
Under review as submission to TMLR

RoboArm-NMP: a Learning Environment for Neural Motion
Planning

Anonymous authors
Paper under double-blind review

Abstract

We present RoboArm-NMP, a learning and evaluation environment that allows simple and
thorough evaluations of Neural Motion Planning (NMP) algorithms, focused on robotic ma-
nipulators. Our Python-based environment provides baseline implementations for learning
control policies (either supervised or reinforcement learning based), a simulator based on
PyBullet, data of solved instances using a classical motion planning solver, various repre-
sentation learning methods for encoding the obstacles, and a clean interface between the
learning and planning frameworks. Using RoboArm-NMP, we compare several prominent
NMP design points, and demonstrate that the best methods mostly succeed in generalizing
to unseen goals in a scene with fixed obstacles, but have difficulty in generalizing to unseen
obstacle configurations, suggesting focus points for future research.

1 Introduction

Fundamental in robotics, motion planning (MP) calculates a path for a robot to accomplish a task while
avoiding obstacles (Latombe, 2012; LaValle, 2006). Neural motion planning (NMP, Qureshi et al. 2019)
algorithms use a neural network (NN) to map a problem representation to a plan of actions, replacing
the search-based methods of classical MP approaches with direct NN inference, and leveraging the NN’s
capability to recognize similarities between different problems to yield appropriately similar plans. Indeed,
several NMP studies have recently shown promising results on various MP domains (Pfeiffer et al., 2017;
Ichter & Pavone, 2019; Qureshi et al., 2019; Chiang et al., 2019; Jurgenson & Tamar, 2019; Ha et al., 2020;
Strudel et al., 2021; Yamada et al., 2021; Liu et al., 2022; Fishman et al., 2022).

However, comparing the various different NMP techniques is difficult. Most previous studies focused on
completely different problems (different robots, different obstacle configurations), with significant variations
in the obstacle representations (e.g., are obstacles represented as a point cloud, image, or ground truth
positions), and, most importantly, different post-processing methods that utilize either conventional MP
techniques or other methods for transforming the NN output to a motion plan. Thus, at present, it is
difficult to assess the fundamental capabilities of NMP, namely generalization to unseen goals or obstacle
configurations, performance on ‘difficult’ instances such as narrow passages, and how to tease out the essential
algorithmic ideas that make NMP work in general. To fill these gaps we propose RoboArm-NMP, a learning
and evaluation environment for a 7 DoF robotic manipulator with a range of tasks of increasing difficulties.

Our goal in RoboArm-NMP is to lower the entry barrier for investigating NMP, by choosing a problem for-
mulation and simulation environment that support both classical MP methods and learning approaches.
RoboArm-NMP is written in Python, and builds on the free open-source Pybullet simulation environ-
ment (Coumans & Bai, 2016–2022), along with an easy to install code-base and pre-computed 80K trajectory
demonstrations collected using classical motion planners (10K for each of our eight scenarios). Moreover,
scenes from previous benchmarks (Chamzas et al., 2021) were added as test cases to allow comparisons to
previous works, and additional scenes could be easily added on-demand. Finally, RoboArm-NMP includes
implementations for several popular reinforcement learning (RL), imitation learning (IL), representation
learning, and MP components, and a clean interface between them, facilitating both a thorough evaluation
of existing NMP ideas, and simple development of new algorithms.

1



Under review as submission to TMLR

Figure 1: Example of RoboArm-NMP tasks: from the left, double-walls – a narrow gap scenario with fixed
obstacles, two samples of random boxes hard demonstrating challenging narrow passages in our train data,
and two test (OOD) tasks, narrow shelves, and benchmaker bookshelf tall (ported from Chamzas et al. 2021).
See Section 4 for full tasks description.

Using RoboArm-NMP, we conduct a thorough investigation of several prominent algorithmic ideas in NMP,
focusing on (1) the learning approach, i.e., IL vs. RL, and the importance of using hindsight experience
replay (Andrychowicz et al., 2017) and relying on demonstrations; (2) generalization to unseen goals and
obstacle configurations; and (3) how to best represent the goals and obstacles in the scene. We refrain
from delving into post-processing techniques and, instead, concentrate on investigating the fundamental NN
responsible for mapping observations to actions—the central element in every NMP algorithm. We posit
that enhancing the learning of the NN poses a clearly defined question, and addressing it should enhance
the performance of algorithms employing post-processing methods. Furthermore, our findings indicate that
by centering our attention on this crucial component, we can cleanly compare various NMP approaches.

Our investigation findings can be summarised as follows: first, unlike previous works that utilized either
demonstrations or hindsight methods, we find that the combination of both is essential – hindsight methods
increase the positive signals encountered during training, accelerating learning in commonly visited parts
of the state space, while demonstrations provide novel solutions for hard to reach goals. Second, the goal
formulation either in configuration space, 3D position space, or a combination thereof matters, and cre-
ates noticeable performance gaps even when learning using the same algorithm. Finally, despite achieving
near prefect success rate on domains with fixed obstacles, when the obstacles vary between episodes, and
generalization to obstacles becomes a factor for success, performance of NMP policies drops considerably,
making the best of these only slightly better than a heuristic policy that ignores the obstacles completely
and navigates straight towards the goal. These findings may set a course for future NMP investigations.

2 Background and Problem Formulation

We present our problem formulation and provide relevant background material.

Motion Planning: In the motion planning (MP) problem (LaValle, 2006), an agent with configuration
(joints) space C is tasked with reaching a subset of goals denoted as G ⊆ C. The agent operates in a
cluttered environment E such that FE ⊆ C is the free space, and the collision predicate ColE : C → {1, 0}
s.t. ∀c ∈ C : c ∈ FE ⇔ ColE(c) = 0 defines collisions with obstacles. A feasible solution to a MP problem is a
mapping τ : t ∈ [0, 1] → C that represents a continuous sequence from the initial configuration c0 = τ(0) ∈ C
to a goal configuration τ(1) = g ∈ G, s.t. ∀t ∈ [0, 1] : ColE(τ(t)) = 0, i.e. the entire path, τ , is in the free
space. It is often desired that τ is optimal with respect to some cost function, such as minimal time to goal,
minimal inverse clearance, etc. Formally, let fE(τ |G) ∈ R be a scalar function, we are most interested in the
feasible solution τ∗ = arg minτ fE(τ |G).

A popular approach for solving MP is to use sampling-based motion planners (SBMP; Kavraki et al. 1994;
LaValle & Kuffner Jr 2001), that create a roadmap – a discrete approximation of C as a graph. The
roadmap nodes correspond to configurations and edges represent primitive motions between two adjacent
configurations. The input for SBMP is a query (s, g), s, g ∈ C denote the start and goal, both are added to
the roadmap. Then the SBMP finds a solution by searching for a path in the roadmap that starts in s and
ends in g, and expands the graph by some expansion method if required.
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Motion Planning Formulation: in MP the agent is required to reach various goals from various starting
states, therefore we formulate MP as a goal-conditioned Markov decision process (GC-MDP Bertsekas 1995;
Andrychowicz et al. 2017). The GC-MDP formulation is equivalent to a discrete-time version of the standard
MP formulation (LaValle, 2006), and unifies both classical MP approaches and RL/IL approaches. A GC-
MDP is a tuple M = ⟨S, G, A, ρ0, P, C, T ⟩, where the agent’s continuous state, goal, and action spaces are
S, G, and A. At the start of each episode, the initial state and goal are sampled from a joint distribution
s0, g ∼ ρ0. Later, at every discrete timestep t ∈ [0 . . . T − 1], a policy πt : S × G → ∆(A) predicts the next
action, and a new state is sampled from the environment according to the transition function P : S×A → ∆S;
subsequently, a scalar cost is incurred according to the cost function C : S × A × S × G → R. The
process repeats and terminates after T timesteps. The objective is to minimize the expected cumulative cost
Jπ = Eρ0,P,π

[ ∑T −1
t=0 C(st, at, st+1, g)

]
. In the case of NMP, the state space S is composed of the positions

of the joints, as well as the end-effector position. The actions A are joint positions displacement, and the
goal region G is a ball in R3 around some end-effector position. The transition function P is deterministic
and follows the dynamics of the robot (according to the displacement specified by the action). Finally, C is
0 when the agent first reaches G, otherwise it is -11.

Behavioral Cloning (BC): a simple method to train an NMP policy is to imitate an SBMP planner (Pfeif-
fer et al., 2017; Qureshi et al., 2019; Yamada et al., 2021; Liu et al., 2022; Fishman et al., 2022). Given
SBMP-produced trajectories, a policy is learned to maximize the (log) likelihood of the observed action given
the current state and goal (SBMP algorithms produce a state trajectory of the form τ = {s0, s1 . . . , sl = g}.
To obtain actions, we exploit the fact that actions are defined as state displacements, and obtain an action
trajectory {s1 − s0, s2 − s1 . . . sl − sl−1}. For more details see the “data collection” Section D.) .

Demonstration-guided off-policy RL: Most RL algorithms use random noise heuristics for data collec-
tion. However, these heuristics are not effective for long-horizon sparse reward tasks like MP, where robots
must navigate through ‘long corridors’ in the state space (e.g. Figure 1 second scenario from the right). To
address this, following previous works (Jurgenson & Tamar, 2019; Ha et al., 2020), we incorporate demonstra-
tions of successful plans into the data, and use off-policy RL algorithms, which can learn from data collected
by an agent that is not the RL policy. We use TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018),
two popular off-policy RL algorithms for continuous control, widely used in NMP (Yamada et al., 2021; Liu
et al., 2022; Strudel et al., 2021; Jurgenson & Tamar, 2019; Ha et al., 2020). The demonstrations are created
using SBMP from the same initial state. Importantly, these demonstrations can be computed in advance
for all possible starting states, which speeds up learning compared to methods that add expert labels during
learning such as DAgger (Ross et al., 2011). As off-policy data can lead to training instability (Fujimoto
et al., 2019), we inject demonstrations only upon failure with a certain probability (Jurgenson & Tamar,
2019; Ha et al., 2020). This technique is referred to as “demo-injection” and algorithms using this technique
are denoted with an “-MP” suffix (e.g., SAC-MP) in accordance with the term “motion-plan”.

Hindsight learning in goal-conditioned tasks: To handle sparse rewards in GC-RL, hind-
sight (Andrychowicz et al., 2017) is commonly used by re-interpreting a failed trajectory as successful.
For this, an imagined goal is selected such that the original (failed) trajectory accomplishes this goal (For
instance, the imagined goal could be the last state in the failed trajectory). Then rewards are recomputed
based on the imagined goal, and this relabelled data is added to the off-policy algorithm.

Learning obstacle representations: To generalize to varying obstacle configurations, the RL policy
must have some sensing of the scene. One such solution is encoding a sensor-observation (point cloud, or
images) from multiple viewpoints in the scene into a unified latent vector zE , and augment the state space
with that vector (zE is fixed throughout the episode). In our work, we encode images with VAE (Kingma
& Welling, 2013) and VQ-VAE (Van Den Oord et al., 2017), and point clouds with PointNet++ (Qi et al.,
2017b).

1Other NMP cost functions are possible, and can be implemented in our environment, see Appendix B
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Figure 2: Schematic diagram of the RoboArm-NMP components.

3 Related work

While several previous NMP studies demonstrated successful applications of neural networks to various
modules in the MP pipeline (Ichter & Pavone, 2019; Qureshi et al., 2019; Chiang et al., 2019; Pfeiffer et al.,
2017; Yamada et al., 2021; Liu et al., 2022; Strudel et al., 2021; Jurgenson & Tamar, 2019; Ha et al., 2020;
Fishman et al., 2022), there is not yet a framework for studying, developing, and evaluating NMP algorithms
in a common setting, which is the core contribution of this work. One evaluation challenge is that several
works add various post-processing steps (Qureshi et al., 2019; Yamada et al., 2021; Liu et al., 2022), which
is important for improving final performance, but obfuscates the evaluation of NMP’s most basic ingredient
– the policy (Strudel et al., 2021; Jurgenson & Tamar, 2019; Ha et al., 2020). The challenge in evaluation
is exacerbated as different works investigated different tasks (MP + manipulation; Yamada et al. 2021; Liu
et al. 2022 vs. only MP; Strudel et al. 2021; Jurgenson & Tamar 2019 vs. navigation; Pfeiffer et al. 2017;
Chiang et al. 2019), different robots (e.g., point robot; Strudel et al. 2021 vs. multiple robotic arms; Ha
et al. 2020), and were written in different software frameworks (ROS in Pfeiffer et al. 2017 vs. Pybullet
in Ha et al. 2020), adding a technical difficulty. In this work we compare the learning components suggested
in previous works under a single environment, with the goal of teasing out the most important algorithmic
design choices.

A major NMP challenge is generalization to held-out obstacle configurations in very cluttered environments.
In Jurgenson & Tamar (2019), only 2D scenes were tested, while other works predicted actions from state
vectors directly (Yamada et al., 2021; Ha et al., 2020) (requiring perfect knowledge of the environment,
which is an unrealistic assumption for unstructured scenarios), had workspaces with only a few small obsta-
cles (Yamada et al., 2021; Liu et al., 2022; Ha et al., 2020), or considered tasks where the obstacles did not
limit the robot’s range of motion much (Fishman et al., 2022) making collisions easy to avoid. Thus, while
these works demonstrated impressive results, it is difficult to assess whether these results scale to harder
scenarios, and to identify the real challenges in the field.2 Our environment contains tightly-packed 3D scenes
(see Figure 1), and we focus on comparing different obstacle encoding schemes, which to our knowledge has
not been reported previously. Importantly, our unified environment allows to draw clear challenges for the
current state of the art, which were not evident from previous studies.

For classical MP, C++ based environments Şucan et al. (2012) and benchmarks Moll et al. (2015); Chamzas
et al. (2021) have been developed. However, these environments are difficult to integrate with deep-learning
software, which is mostly developed in Python (e.g., Pytorch Paszke et al. 2019). More importantly, non of
these environments contained enough data for training deep learning-based policies, or a simulator for RL
based methods. In RoboArm-NMP we included 10K motion plans for 8 scenarios, totaling in 80K trajectories.
We point out, however, that some MP benchmarks such as Chamzas et al. (2021) contain tasks that are

2An extended technical comparison with selected prior work appears in Appendix C.
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relevant for our robotics arm scenario. To build on this, we add tasks from Chamzas et al. (2021) as test
scenes in RoboArm-NMP, thereby bridging between the evaluation of SBMP methods and NMP.

4 Environment description

We propose RoboArm-NMP, a NMP simulation, learning and evaluation environment for a 7 DoF robotic
arm. RoboArm-NMP is comprised of (see Figure 2):

• A simulation environment based on Pybullet, with configurable properties relevant to MP such as
goal tolerance, and collision sensitivity (see appendix Section B for more details).

• Visual sensor implementations for images and point clouds. Sensors are modular, stack-able, and
configurable allowing the user to mix and match between sensor types.

• Tasks: a collection of tasks, with either fixed obstacles, or with obstacles in varying positions and
shapes3. Additionally, we define a set of test tasks – tasks with conceptually different obstacles from
the training tasks, to evaluate generalization to unseen obstacles.

• Data: A set of 10K test cases per-task for evaluations. A data-set of 10k demonstrations (from a
SBMP) per-task, except for the test tasks (see below for detailed description).

• Baseline learning methods capable of incorporating demonstrations: both behavioral-cloning,
and off-policy learning algorithms (TD3; Fujimoto et al. 2018, SAC; Haarnoja et al. 2018,
HER; Andrychowicz et al. 2017, and demo-injections; Jurgenson & Tamar 2019; Ha et al. 2020).
These algorithms are common in previous NMP works (Yamada et al., 2021; Liu et al., 2022; Strudel
et al., 2021; Jurgenson & Tamar, 2019; Ha et al., 2020).

• A set of NN encoders (VAE; Kingma & Welling 2013, VQ-VAE; Van Den Oord et al. 2017, and
PointNet++; Qi et al. 2017b) used in previous works (Ichter & Pavone, 2019; Pfeiffer et al., 2017;
Qureshi et al., 2019; Strudel et al., 2021; Fishman et al., 2022) that map sensor readings into
representation vectors suitable for further processing by NMP policies (code and weights of trained
models).

• A simple interface between SBMP components and ML algorithms, allowing for additional demon-
strations to be collected and verified.

Thus, RoboArm-NMP provides a complete environment to explore both the algorithmic aspects (i.e., path
planning) and representation learning aspects (i.e., how to encode obstacles) of NMP.

We next describe the different types of tasks in RoboArm-NMP, which were designed to measure an important
property of the NMP policy – generalization. Generalization in NMP can be classified to either generalization
to unseen start-goal pairs in the same obstacle configuration, or to unseen obstacle configurations. We
thus suggest two sets of tasks, goal-generalization tasks that only test start-goal generalization, and
obstacle-generalization tasks that test for both types.

Goal-generalization tasks: We defined five tasks with fixed obstacles. No obstacles, contains the robot,
the table and the floor 4, and provides an easy proof-of-concept for algorithmic ideas. Next, wall, double
wall wide gap, and double walls demonstrate with increasing difficulty the narrow passage problem5. Finally,
boxes is a task with less structure in the obstacles placement.

Obstacle-generalization tasks: We created tasks where obstacles in the form of shelves, poles, and walls
are sampled from a fixed distribution around the robot. The agent perceives the obstacles using images or
point-clouds from four sensors located in cardinal directions looking at the robot (see Figure 10), thus success-
fully reaching the goal also requires 3D visual understanding of the agent. The obstacle-generalization

3Obstacles do not change shape and position between episodes, the change occurs in between episodes.
4Collision can happen not only between the robot and the table / floor, but also self-collisions between different links of the

robot itself.
5The narrow passage problemJurgenson & Tamar (2019) refers to narrow gaps between obstacles that the agent must traverse

to reach the goal.
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tasks include random boxes easy, random boxes medium, and random boxes hard, corresponding to a sample
of 2-4, 3-6, and 4-8 boxes, respectively (see Figures 4, 5, and 6).

Ideally, a robot trained on a variety of procedurally generated obstacle configurations should generalize to
common practical scenarios. To investigate this hypothesis, we set aside a curated set of obstacle configura-
tions representing particular arrangements of interest (e.g., “shelves”) – the OOD tasks (out-of-distribution
tasks).

OOD tasks: We defined three fixed environments; narrow shelves, three shelves, and pole shelves, and ported
two environments from Chamzas et al. (2021) (benchmaker bookshelf tall and benchmaker bookshelf thin).
These scenarios are markedly different from scenarios sampled as described above, and we do not allow
training on them. Figure 1 shows two queries from the training task we seek to generalize from – random
boxes hard domain (second and third images from the left), and the test only tasks of narrow shelves, and
benchmaker bookshelf tall (fourth and fifth from the left).

Compared with other MP learning environments such as Chamzas et al. (2021), we prioritize workspaces with
cluttered obstacles, that create narrow passages6. Furthermore, our challenging task design allows testing
both the generalization capabilities of NMP algorithms to similar yet different obstacle distributions, as well
as investigate various obstacle representations, a crucial gap in our understanding of NMP algorithms.

5 Experiments

Using RoboArm-NMP, we now investigate common solutions of the NMP problem. We isolate the con-
tribution of every algorithmic component, and build towards a clear picture that identifies current NMP
challenges. Specifically, we investigate the following aspects of NMP:

1. What are crucial algorithmic components in NMP (i.e. problem formulation, prior knowledge,
learning method, etc’.)

2. We also investigate how well do NMP algorithms generalize in two contexts, first when the train
and test obstacles distribution are identical, and then when they are different.

3. Finally, we investigate the inference speed of NMP algorithms, namely, the prediction speed of the
NN.

We start by describing our experiments setup (Section 5.1), then in Sections 5.2 and 5.3 we investigate the
algorithmic components (question (1) above). In Section 5.4 we investigate the generalization capabilities of
question (2). Finally, in Section 5.5 we investigate inference times of the final main question.

5.1 Setup

Data and evaluation set: We use the tasks described in Section 4. For each task we sampled 10K (s, g)
queries as the test set, as well as 10K trajectories using different queries (for details regarding demonstrations
collection see the appendix Section D). In our results we also denote the success rate of a simple go-to-goal
policy that moves directly to the goal, while completely ignoring the obstacles7. This policy shows how likely
it is that a single motion towards the goal is enough to reach the goal, and thus measures the “hardness” of
each task.

Model training and inference: For training BC agents we train for 1M batches (for which we observed
convergence of all agents), and for the RL agents we train for 1M and 7M environment steps for goal-
generalization and obstacle-generalization tasks correspondingly. Our goal-generalization networks have
two hidden feed-forward layers with 256 neurons each (common in recent RL and NMP works; Jurgenson &
Tamar 2019; Huang et al. 2022). For the obstacle-generalization tasks we use four layers (see Section 5.3

6Known to be hard for NMP algorithms (Jurgenson & Tamar, 2019).
7The go-to-goal policy gets as input the current and goal configurations c and cg , and takes an action in the direction

at = cg − c.
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for details). We searched for hyper-parameters for all three algorithms (BC, SAC, TD3); parameter sweeps
were performed on the goal-generalization tasks, and the best values found were used in the rest of the
empirical evaluation. These sweeps did not include hyper-parameters under investigation in this section (i.e.,
demo-injection p) – for full details see section I in the appendix. To choose a model checkpoint we used a
small, fixed validation set of queries. We repeat each experiment four times and report means and standard
deviations.

Figure 3: we compare the success rate of different algorithms (X axis)
with different goal representations (colors). (a) No obstacles task (b)
Double walls wide gap task (c) Double walls task.

Experiments pipeline: To
cleanly investigate how to best rep-
resent a scene for NMP, we sepa-
rate between scene representation
learning and policy optimization.
First, we train a visual encoder
to extract a latent obstacle rep-
resentation from the observations,
zE . Then, we train a policy con-
ditioned on this latent representa-
tion, namely: π(a|s, g, zE). This al-
lows us to probe the understand-
ing of a 3D representation in iso-
lation from the policy optimization
process. We note that users of
RoboArm-NMP are not required to
follow this pipeline, and can opt for
an end-to-end approach instead.

Learning the visual encoders:
In this work we learn visual en-
coders with a supervised or an un-
supervised objective, independent
of the rewards. We follow previ-
ous works and provide support for
perception of point clouds (Strudel
et al., 2021; Qureshi et al., 2019;
Fishman et al., 2022) and images
(Ichter & Pavone, 2019; Jurgenson & Tamar, 2019), and learn visual representations based on commonly
used encoders such as PointNet++ (Qi et al., 2017b), VAE (Kingma & Welling, 2013), and VQ-VAE (Van
Den Oord et al., 2017). For full technical details, including the processing of sensor readings, see Section E
in the supplementary material.

Learning policies: Policies are trained with the TD3 (Fujimoto et al., 2018) or SAC (Haarnoja et al.,
2018) RL algorithms, or with BC as explained in Section 2. For the goal-generalization tasks the input of
the policy is (s, g) the current robot state and the goal representation, and since obstacles change between
episodes in the obstacle-generalization tasks, we add the latent vector zE from the visual encoder – (s, g, zE).

5.2 Results for goal-generalization tasks

We begin our investigation into the algorithmic components of NMP training (following question (1)), using
the goal-generalization tasks.

Goal representation matters: We start with the question of how to best represent goals in NMP. A
useful specification is a task-space goal, i.e., the goal pose of the end effector (EE). Unfortunately, we
discovered that this is not ideal for all algorithms (see analysis below). Instead we suggest two alternative
goal formulations, the goal configuration of the robot, and a combined representation where both the end-
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Hindsight No Hindsight
SAC (No demos) 0.990 ± 0.002 0.001 ± 0.000
SAC-MP p = 0.2 0.991 ± 0.002 0.017 ± 0.004
SAC-MP p = 0.5 0.989 ± 0.002 0.253 ± 0.041
SAC-MP p = 1.0 0.989 ± 0.002 0.599 ± 0.027

Table 1: Exploration solutions: SAC with combined goal representation in the no-obstacles. We investigate
combinations: hindsight (on / off), demo-injection (p ∈ 0, 0.2, 0.5, 1)

.

random boxes
hard (trained)

random boxes
medium

random boxes
easy

three
shelves

pole
shelves

narrow
shelves

VQ-VAE
(no-demos) 0.304±0.007 0.380±0.009 0.483±0.012 0.792±0.009 0.721±0.020 0.493±0.026

VQ-VAE
p = 0.5 0.302±0.008 0.388±0.012 0.495±0.017 0.816±0.015 0.741±0.024 0.497±0.043

VQ-VAE
p = 1.0 0.274±0.009 0.347±0.011 0.445±0.014 0.750±0.028 0.696±0.015 0.405±0.022

Go-to-goal 0.2891 0.3697 0.4914 0.8316 0.7207 0.5393

Table 2: Out of distribution performance: we compare our VQ-VAE models trained only on random boxes
hard on (1) two easier yet similar tasks random boxes medium, and random boxes easy, and (2) on three
hand-crafted test tasks three shelves, pole shelves, and narrow shelves.

effector’s goal location and goal configuration are provided8. We denote all options as EE, config, and
combined. Focusing on the results in Figure 3, we can see that clearly for BC policies, goal representation
matters, and the “natural” way to encode a goal using the EE alone is difficult for the agent. On the
other hand, both RL algorithms (SAC and TD3) were able to get decent results for all goal representations,
but clearly, the EE goal representation obtains the best results. Interestingly, the combined representation,
although being a super-set of the information in either config and EE is not ideal for RL. This is in contrast
to the BC policy where the combined is on-par or even slightly better than the config goal representation.

We explain these results as follows, the config representation creates less ambiguity for BC algorithms when
following a trajectory as the same EE position may represent different joint configurations. However, for the
RL agent, the EE representation allows more freedom, since the agent can obtain reward from any of the
configurations that reach the required EE position.

Handling sparse rewards: Hindsight and demo-injections (see Section 2) are two powerful tools to over-
come the sparse rewards problem in NMP. However, how to best exploit demonstrations such that they ‘play
well’ with the RL algorithm is still an open question (Jurgenson & Tamar, 2019; Ha et al., 2020). In this
experiment we compare both approaches in the simplest no-obstacles task; the results are shown in Table 1.
For hindsight, we follow the best-practice and set the probability for hindsight to 0.8 (see Section 2). For
demo-injection we investigate several values for p.

From Table 1 we observe that RL methods fail without demonstrations or hindsight in this relatively easy
task, but introducing hindsight clearly boosts the success rate. While here demo-injection does not improve
over hindsight, by observing results in other goal-generalization tasks, such as double walls, it is clear that
tasks with narrow passages benefit more from the demo-injections.

We conclude that, contrary to previous works that claimed instability issues of HER in NMP (Jurgenson &
Tamar, 2019), HER is crucial for learning effectively. And although HER by itself is not effective for narrow
passages, it can be combined with demo-injections to gain from the best of both worlds.

Comparison of policy optimization algorithms: We next compare different NMP policy search
methods in the goal-generalization tasks. Based on our earlier results, we apply both hindsight and demo-

8In NMP applications, the config could be obtained in several ways, such as inverse kinematics, or a learned mapping from
EE position to configurations.
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VAE VQ-VAE PointNet++
BC 0.047 ± 0.032 0.150 ± 0.045 0.177 ± 0.020
SAC
(no demos) 0.284 ± 0.003 0.304 ± 0.007 0.279 ± 0.007

SAC-MP
p = 0.5 0.234 ± 0.024 0.302 ± 0.008 0.254 ± 0.032

SAC-MP
p = 1.0 0.199 ± 0.012 0.274 ± 0.009 0.240 ± 0.016

Go-to-goal 0.2891

Table 3: obstacle-generalization tasks: we compare different encoders (VAE, VQ-VAE, PointNet++), with
different policy learning algorithms (BC, SAC+HER), and different probabilities to add demos (0., 0.5, 1.)
when using the SAC algorithm. All policies in this experiments have 4 hidden-layers.

injection. Comparing both SAC and TD3 to BC shows that the RL methods are clearly superior9; all RL
variants obtain higher success rates then pure BC in all but the no-obstacles task, for which all methods are
already almost perfect. In agreement with previous works (Jurgenson & Tamar, 2019), which hypothesized
that RL provides crucial data around obstacle boundaries compared to BC, we conclude that RL indeed
provides substantial benefit for NMP.

5.3 Results for obstacle-generalization tasks

The objective of the experiments in the obstacle-generalization tasks, are to understand the benefits
of different visual encoders (question (1)), and to investigate generalization to different obstacle configura-
tions (question (2)). To limit the number of parameters to investigate, we make some use of the conclusions
from the goal-generalization experiments, and choose the combined goal representation, HER, and SAC
for our RL experiments. However, as our experiments with demo-injection did not yield a conclusive pref-
erence, we will investigate its use further. For the following experiments we use a deeper network than
in goal-generalization tasks, as the network must now also process zE – the encoding of the scene.
Specifically, we increase the depth of π from two to four hidden layers.

Which visual encoder to use: We next compare three visual encoders architectures: VAE (Kingma &
Welling, 2013), VQ-VAE (Van Den Oord et al., 2017), and PointNet++ (Qi et al., 2017b); results are shown
in Table 3.

First, regarding policy optimization, we observe that as in the goal-generalization tasks, BC is infe-
rior to RL (SAC+HER in our case) as the success rate of BC for each model is lower than all of its RL
counterparts. Next, when we compare the success rates of the various SAC models, we see that contrary
to the goal-generalization tasks, here, adding demonstrations decreases the performance of the policy
substantially (the success rate of SAC is greater than SAC-MP with p = 0.5, which in turn is greater than
SAC-MP with p = 0.5 for every visual encoder). We hypothesize that in obstacle-generalization tasks,
the policy makes more errors as it is more difficult to take the high-dimensional context into account, which
aggravates the distribution shift problem, adversely affecting off-policy learning, and thereby reducing the
utility of demonstrations. Finally, we see that VQ-VAE performs better than both VAE and PointNet++.
Similar to conclusions from recent deep RL works (Hafner et al., 2020), we hypothesize that this performance
gap is due to the discrete nature of zE when using a VQ-VAE.

However, to our surprise we found that the go-to-goal baseline policy, which disregards obstacles, outper-
forms nearly all NMP methods! The only exception is the VQ-VAE based approach, which has a slight
but statistically significant advantage. This entails that although some aspects of the problems were indeed
learned (as indicated the positive success rates and by the increasing rewards during training), most model
are roughly equivalent or dominated by a simple scripted behavior.

9See Tables 5, 6, and 7 for full results in the goal-generalization tasks.
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5.4 Results for OOD tasks

We now investigate how well policies trained in the random boxes hard perform in tasks with different
obstacles distributions, see Table 2. We evaluate on the random boxes medium and random boxes easy,
where the sampling of obstacles is the same but their count is lower than random boxes hard (full analysis in
Section J). Then, we evaluate on OOD tasks, where obstacles are not sampled but instead represent common
industrial settings inspired by previous NMP works (Chamzas et al., 2021). We focus here on the VQ-VAE
policies as these are the ones with the best performance in random boxes hard that were able to exceed the
go-to-goal baseline (for full results see Table 8 in Section J).

The OOD tasks: We observed that SAC-MP (p = 0.5) policies outperformed the go-to-goal policy in
pole shelves tasks and came close to matching it in other tasks. It is noteworthy that the generalization
experiments in this section revealed a distinct impact of demo-injection. While demo-injection negatively
affected performance in random boxes hard, with p = 0.5 it exhibited superior success rates for all other
tasks. Currently, we lack an explanation for this phenomenon and propose it as a compelling avenue for
future research, especially considering the positive influence of demo-injection in goal-generalization tasks.

Finally, noticing the high success rates in all three OOD tasks, we reach an interesting take-away: without a
proper baseline to frame the results (in our case go-to-goal), success rates alone are not enough to evaluate
NMP policies and must be taken with a grain of salt.

5.5 How fast are NNP solutions?

To effectively use NMP on a real systems policy inference must be quick, thus we investigate the inference
time of the OOD tasks policies (question (3)). We find that our policies can predict an entire trajectory in
less than 0.25 seconds on average. Moreover, our inquiry suggests that if our policies are used in scenes
where the obstacles move during the episode, we can approach real time predictions with inferences around
100Hz. See appendix Section F for details.

6 Limitations

Post-processing methods: In this work we focused on learning a NMP policy as the basis of our
investigation. However, a complete deployment of a NMP solution requires other software components that
ensure successful execution and hardware safety. Post-processing methods (Kavraki et al., 1994; LaValle
& Kuffner Jr, 2001) are a popular choice, and are orthogonal to the NMP policy. We hypothesize, that
improvements of the NMP policy would reduce the time spent planning thus making the overall system
better (Qureshi et al., 2019; Yamada et al., 2021; Liu et al., 2022). Metrics and benchmarks comparing the
integration of the two are not covered by this work and would require further investigation.

Other robotic settings: we investigated NMP for robotic arms, but other systems, such as drones (Hanover
et al., 2023), cars, and quadrupeds (Tsounis et al., 2020), may present fundamentally different challenges,
which could be interesting to explore. For instance, drones operating in outdoor settings should account
for stochastic dynamics due to air currents, which presents a different control problems from the relatively
deterministic robotic arm setting. Different from both settings, quadrupeds require frequent contacts with
the environment in order to move, thus requiring a different definition for collisions. It would be interesting
to see if our findings (e.g. the role of demonstrations, HER etc’.) also extend to these systems.

Task and motion-planning (TAMP): MP for robotic arms is commonly used as a sub-component in a
larger planning problem such as TAMP (Kaelbling & Lozano-Pérez, 2011). In this work we focus only on the
basic MP component emphasizing collision-avoidance. It would be interesting to see if NMP improvements
could increase the overall performance of manipulation tasks with cluttered workspaces as well.

Real-world applicability: RoboArm-NMP is a simulated environment, as such, it doesn’t deal with the
simulation-to-real gaps for transferring the trajectories found into the real world, particularly in sensor noise
and in dynamics (i.e., precise tracking of the NMP trajectory). Of the two, we hypothesize that sensor
noise will be more challenging, as tracking control is well established (Haddadin et al., 2022). However,
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this investigation would require creating an environment, similar to RoboArm-NMP, on a real-world setup.
Challenges for this setup include time-consuming demonstrations collection, success and collision detection
(for reward functions and large scale evaluations), task and obstacle design, and more. We recommend
focusing in simulated environments at present as they are easier to control and faster to experiment on, but
as our experiments clearly demonstrate, still provide a significant challenge to modern NMP algorithms.

7 Outlook and discussion

We presented RoboArm-NMP, an evaluation environment for the emerging field of NMP, and a one-stop-
shop for infrastructure requirements for the NMP practitioner. RoboArm-NMP includes configurable en-
vironments, learning algorithms, data, pre-trained models, and code to collect and use demonstrations.
RoboArm-NMP also provides a common set of tasks to asses progress in NMP, and to help investigate
various components frequently used in NMP research.

In our experiments we focused on the fundamental building block of NMP – the NN policy, and investigated
aspects for training it, such as obstacle-configurations, goal-representations, and optimization frameworks.
However, our most interesting findings relate to tasks where the agent must infer the obstacles and react
accordingly, based on a vector encoding of the scene. We investigated encoders commonly used in previous
works (Ichter & Pavone, 2019; Pfeiffer et al., 2017; Qureshi et al., 2019; Strudel et al., 2021; Jurgenson &
Tamar, 2019), and found that in contrast to impressive performance on fixed obstacle tasks, all of the NMP
methods we evaluated were at best on-par with a simple heuristic baseline. This result hints that generalizing
to obstacle configurations unseen during training is still an unsolved problem, and we believe that NNs such
as Transformers (Vaswani et al., 2017), residual networks (He et al., 2016) or NERFs (Mildenhall et al., 2021)
may better capture and utilize information in the 3D scene – an interesting direction for future research.
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Figure 4: Random boxes easy example queries. The start configuration, goal state and obstacles (2-4) are
sampled randomly. The robot is at the starting state and the green sphere represents the end-effector goal
position.

Figure 5: Random boxes medium example queries. The start configuration, goal state and obstacles (3-6)
are sampled randomly. The robot is at the starting state and the green sphere represents the end-effector
goal position.

A Motion Planning Problem

In the motion planning (MP) problem (LaValle, 2006), an agent with configuration (joints) space C is tasked
with reaching a subset of goals denoted as G ⊆ C. The agent operates in a cluttered environment E such that
FE ⊆ C is the free space, and the collision predicate ColE : C → {1, 0} s.t. ∀c ∈ C : c ∈ FE ⇔ ColE(c) = 0
defines collisions with obstacles. A feasible solution to a MP problem is a mapping τ : t ∈ [0, 1] → C
that represents a continuous sequence from the initial configuration c0 = τ(0) ∈ C to a goal configuration
τ(1) = g ∈ G, s.t. ∀t ∈ [0, 1] : ColE(τ(t)) = 0, i.e. the entire path, τ , is in the free space. It is often
desired that τ is optimal with respect to some cost function, such as minimal time to goal, minimal inverse
clearance, etc. Formally, let fE(τ |G) ∈ R be a scalar function, we are most interested in the feasible solution
τ∗ = arg minτ fE(τ |G).

Figure 6: Random boxes hard example queries. The start configuration, goal state and obstacles (4-8) are
sampled randomly. The robot is at the starting state and the green sphere represents the end-effector goal
position.
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B Extended NMP goal-conditioned MDP description

We briefly reiterate the MDP formulation for NMP as a goal-conditioned task (from Section 2), we expand
on all the options available in RoboArm-NMP, not just the ones used to evaluate algorithms. As a reminder
a finite-horizon GC-MDP is defined as a tuple M = ⟨S, G, A, ρ0, P, C, T ⟩, and in the case of NMP we define:

1. The state space S is composed of the positions and velocities of the joints, as well as the end-effector
position. The positions are normalized to be between [−1, 1] to allow the NNs to better handle the
different scales. If m, M ∈ R7 are the minimal and maximal joint configuration (7 being the DoF
of the robot), then the normalized configuration space is [−1, 1]7 and the linear transformation
from configuration c ∈ R7 to a normalized configuration s ∈ [−1, 1]7 is

s = 2c − (M + m)
M − m

.

2. The actions A in the experiments are relative, i.e. these are differences ∆s ∈ [−1, 1]7, that are
combined with the current state (in normalized configuration form) s, to create the next state
s′ = s + ∆s. The other option supported by RoboArm-NMP is for a subgoal, i.e. the value is
the next normalized configuration the robot should move towards (simply s′). Either of the above
options determine the next target normalized configuration, s′, and then we apply the native PID
controller for Pybullet (after translating s′ back to the configuration space). For stability, we also
set s′ to be not too far from s, by clipping the vector ∥s′ − s∥2 ≤ a. Notice that the constraint
a is defined in normalized configuration space, and in our experiments it is set to 0.03 (tuned by
observing the behavior of Pybullet). The value of a can be modified easily in our code.

3. The goal region G is defined in three ways: (1) EE, config, and combined. The EE describes the
goal as the position of the EE in R3, and the transition function stops the episode once this distance
is small (2cm in our experiments). The config defines the goal as a normalized configuration, and
the goal is considered reached when the normalized distance ∥g − s∥2 ≤ 0.05. The combined goal
representation, concatenates both representations, but defines the goal reaching predicate exactly
the same as the EE goal representation, i.e. distance in EE positions. The goal representation, and
the radius around the goal are both configurable in our framework.

4. The starting and goal configurations are sampled randomly at the start of each episode from fea-
sible configurations. Feasible configurations are not in collision, and describe joint values that the
simulator can hold for extended periods of time (to avoid setting goals that the simulator cannot
reach). This selection process induces the distribution ρ0.

5. The transition function P , is deterministic and defined by the goal representation
and tolerance (described above), as well as a configurable flag stop_on_collision ,
that if set to True stops the episode if a collision occurred. Some NMP pre-
vious works used stop_on_collision=False (Strudel et al., 2021), while others used
stop_on_collision=True (Jurgenson & Tamar, 2019). In our initial experiments, we set it to
False , as we observed that data collection becomes even harder when setting this value to True .

6. The horizon T is set to 400 steps, by observing trajectories from SBMP in our tasks. If the episode
reaches an earlier termination (see P above), a sink state s⊥ can be introduced such that irrespective
of the action the next state remains s⊥ (and the cost C(s⊥, ·, ·) = 0 for every goal and action).

A final note, we opted for minimal code modifications for the learning algorithms as possible. Thus we tried
using default parameters in Huang et al. (2022) including setting γ in SAC and TD3 essentially making the
finite horizon MDP into a discounted-horizon MDP.
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C Extended related work

Jurgenson & Tamar (2019): This work introduced the DDPG-MP algorithm, a combination of the
model-free DDPG algorithm with a pre-trained world model, and described the demonstration-injection
feature. Jurgenson & Tamar (2019) shares many similarities with our work (investigate both RL and BC
methods, and exploration solution), but perhaps the main concern in DDPG-MP is its oversimplification;
the robotic arm is only allowed to move on the XZ plane, essentially making the problem 2D. This allowed
the easy procedural generation of narrow passages, at the cost of making the problem less relatable to real
scenarios. In our work we try to make the simulated scenarios as realistic as possible creating factory-inspired
scenes. Another crucial technical aspect is the technical stack - which in Jurgenson & Tamar (2019) was
based on OpenRAVE (Diankov, 2010), a more complicated simulation environment than Pybullet (Coumans
& Bai, 2016–2022), which introduces another barrier of entry to the NMP practitioner.

Strudel et al. (2021): The core algorithm in this work is a combination of the model free RL algorithm
SAC (Haarnoja et al., 2018) with HER (Andrychowicz et al., 2017) and a PointNet (Qi et al., 2017a)
encoder. This combination (SAC, HER, and PointNet) is also explored in this work (although we use
PointNet++ (Qi et al., 2017b), an improvement of PointNet from the same authors). However, the solution
presented in Strudel et al. (2021) only considers fixed joint robots, i.e. can be described by a single frame
of reference, and their solution rely on normalizing the point clouds into that single reference frame. It is
not clear how to handle robots (such as robotic arms) that have moving joints and thus several frames of
reference with the proposed solution. Finally, despite the impressive results, it appears that in many of the
generated environments a trajectory that bypasses the obstacles from the side can easily connect many starts
to many goals. Indeed in our work, for the scenario presented here, we see that the combination of SAC,
HER and PointNet++ is not as successful. This demonstrates the difficulty of assessing NMP results, and
is the reason we argue that NMP environments should be grounded by relatable realistic tasks that include
some simple evaluation metric such as our go-to-goal policy.

Yamada et al. (2021); Liu et al. (2022): In these works a SAC policy is trained with the help of a
SBMP, and although the integration of the RL algorithm with the SBMP is different from our methods,
both solutions aim to solve the sparse rewards problem in NMP. Our approach of injecting full pre-computed
demonstrations tries to remove the expensive online SBMP planning time from the training loop of the RL
agent. One major difference from our work, is the focus on manipulation scenarios in Yamada et al. (2021);
Liu et al. (2022). Our motivation in the RoboArm-NMPenvironment is that first NMP should be evaluated
and solved on MP tasks that include challenging obstacle configurations, and only then be incorporated into
a task and motion planning setup that might include various manipulation aspects.

D Collection of demonstrations

For every scenario we collected 10K demonstrations. To collect a new demonstration we use the RRT-
connect (Kuffner & LaValle, 2000) algorithm to find motion plans. Once a plan is found, we need to verify
it’s feasibility with the Pybullet environment: we treat the plan as sub-goals and we follow them until the
goal is reached. The collection process can fail / timeout in both parts of this computation, and we make at
most 3 attempts per (s, g) query before rejecting and moving on to a new query.

E Training and verifying the encoders

As mentioned in the main text, in our baselines we use VAE (Kingma & Welling, 2013) and VQ-VAE (Van
Den Oord et al., 2017) to encode images, and PointNet++ (Qi et al., 2017b) to encode point clouds. The
input to all models comes from four sensors placed around the robot in order to mitigate partial-observability
issues as much as possible. All encoders were trained data (images and point clouds) gathered from 200K
environments. Images are RGB images of 224 × 224, and each point cloud sensor samples 10K points, and
returns those found in collision with objects. For completeness, we now describe how an observation from
four sensors is encoded to a latent representation:
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Figure 7: VAE reconstruction: top row: four ground truth images from a random_boxes_hard query, bottom
row: reconstruction by our VAE encoder.

• VAE encoder - This encoder is trained with the VAE loss function (Kingma & Welling, 2013).
We match every sensor around the robot with a VAE encoder and decoder networks, denoted
by ∀i ∈ {1 . . . 4} : ei

V AE , di
V AE respectively. To encode an image xi we first encode the image

zi = ei
V AE(xi) to a latent vector of size 16. Then, we concatenate zE = [z1, . . . , z4] (a latent vector

of size 64, and the encoding of our environment E) and feed zE to the decoder.

• VQ-VAE (Van Den Oord et al., 2017) - similar to VAE, we have four pairs of encoder-decoders but
with the VQ-VAE architecture and loss function (Van Den Oord et al., 2017). Also similar to the
VAE encoder, we produce zi and zE , as independent and concatenated outputs of the encoders.
However, modifying the VQ-VAE decoder to infer from the combined zE was problematic as many
architectural choices were required and this was out of scope of our experiments, so here opted to
use zi as the input to di directly.

• PointNet++ (Qi et al., 2017b) - To train the PonitNet++ encoder, we defined a point cloud classi-
fication task, where model tries to predict three classes of point labels: (1) points on the robot, (2)
points on the table and ground plane (objects shared in every E), and (3) points on other obsta-
cles (that vary with every E between episodes). From the same reasons as VQ-VAE, each pair of
encoder-decoder learns a representation zi independently, and only for the policy down the line we
concatenate all to a single zE vector.

For all encoding schemes, we verify the model by both observing convergence of the loss plots and by
visualizing the results of the prediction tasks: in VAE and VQ-VAE we reconstruct the images (Figures 7
and 9), and in PointNet++ we classify a point cloud according to the three categories above (Figure 8).

Finally, all of our latent spaces are 64-dimensional vectors, because during development when we tried
training with a larger context vector, both RL and BC algorithms were unstable. Although we can see
missed predictions, the visualizations show that there seems to be enough signal to understand important
concepts about the 3D scene even when the latent vector is only of size 64.

F Prediction times investigation

We compare the inference time of our models (Table 4). We measure the average encoding time and the
average action prediction time. For all our experiments, where the scene does not change within an episode,
encoding is only required once, at the start of each episode, when the encoder is applied to the first sensor
observation, while action prediction time denotes the forward pass of the policy network, and is required
for every step of the episode. The sample was taken over 1K episodes, using our fully trained models in
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avg. encoding
time

avg. action
prediction time

avg. total
prediction time

VAE 0.0045 0.0005 0.1587
VQ-VAE 0.0083 0.0005 0.1570
PointNet++ 0.0777 0.0005 0.2334

Table 4: Prediction times (sec) for fully trained obstacle-generalization task policies. We measure the average
encoding time and the average action prediction time.

the random boxes hard task. From Table 4, we can see that deep learning solutions can start acting almost
instantly, a desirable property in many domains, and that total prediction time for the entire trajectory is
less than 0.25 seconds on average10. We remark that a trained NMP policy can be directly used in scenes
with changing obstacles, but this requires performing the encoding step multiple times. Time measurements
suggest that this approach can achieve real-time obstacle avoidance at around 100Hz.

G Software package description

RoboArm-NMP is built on top of Pybullet (Coumans & Bai, 2016–2022), and extends Panda-gym Gallouédec et al.
(2021) designed for simple robotic manipulation tasks. The software is composed of the following directories envs ,
demo_generation , and learning related directories. Code will be made available upon acceptance.

The envs directory contains the logic for the environment (defined as an OpenAI gym environment (Brockman
et al., 2016)), with the added api for the method reset_specific that unlike the reset method, allows the use
to reset the agent to specific location. This method is used both for testing throughout the code, and for SBMP
implementations for edge traversal. Moreover, various aspects of the environment can be controlled via the constructor
of the object, such as the reward signal, termination condition, goal definition etc’. In this directory we also define
Pybullet sensors, and wrappers to the basic OpenAI gym environment that uses those sensors. Finally, the data files
and demonstration files are kept in envs/data and envs/demos respectively.

The demo_generation directory contains the data-collection logic for SBMP. It handles demonstration generation,
verification, and correction.

The learning-related code is found in bc_script (for BC learning), clean_rl_scripts (for RL learning, ex-
tends Huang et al. (2022)), and scene_embedding_train (for learning visual encoders).

H Extending RoboArm-NMP

We included a document in our repository, RoboArmNMP_code_usage.pdf, for extending the benchmark with new
scenes (and their demonstrations), sensors, encoders for sensors, and learning algorithms.

I Parameter sweeps

For TD3 we used the default parameters from Huang et al. (2022), and created a sweep for policy and Q-network
learning rates. Both values were between 0.005 and 0.000001 and executed on the double walls wide gap task. For
SAC we searched over the learning rates like we did for TD3, and we also tried to enable / disable the entropy
auto-tuning, and the value of α between 10 to 0.00001.

For BC, we searched over the learning rate (similar range to TD3 and SAC), and we also tried to increase the capacity
of the policy by learning a Gaussian mixture-model instead of a uni-modal Gaussian. We found that a uni-modal
prediction works best.

10For comparison in Schulman et al. (2014) in a similar setting for a 7DoF robot SBMP took over 0.6 seconds to compute
the trajectory on average.
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no
obstacles wall double walls

wide gap
double
walls boxes

Go-to-goal 0.9778 0.7646 0.6476 0.4521 0.806
BC 0.985 ± 0.004 0.752 ± 0.004 0.638 ± 0.008 0.500 ± 0.009 0.769 ± 0.012
SAC (no demos)
p = 0 0.994 ± 0.002 0.948 ± 0.003 0.866 ± 0.006 0.669 ± 0.026 0.849 ± 0.003

SAC-MP
p = 0.2 0.992 ± 0.001 0.942 ± 0.005 0.879 ± 0.004 0.730 ± 0.008 0.859 ± 0.005

SAC-MP
p = 0.5 0.993 ± 0.001 0.947 ± 0.003 0.880 ± 0.006 0.769 ± 0.020 0.861 ± 0.004

SAC-MP
p = 1.0 0.993 ± 0.001 0.936 ± 0.003 0.878 ± 0.006 0.798 ± 0.011 0.857 ± 0.001

TD3 (no demos)
p = 0 0.992 ± 0.002 0.924 ± 0.010 0.767 ± 0.025 0.483 ± 0.014 0.816 ± 0.012

TD3-MP
p = 0.2 0.993 ± 0.001 0.920 ± 0.011 0.752 ± 0.014 0.547 ± 0.013 0.845 ± 0.016

TD3-MP
p = 0.5 0.991 ± 0.002 0.916 ± 0.013 0.775 ± 0.038 0.565 ± 0.044 0.793 ± 0.029

TD3-MP
p = 1.0 0.988 ± 0.001 0.920 ± 0.003 0.815 ± 0.011 0.625 ± 0.047 0.822 ± 0.014

Table 5: Goal-generalization tasks with goal type configuration

J Additional results for the obstacle generalization tasks

In this section we report the results of additional experiments that were part of our investigation.

The goal generalization tasks: We provide full results for the goal various goal encoding schemes in Tables 5, 6,
and 7.

Additional obstacle generalization results: In Table 7 we see the full results of our obstacle generalization
tasks, including the less effective PointNet++ and VAE encoders.

Moreover, we investigated transfer to obstacle-generalization tasks with less obstacles. We find that the policies
trained in random boxes hard, transfer well to both random boxes medium and random boxes easy. In random boxes
medium, that is more similar to random boxes hard, both SAC and SAC-MP (p = 0.5) were able to reach higher
success rates than the go-to-goal policy. This result is meaningful because it hints that if we train our agents in
complex enough environments, they will be able to utilize the same policy in simpler situations as well.
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no
obstacles wall double walls

wide gap
double
walls boxes

Go-to-goal 0.9794 0.7647 0.648 0.4528 0.806
BC 0.073 ± 0.036 0.043 ± 0.012 0.027 ± 0.009 0.023 ± 0.005 0.033 ± 0.017
SAC (no demos)
p = 0 0.969 ± 0.010 0.941 ± 0.012 0.853 ± 0.015 0.730 ± 0.031 0.851 ± 0.020

SAC-MP
p = 0.2 0.977 ± 0.003 0.963 ± 0.005 0.925 ± 0.005 0.883 ± 0.016 0.905 ± 0.009

SAC-MP
p = 0.5 0.975 ± 0.006 0.971 ± 0.003 0.941 ± 0.002 0.896 ± 0.010 0.912 ± 0.005

SAC-MP
p = 1.0 0.979 ± 0.001 0.971 ± 0.003 0.944 ± 0.008 0.916 ± 0.004 0.922 ± 0.003

TD3 (no demos)
p = 0 0.976 ± 0.003 0.942 ± 0.005 0.896 ± 0.012 0.598 ± 0.029 0.661 ± 0.381

TD3-MP
p = 0.2 0.973 ± 0.003 0.961 ± 0.006 0.922 ± 0.013 0.824 ± 0.026 0.906 ± 0.006

TD3-MP
p = 0.5 0.975 ± 0.004 0.964 ± 0.003 0.934 ± 0.005 0.643 ± 0.371 0.902 ± 0.011

TD3-MP
p = 1.0 0.968 ± 0.004 0.959 ± 0.002 0.918 ± 0.010 0.848 ± 0.027 0.903 ± 0.011

Table 6: Goal-generalization tasks with goal type end-effector

no
obstacles wall double walls

wide gap
double
walls boxes

Go-to-goal 0.9794 0.7647 0.648 0.4528 0.806
BC 0.986 ± 0.002 0.831 ± 0.023 0.656 ± 0.079 0.463 ± 0.107 0.771 ± 0.054
SAC (no demos)
p = 0 0.990 ± 0.002 0.933 ± 0.009 0.858 ± 0.008 0.677 ± 0.015 0.827 ± 0.004

SAC-MP
p = 0.2 0.991 ± 0.002 0.939 ± 0.005 0.868 ± 0.016 0.748 ± 0.025 0.842 ± 0.013

SAC-MP
p = 0.5 0.989 ± 0.002 0.938 ± 0.009 0.876 ± 0.009 0.763 ± 0.001 0.851 ± 0.007

SAC-MP
p = 1.0 0.989 ± 0.002 0.943 ± 0.007 0.886 ± 0.011 0.796 ± 0.023 0.862 ± 0.006

TD3 (no demos)
p = 0 0.977 ± 0.007 0.823 ± 0.042 0.733 ± 0.055 0.429 ± 0.014 0.726 ± 0.047

TD3-MP
p = 0.2 0.976 ± 0.005 0.902 ± 0.018 0.745 ± 0.030 0.515 ± 0.017 0.808 ± 0.019

TD3-MP
p = 0.5 0.980 ± 0.002 0.906 ± 0.004 0.730 ± 0.035 0.565 ± 0.036 0.815 ± 0.032

TD3-MP
p = 1.0 0.961 ± 0.012 0.889 ± 0.020 0.633 ± 0.079 0.523 ± 0.032 0.738 ± 0.087

Table 7: Goal-generalization tasks with goal type combined
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Figure 8: PointNet++ classification: spheres color denotes the class predicted by PointNet++. The colors
red, orange, and yellow, correspond to predictions on the robot, static obstacles, and varying obstacles
respectively.

Figure 9: VQ-VAE reconstruction: top row: four ground truth images from a random_boxes_hard query,
bottom row: reconstruction by our VQ-VAE encoder.

Figure 10: Visualization of sensor placements in the obstacle-generalization tasks. Each sensor position is
marked with a purple sphere.
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random boxes
hard (trained)

random boxes
medium

random boxes
easy

three
shelves

pole
shelves

narrow
shelves

VAE
(no-demos) 0.284 ± 0.003 0.366 ± 0.005 0.467 ± 0.009 0.771 ± 0.025 0.726 ± 0.017 0.466 ± 0.022

VAE
p = 0.5 0.234 ± 0.024 0.306 ± 0.032 0.397 ± 0.046 0.626 ± 0.124 0.613 ± 0.074 0.449 ± 0.039

VAE
p = 1.0 0.199 ± 0.012 0.262 ± 0.017 0.333 ± 0.024 0.543 ± 0.067 0.531 ± 0.103 0.353 ± 0.058

VQ-VAE
(no-demos) 0.304±0.007 0.380±0.009 0.483±0.012 0.792±0.009 0.721±0.020 0.493±0.026

VQ-VAE
p = 0.5 0.302±0.008 0.388±0.012 0.495±0.017 0.816±0.015 0.741±0.024 0.497±0.043

VQ-VAE
p = 1.0 0.274±0.009 0.347±0.011 0.445±0.014 0.750±0.028 0.696±0.015 0.405±0.022

PointNet++
(no-demos) 0.279 ± 0.007 0.351 ± 0.005 0.444 ± 0.009 0.635 ± 0.068 0.666 ± 0.016 0.486 ± 0.031

PointNet++
p = 0.5 0.254 ± 0.032 0.325 ± 0.046 0.415 ± 0.056 0.662 ± 0.083 0.624 ± 0.067 0.469 ± 0.076

PointNet++
p = 1.0 0.240 ± 0.016 0.310 ± 0.020 0.390 ± 0.031 0.573 ± 0.048 0.598 ± 0.041 0.441 ± 0.019

Go-to-goal 0.2891 0.3697 0.4914 0.8316 0.7207 0.5393

Table 8: Policy transfer: we compare our models trained only on random boxes hard on (1) two easier yet
similar tasks random boxes medium, and random boxes easy, and (2) on three hand-crafted test tasks three
shelves, pole shelves, and narrow shelves.
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