01 0.99 0.97
w/o Nighttime 1.01 0.97 0.97 0.98 0.98

SciBench
LatentEvolve 0.93 0.95 0.94 0.98 0.95
w/o Daytime 0.94 0.98 0.95 1.04 0.98
w/o Nighttime 0.99 0.95 0.92 1.02 0.97

when T = 1000, the evolution becomes excessively coarse-grained, essentially reducing the process
to a single daytime and nighttime interaction. This hinders the model’s ability to perform gradual
refinement, thereby limiting the benefits of the proposed dual-phase evolution. These results sug-
gest that overly sparse consolidation undermines the advantages of iterative scaling, while moderate
intervals strike a balance between stability and adaptability.

Table 6: Results across different iterations with different T on the MMLU dataset (T denotes the
evolution interval controlling the frequency of daytime and nighttime interactions). Smaller T values
allow more iterative refinements within the same training budget, leading to smoother convergence,
while larger T values reduce the number of available iterations, coarsening the evolution process.

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
200 68.3 70.2 72.8 73.3 73.6
300 70.2 71.9 73.3 73.3 -
500 72.1 73.9 - - -

1000 72.8 - - - -

C ADDITIONAL RESULTS

Figure 5: The visualizations of (1) base latent zbase, (2) the weaver-refined latent embeddings z′base,
(3) the latent embeddings after momentum trasfer z0, as well as (4) the final latent vectors z∗ (we
denote those that lead to the final successful reasoning as success latent).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.1 VISUALIZATION OF LATENT-REASONING EVOLUTION

Recall that in LatentEvolve, for each task query we first obtain the base latent vector zbase. The
nighttime weaver then produces the refined latent z′base, which is transformed into z0 after momen-
tum transfer in Equation (5), and after daytime optimization we obtain the final latent z∗, which we
refer to as the success latent when the resulting trajectory is correct. We apply t-SNE to visualize
the distributions of these three latent clusters on SciBench.

As shown in Figure 5, the base latents remain far from the success-latent cluster. Across subse-
quent iterations, the refined latents produced by the nighttime weaver progressively move toward
the region associated with successful reasoning. This indicates that repeated nighttime consolida-
tion enables the weaver to supply latent initializations that lie closer to successful inference regions.
The momentum transfer process also steers the latent representations closer to the success region,
which validates the effectiveness of momentum-based experience transfer.

C.2 QUANTITATIVE COMPARISON OF LATENT-CLUSTER DISTANCES

To complement the qualitative visualization above, we compute the Euclidean distances between the
centroids of the latent clusters at different iterations. The results are summarized below.

Table 7: Euclidean distances between latent-cluster centroids on Llama-3.2-3B + JAMA. Iterations corre-
spond to successive daytime–nighttime cycles.

Llama-3.2-3B + JAMA Iter 1 Iter 2 Iter 3
base latent↔ success latent 2317.401 2466.180 2289.177
refined latent↔ success latent – 1094.228 834.102

Table 8: Euclidean distances between latent-cluster centroids on Qwen2.5-7B + MATH.

Qwen2.5-7B + MATH Iter 1 Iter 2
base latent↔ success latent 1343.296 1308.065
refined latent↔ success latent – 955.109

Across both settings, the refined latents consistently move closer to the success-latent region as day-
time and nighttime phases alternate, while the base latents remain substantially farther away. These
quantitative findings support the conclusion that nighttime consolidation provides a significantly
improved initialization point for downstream reasoning.

C.3 EFFICIENCY ANALYSIS

To further clarify the computational cost of LatentEvolve during nighttime optimization, we re-
port detailed measurements across representative model–dataset configurations. Table 9 and Ta-
ble 10 summarize the nighttime GPU hours, daytime wall-clock time, number of nighttime training
samples, and the corresponding performance across iterations of latent evolution.

Table 9: Nighttime computational cost and performance across iterations for Llama-3.2-3B on
JAMA. Each iteration uses T = 200 test samples.

Metrics Iter 1 Iter 2 Iter 3

Nighttime GPU hours (h) 1.23 1.11 1.33
Daytime wall-clock time (h) 2.5 2.5 2.4
Nighttime training samples 127 133 139
Performance (Acc.) 46.8% 47.2% 47.9%

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 10: Nighttime computational cost and performance across iterations for Qwen2.5-7B on
MATH. Each iteration uses T = 250 test samples.

Metrics Iter 1 Iter 2

Nighttime GPU hours (h) 1.3h 1.3h
Daytime wall-clock time (h) 2.07 2.12
Nighttime training samples 188 213
Performance (Acc.) 74.2% 77.8%

Overall, the nighttime computational overhead of LatentEvolve remains modest across models
and domains, while each iteration consistently yields measurable performance gains in a fully unsu-
pervised setting. These results demonstrate that LatentEvolve provides an efficient and practical
optimization procedure without imposing substantial additional resource burden.

C.4 RETRIEVAL SIMILARITY METRIC

To assess the influence of the retrieval module on overall system performance, we further evaluate
several alternative similarity measures beyond the default cosine similarity. Specifically, we compare
cosine similarity, dot product, Pearson correlation, and Euclidean distance within the latent retrieval
component. As summarized in Table 11, LatentEvolve exhibits limited sensitivity to the choice
of similarity function: all variants achieve comparable performance, and cosine similarity remains a
strong and robust default across both settings.

Table 11: Ablation on retrieval similarity metrics.

Metric MATH + Qwen2.5-7B JAMA + Llama-3.2-3B

Cosine similarity 77.8 48.4
Dot product 77.4 47.5
Pearson correlation 76.7 48.0
Euclidean distance 75.9 47.1

C.5 ANALYSIS OF THRESHOLD τ

To examine the effect of the confidence threshold τ used for selecting nighttime training samples,
we perform a sensitivity study across a range of values. Table 12 reports performance under τ ∈
{0.3, 0.5, 0.7, 0.9} for three representative model–data pairs. We observe that both overly small and
overly large thresholds negatively impact performance: a small τ admits many low-confidence or
noisy samples into nighttime consolidation, while a large τ prunes too aggressively and thus reduces
the amount of useful training signal available to the latent weaver. In practice, moderate values
(τ = 0.5 or 0.7) yield consistently stable behavior, and our default choice of τ = 0.5 provides a
robust and broadly effective setting across all evaluated configurations.

Table 12: Sensitivity of LatentEvolve to the confidence threshold τ .

τ 0.3 0.5 0.7 0.9

Qwen2.5-7B + MATH 76.0 77.6 76.5 74.2
Llama-3.2-3B + JAMA 46.2 48.4 48.8 47.1
Qwen3-8B + GPQA 32.6 32.8 31.6 29.2

C.6 AIME AVG@32 RESULTS

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 13: AIME datasets supplementary results. Note that for GRPO, Reinforce baselines, the
models are first trained on the MATH training split, and the resulting checkpoints are then used for
inference on AIME datasets.

Method Qwen2.5-7B Llama3.2-3B

AIME24
(Avg@32)

AIME25
(Avg@32)

AIME24
(Avg@32)

AIME25
(Avg@32)

Vanilla Model 11.84 8.31 1.93 1.04
CoT 11.95 8.92 2.03 0.94
Self-Rewarding 6.25 9.89 4.79 2.97
Genius 6.82 9.11 2.92 2.50
GRPO 18.49 15.10 6.20 5.89
Reinforce 17.70 14.27 5.57 5.52
Reinforce++ 18.75 14.94 5.21 5.36
Coprocessor 14.16 10.26 1.25 0.00
SoftCoT 10.78 8.17 1.82 1.61
Self-Consistency 14.94 10.20 3.59 3.02
Self-Refine 13.38 8.64 2.55 2.34
LatentSeek 14.06 15.41 6.15 4.74
TTRL 23.33 16.71 8.65 6.46
LatentEvolve 21.56 18.37 8.85 5.92

23


	Introduction
	Related Work
	Preliminary
	Methodology
	Daytime Test-time Optimization
	Nighttime Deliberative Consolidation
	Dual-Phase Evolving Scaling

	Experiments
	Experiment Setting
	Main Results
	Generalization and Continual Learning Study
	Framework Analyasis

	Conclusion
	Use of Large Language Models
	Methodology Details
	Self-supervised Latent Refinement
	Nighttime Consolidation
	Evaluation
	Dataset Details
	More Results
	Sensitivity Analysis

	Additional Results
	Visualization of Latent-Reasoning Evolution
	Quantitative Comparison of Latent-Cluster Distances
	Efficiency Analysis
	Retrieval Similarity Metric
	Analysis of Threshold 
	AIME Avg@32 Results


