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Abstract

Data-to-text generation focuses on generating001
fluent natural language responses from struc-002
tured meaning representations (MRs). Such003
representations are compositional and it is004
costly to collect responses for all possible005
combinations of atomic meaning schemata,006
thereby necessitating few-shot generalization007
to novel MRs. In this work, we systematically008
study the compositional generalization of the009
state-of-the-art T5 models in few-shot data-to-010
text tasks. We show that T5 models fail to011
generalize to unseen MRs, and we propose a012
template-based input representation that con-013
siderably improves the model’s generalization014
capability. To further improve the model’s015
performance, we propose an approach based016
on self-training using fine-tuned BLEURT for017
pseudo-response selection. On the commonly-018
used SGD and Weather benchmarks, the pro-019
posed self-training approach improves tree ac-020
curacy by 46%+ and reduces the slot error021
rates by 73%+ over the strong T5 baselines022
in few-shot settings.023

1 Introduction024

Data-to-text generation (Dušek et al., 2020; Shen025

et al., 2020) is a critical component in today’s task-026

oriented dialog systems for producing fluent natu-027

ral language responses to users’ requests. The task028

takes structured meaning representations (MRs) as029

input for natural language text response generation.030

Such representations are compositional, which al-031

lows for the combination of atomic meaning units032

in various ways to express the rich semantics en-033

coded in languages. Recently, large pre-trained lan-034

guage models (LMs) have shown impressive results035

on many language understanding and generation036

tasks (Howard and Ruder, 2018; Peters et al., 2018;037

Devlin et al., 2019; Raffel et al., 2020), however038

it remains unclear how well these LMs generalize039
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Figure 1: Performance comparison (tree accuracy) be-
tween different few-shot splits and semantic representa-
tions. T5-small undergoes a significant drop in perfor-
mance on the unseen split and our template-guided rep-
resentation improves generalization, reducing the gap.

compositionally to novel semantic representations. 040

There have been many studies revealing that 041

large LMs often memorize the patterns from train- 042

ing data, while generalizing poorly to novel pat- 043

terns. Compositionality in languages (Banarescu 044

et al., 2013; Konstas et al., 2017) further aggravates 045

such issues as the number of novel structural combi- 046

nations exponentially increases with the number of 047

atomic semantic units. In recent years, we have 048

seen progress on benchmarking and measuring 049

compositional generalization for languages (An- 050

dreas, 2019), from perspectives including special- 051

ized architectures (Lake, 2019; Rao et al., 2019) 052

and learning strategies (Andreas, 2020; Akyürek 053

et al., 2021). However, most of these works study 054

the generalization for NLU tasks like question an- 055

swering (Keysers et al., 2020) and semantic pars- 056

ing (Kim and Linzen, 2020). To the best of our 057

knowledge, compositional generalization for natu- 058

ral language generation is still an under-explored 059
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Query: Is it jacket weather?

[DG_NO   
]
[DG_INFORM
    [CONDITION light rain ]
    [HUMIDITY extremely humid ]
    [DATE_TIME [COLLOQUIAL today ] ]
    [LOCATION [CITY Palo Alto ]  ]
]
[DS_JUSTIFY
    [DG_RECOMMEND
        [ATTIRE_NOT jacket ]
        [LOCATION [CITY Palo Alto ] ]
        [DATE_TIME [COLLOQUIAL today ] ]
    ]
    [DG_INFORM
        [CONDITION_NOT cold ]
        [LOCATION [CITY Palo Alto ] ]
        [DATE_TIME [COLLOQUIAL today ] ]
    ]
]

(a) Naive Structured Input

Query: Is it jacket weather?

[DG_NO No  
]
[DG_INFORM there will be
    [CONDITION light rain ]
    [HUMIDITY extremely humid ]
    [DATE_TIME at [COLLOQUIAL today ] ]
    [LOCATION in [CITY Palo Alto ]  ]
]
[DS_JUSTIFY
    [DG_RECOMMEND
        [ATTIRE_NOT jacket ] is not recommended
        [LOCATION in [CITY Palo Alto ] ]
        [DATE_TIME at [COLLOQUIAL today ] ]
    ] , because
    [DG_INFORM there won’t be
        [CONDITION_NOT cold ]
        [LOCATION in [CITY Palo Alto ] ]
        [DATE_TIME at [COLLOQUIAL today ] ]
    ]
]

(b) Template Guided Structured Input

[DG_NO No  
] ,
[DS_JUSTIFY
    [DG_RECOMMEND leave the
        [ATTIRE_NOT jacket ] at home
    ] because
    [DG_INFORM it isn’t
        [CONDITION_NOT cold ]
        [DATE_TIME [COLLOQUIAL today ] ]
        [LOCATION in [CITY Palo Alto ] ]
    ] .
]
[DG_INFORM It’ll be
    [HUMIDITY extremely humid ] with
    [CONDITION light rain ]
] .

Response: No, leave the jacket at home because 
it isn’t cold today in Palo Alto. It’ll be extremely 
humid with light rain.

(c) Structured Target Response

Figure 2: Example compositional meaning representations (discourse relations, dialog acts, arguments) (Balakr-
ishnan et al., 2019) - (a) naive input, (b) template guided input, and (c) structurally annotated target response.

problem, which is the focus of this work.060

To answer the question of whether pre-trained061

LMs still suffer from lack of compositional gener-062

alization, we start with an empirical evaluation of063

T5 (Raffel et al., 2020), the state-of-the-art model064

on data-to-text generation tasks (Kale and Ras-065

togi, 2020b). In our study, we use the Weather066

dataset (Balakrishnan et al., 2019) consisting of067

tree-structured compositional MRs along with tree-068

structured output responses (see Figure 2 for (a)069

naive MR and (c) target response). For evalua-070

tion, we compute the tree accuracy (Balakrishnan071

et al., 2019) which measures exact match between072

input and generated tree-structures. In this study073

we observe 47%-80% (across different few-shot074

train splits) drop in the tree accuracy when eval-075

uated on validation splits containing unseen tree-076

structures in comparison to splits containing seen077

tree-structures (Figure 1). Furthermore, simply in-078

creasing the model size from T5-small to T5-large079

does not close the generalization gap (Table 2), af-080

firming our hypothesis that even strong seq-to-seq081

LMs fail to generalize compositionally.082

Inspired by Kale and Rastogi (2020a), we ex-083

amine whether template-guided MRs are effective084

over naive MRs for tackling compositional general-085

ization in data-to-text tasks. We introduce a simple086

template engine that traverses the compositional087

MR in a top-down manner and converts it to a text088

representation (Figure 2(b)). We hypothesize that089

such a template-guided setup reduces the change in090

representation between LM pre-training and fine-091

tuning. With template-guided MRs, we report up to 092

2x increase in the tree accuracy over naive MRs on 093

the validation split with unseen structures, demon- 094

strating improved model generalization. 095

We also propose to self-train the generation 096

model to further boost performance by mitigating 097

data sparsity in the low-data regime without requir- 098

ing additional manual annotation. Concretely, we 099

augment the limited labeled MRs with unlabeled 100

novel MRs to iteratively bootstrap the model. To fil- 101

ter out noisy pseudo responses during self-training, 102

we repurpose BLEURT (Sellam et al., 2020), a 103

learned metric, to be a quality estimator. We syn- 104

thetically generate datasets for finetuning BLEURT 105

with the goal of identifying hallucinations, miss- 106

ing slot-values, and ungrammatical responses. In 107

sum, our overall approach improves the tree accu- 108

racy on unseen structures of the FewShotWeather 109

dataset by 12.3%-46.4% over strong T5 baselines. 110

On unseen schemata of the FewShotSGD dataset, 111

we reduce the slot error rate by 54.4%-73.0%. We 112

will release our code and data upon publication. 113

2 Case Study: Compositional 114

Generalization in Data-to-Text Tasks 115

In this section, we are interested in investigating 116

the following with respect to data-to-text tasks: 117

(Q1) Do current state-of-the-art generation mod- 118

els compositionally generalize? 119

(Q2) What is an effective semantic representation 120

for tackling compositional generalization? 121
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ID Template Name Template Body

1 DG_NO [DG_NO No ]
2 DS_JUSTIFY [DS_JUSTIFY DG_RECOMMEND, because DG_INFORM ]
3 DG_INFORM IsSet($condition) ? DG_INFORM_CONDITION

: DG_INFORM_CONDITION_NOT
4 DG_INFORM_CONDITION [DG_INFORM there will be [CONDITION $condition ]

Optional([HUMIDITY $humidity ]) DATETIME_AND_LOCATION ]
5 DG_INFORM_CONDITION_NOT [DG_INFORM there won’t be [CONDITION $condition ]

DATETIME_AND_LOCATION ]
6 DATETIME_AND_LOCATION Optional(at [DATE_TIME $date_time ]) Optional(in [LOCATION $location ])
7 DG_RECOMMEND [DG_Recommend [ATTIRE_NOT $attire ] is not recommended

DATETIME_AND_LOCATION ]

Table 1: Example templates to convert a naive MR, Figure 2(a), to template guided text representation, Figure 2(b).
A template could invoke other templates or some utility functions. The utility function IsSet denotes whether the
argument is set, and function Optional returns empty text if the argument is not set.

(Q3) Does scaling model size (and training data)122

trivially solve compositional generalization?123

Problem Setup Data-to-text generation is the124

task of generating natural language text y from125

meaning representation (MR) x. In the context126

of task-oriented dialog systems, the choice of MR127

ranges from a flat list of slot-value pairs (Dušek128

et al., 2018) to a more expressive tree structure.129

Balakrishnan et al. (2019) defines tree-structured130

MRs consisting of arguments, dialog acts, and dis-131

course relations, which we use in this work. They132

report significant gains in the naturalness of the133

generated responses with tree-structured MRs on134

the Weather domain dataset. Figure 2 (a) visual-135

izes an instantiation of such a tree-structured MR136

where the argument LOCATION is made up of a sub-137

argument (CITY), the dialog act RECOMMEND con-138

sists of three arguments (ATTIRE_NOT, LOCATION,139

DATE_TIME), and the discourse relation JUSTIFY140

captures the relationship between two dialog acts141

(RECOMMEND, INFORM).142

We consider linearized versions of tree-143

structured MR x and output response y. Gener-144

ating the tree structure in the output enables us to145

compute the tree accuracy which helps to assess146

the structural correctness of the predicted response.147

FewShotWeather Dataset Due to the composi-148

tional nature of MRs, it is costly to collect re-149

sponses for all combinations of discourse relations,150

dialog acts and arguments. In order to keep data la-151

beling costs under control, we simulate a more real-152

istic few-shot (or limited labeled data) setup. In the153

original Weather dataset, we have 25, 390 training154

examples spanning 4, 690 unique tree-structured155

MRs. An unique tree-structured MR is defined as156

a novel composition of discourse relations, dialog157

acts and argument names. Basically, they consti- 158

tute non-terminals of a tree (Figure 2(a) without 159

terminals or argument values like extremely humid, 160

light rain, today, Palo Alto, jacket, and cold). 161

For the Weather dataset (Balakrishnan et al., 162

2019), we construct 4 few-shot splits: 1shot-250, 163

1shot-500, 1shot-750, and 1shot-1000, where 1shot- 164

X denotes training split to include one example per 165

unique tree-structured MR and in total X unique 166

tree-structured MRs. Further, all X examples in 167

1shot-X are included while constructing 1shot- 168

Y splits, where X < Y . We also make sure 169

each discourse relation, dialog act and argument 170

name is represented at least once in our few-shot 171

splits. However, all combinations of these may 172

not exist, thus allowing us to simulate structural 173

shifts and evaluate compositional generalization. 174

Based upon these splits, we construct two evalu- 175

ation sets: seen tree-structures (overlapping with 176

tree-structured MRs from 1shot-250) and unseen 177

tree-structures (disjoint with tree-structured MRs 178

from 1shot-1000) (see Section 4.1 for more details). 179

Henceforth, all of the above splits constitute the 180

FewShotWeather dataset. We will release these 181

splits for future studies. 182

2.1 Semantic Representation 183

To answer (Q2), we use linearized tree structures 184

as input to the T5 model (naive representation). 185

However, T5 based models are pre-trained on nor- 186

mal text as input, thereby creating a representation 187

discrepancy between pre-training and fine-tuning. 188

To alleviate this discrepancy, we introduce a sim- 189

ple template engine that recursively traverses the 190

compositional MR in a top-down manner to gener- 191

ate a structure-aware text representation (template 192

guided representation). Some example templates 193
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to convert naive representation (Figure 2(a)) to tem-194

plate guided representation (Figure 2(b)) are listed195

in Table 1. Each template, consisting of a name196

and a body, is invoked if a node in the MR (e.g.,197

DG_INFORM) matches its name. A template can198

also invoke other templates or some utility func-199

tions. For example, template 3 could invoke tem-200

plates 4 or 5 based on the returned value of the201

utility function IsSet($condition) (namely, whether202

the argument $condition is set or not). Such a203

template engine requires developing only a linear204

number of templates with respect to the number of205

meaning units to convert a compositional MR to a206

text representation, without writing a template for207

each unique MR (4,690 unique MRs in the dataset).208

In our study, we fine-tune the T5-small model209

using different few-shot train splits and report tree210

accuracy on validation splits. We observe that cur-211

rent state-of-the-art generation models undergo a212

significant drop in performance when evaluated on213

unseen tree structures. Specifically, with naive in-214

put representation, we observe 47%-80% (across215

different few-shot train splits) drop in tree accuracy,216

thus, providing evidence to answer (Q1) that the217

current model does not generalize to novel MRs.218

On experimentation with template guided MRs219

and 1shot-250 train split, the tree accuracy on vali-220

dation unseen split increases from 8.77 to 26.3 (2x221

increase over naive MRs), thus, answering (Q2)222

favorably (Figure 1). However, across different223

few-shot train splits, template-guided MRs still un-224

dergo a significant 41%-65% drop in tree accuracy225

on the unseen split compared to the seen split.226

2.2 Model scale227

Recent studies (Kaplan et al., 2020; Tay et al.,228

2021) show that model scale can affect the per-229

formance on several pre-training and downstream230

tasks. To understand how model scale affects231

the generalization to unseen structures, we con-232

sider three T5 variants: T5-small (77M), T5-base233

(120M), and T5-large (800M). We fine-tune each of234

these models on the full training data (16,816 exam-235

ples corresponding to 1000 unique tree-structured236

MRs from 1shot-1000 split) and convincingly an-237

swer (Q3): Increasing the model (and dataset) size238

does not close the performance gap between seen239

and unseen splits (Table 2). Surprisingly, we ob-240

serve that the T5-small model performs similarly or241

better than its larger counterparts. We use T5-small242

for the remaining experiments.243

Model Size Val. Seen Val. Unseen

T5-small (77M) 99.54 64.02
T5-base (120M) 99.63 55.80
T5-large (800M) 99.36 58.45

Table 2: Performance comparison (tree accuracy) be-
tween different T5 model variants. Each T5 model is
fine-tuned on full Weather dataset (16,816 examples)
and evaluated on validation seen and unseen splits. We
observe that increasing the model size does not close
the compositional generalization gap.

3 Self-training 244

As discussed earlier, the compositional nature of 245

MRs makes it difficult to collect responses for all 246

combinations. However, with access to data simula- 247

tors (Rastogi et al., 2020), it is feasible to automat- 248

ically generate large amounts of unlabeled MRs. 249

Given limited labeled MRs, S = {xi, yi}ni=1, and 250

assuming access to unlabeled MRs, U = {xi}mi=1, 251

we investigate self-training (Scudder, 1965), a semi- 252

supervised learning approach to effectively use U 253

to improve compositional generalization. 254

Self-training starts from a model trained on la- 255

beled data S, iteratively applies the current model 256

to generate pseudo-labels on unlabeled data U , and 257

then re-trains the current model on the augmented 258

version of S and (subset of) U . For self-training to 259

be effective, one needs to carefully select confident 260

pseudo labels to alleviate the risk of reinforcing the 261

model’s mistakes (He et al., 2020). This issue gets 262

further exacerbated in the context of generation 263

tasks, where neural models are prone to halluci- 264

nate additional content not supported by the input 265

(Maynez et al., 2020). 266

With recent developments in learned evaluation 267

metrics that penalize the model for hallucination, 268

fluency, etc., we pose the question: Can we repur- 269

pose those metrics to assess the quality of pseudo- 270

responses during self-training? Formally, given a 271

pair of template guided MR (source) and model pre- 272

dicted response (candidate), we want a model that 273

estimates the response quality by looking for hal- 274

lucinations, fluency, coverage of argument value- 275

pairs. Ideally, to learn such a model we require a 276

large amount of positive and negative text pairs. To 277

alleviate this requirement, we propose synthesizing 278

the examples using the limited labeled task dataset. 279

Furthermore, we initialize our quality estimation 280

model using a pre-trained BLEURT (Sellam et al., 281

2020), which is shown to be sample efficient and 282

robust to data shifts as a learned evaluation metric. 283
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Soruce (text-to-text input): there will be light freezing fog with a temperature high of 74 low of 61 at next friday

Positive candidate (target response): next friday will have a high of 74 , a low of 61 , and a light freezing fog

Negative candidates:

[retrieving similar examples] next friday will be cloudy with a high of 74 , a low of 61 , and thunderstorms and rain

[pairing with reference] there will be light freezing fog with a temperature high of 74 low of 61 at next friday

[swapping words] next friday will of have a high of will 74 , a low of 61 , and a light freezing fog

[repeating phrases] next friday will have a high of 74 , a low of 61 of 61 , and a light freezing fog

[dropping phrases] next friday will have a high of 74 , a low of 61 , and a light freezing fog

[flipping digits] next friday will have a high of 78 , a low of 61 , and a light freezing fog

Figure 3: Synthetically constructed positive and negative candidates for BLEURT fine-tuning.

Once we have a fine-tuned BLEURT model, we284

use it to select pseudo-responses using a selection285

threshold for self-training.286

3.1 Fine-tuning BLEURT287

We synthetically generate the dataset for fine-288

tuning BLEURT using the labeled dataset available289

for each of our experiments. Template guided in-290

puts and ground truth target responses are paired291

as positive examples (rating: 1.0). We use the fol-292

lowing transformations on the target responses to293

create negative examples (rating: 0.0):294

Retrieving similar examples: For every input x,295

we rank all other inputs from the dataset using the296

BLEU score and select top-k examples below a297

certain threshold (90.0). Target responses corre-298

sponding to these top-k examples are paired with x299

to construct negative examples. Intuitively, these300

responses partially overlap with input x in terms301

of the content and inform a fine-tuned model to302

handle hallucinations.303

Pairing with reference: Template guided inputs304

need not be grammatically correct. Pairing the305

input x with itself as a response provides grammat-306

ically incorrect negative examples.307

Swapping, repeating and dropping phrases,308

flipping digits: Using these methods, we prepare309

a fine-tuned BLEURT for structurally inconsistent310

behaviors of the NLG system. Figure 3 visualizes311

an instantiation of different transformations to con-312

struct negative examples.313

4 Experimentation314

4.1 Datasets and Metrics315

FewShotWeather The original Weather dataset316

(Balakrishnan et al., 2019) has 25, 390 training ex-317

amples. Each example consists of a user query, the318

tree-structured MR, the tree-structured annotated319

response and metadata. As discussed in Section 2, 320

we create new canonical subsets for compositional 321

generalization experiments, FewShotWeather with 322

1shot-250 (approx. 1% of original training data), 323

1shot-500, 1shot-750, and 1shot-1000 splits. We 324

repurpose all the remaining 24k training examples 325

as unlabeled examples for self-training. Our eval- 326

uation splits have 1, 087/1, 121 (val/test) exam- 327

ples with seen tree-structures, and 1, 095/1, 170 328

(val/test) examples with novel tree-structures. We 329

report tree accuracy and BLEU-4 (Papineni et al., 330

2002) for the FewShotWeather dataset. 331

FewShotSGD The original multi-domain 332

Schema Guided Dialogue (SGD) dataset (Rastogi 333

et al., 2020) has 160k examples spanning across 334

20 domains (e.g., Banks, Travel, Weather, etc.). 335

For each of these domains, there are different 336

services with a total of 45 different schemata. 337

Schema here refers to the combination of intents 338

and slots, which change with services and domains. 339

Further, not all domains and services are observed 340

during training. Therefore, we use this dataset 341

to study generalization to unseen schemata. 342

Specifically, we use the few-shot variant of the 343

dataset, FewShotSGD, as introduced by Kale and 344

Rastogi (2020a). The FewShotSGD benchmark 345

consists of k-shot splits (5/10/20/40), where k 346

denotes the number of dialogues selected per 347

train domain. The few-shot train splits have 348

558/1,075/2,140/4,312 (5/10/20/40-shot) examples. 349

Evaluation splits have 13,748/10,216 (val/test) 350

examples with seen schema, and 10,386/26,568 351

(val/test) examples with novel schema. Following 352

Kale and Rastogi (2020a), we report BLEU-4 and 353

slot error rate (SER) (Dušek and Jurcicek, 2019). 354

SER measures the fraction of examples where at 355

least one slot was incorrectly copied from the input 356

(lower SER is better). 357
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Pseudo- FewShotWeather FewShotSGD
response Train Seen structures Unseen structures Train Seen schemata Unseen schemata
selection split BLEU ↑ Tree BLEU ↑ Tree split BLEU ↑ SER ↓ BLEU ↑ SER ↓
strategy Acc. ↑ Acc. ↑

None
1shot-250

69.16 73.68 50.40 29.83 5-shot
(558)

20.66 22.84 20.52 19.93
Vanilla 69.25 73.77 51.87 31.37 23.03 15.15 21.97 15.96
BLEURT 69.59 84.12 52.34 43.68 25.22 4.78 24.13 5.39

None
1shot-500

69.40 83.59 53.62 46.58 10-shot
(1,075)

21.45 21.64 22.79 14.98
Vanilla 68.75 89.21 54.27 49.91 23.50 17.90 24.38 7.67
BLEURT 68.19 93.40 56.12 55.30 25.63 4.29 25.49 3.82

None
1shot-750

69.81 92.86 54.49 54.02 20-shot
(2,140)

22.84 16.74 25.14 11.51
Vanilla 73.02 96.61 54.32 54.19 23.19 14.92 25.47 9.11
BLEURT 72.00 97.23 55.21 58.89 26.63 3.33 27.38 3.77

None
1shot-1000

72.89 95.18 53.97 55.64 40-shot
(4,312)

25.72 7.60 26.52 5.97
Vanilla 73.38 96.16 55.04 60.09 26.65 5.00 26.61 4.20
BLEURT 73.82 98.48 57.11 62.48 27.48 2.37 27.53 2.72

Full 16,816 74.43 99.55 62.44 65.47 164,978 29.28 1.12 28.76 1.54

Table 3: Comparing performance in terms of BLEU, tree accuracy (Tree Acc.), and slot error rate (SER) be-
tween vanilla and BLEURT based pseudo-response selection strategies on FewShotWeather and FewShotSGD test
splits. All results are for the T5-small model with template guided input representation. Pseudo-response selection
strategy None denotes fine-tuned T5-small baseline without self-training. ↑ indicates higher is better, ↓ indicates
lower is better. Overall, BLEURT based self-training improves the performance on (un)seen structures/ (un)seen
schemata over vanilla self-training.

4.2 Implementation358

For each of the experiments we fine-tune the off-the359

shelf T5.1.1.small checkpoint (Raffel et al., 2020).360

It has 6 layers each in encoder and decoder with a361

total of 77M parameters. We set the max sequence362

length to 512, batch size to 16 and a constant learn-363

ing rate of 0.001 for Adafactor optimizer (Shazeer364

and Stern, 2018). We fine-tune the model for 5k365

steps, evaluate after every 200 steps and retain the366

checkpoint yielding best tree accuracy (for Few-367

ShotWeather) or BLEU (for FewShotSGD) on the368

held-out validation seen split. During inference, we369

set the beam size to 4 and length penalty α = 0.6.370

While constructing the fine-tuning dataset for371

BLEURT, we generate up to 4 different negative372

candidates corresponding to each of the 6 transfor-373

mations. We upsample the positive examples to374

be half the total number of negative examples and375

retain random 10% of total examples for validation376

set. For fine-tuning the BLEURT model, we start377

with publicly available BLEURT-20-D12 (Sellam378

et al., 2020). We set the max sequence length to379

512, batch size to 32, a learning rate 1e-6, and fine-380

tune for 100k steps. We use the held-out validation381

set to select the best checkpoint for self-training.382

4.3 Self-Training383

In this section, we compare the performance of384

BLEURT based pseudo-response selection strategy385

with that of vanilla self-training. For each exper- 386

iment, we randomly sample an equal number of 387

examples for vanilla self-training and the BLEURT 388

model to explicitly control for the sample com- 389

plexity. We run 3 iterations of the self-training 390

unless explicitly specified and set the BLEURT 391

score selection threshold to 0.99. We study the 392

performance on a dataset (FewShotWeather) with 393

tree-structured outputs as well as show the gener- 394

ality of our method on a dataset (FewShotSGD) 395

without explicit tree-structured outputs. 396

Unseen tree structures (FewShotWeather) Ta- 397

ble 3 reports the performance of different methods 398

as a function of the number of labeled examples. 399

We observe that the performance for all methods 400

improves with more training data. Across all few- 401

shot splits, we observe that BLEURT based self- 402

training improves over vanilla self-training both in 403

terms of tree accuracy and BLEU. Empirically, we 404

see that relative gains in tree accuracy (over the 405

T5-small baseline) from vanilla self-training are 406

comparable on both unseen and seen splits (e.g., 407

7.15% v.s. 6.72%, 1shot-500). On the other hand, 408

BLEURT based self-training significantly improves 409

the relative performance on the unseen split in com- 410

parison to seen splits (e.g., 18.72% vs. 10.5%, 411

1shot-500), thus showcasing the effectiveness of 412

selecting quality pseudo-responses for improving 413

performance on unseen tree-structures. 414
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Model Self- No. of FewShotWeather
training training Seen structures Unseen structures
iteration examples BLEU ↑ Tree Acc. ↑ BLEU ↑ Tree Acc. ↑

Baseline - 250 69.16 73.68 50.40 29.83

Vanilla 1 + 14, 742 69.25 73.77 51.87 31.37
2 + 4, 170 68.72 73.06 51.92 31.11

BLEURT-250 1 + 14, 742 69.64 83.85 52.10 41.03
2 + 4, 170 69.59 84.12 52.34 43.68

BLEURT-1000 1 + 14, 021 70.95 84.83 52.13 45.47
2 + 4, 772 70.47 85.64 53.08 47.44

Table 4: Model performance over multiple self-training iterations with FewShotWeather 1shot-250 train split.
BLEURT-X denotes BLEURT model fine-tuned using 1shot-X train split. We observe that BLEURT model fine-
tuned with larger datasets further enhances the self-training performance, especially on unseen structures.

Unseen schema (FewShotSGD) Table 3 reports415

the performance on the FewShotSGD dataset. Sim-416

ilar to results on the FewShotWeather dataset, we417

observe that the performance improves with more418

training data. Further, the performance of the base-419

line T5-small model is comparable to seen and420

unseen schemata. These gains can be attributed421

to the benefits of using template guided MRs. In422

comparison to vanilla self-training, BLEURT based423

approach improves the overall performance across424

all few-shot splits on both seen and unseen schema.425

For example, with 5-shot experiments, BLEURT426

based selection strategy reduces the SER on unseen427

schema from 19.93 to 5.39 (73% improvement)428

in comparison to the baseline T5 model. On the429

other hand, vanilla self-training reduces the SER430

only by 3.97 (20%), thus showcasing the effective-431

ness of the proposed approach in filtering pseudo-432

responses with missing slot-value pairs. These re-433

sults confirm that BLEURT based self-training is a434

generic method and can be plugged in to existing435

methods to improve the few-shot generalization436

capabilities of existing SOTA generation models.437

Performance with respect to self-training itera-438

tions We iteratively self-train the model starting439

from a T5-small baseline and continue adding unla-440

beled examples up to 3 iterations. From Table 4 and441

6, we see that model performance improves across442

the self-training iterations. However, the number443

of additional examples added decreases over itera-444

tions, thus suggesting that 2-3 iterations might be445

enough to obtain benefits from self-training.446

Quality of fine-tuned BLEURT models For447

all our experiments, we use the few-shot la-448

beled datasets for fine-tuning the BLEURT model.449

To investigate self-training performance with a450

BLEURT model fine-tuned on a large dataset,451

we set up an experiment on the FewShotWeather 452

dataset, where we fine-tune the BLEURT model on 453

a 1shot-1000 train split (BLEURT-1000) and use it 454

for self-training with 1shot-250. From Table 4, we 455

see that self-training with BLEURT-1000 performs 456

significantly better than BLEURT-250, especially 457

on unseen structures, thereby confirming the intu- 458

ition that self-training is sensitive to the quality of 459

the BLEURT model. 460

4.4 Human evaluation 461

Aside from automatic metrics-based evaluation, we 462

also perform a human evaluation study by asking 463

annotators to assess the quality of the generated re- 464

sponses from different models. For each example, 465

human annotators are shown user query, generated 466

response and the ground truth response. They are 467

asked to provide ratings on a scale of 1 (bad), 2 468

(slightly bad) to 3 (good) along three dimensions: 469

grammaticality, naturalness, informativeness, and 470

binary rating for accuracy. Similar to (Balakrish- 471

nan et al., 2019), grammaticality evaluates the re- 472

sponse for subject-verb agreement, repetitions, and 473

grammatical completeness. Naturalness measures 474

whether the response sounds coherent and natural 475

by the response itself. Informativeness measures 476

whether the response contains the right amount 477

of relevant information to the user query and ac- 478

curacy evaluates the response for hallucinations 479

(incorrectly added slots), missing slots by compar- 480

ing it against the reference. For each evaluation 481

split (seen/unseen), we randomly select 200 exam- 482

ples and collect ratings from 3 different annotators. 483

For the FewShotWeather/SGD datasets, we con- 484

sider models trained with 1shot-250/5-shot splits 485

and compare them with models fine-tuned on the 486

full dataset. In total, we collect 7, 200 annotations, 487
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Model Gram Nat Info Acc

FewShotWeather (Seen split)
Baseline 2.59 2.55 2.05 0.94
BLEURT 2.661 2.631 2.06 0.93
Full 2.661 2.61 2.07 0.95

FewShotWeather (Unseen split)
Baseline 2.43 2.41 1.96 0.79
BLEURT 2.501 2.461 1.99 0.80
Full 2.531 2.501 1.98 0.861,2

FewShotSGD (Seen split)
Baseline 2.72 2.662 1.93 0.76
BLEURT 2.69 2.59 2.001 0.881

Full 2.831,2 2.741,2 2.001 0.941,2

FewShotSGD (Unseen split)
Baseline 2.70 2.61 1.93 0.72
BLEURT 2.67 2.60 1.981 0.861

Full 2.831,2 2.731,2 2.021,2 0.941,2

Table 5: Human evaluation results comparing differ-
ent models. Grammaticality (Gram), naturalness (Nat),
and informativeness (Info) are on the scale of 1 to 3
and accuracy (Acc) is binary. The superscripts 1, 2, 3
indicate that model is significantly better than base-
line, BLEURT-based self-training, and model trained
with full data, respectively, as determined by one-sided
paired t-test with p < 0.05.

each with 3 ratings. Table 5 reports results for hu-488

man evaluation study and Table 7, 8 (Appendix489

A.1) visualize the sample responses generated us-490

ing different models on unseen splits.491

FewShotWeather Similar to automatic metrics,492

we see a drop in human ratings on the unseen split493

(compared to seen split), confirming the model’s494

lack of generalization to novel MRs. On both the495

evaluation splits, our approach outperforms the496

baseline model with significant results on gram-497

maticality and naturalness ratings. Moreover, the498

responses from the self-trained model are compara-499

ble (in terms of the human ratings) with that of the500

model fine-tuned with the full dataset, demonstrat-501

ing the effectiveness of our approach.502

FewShotSGD Apart from generating natural re-503

sponses, model responses must be factually504

grounded in the input data and address user queries.505

On FewShotSGD, we see that our approach sig-506

nificantly improves informativeness and accuracy507

rating over the baseline model. Surprisingly, we508

see a drop on naturalness when evaluated on seen509

schemata.510

5 Related Work511

Data-to-Text Generation While early research512

focused on rule-based methods (Reiter and Dale,513

2000), more recent work has relied heavily on neu- 514

ral methods (Wen et al., 2015; Marcheggiani and 515

Perez-Beltrachini, 2018). Some recent works (Kale 516

and Rastogi (2020b), Peng et al. (2020), Kale and 517

Roy (2020)) showed that transfer learning from 518

pre-trained language models can improve general- 519

ization capabilities and sample efficiency. In other 520

lines of work, Ferreira et al. (2019); Moryossef 521

et al. (2019) find that pipelined neural approaches 522

with explicit planning steps can outperform their 523

end-to-end counterparts, while Kale and Rastogi 524

(2020a) and Du et al. (2020) showed the benefits 525

of schema and template guided input representa- 526

tions. Inspired by (Kale and Rastogi, 2020a) we 527

propose a simple and generic way to produce text- 528

to-text representation, and study how it impacts 529

compositional generalization. 530

Self-training for NLG (He et al., 2020) revisits 531

the problem of self-training for NLG. They found 532

that noise (from perturbing the input space) helps 533

in self-training and propose a “noisy” version of 534

self-training by augmenting vanilla training with 535

the inputs from a reconstruction model. Build- 536

ing on this idea, the contemporary work (Heidari 537

et al., 2021) on few-shot data-to-text generation 538

proposes to self-train the model and shows efficacy 539

on the Weather dataset. Another contemporary 540

work (Li et al., 2021) proposes to use constrained 541

decoding to generate valid pseudo-responses for 542

self-training and show convincing benefits. How- 543

ever, our work focuses on compositional general- 544

ization, rather than the pure few-shot learning setup. 545

We propose a BLEURT-based self-training method, 546

which is more generic than pseudo-response selec- 547

tion methods that rely on output structures. 548

6 Conclusion 549

We systematically study the problem of compo- 550

sitional generalization for data-to-text generation 551

and show that existing state-of-the-art generation 552

models do not generalize to unseen structures. We 553

propose a simple and generic way to produce tem- 554

plate guided text representation for response gen- 555

eration, and demonstrate its effectiveness on both 556

seen and unseen structures. Further, we introduce 557

a generic self-training approach that leverages fine- 558

tuned BLEURT for pseudo response selection and 559

show significant improvements over vanilla self- 560

training on existing few-shot data-to-text genera- 561

tion benchmarks. 562
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A Appendix 766

A.1 Qualitative Analysis 767

In Table 7, 8 we visualize the sample responses gen- 768

erated using different models for unseen test splits. 769

We consider three models: T5-small baseline, 770

BLEURT based self-training, and model trained 771

with full data. For the FewShotWeather/ Few- 772

ShotSGD datasets, we consider models trained 773

with 1shot-250/ 5-shot train splits. We see that 774

the baseline model fails to generate responses that 775

are coherent and factually grounded in the input. 776

They hallucinate to generate novel concepts like 777

cloudy hail, drop relevant details like cafe located 778

in Emeryville, and are repetitive in nature. We 779
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Model Self- No. of FewShotSGD
training training Seen schemata Unseen schemata
iteration examples BLEU ↑ SER ↓ BLEU ↑ SER ↓

Baseline - 558 20.66 22.84 20.52 19.93

Vanilla 1 + 101, 577 22.96 16.26 21.69 15.19
2 + 30, 867 22.94 15.43 21.94 16.04
3 + 5, 998 23.03 15.15 21.97 15.96

BLEURT 1 + 101, 577 24.34 9.85 23.29 8.43
2 + 30, 867 24.84 6.96 23.64 6.58
3 + 5, 998 25.22 4.78 24.13 5.39

Table 6: Model performance over multiple self-training iterations with 5-shot train split (FewShotSGD). ↑ indicates
higher is better, ↓ indicates lower is better. We observe that model performance increases with the self-training
iteration. However, the number of additional examples added decreases over iteration, suggesting that 2-3 iterations
are sufficient for self-training.

also report the BLEURT scores and see that it is780

reflective of the response quality.781

11



Fields BLEURT Input or output response

User query - Will it be raining at 2 pm today
Template - No, and there won’t be rain from 03:00 PM to 07:00 PM there will be partly cloudy with

a temperature of 80 from 03:00 PM to 07:00 PM
Reference - No, rain isn’t expected at 03:00 PM. Instead, expect partly cloudy skies and 80 fahrenheit

continuing through 07:00 PM.
Predictions
Baseline 0.001 No, it won’t rain this today from 03:00 PM to 07:00 PM and it will be 80 fahrenheit.

Between 03:00 PM and 07:00 PM, you can expect partly cloudy skies, and 80 fahrenheit
Self-training 0.997 No, it won’t rain today from 03:00 PM to 07:00 PM. Between 03:00 PM and 07:00 PM,

you can expect partly cloudy skies, and 80 fahrenheit
Full 0.999 No, it won’t rain from 03:00 PM until 07:00 PM. It’ll be 80 and partly cloudy

User query - What will the temperature be in Birmingham today?
Template - There will be with a temperature high of 69 low of 40 at today in Birmingham England

United Kingdom
Reference - The high for today will be 69 and the low will be 40 fahrenheit in Birmingham, England,

United Kingdom
Predictions
Baseline 0.000 The temperatures in Birmingham, England, United Kingdom in Birmingham, England,

United Kingdom range between 40 and 69
Self-training 0.990 The temperatures in Birmingham, England, United Kingdom today range between 40

and 69
Full 0.999 There will be a high of 69 and low of 40 today in Birmingham, England, United Kingdom

User query - is there hail today
Template - No, but there will be heavy freezing rain and cloudy at today in Oxford
Reference - No, today in Oxford is cloudy with heavy freezing rain
Predictions
Baseline -0.001 No, but there is cloudy hail today in Oxford
Self-training 0.999 No, but there is cloudy weather today with heavy freezing rain in Oxford
Full 0.998 No, but it’ll be cloudy with heavy freezing rain today in Oxford

User query - Should I wear a heavy jacket wednesday
Template - No there will be mostly sunny with a temperature high of 66 low of 47 at next Wednesday

jacket is not recommended at next Wednesday, because there won’t be cold at next
Wednesday

Reference - No, you don’t need a jacket, because it won’t be cold next Wednesday. Expect a high of
66 and a low of 47, with mostly sunny skies

Predictions
Baseline -0.007 No, it will not be cold, so you won’t need a jacket. It will be mostly sunny with a high of

66 and a low of 47 next Wednesday
Self-training -0.001 No, you won’t need a jacket, it’s not supposed to be cold next Wednesday. It’ll be mostly

sunny with a high of 66 and a low of 47
Full 1.000 No, you don’t need a jacket, because it won’t be cold next Wednesday. Expect a high of

66 and a low of 47, with mostly sunny skies

User query - What will the temperature be tomorrow morning
Template - There will be temperatures between 76 and 80 tomorrow morning there will be partly

cloudy tomorrow morning
Reference - The temperature for tomorrow morning will be between 76 and 80 fahrenheit along with

partly cloudy skies
Predictions
Baseline -0.002 Expect partly cloudy skies and tomorrow morning. Expect partly cloudy skies and

tomorrow morning
Self-training 0.997 Expect it to be between 76 and 80 and partly cloudy tomorrow morning
Full 0.995 The weather for tomorrow morning will be between 76 and 80 with partly cloudy skies

Table 7: A few examples of sample responses from different models on unseen test split for FewShotWeather
dataset. We use 1shot-250 train split to fine-tune baseline and BLEURT based self-training. In general, we see that
the baseline model generate responses that are repetitive in nature and either contain novel content or are missing
relevant details.

12



Fields BLEURT Input or output response

User query - On the 12th of this month would be great.
Template - Would you like to fly with American Airlines? The onward flight takes off at 4 am. It

has a layover. The returning flight takes off at 12:45 pm. The ticket costs $552
Reference - How about a connecting American Airlines flight taking off at 4 am and costing $552?

The return time is at 12:45 pm.
Predictions
Baseline -0.004 Okay. I’ve found an American Airlines flight departing at 4 am and returning at 12:45

pm. I inform you that the flight has a return flight at 12:45 pm. The ticket is $1052.
Self-training 0.996 I’ve found an American Airlines flight departing at 4 am and returning at 12:45 pm. This

will cost you $552.
Full 0.998 There is an American Airlines flight that leaves at 4 am and has a layover and a return

flight at 12:45 pm for $552.

User query - Find me the contact number and the cost per night.
Template - It costs $93 per night. Their phone number is +44 20 7402 0281.
Reference - You can contact them on +44 20 7402 0281 and the cost per night is $93.
Predictions
Baseline -0.003 The phone number for Aslam’s Rasoi in San Francisco is +44 20 7402 0181.
Self-training 0.998 The cost is $93 per day. The number is +44 20 7402 0281.
Full 0.998 It’s $93 per night and you can call them at +44 20 7402 0281.

User query - That sounds good. How much is the rental per day?
Template - Your car has been reserved. It costs $32.00 per day.
Reference - It will cost you $32.00 per day. Your car has been reserved.
Predictions
Baseline -0.004 Your car has been reserved. It costs $32,32.00 per day.
Self-training -0.002 Your car has been reserved. It costs $32.50 per day.
Full 0.998 Your car has been reserved. The cost is $32.00 per day.

User query - Yes, set up an appointment for me.
Template - What date would you like the appointment for? What is your preferred time for the

appointment?
Reference - What date and time do you prefer?
Predictions
Baseline -0.003 What date and time would you like the appointment?
Self-training 0.804 What date would you like the appointment and what time do you want the appointment?
Full 0.700 What date and time would you like the appointment for?

User query - I want to find a property in Palo Alto.
Template - Do you want to find a place to rent or buy?
Reference - Are you looking to rent or buy?
Predictions
Baseline -0.004 Do you want a house for rent or purchase?
Self-training 0.999 Do you want a place for rent or purchase?
Full 0.815 Do you want to rent or purchase a place?

User query - I also need to find a restaurant there so that I can eat something on that day. The
restaurant I am interested in should be considered as reasonably priced, and that is serves
Dumplings.

Template - I found 1 restaurants you may like. Hong Kong East Ocean Seafood Restaurant is a nice
restaurant. It’s located in Emeryville.

Reference - There is 1 restaurant which matches what you want. A great restaurant found in
Emeryville is the Hong Kong East Ocean Seafood Restaurant.

Predictions
Baseline -0.003 I have 1 option an it is Hong Kong East Ocean Seafood Cafe located in Emeryville.
Self-training 0.857 I have 1 option an it is Hong Kong East Ocean Seafood Cafe located in Emeryville.
Full 0.998 I found 1 restaurant you might like. How about the Hong Kong East Ocean Seafood

Restaurant in Emeryville?

Table 8: A few examples of sample responses from different models on unseen test split for FewShotSGD dataset.
We use 5-shot train split to fine-tune baseline and BLEURT based self-training. In general, we see that the baseline
model fails to generate responses that are coherent and factually grounded in the input.
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