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ABSTRACT

Cooperative multi-agent multi-armed bandits (CMA2B) study how distributed
agents cooperatively play the same multi-armed bandit game. Most existing CMA2B
works focused on maximizing the group performance of all agents—the accumula-
tion of all agents’ individual performance (i.e., individual reward). However, in
many applications, the performance of the system is more sensitive to the “bad”
agent—the agent with the worst individual performance. For example, in a drone
swarm, a “bad” agent may crash into other drones and severely degrade the system
performance. In that case, the key of the learning algorithm design is to coordinate
computational and communicational resources among agents so to optimize the
individual learning performance of the “bad” agent. In CMA2B, maximizing the
group performance is equivalent to minimizing the group regret of all agents, and
maximizing the individual performance can be measured by minimizing the maxi-
mum (worst) individual regret among agents. Minimizing the maximum individual
regret was largely ignored in prior literature, and currently, there is little work
on how to minimize this objective with a low communication overhead. In this
paper, we propose a near-optimal algorithm on both individual and group regrets, in
addition, we also propose a novel communication module in the algorithm, which
only needs O(log(log T )) communication times where T is the number of decision
rounds. We also conduct simulations to illustrate the advantage of our algorithm
by comparing it to other known baselines.

1 INTRODUCTION

The stochastic multi-armed bandit problem is a classic sequential decision making problem. Given
K arms, there is one agent who repeatedly chooses one arm to pull and observes a stochastic reward
from the pulled arm in each time slot. To maximize cumulative reward (or minimize regret which is
the cumulative reward difference between the optimal decision and agent’s choices), the agent needs
to pull an arm either with a large empirical mean reward to greedily maximize reward (exploitation),
or whose reward estimate is highly uncertain so as to reduce that uncertainty to discover good arms
(exploration). To model many real life applications, e.g., cognitive radio with multiple users (Liu
& Zhao, 2010; Jouini et al., 2010; Boursier & Perchet, 2019), clinical trials in multiple labs (Wang,
1991), recommendation systems with multiple servers (Agarwal et al., 2008; Li et al., 2010; Landgren
et al., 2016), cooperative source search by multiple robots (Li et al., 2014; Jin et al., 2017), etc., one
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Table 1: A comparison summary of prior literature and this work (all regret bounds are problem-
dependent and we omit the 1/∆2 factor.)

Individual regret Group regret Communication time

DPE2 (Wang et al., 2020a) O(K log T ) O(K log T ) O(K2M2)
ComEx (Madhushani & Leonard, 2021) O(K log T ) O(K log T ) O(KM log T )

GosInE (Chawla et al., 2020) O((K/M + 2) log T ) O((K + 2M) log T ) Ω(log T )
Dec_UCB (Zhu et al., 2021a) O((K/M) log T ) O(K log T ) O(MT )
UCB-TCOM (our algorithm) O((K/M) log T ) O(K log T ) O(KM log(log T ))

needs to extend the model to allow for more than one agent (M > 1) playing the same multi-armed
bandit game. These agents cooperate with each other to minimize their regrets. We call this problem
the cooperative multi-agent multi-armed bandits (CMA2B) problem and present it formally in §2.

The most common objective of CMA2B is to minimize the aggregate regret among all M agents,
dubbed as group regret in this paper. This objective has been studied in the majority of prior
work (Boursier & Perchet, 2019; Chawla et al., 2020; Huang et al., 2021; Shi et al., 2021b; Wang
et al., 2020a;b). In addition to group regret, individual performance among agents is another important
metric that is less studied in prior work on CMA2B. The performance of each individual agent is critical
in many applications in distributed systems. For example, in many distributed resource allocation
scenarios with different agents in charge of the allocation, overall performance depends on the
performance of the bottleneck agent instead of the aggregate performance of all agents. This can also
be seen in a computer network scenario, in which an ISP may apply learning-based algorithms (Ma
et al., 2010; Jiang et al., 2018) for some networking problems such as shortest path routing, channel
selection, etc. To ensure that the users are served fairly, the underlying algorithms should fairly
provide approximately equivalent individual performance for each learning agent. This is equivalent
to minimizing the bottleneck agent’s individual regret. For another thing, in network optimization
literature, the max-min fairness metric—maximize the minimal individual reward—is widely used
to measure a system’s fairness (Srikant & Ying, 2013, §2.21), such as fair queuing (Demers et al.,
1989). Since the regret is the opposite of reward, optimizing the max-min fairness is also equivalent to
minimizing the bottleneck agent’s regret. Other fairness motivation examples can be found in political
philosophy (Rawls, 2004). In this paper, we explicitly take into account the notion of minimizing the
maximum individual regret and, for brevity, hereinafter, refer to it as the individual regret.

Another important metric in CMA2B is the communication time of all agents. For some distributed
systems, e.g., agents are geographically located, communications among agents can be expensive.
Thus it is important to design a cooperative learning algorithm that provides minimal group and
individual regrets, while at the same time, incurs a small communication cost. In addition, it will
be desirable to have a learning algorithm in which one can tune parameters so as to trade off
communication times with regret as needed by different applications.

Contributions. In §3, we present the UCB-TCOM algorithm that achieves not only a near-optimal
group regret of O((K/∆2) log T ) but also a near-optimal problem-dependent individual regret of
O((K/M∆2) log T ) with only O(log(log T )) communication times, where ∆2 is the smallest reward
mean gap between arms and T is the number of rounds. This is the first near-optimal algorithm
on individual regret with efficient communications: Previous low communication algorithms, e.g.,
the leader-follower algorithm (Wang et al., 2020b), cannot achieve the near-optimal individual
regret; and previous near-optimal algorithms on individual regret, e.g., GosInE (Chawla et al.,
2020), required high communication times (see related works below). UCB-TCOM achieves the
near-optimal individual regret performance by evenly dividing the group regret to all agents. To
equalize the regrets of all agents, UCB-TCOM directs agents to synchronously pull arms: agents
only utilize the common reward observations, i.e., those having been broadcast over all agents, to
make decisions. The communication policy TCOM (Tunable COMmunication) of UCB-TCOM is a
parametric meta-algorithm that governs the communication of agents and can be executed on top of
any underlying bandit learning algorithm. A salient feature of TCOM is that it can be tuned to balance
regret and communication times. In particular, two parameters in TCOM can be tuned to determine the
aggressiveness and frequency of communications among agents. Our analysis explicitly demonstrates
how communication times can be tuned from 0 to O(T ). Finally, we report numerical results in §5.
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Related works. The most relevant prior literature on CMA2B is summarized in Table 1. First
of all, notice all algorithms in Table 1 attain a similar O(K log T ) regret upper bound. So, we
compare them from the perspective of individual regret and communication cost. Previous algorithms
exhibit good individual regret bounds, i.e., Dec_UCB (Zhu et al., 2021a) and GosInE (Chawla et al.,
2020). However, the communication times of Dec_UCB are O(T ) and that of GosInE are at least
Ω(log T ). It is worth noting that the leader-follower algorithm (DPE2) (Wang et al., 2020a), where
an agent, i.e., the leader, takes responsibility for exploration, and the other agents, i.e., followers, only
exploit the arms recommended by the leader incurs constant O(1) communication cost. However,
the leader-follower approach inherently fails to achieve good individual regret—the leader agent
incurs almost all of the regret O(K log T ) while followers only incur constant regrets. Lastly,
we mention the communication policy ComEx (Madhushani & Leonard, 2021) designed for fully
distributed algorithms achieves a near-optimal group regret of O(K log T ) with a communication
cost of O(log T ). However, ComEx does not guarantee optimal individual regret. We provide a
comprehensive discussion of related work in Appendix A.

2 MODEL

System Model. Consider a multi-armed bandit (MAB) game with K ∈ N+ arms. Each arm
k ∈ [K]1 is associated with a (1/2)-sub-gaussian reward distribution with unknown mean µ(k), e.g.,
it can be any distribution whose support is [0, 1]. Assume there are M ∈ N+ distributed agents
playing this bandit game in T ∈ N+ rounds. In time slot t ∈ [T ], each agent i ∈ [M ] pulls an arm
A

(i)
t ∈ [K] and receives a reward X

(i)
t (A

(i)
t ) drawn from the reward distribution of arm A

(i)
t . When

more than one agent pulls the same arm, each of them gets an independent reward drawn from the
arm’s distribution. Without loss of generality, assume the K arms are ordered in descending of their
mean rewards, i.e., µ(1) > µ(2) ⩾ . . . ⩾ µ(K). Denote the reward mean gap as ∆k := µ(1)− µ(k)
and assume ∆2 > 0, i.e., arm 1 is the unique optimal arm.

Group regret. This paper uses group regret—the cumulative difference between the optimal policy
rewards and an algorithm’s rewards—as the algorithm’s performance metric. Each agent’s optimal
policy is to pull arm 1 in all T rounds. So, under any cooperative algorithm A, the expected group
regret of all M agents is defined as follows,

E[RT(A)] := MTµ(1)− E
[∑

i∈[M ]

∑
t∈[T ]

X
(i)
t (A

(i)
t )

]
, (1)

where the expectation is taken over the randomness of stochastic rewards and algorithm’s (agents’)
decisions.

Maximum individual regret. While the group regret in (1) characterizes overall system performance,
individual performance of each agent is important as well, and, among all individual regrets of agents,
the maximum one is usually more important. For example, in a drone swarm, the failure/misbehavior
of a single drone, e.g., it crashes into other drones, can dramatically degrade the whole system’s
overall performance; in network measurement, the slowest inference engine determines how fast the
network parameters, e.g., traffic flows and channel bandwidths, are learned. In the above systems,
one can define the individual regret objective as follows,

E[Rind
T (A)] := Tµ(1)− E

[
mini∈[M ]

∑
t∈[T ]

X
(i)
t (A

(i)
t )

]
. (2)

Communication times. Agents in the system cooperate with each other by communicating their
reward observations or reward averages. Any message (if communicated) is broadcast to all agents
and received within a single time slot. A broadcast message includes an arm index, the average arm
reward for all observations since the previous broadcast, and the number of observations. The total
number of messages communicated among these M agents quantifies the communication times of
an algorithm. We count each broadcast as one message2. Hence, the communication times under

1In this paper, for any integer L we denote the set {1, 2, . . . , L} as [L].
2In this work, we choose the name “communication times” to emphasize that we focus on reducing the

number of communicated messages/communication rounds. There are some works considering the bits in
communication, e.g., Wang et al. (2020b); Hanna et al. (2021); Shi et al. (2021b). Studying the necessary bits for
TCOM is an interesting further work, e.g., one can consider apply the adaptive differential communication (Shi
et al., 2021b) to our observation sharing.
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algorithm A are defined as follows,

E [CT(A)] := E
[∑

i∈[M ]

∑
t∈[T ]

1{agent i broadcasts one message in time slot t}
]

Model extensions. For ease of presentation of the core ideas, we focus on a simple model formulation
where agents reside on a complete graph (i.e., one clique) and incur no communication delays. In
Appendix G, we extend the basic model and communication policy TCOM to account for arbitrary
communication topology and deterministic communication delays. These demonstrate the generality
of our core algorithmic ideas.

3 ALGORITHM DESIGN

In this section, we devise a cooperative learning algorithm, UCB-TCOM, which attains the near-optimal
results of not only group regret but maximum individual regret as well with only O(log(log T ))
communication times. The core of UCB-TCOM is a communication strategy TCOM that can run on
top of diverse bandit learning algorithms in multi-agent systems. Specifically, TCOM determines how
an agent broadcasts its reward observations to other agents, while the underlying bandit learning
algorithm, e.g., UCB, Thompson sampling, elimination, determines how each agent pulls arms.3 In
§3.1, we present TCOM as the communication module of our algorithm design. Then, in §3.2, we
show how to integrate TCOM with UCB as the underlying bandit algorithm to obtain UCB-TCOM.

Recall that in CMA2B, the near-optimal group regret Θ((K/∆2) log T ) (Wang et al., 2020a, §1.2) is
the summation of individual regrets of all agents. Therefore, minimizing the maximum individual
regret is equivalent to equalizing individual regrets of all agents. Uniformly dividing the group
regret to each individual agent can be achieved by a symmetric learning structure where agents
pull same arms in each time slot. However, in current state-of-the-art algorithms, e.g., the leader-
follower algorithm DPE2 (Wang et al., 2020a), agents usually take different roles—some explore
and other exploit—and thus those algorithms are suboptimal on the individual regret objective. For
another thing, some straightforward symmetric learning algorithms, e.g., cooperative UCB (Yang
et al., 2022, §III.B) where agents communicate and take the same action in every time slots, requires
high communication times; most are O(T ). Instead UCB-TCOM proposes a novel communication
policy TCOM to maintain a symmetric learning structure with low communication times. Especially,
to maintain the symmetric learning structure, agents only utilize global reward observations. Here

“global” observations refer to those observations that have already been broadcast to all agents,
excluding those recent reward observations that have not been shared (i.e., only local to one agent).

3.1 TCOM: A TUNABLE COMMUNICATION POLICY

A key idea of TCOM is based on the observation that the benefit of cooperation in a multi-agent setting
comes primarily from sharing information regarding suboptimal arms instead of the optimal arm.
Specifically, an agent can avoid pulling a suboptimal arm when she receives external observations
from others, while sharing observations from the optimal arm may not necessarily reduce individual
agent regret, e.g., sharing information about an optimal arm while other agents still need to exploit
the optimal arm will not decrease regret but merely increase communication times. So, instead
of paying the cost for communicating the optimal arm observations, an agent can let other agents
explore the optimal arm by themselves. Hence, agents can reduce overall communication overhead
by refraining from communicating the optimal arm’s rewards while still guaranteeing near-optimal
regret. To implement the above idea, each agent constructs a communication arm set from which
TCOM dynamically excludes the arms that are likely to be optimal. Then, each agent only shares
observations about potentially suboptimal arms in the communication arm set. We explain how to
construct the communication arm set in §3.1.1.

The communication arm set technique in the previous paragraph reduces communication times to
O(log T ). To further reduce communication times, another key idea of TCOM is to aggregate an
arm’s multiple observations and send their average at one time. Naïvely applying a phase-based

3Besides the UCB-TCOM algorithm presented in this section, we also preset the Thompson sampling and
elimination based algorithm in Appendix F
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communication protocol, e.g., the one in (Wang et al., 2020b), to aggregate arm observations does
not automatically further decrease communication times to O(log(log T )). Because the phase-based
protocol was used to achieve O(log T ) communication times which is already reached via the
communication arm set technique. Instead, one needs to break the pre-assigned rigid phased-based
communications, i.e., observations of all arms are communicated together at the end of each phase,
and allow each arm—depending on how many times it lies inside the communication arm set—to have
its own specific and dynamic phases for communications. This idea is implemented by a carefully
designed observation-buffering technique. The novel technique can boost the above communication
arm set technique and further reduce communication times to O(log(log T )). We formalize this idea
in §3.1.2.

3.1.1 CONSTRUCTION OF THE COMMUNICATION ARM SET

In each time slot, each agent determines its communication arm set by comparing its estimated
confidence intervals of the reward means. Let n̂t(k) denote the number of times of the global reward
observations of arm k up to time slot t. That is, the number of observations that has been broadcast
across the whole CMA2B. Let µ̂t(k) denote the mean reward estimate of these n̂t(k) observations.
Then, given the empirical mean µ̂t(k) and the number of observations n̂t(k), we construct a tunable
confidence interval for the true reward mean µ(k) by Hoeffding’s inequality (Hoeffding, 1994). The
confidence interval centered at µ̂t(k) has a width CIt(k, α) expressed as

CIt(k, α) := α
√

log t/n̂t(k),

where α ∈ (−∞,∞) is a tunable parameter. The reward mean µ(k) lies inside the confidence
interval (µ̂t(k)−CIt(k, α), µ̂t(k)+CIt(k, α)) with probability of at least 1−2t−2α2

(see Lemma 1
in Appendix B.2). We define the tunable upper and lower confidence bounds of µ̂t(k) as

tUCBt(k, α) := µ̂t(k) + CIt(k, α), tLCBt(k, α) := µ̂t(k)− CIt(k, α).

For any arm k, if there exists another arm k′ whose upper confidence bound tUCBt(k
′, α) is greater

than arm k’s lower confidence bound tLCBt(k, α), then arm k’s mean reward estimate is not
significantly greater than those of others. In this case, arm k is potentially identified as suboptimal,
and its new observation (if any) should be broadcast to others. Formally, given tuning parameter α,
communication arm set Ct(α) of agent i at time t contains all arms identified as suboptimal, i.e.,

Ct(α) := {k ∈ [K] : ∃k′ ∈ [K] \ {k} such that tUCBt(k
′, α) > tLCBt(k, α)}. (3)

Remark 1 (Comparison to the candidate arm set of elimination algorithms). At the first glance,
the communication arm set in (3) is similar to the active arm elimination (AAE) policy’s candidate
arm set (Auer et al., 2002; Even-Dar et al., 2006; Yang et al., 2022). However, the two sets have
intrinsically different usages: TCOM constructs the communication arm set to determine how to
broadcast observations, while AAE uses its candidate set to determine how to pull arms.
Remark 2 (Comparsion to ComEx (Madhushani & Leonard, 2020; 2021)). The intuition we utilize in
this subsection—communicating the observations of suboptimal arms is more useful than that of the
optimal arm—has also been observed in Madhushani & Leonard (2020; 2021). Compared to ComEx,
the algorithmic novelties of TCOM are (1) applying confidence intervals to more accurately identify
the suboptimal arms; (2) combining the observation-buffering broadcast with the communication
arm set technique; (3) including tunable parameters with more flexibility. The detailed algorithm
design comparisons are deferred to Appendix A.1. Furthermore, as we mentioned in Table 1, ComEx
fails to achieve the near-optimal individual regret and its communication times O(log T ) are not as
good as our O(log(log T )) result.

3.1.2 OBSERVATION-BUFFERING BROADCAST

While the straightforward immediate broadcast observation sharing method can produce a near-
optimal group regret, its O(log T ) communication times are not efficient. Prior literature (Desautels
et al., 2014; Gao et al., 2019) has shown that the near-optimal regret in stochastic bandit games
is preserved in the presence of a constant delay before receiving reward observations (Desautels
et al., 2014), and the regret upper bound does not deteriorate too much when delays increase
according to a geometric sequence (Gao et al., 2019). These results suggest that it is not necessary
to immediately communicate the latest observations. Instead, to reduce communication times, the

5



Published as a conference paper at ICLR 2023

Algorithm 1 The UCB-TCOM Algorithm (for each agent)

1: Input: the communication arm set parameter α and buffering ratio β
2: Initialization: n̂t(k) = 0, Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do ▷ Both for-loops (Lines 3 and 15) run in parallel.
4: Pull arm At with the highest global UCB
5: Observe arm At’s reward Xt(At)
6: if At ∈ Ct(α) then
7: Increase Nt(At) by 1
8: Update this phase’s empirical mean µ̃t(At)
9: end if

10: if Nt(At) ⩾ ⌈βNτt(At)(At)⌉ then
11: Broadcast the message (µ̃t(At), Nt(At), At)
12: τt(At)← t
13: end if
14: end for
15: for each newly received message (µ̃t(k), Nt(k), k) from the past decision round do
16: Update the empirical mean µ̂t(k)← µ̂t(k)n̂t(k)+µ̃t(k)⌊Nt(k)(1−1/β)⌋

n̂t(k)+⌊Nt(k)(1−1/β)⌋
17: Increase n̂t(k) by ⌊Nt(k)(1− 1/β)⌋
18: Update the communication arm set Ct(α) via (3) based on tunable confidence bounds
19: end for

policy can aggregate multiple reward observations from an arm and communicate their sample mean
in one message. Combining this mechanism with the designed communication arm set in (3) leads to
the communication policy TCOM.

Next, we present how the buffering mechanism controls observation aggregation. Denote by Nt(k)
the number of times that an agent pulls arm k when the arm lies inside the communication arm set, i.e.,
k ∈ Ct(α), up to time t. Therefore, Nt(k) is the number of messages agent i would broadcast, each
containing a single arm k observation, if one employs immediate broadcast. Instead of immediate
broadcast, we buffer observations and then broadcast their average when the number of observations
(since previous broadcast) increases by a ratio. For example, if the ratio is 2, the agent sends arm
k’s reward average of the arm’s new observations since last broadcast whenever the counter Nt(k)
equals 2, 4, 8, 16, . . . , etc, or power of 2. More generally, let β (> 1) denote a ratio parameter that
controls how the buffering size of reward observations is increased. When counter Nt(k) increases
to ⌈βNτ (k)⌉ since the last time agent i broadcast arm k’s average reward, i.e., Nt(k) ⩾ ⌈βNτ (k)⌉,
then agent i broadcasts a message including the arm index k, the counter Nt(k), and the sample mean
µ̃t(k), of this arm’s latest ⌊Nt(k)(1− 1/β)⌋ observations to other agents. Due to the space limit, the
detailed discussion of TCOM’s tunability on parameters α and β is deferred to Appendix D.1.

3.2 UCB-TCOM: APPLICATION OF TCOM ON THE UCB ALGORITHM

In this section, we demonstrate how to leverage the communication policy TCOM to develop a
communication-efficient extension of cooperative UCB. We call the proposed algorithm UCB-TCOM.

In slot t, agent i chooses the arm with the largest global UCB index, i.e., At = argmaxk UCBt(k),
where UCBt(k) := µ̂t(k)+

√
2 log t/n̂t(k), and observes the arm’s reward X

(i)
t (At). Note the UCB

indexes and action At are the same for all agents; thus we omit their superscript (i). After pulling
arm At, the agent checks whether the arm is in its communication arm set Ct (Line 6); if yes, counter
Nt(At) is increased by 1, and the buffered reward sample mean is updated (Lines 7-8). When the
counter Nt(At) is increased by a factor β since the last time slot that agent i communicated arm
At’s sample mean (Line 10), the agent sends out arm At’s sample mean to other agents (Line 11).
Meanwhile, if the agent receives messages from other agents, it updates its estimates accordingly
(Lines 16- 18). The details are presented in Algorithm 1.

4 THEORETICAL RESULTS

In this section, we analyze the regret and communication times of UCB-TCOM (Algorithm 1).
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4.1 RESULT OVERVIEW

We present near-optimal group and individual regret upper bounds of UCB-TCOM in Theorem 1.

Theorem 1 (Regret upper bounds of UCB-TCOM for α > 1). When the communication arm set
parameter α > 14 and buffering-ratio β > 1, UCB-TCOM (Algorithm 1) attains a near-optimal group
regret upper bound in terms of number of decision rounds T , arms K, and agents M , or formally,

E[RT(A)] ⩽
∑
k>1

8β log T

∆k
+MK

2α2 − 1

α2 − 1
, (4)

and UCB-TCOM (Algorithm 1) also attains a near-optimal individual regret upper bound, or formally,

E[Rind
T (A)] ⩽

∑
k>1

8β log T

M∆k
+K

2α2 − 1

α2 − 1
. (5)

Theorem 1’s group regret proof is based on the observation that most suboptimal arm observations
are broadcast when α > 1 (see Theorem 2(iii)), and the fact that under the observation buffering
mechanism the number of observations of suboptimal arms increases by at most a ratio of β between
broadcasts. Theorem 1’s individual regret proof is based on the fact that all M agents are symmetric—
they always pull the same arms. Proofs of Theorem 1 is given in Appendix B.3.

In Theorem 2, we present the communication times of UCB-TCOM. It shows how parameter α
influences the communication of optimal and suboptimal arms observations.

Theorem 2. The communication times of UCB-TCOM has the following properties:

(i) When α ⩽ −
√
2, no communication occurs among agents.

(ii) When −
√
2 < α <

√
2 and β > 1, the number of broadcasts of observations of the optimal

arm by one agent is O(log(log T )). More rigorously, it is less than

logβ

((√
2 + α√
2− α

)2(
8 log T

∆2
2

+MK
2α2 − 1

α2 − 1

))
. (6)

(iii) When α > 1, almost all observations of suboptimal arms—except for a finite number
independent of T—are broadcast.

(iv) When α ⩾ 2
√
2µ(1)
∆2

, almost all observations of the optimal arm—except for a finite number
that is independent of T—are broadcast.

The proof of Theorem 2(i) follows from the fact that when α < −
√
2, the pulled arm’s tLCB

index is greater than those tUCB indexes of all other arms, which violates the communication arm
set’s condition in (3). Hence, the pulled arm never lies inside the communication arm set, and thus
no communication occurs. The proof of Theorem 2(ii) is based on the geometric growth of the
time interval between broadcasts and a key observation: the number of broadcasts of the optimal
arm’s observations is upper bounded by some suboptimal arm k’s total number of pulls, that is,
n̂
(i)
t (1) < ((

√
2 + α)/(

√
2− α))2n̂

(i)
t (k). Theorems 2(iii) and 2(iv) are derived by excluding some

well-designed small probability events and from the fact that the arm mean rewards lie inside their
tunable confidence intervals with high probability. The proof of Theorem 2 is given in Appendix B.4.

Remark 3. Theorem 2’s proof is not a simple extension of the analysis of previous algorithms. First,
TCOM relies on a group of tunable confidence intervals to identify suboptimal arms and communicate
new observations while ComEx are only based on arm empirical reward mean; a special case of
tunable confidence intervals. Second, the observation-buffering broadcast incurs additional delays
of the global observations sharing which is a unique challenge in TCOM. We defer the detailed
explanation of both challenges to Appendix B.1.

4Theorem 1’s condition α > 1 is a remnant from bounding a small probability event (see Lemma 2 in
Appendix B.2). This condition can be relaxed to α > 1√

2
via the peeling technique (see Appendix C) where

(4)’s second term will also change accordingly. This relaxation is also applicable to Theorem 2(iii).
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4.2 DISCUSSIONS

(a) Regret optimality of UCB-TCOM. The following asymptotic lower bound has been established
in the classic bandits literature (e.g., Lai et al. (1985)):

lim inf
T→∞

E[RT(A)]
log T

⩾
∑
k>1

∆k

KL(νk, ν1)
, (7)

where νk is the reward distribution of arm k and KL is the Kullback-Leibler divergence between
two probability distributions. When the reward distributions are Bernoulli or Gaussian, the regret
lower bound can be written as Ω(

∑
k>1(log T/∆k)) (Lattimore & Szepesvári, 2020, §16). Since

the CMA2B model has the same objective as the centralized (single agent) MAB model, it inherits
this group regret lower bound (Wang et al., 2020a, §1.2) under any possible communication policies.
Given this lower bound, Theorem 1’s group regret upper bound in (7) is near-optimal, i.e., it is tight
up to a constant factor.

Recall that the individual regret in (2) corresponds to the maximal individual regret among M agents.
Since the maximal individual regret is minimized when all agents uniformly pay the regret time, from
the above group regret lower bound, one can obtain the following individual regret lower bound,

lim inf
T→∞

E[Rind
T (A)]
log T

⩾
1

M

∑
k>1

∆k

KL(νk, ν1)
.

Compared to this lower bound, Theorem 1’s individual regret upper bound in (5) is also near-optimal.

(b) Impact of cooperation and number of agents M on group regret. If there is no cooperation
among the M agents—each agent individually plays the game, then the group regret is lower bounded
as follows:

lim inf
T→∞

E[RT(A)]
log T

⩾ M
∑
k>1

∆k

KL(νk, ν1)
,

which is M times worse than the group regret achieved by UCB-TCOM in Theorem 1. This highlights
the benefits of cooperation. Furthermore, when the number of rounds T is large, the second term
containing an M factor in the group regret (4) is negligible. That is, the group regret of UCB-TCOM
does not increase rapidly when the number of agents M increases, while it would without cooperation.

(c) Individual regret comparison to the leader-follower algorithm. Equation (5) shows that the
individual regret of UCB-TCOM deceases as the number of agents M increases. This is in contrast to
DPE2 (Wang et al., 2020a) based on the leader-follower paradigm, which attributes all exploration
costs to a single leader, and thus DPE2’s individual regret is M times worse than that of UCB-TCOM.
In many large-scale distributed systems, e.g., edge computing, database, etc., computational resources
are often distributed geographically. The largest individual computational time that these distributed
nodes (agents) need to pay can be mapped to the individual regret. From this perspective, UCB-TCOM
with the near-optimal individual regret is preferable to DPE2 especially when M is large.

(d) Communication Times of UCB-TCOM. Theorem 2(ii) shows that when −
√
2 < α <

√
2,

the number of broadcasts of the optimal arm’s observations is O(log(log T )). Additionally, the
observation buffering mechanism also aggregates the suboptimal arms O(log T ) observations into
O(log(log T )) broadcasts. So, in this case, UCB-TCOM only incurs O(log(log T )) communication
time. Combined the above with Theorem 1 shows that when 1 < α <

√
2 and β > 1, UCB-

TCOM enjoys the near-optimal group and individual regret upper bounds with only O(log(log T ))
communication times.

We also discuss how parameters α and β of TCOM influence cooperation among the agents and how
they impact communication times and regret in Appendix D.

5 NUMERICAL SIMULATIONS

Experiment setup. Unless otherwise stated, the experiments consist of M = 25 agents and K = 20
arms, communication set parameter α = 1.2, buffering ratio β = 2, and T = 30, 000. Each arm is
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(a) Group regret (b) Individual regret (c) Communications

Figure 1: UCB-TCOM vs. Dec_UCB, GosInE, DPE2, ComEx and COUCB

associated with a Bernoulli reward random variable whose mean is uniformly randomly taken from
Ad-Clicks (Avito, 2015). All results are averaged over 50 trials and their standard deviations are
plotted as shaded regions.

Comparison to state-of-the-art baselines. We consider five baselines: Dec_UCB (Zhu et al., 2021a),
GosInE (Chawla et al., 2020) DPE2 (Wang et al., 2020a), ComEx (Madhushani & Leonard, 2021),
and COUCB. The first four are discussed in Table 1. To compare all algorithms fairly, we implement
them using the same undirected complete communication graph where agents can broadcast its
observations to all other agents. The communication times of GosInE is set to as small as the
algorithm allows. COUCB is a naïve adaptation of UCB in CMA2B, where each agent runs an instance
of UCB and always immediately broadcasts its new reward observations to other agents.

Comparison results are reported in Figure 1. Both group and individual regrets are reported in
Figures 1a and 1b as a function of time. UCB-TCOM performs only slightly worse than the best algo-
rithm (DPE2 in group regrets, COUCB in individual regrets). Figure 1c compares the communication
times of these algorithms in the log scale. It corroborates the fact that UCB-TCOM-1’s O(log(log T ))
communication times lie between ComEx and GosInE’s O(log T ) and DPE2’s O(1) performance.

We also provide additional simulations in Appendices D, E and F.

6 CONCLUSION

In this paper, we proposed a communication policy TCOM which, combined with diverse single-agent
bandit learning algorithms, can be used to devise fully distributed cooperative multi-agent bandit
learning algorithms. We specifically study the UCB-TCOM algorithm where agents pull arms via
UCB and communicates via TCOM. We show that UCB-TCOM can attain both near-optimal group and
individual regrets while only incurring O(log(log T )) communication costs. Extensive simulations
are also reported to support our results.

We note that TCOM can also be tuned to balance the regret and communications. One interesting
future work is to systemically study the Pareto frontier of group/individual regrets vs. communication
times from the perspective of the upper bounds of TCOM and the intrinsic lower bounds (difficulties)
of CMA2B as well.
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A RELATED WORKS

CMA2B with a central server or leader. Many distributed bandits models (Wang et al., 2020b;a;
Shi & Shen, 2021; Shi et al., 2021a; Mehrabian et al., 2020; Shi et al., 2021b) assume the existence
of a central server or elect a leader among agents. We choose two mostly related works to discuss.
Wang et al. (2020b) consider the CMA2B model with a central server. The server collects informa-
tion from each agent and then sends its aggregated information back to each agent. Specifically,
Wang et al. (2020b) propose a phased-based elimination algorithm that achieves the near-optimal
problem-independent regret bound O(

√
KMT log(KM)) with finite number of communication

times (independent of the number of rounds T ). However, when it comes to near-optimal problem-
dependent regret upper bound which is the focus of this paper, their algorithm suffers logarithmic
communication times while our algorithm only incurs O(log(log T )) communications. Wang et al.
(2020a) propose the DPE2 algorithm for CMA2B based on a leader-follower paradigm: The leader
takes the responsibility of exploring while other agents (followers) only exploit arms recommended
by the leader. Although it achieves the optimal group regret with finite number of communications,
the DPE2 algorithm is inherently unfair — one single agent, the leader, incurs almost all regret
O(K log T ) while other followers only incur finite regrets O(1). We also note that algorithms of
previous works heavily rely on a central server (or an elected leader) and thus are vulnerable to
attacks on the central server (or a leader), while fully distributed algorithms that this paper studies
can tolerate such attacks.

CMA2B without a central server. The fully decentralized CMA2B model has been studied in Buc-
capatnam et al. (2015); Landgren et al. (2016); Kolla et al. (2018); Martínez-Rubio et al. (2019),
where they mainly focus on minimizing regrets and seldom quantify their communication times.
Some of these algorithms assume that agents can gossip with each other, e.g., via a graph represented
by the gossiping matrix (Martínez-Rubio et al., 2019; Chawla et al., 2020), or via peer-to-peer
protocols (Szorenyi et al., 2013). In their gossip setting, agents can only communicate with their
neighbors. This is fairly different from our all-agent broadcast communication (in Appendix G.2,
we relax the all-agent broadcast in TCOM to communication with neighbors in the graph). Recently,
Madhushani & Leonard (2021) proposed a communication protocol, ComEx, which aims to limit the
communications of optimal arm’s reward observations. Our tunable communication policy TCOM
subsumes ComEx as a special case (see Remark 1). Also, ComEx incurs O(log T ) communication
times while our algorithm only needs O(log(log T )) to attain the near-optimal regret upper bound.

Beyond the above related work, there are other works on distributed bandits such as federated
bandits (Shi & Shen, 2021; Shi et al., 2021a; Zhu et al., 2021b; Huang et al., 2021), distributed
bandits with collision setting (Boursier & Perchet, 2019; Mehrabian et al., 2020; Wang et al., 2020b;
Shi et al., 2021b), and cooperative pure exploration (Hillel et al., 2013; Tao et al., 2019; Karpov et al.,
2020). The federated bandits (Shi & Shen, 2021; Shi et al., 2021a; Zhu et al., 2021b; Huang et al.,
2021) consider heterogeneous local reward distributions, which is different from our homogeneous
reward environment. In distributed bandits with collision setting model (Boursier & Perchet, 2019;
Mehrabian et al., 2020; Wang et al., 2020b; Shi et al., 2021b), when more than one agent chooses the
same arm, each of these agents gets a zero reward, while in our model, each of these agents obtains
an independent reward. Cooperative pure exploration (best arm identification) (Hillel et al., 2013;
Tao et al., 2019; Féraud et al., 2019; Karpov et al., 2020) study how multi-agent cooperation can
reduce the sample complexity of identifying the best arm which is a different objective from our
work on regret minimization. Some of their high-level ideas in communication are similar to TCOM,
e.g., Hillel et al. (2013) utilize the doubling phase for communication and Féraud et al. (2019)’s
algorithm communicates bad arms. However, as we discussed in Appendix B.1, our algorithm is
novel in specific design detail, and thus introduces unique challenges that cannot be addressed by the
techniques of these known works.

Individual regret in CMA2B With the majority of previous CMA2B works studying the group regret
objective, the individual regrets were also studied sparingly, e.g., in stochastic CMA2B (Zhu et al.,
2021a; Zhu & Liu, 2021; Zhu et al., 2020), in adversarial CMA2B (Bar-On & Mansour, 2019), and
in federated bandits (Zhu et al., 2021b). Among them, Zhu et al. (2021a) was the most related
to ours, where they devised algorithms that achieved the near-optimal individual regret with O(T )
communication times, while our algorithms, with near-optimal individual regrets as well, only needs
O(log(log T )) communication times.

13



Published as a conference paper at ICLR 2023

A.1 DETAIL COMPARISON TO COMEX

TCOM shares some high-level ideas from known algorithms. However, when it comes to the algorithm
design details, TCOM needs to resolve unique challenges to improve the state-of-the-art result. There
are three algorithmic ideas in the design of TCOM which enables improving the state-of-the-art result
in the literature. In the following, we outline each idea separately and clarify its novelty as compared
to the most relevant prior work.

1. On how to identify suboptimal arms: The most related work with similar high-level
algorithmic idea is ComEx [Madhushani et. al., 2021] where arms with suboptimal empirical
reward means are identified as suboptimal in communication. In TCOM, however, we utilize
a group of tunable confidence intervals, which as compared to the empirical means in
ComEx, provides a clearer separation between optimal and suboptimal arms. Further, we
emphasize that although using confidence intervals in bandits is a classic technique for
minimizing regret, TCOM instead uses confidence intervals to decide whether an arm’s
observation should be shared or not. It is worth noting that the dynamic construction of the
communication arm set emphasizes the need for different proof techniques than those in
ComEx, which is elaborated in Appendix B.1.

2. On how to buffer observations: Observation buffering (a.k.a. phase-based communication)
has been used in previous works, e.g., [Shi et. al., 2021], where applying this techniques
can achieve a O(log T ) communication times. However, TCOM has its own technique
for construction of communication arm sets (relevant to the first algorithmic idea above),
which already enjoys a O(log T ) communication times improvement, without using batched
communication. Therefore, simply applying the batched communication technique does
not automatically improve the communication times of TCOM. Instead, we design an arm-
specific observation-buffering mechanism which allows each arm—depending on whether
it lies in the communication arm set—to have its own specific and dynamic phases for
communication. This carefully designed observation-buffering technique can boost TCOM’s
first communication arm set technique and further reduce the communication times to
O(log(log T )).

3. On algorithm design with a tunable parameter: Last, unique to our algorithm design,
we introduced two tunable parameters α and β that determine how to add arms into the
dynamic communication arm set based on their confidence intervals. This addition provides
greater flexibility to TCOM, which is explained in details in Appendix D.

B PROOFS IN ANALYSIS (SECTION 4)

B.1 HIGHLIGHT OF ANALYSIS CHALLENGES

TCOM utilizes two techniques: communication arm set construction (§3.1.1) and observation-buffering
broadcast (§3.1.2). Each technique alone can reduce the communication times to O(log T ), and TCOM
combines both to further reduce the communication times to O(log(log T )). This O(log(log T ))
result comes directly from the TCOM policy design. The major challenge in analysis is to establish
that—with these reduced and delayed sharing observations due to TCOM—the UCB-TCOM algorithm
still preserves the near-optimal group and individual regrets. To do so, we show (1) the communication
arm set construction technique can prevent communicating most optimal arm observations while
allow communicating most suboptimal arm observations; (2) the observation sharing delay due to
the observation-buffering broadcast technique (upon the communication arm set technique) does not
have an intrinsic impact on UCB-TCOM’s group and individual regret performance.

(1) Although the communication arm set construction technique shares the high level idea of
ComEx (Madhushani & Leonard, 2021), the analysis of ComEx is not applicable to TCOM. Be-
cause the empirical means utilized for identifying the suboptimal arms in ComEx is only a special
case of the tunable confidence intervals that TCOM relies on. Therefore, to show that agents can
selectively share suboptimal arms’ observations by the communication arm set technique, we prove
two new results: (a) the optimal arm’s observations are often not broadcast (i.e., the optimal arm is
often not in the communication arm set, Theorem 2(ii)); (b) suboptimal arm observations are almost
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always broadcast (i.e., the suboptimal arms are often in the set, Theorem 2(iii)). The (a) is proved via
showing that the number of times that the optimal arm is in the communication arm set is no greater
than that of an suboptimal arm (multiplied by a constant factor); thus is upper bounded by O(log T ).
This is based on revealing a relation between the bandit arm pull policy and the communication arm
set construction. Then (b) is proved via showing whenever an agent pulls a suboptimal arm, the arm is
inside the communication arm set with a high probability, and thus the suboptimal arm’s observations
are almost always buffered for later communication.

Our observation-buffering broadcast mechanism shares a high-level idea of doubling phase technique,
but its specific design is different from known ones, and, consequently, its analysis addresses novel
challenges. The doubling phase technique was utilized in CMA2B literature, e.g., Boursier & Perchet
(2019); Wang et al. (2020b); Shi et al. (2021b), where their arm pull policies within a phase were
either uniformly pulling each arm (Boursier & Perchet, 2019; Wang et al., 2020a) or sticking to several
arms (Shi et al., 2021b). However, different from these previous “rigid” arm pull policies, UCB-TCOM
applies the “flexible” UCB arm pull policy. In order to adapt the doubling phase technique to the
UCB policy, we propose the observation-buffering broadcast mechanism which separately buffers
the observation of each arms and respectively communicates each arm’s compound observations
whenever this arm’s observation times is doubled (or generally, increased by a β factor).

(2) Since this observation-buffering broadcast is different from known doubling phase algorithms,
their existing analysis approaches are not applicable to observation-buffering. Hence, proving that this
broadcast mechanism does not intrinsically deteriorate the near-optimal group and individual regrets
of UCB-TCOM is a unique challenge. More specifically, we prove that the delay due to buffering
only makes regrets worse by a constant factor. This is via showing that the observation-buffering
mechanism separately buffers each arm’s observations, and, therefore, the observation delay of each
arm’s observations (as well as the pulling times of this arm during the delay) can be respectively
upper bounded by at most a constant factor multiplying this arm’s total previous pulling times (see (9)
of Theorem 1’s proof as a formal expression).

B.2 PRELIMINARIES

In this subsection, we provide several basic results and definitions that are crucial in the later analysis.

Definition 1 (Type-I and Type-II decisions). An agent makes a Type-I decision in time slot t if in
this time slot all arms’ true reward means µ(k) lie inside this agent’s tunable confidence intervals
(tLCBt(k, α),tUCBt(k, α)) respectively. Otherwise, the agent makes a Type-II decision.

Lemma 1. For any arm k ∈ [K], any agent i ∈ [M ], and time slot t ∈ [T ], the probability that the
arm k’s true reward mean µ(k) lies inside its tunable confidence interval (tLCBt(k, α),tUCBt(k, α))

(calculated by agent i) is no less than 1− 2t1−2α2

.

Proof of Lemma 1. We first bound the probability that the true reward mean is no less than the tunable
upper confidence bound tUCB.

P (µ(k) ⩾ tUCBt(k, α)) = P

(
µ(k)− µ̂t(k) ⩾ α

√
log t

n̂t(k)

)

=

t∑
s=1

P

(
µ(k)− µ̂t(k) ⩾ α

√
log t

n̂t(k)

∣∣∣∣∣ n̂t(k) = s

)
P(n̂t(k) = s)

⩽
t∑

s=1

P

(
µ(k)− µ̂t(k) ⩾ α

√
log t

n̂t(k)

∣∣∣∣∣ n̂t(k) = s

)
(a)

⩽
t∑

s=1

t−2α2

⩽ t1−2α2

,

where the inequality (a) is by the Hoeffding’s inequality and that the random variable µ(k)− µ̂t(k)

is
√
1/4n̂t(k)-subgaussian. With a similar derivation, the probability that the true reward mean µ(k)
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is no greater than the tunable lower confidence bound tLCB, i.e., µ(k) ⩽ tLCBt(k, α), can also be
upper bounded by t1−2α2

. Therefore, by excluding the above two events, the probability that the true
reward mean lies inside the tunable confidence interval is no less than 1− 2t1−2α2

.

Lemma 2 (Bound the number of times of Type-II decisions). When α > 1, the expected total number
of times of Type-II decisions by any agent at any time slot in the system is finite. Specifically, it is less
than K 2α2−1

α2−1 .

Proof of Lemma 2. That a time slot t is Type-II means that there exists at least one arm whose reward
mean lies outside its tunable confidence interval. We bound the expected total number of times of
Type-II decisions as follows,

T∑
t=1

P (∃k ∈ [K] such that µ(k) ̸∈ (tLCBt(k, α),tLCBt(k, α)))

⩽
T∑

t=1

K∑
k=1

P (µ(k) ̸∈ (tLCBt(k, α),tLCBt(k, α)))

⩽ K

T∑
t=1

P (µ(k) ̸∈ (tLCBt(k, α),tLCBt(k, α)))

(a)

⩽ 2K

T∑
t=1

t1−2α2

⩽ 2K

(
1 +

∫ T

t=1

t1−2α2

dt

)
(b)

⩽ MK
2α2 − 1

α2 − 1
,

where the inequality (a) holds for Lemma 1, and the inequality (b) holds because α > 1 (i.e.,
1− 2α2 < −1).

Next, we state a standard property of UCB algorithms and provide its proof for completeness.
Lemma 3 (Adapted from (Yang et al., 2022, Lemma 2)). If at any time t ⩽ T agent i ∈ [M ] by UCB
makes a Type-I decision and pulls arm k, the total number of globally observed rewards of the arm k
by agent i up to time t is upper bounded as follows,

n̂t(k) ⩽
8 log t

∆2
k

.

Proof of Lemma 3. Given that the suboptimal arm k is pulled by agent i, we have the following
inequality

2×

√
2 log t

n̂t(k)
⩾ ∆k. (8)

Otherwise, we have

UCBt(1) = µ̂t(1) +

√
2 log t

n̂t(1)

(a)

⩾ µ(1) = µ(k) + ∆k

(b)
> µ(k) + 2

√
2 log t

n̂t(k)

(c)
> µ̂t(k) +

√
2 log t

n̂t(k)

= UCBt(k),
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which contradicts the pulling of arm k. Note that inequalities (a) and (c) are from Type-I decision’s
definition that reward means lie inside confidence interval, and inequality (b) is due to the inverse of
(8). Therefore, (8) holds and rearranging (8) concludes the proof.

B.3 PROOFS OF GROUP REGRET (THEOREM 1

Proof of Theorem 1. To bound the regret, one needs to bound the number of times of pulling subop-
timal arms by all M agents in the system. Let k be the index of a suboptimal arm. In UCB-TCOM,
the reward observations of pulling arm k are only broadcast (together as reward means) whenever
arm k’s local observation times is increased by a β ratio. So, there are delays before receiving other
agents’ observations. These delays may cause each agent pulling additional number of times of arm
k. Next, we show that such delays do not significantly increase arm k’s overall pulling times in the
system.

Note that the communication set contains all suboptimal arms when agents make Type-I decisions,
in which case all suboptimal arm pulls increase the counter Nt(k) by 1. Adding the other cost in
Type-II decisions (at most K 2α2−1

α2−1 by Lemma 2 and 2α2−1
α2−1 for each arm), the total pulling times of

an suboptimal arm k among all M agents are upper bounded by
∑

i∈[M ] Nt(k) +M 2α2−1
α2−1 .

Recall that τt(k) denotes the last time slot (before time slot t) when agent i broadcasts arm k’s
buffered observations’ average reward. To bound the first term in RHS, we have∑

i∈[M ]

Nt(k)
(a)

⩽ β
∑
i∈[M ]

Nτt(k)(k)
(b)

⩽
8β log T

∆2
k

, (9)

where inequality (a) is because the counter Nt(k) is at most β times greater than its value at the last
broadcast time slot, and inequality (b) is because

∑
i∈[M ] Nτt(k)(k) is total global observations of

arm k at time slot t which is less than 8∆−2
k log T by Lemma 3.

At last, we sum up the regret cost of pulling suboptimal arms in Type-I decisions and the other cost
in Type-II decisions (in total at most MK 2α2−1

α2−1 by Lemma 2 given α > 1). So, the group regret is
upper bounded as follows

E[RT(A)] ⩽
∑
k>1

8β log T

∆k
+MK

2α2 − 1

α2 − 1
.

Notice that executing Algorithm 1, agents have the same arm pull behavior. So, the group regret are
evenly divided into each agent’s individual regret and thus the individual regret is upper bound is
upper bounded as follows,

E[Rind
T (A)] ⩽

∑
k>1

8β log T

∆k
+MK

2α2 − 1

α2 − 1
.

B.4 PROOFS OF COMMUNICATION COSTS (THEOREM 2)

Proof of Theorem 2(i). No occurrence of communication for α ⩽ −
√
2 is because that the pulled

arm At is never inside the communication set Ct(α) in (3). When α ⩽ −
√
2, an arm’s tLCB is greater

than its original UCB index, that is, tLCBt(k, α) = µ̂t(k)−CIt(k, α) ⩾ µ̂t(k)+
√

2 log t/n̂t(k) =
UCBt(k); and its tUCB is smaller than its UCB index, that is, tUCBt(k, α) = µ̂t(k) + CIt(k, α) ⩽
µ̂t(k) +

√
2 log t/n̂t(k) = UCBt(k). Then, for the pulled arm At, the inverse of the communication

set’s condition holds:
tLCBt(At, α) ⩾ UCBt(At)

(a)

⩾ UCBt(k), ∀k ̸= At

⩾ tUCBt(k, α), ∀k ̸= At,

where the inequality (a) is because that the pulled arm At has the highest UCB index in time slot
t.
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Proof of Theorem 2(ii). If a reward observation of optimal arm is broadcast by agent i at time slot t,
then there exists at least one suboptimal arm k such that the following two events hold at the same
time:

UCBt(1) ⩾ UCBt(k)

tLCBt(1, α) < tUCBt(k, α),

where the first event is from the UCB arm selection policy, and the second event holds because the
pulled arm 1 belongs to the communication set. These two events imply:{

µ̂t(1) +
√
2 log t/n̂t(1) ⩾ µ̂t(k) +

√
2 log t/n̂t(k)

µ̂t(1)− CIt(1, α) < µ̂t(k) + CIt(k, α)

=⇒

{
µ̂t(1)− µ̂t(k) ⩾

√
2 log t/n̂t(1)−

√
2 log t/n̂t(k)

µ̂t(1)− µ̂t(k) < α
(√

log t/n̂t(1) +
√
log t/n̂t(k)

)
=⇒ (

√
2 + α)

√
log t/n̂t(1) > (

√
2− α)

√
log t/n̂t(k).

After rearranging the inequality, we show that the number of observations of the optimal arm 1 is
upper bounded by a factor multiplying the number of observations of a suboptimal arm as follows,

n̂t(1) <

(√
2 + α√
2− α

)2

n̂t(k). (10)

Lemmas 2 and 3 together show that in the UCB-TCOM algorithm the maximum pulling times of any
suboptimal arm k is upper bounded as follows

n̂t(k) ⩽
8 log T

∆2
k

+K
2α2 − 1

α2 − 1
. (11)

Substituting the above inequality to (10)’s RHS and choosing k = 2 (because 1/∆2
k is maximal when

k = 2) for any time t, we have

n̂t(1) <

(√
2 + α√
2− α

)2(
8 log T

∆2
2

+K
2α2 − 1

α2 − 1

)
.

Notice that whenever the optimal arm is pulled and lies inside the communication set, the counter
n̂t(1) increases by 1. So, the buffering counter Nt(1) is no greater than n̂t(1). That is,

Nt(1) ⩽

(√
2 + α√
2− α

)2(
8 log T

∆2
2

+K
2α2 − 1

α2 − 1

)
.

These Nt(1) observations are aggregated and communicated at one time in each phase. These phases’
lengths increases in a geometric sequence with common ratio β. So, the number of communicated
messages of the optimal arm 1 is at most

logβ(Nt(1)) ⩽ logβ

(√2 + α√
2− α

)2(
8 log T

∆2
2

+K
2α2 − 1

α2 − 1

) = O(log(log T )).

Proof of Theorem 2(iii). We first show, if a suboptimal arm is pulled by a Type-I decision, its reward
observation will definitely be broadcast, i.e., the pulled arm is inside the communication set. Because
the pulled suboptimal arm k’s tunable lower confidence bound tLCB(k, α) is less than the optimal
arm 1’s tunable upper confidence bound tUCB(1, α): tLCB(k, α) ⩽ µk < µ1 ⩽ tUCB(1, α).

Lemma 2 shows that when α > 1, agents make Type-I decisions in almost all time slots (except finite
Type-II decisions). Therefore, almost all observations of suboptimal arms are broadcast.
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Proof of Theorem 2(iv). We first show that when the optimal arm 1 is pulled and the agent makes
a Type-I decision in time slot t, the event that tLCBt(1, α) > tLCBt(k, α), ∀k ̸= 1 happens with
small probability.

P (tLCBt(1, α) > tLCBt(k, α), ∀k ̸= 1|At = 1)

= P (µ̂(1)− CIt(1, α) > µ̂(k) + CIt(k, α), ∀k ̸= 1|At = 1)

⩽ P (µ̂(1) > CIt(k, α), ∀k ̸= 1|At = 1)

⩽ min
k ̸=1

P (µ̂(1) > CIt(k, α))

= min
k ̸=1

P (µ̂(1)− µ(1) > CIt(k, α)− µ(1))

(a)

⩽ min
k ̸=1

P
(
µ̂(1)− µ(1) > α

∆k

2
√
2
− µ(1)

)
(b)

⩽ min
k ̸=1

exp
(
−(α∆k/2−

√
2µ(1))n̂t(1)

)
= exp

(
−(α∆2/2−

√
2µ(1))n̂t(1)

)
,

(12)

where inequality (a) holds because (8) in Lemma 3’s proof shows that when agent i makes a Type-I
decision to pull suboptimal arm k, the confidence interval CI’s width of this arm’s reward mean

is no less than half of the arm’s reward gap, i.e.,
√

2 log t
n̂t(k)

⩾ ∆k

2 , and inequality (b) holds because

α∆k − 2
√
2µ(1) > 0 and Hoeffding’s inequality.

Next, we show that the number of times that the optimal arm 1’s observations is not broadcast is
finite.

E

∑
t∈[T ]

1{At = 1 and the obs. is not broadcast}


⩽ E

∑
t∈[T ]

1{agent i makes a Type-II decision in time t}


+ E

∑
t∈[T ]

1{At = 1 and the obs. is not broadcast and a Type-I decision is made in time t}


⩽ E

∑
t∈[T ]

1{t is Type-II}

+ E

∑
t∈[T ]

1{tLCBt(1, α) > tUCBt(k, α), ∀k ̸= 1|At = 1}


⩽ E

∑
t∈[T ]

1{t is Type-II}

+ E

∑
t∈[T ]

1{tLCBt(1, α) > tLCBt(k, α), ∀k ̸= 1|At = 1}


(a)

⩽ E

∑
t∈[T ]

1{t is Type-II}

+
∑
t∈[T ]

exp
(
−(α∆2/2−

√
2µ(1))n̂t(1)

)
(b)

⩽ MK
2α2 − 1

α2 − 1
+

∫ T

n=0

exp
(
−(α∆2/2−

√
2µ(1))n

)
dn

⩽ MK
2α2 − 1

α2 − 1
+

2

α∆2 − 2
√
2µ(1)

,

where the inequality (a) is from applying (12) to the second term, and the inequality (b) bounds the
number of times of Type-II decisions by Lemma 2.
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C APPLY PEELING TECHNIQUE TO RELAX THE TUNABLE PARAMETER’S
CONSTRAINT

In this section, we apply peeling technique (Bubeck, 2010, §2.2) to relax Lemma 2 (thus Theorems 1
and 2(iii))’s α > 1 constraint to α > 1√

2
. This finer result helps to move the critical point 1

in Figure 2’s α-axis to 1√
2

, and extend the red arrow range (with near-optimal group regret and

O(log(log T )) communications) to
(

1√
2
,
√
2
)

.

Lemma 4 (Bound the number of times of Type-II decisions via peeling technique). Lemma 2’s
condition α > 1 can be relaxed to α >

√
1
2γ via peeling technique for γ ∈ (0, 1). The total number

of Type-II decisions is no greater than

2MK

(
2α2γ + 1

2α2γ − 1
+

1

log(1/γ)(2α2γ − 1)2

)
.

Proof. The key idea is applying a peeling argument to enhance Lemma 1’s proof. Denote γ ∈ (0, 1).
For any s ⩽ t, there exists j ∈

{
0, 1, . . . , ⌈ log t

log(1/γ)⌉
}

such that γjt < s ⩽ γj+1t. Then, we have

P (µ(k) ⩾ tUCBt(k, α)) = P

(
µ(k)− µ̂t(k) ⩾ α

√
log t

n̂t(k)

)

⩽ P

(
∃s ⩽ t : µ(k)− µ̂t(k) ⩾ α

√
log t

n̂t(k)

∣∣∣∣∣ n̂t(k) = s

)

⩽

⌈ log t
log(1/γ)

⌉∑
j=0

P

(
∃s ∈

(
γjt, γj+1t

]
: µ(k)− µ̂t(k) ⩾ α

√
log t

n̂t(k)

∣∣∣∣∣ n̂t(k) = s

)

⩽

⌈ log t
log(1/γ)

⌉∑
j=0

P

(
∃s ∈

(
γjt, γj+1t

]
: µ(k)− µ̂t(k) ⩾ α

√
log t

γjt

∣∣∣∣∣ n̂t(k) = s

)

(a)

⩽

⌈ log t
log(1/γ)

⌉∑
j=0

exp

− α2 log t
γjt

2× (1/4γj+1t)


⩽

⌈ log t
log(1/γ)

⌉∑
j=0

exp
(
−2α2γ log t

)
⩽

(
2 +

log t

log(1/γ)

)
t−2α2γ ,

where the inequality (a) is from the maximal Hoeffding’s inequality. Symmetrically, we also have

P (µ(k) ⩽ tLCBt(k, α)) ⩽

(
2 +

log t

log(1/γ)

)
t−2α2γ .

Together, we have

P (µk ̸∈ (tLCBt(k, α),tUCBt(k, α)) ⩽ 2

(
2 +

log t

log(1/γ)

)
t−2α2γ .
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−
√
2 0 1

√
2 2

√
2µ(1)/∆2

E [CT(A)]: 0
(via Theorem 2(i))

O(log(log T ))
(via Theorem 2(ii) and 2(iii))

O(log T )
(via Theorem 2(iv))

E[RT(A)]: O(MT ) O(K log T )
(via Theorem 1)

α

Figure 2: Impact of parameter α on UCB-TCOM’s communication time E [CT(A)] and group regret
E[RT(A)]. When α ∈

(
1,
√
2
)
, UCB-TCOM achieves the near-optimal group and individual regret

upper bounds with O(log(log T )) communications.

Substituting Lemma 2’s proof’s third step with the above tighter inequality, we have
T∑

t=1

M∑
i=1

K∑
k=1

P (µk ̸∈ (tLCBt(k, α),tUCBt(k, α))

⩽ MK

T∑
t=1

P (µk ̸∈ (tLCBt(k, α),tUCBt(k, α))

⩽ 2MK

T∑
t=1

(
2 +

log t

log(1/γ)

)
t−2α2γ

⩽ 2MK

(
1 +

∫ T

t=1

(
2 +

log t

log(1/γ)

)
t−2α2γdt

)

⩽ 2MK

(
2α2γ + 1

2α2γ − 1
+

1

log(1/γ)(2α2γ − 1)2

)
,

where the last inequality requires the exist of integral, i.e., 2α2γ > 1, from which one has α >
√

1
2γ

and it becomes
√

1
2 when γ → 1.

D TUNABILITY OF TCOM

D.1 ALGORITHM DESIGN DISCUSSION

The parameter α tunes the aggressiveness of identifying an arm as suboptimal. When the condition is
aggressive (α is small), the communication arm set C(i)t (α) is small: most arms inside C(i)t (α) are
suboptimal with high probability, but there may exist some suboptimal arms outside C(i)t (α), i.e.,
C(i)t (α) fails to cover a subset of suboptimal arms. Therefore, the observations of those suboptimal
arms outside the communication arm set cannot be shared, which causes more explorations on them.
That is, the cooperative algorithm’s regret may be large when a communication arm set with small α.
When the condition is conservative (α is large), C(i)t (α) tends to be large: it contains not only most
suboptimal arms but sometimes the optimal arm as well. As the observation times of optimal arm are
also broadcast, the communication times would be large when α is large.

The parameter β controls the frequency of communicating an arm’s observation. When β is large,
communication times reduce at the expense of longer delays before other agents receive the observa-
tions. Therefore, the group regret increases. And vice versa when β decreases.

D.2 THEORETICAL DISCUSSION

Impact of communication parameter α. (1) Theorem 2(i) shows that when α ⩽ −
√
2, there is

no communication among agents and thus there are no global observations for agents to optimize
their decisions. (2) Theorems 2(iii) and 2(iv) shows that when α > 2

√
2µ(1)
∆2

(>
√
2) almost all
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(a) Varying α (given β = 2) (b) Varying β (given α = 1.2)

Figure 3: Impact of communication set parameter α with fixed β = 2 in Figures 3a; and buffering
ratio β with fixed α = 1.2 in Figures 3b

reward observations are broadcast. Hence the number of global observations that were broadcast is
similar to that of total observations of agents. (3) Theorem 2(ii) shows that when −

√
2 < α <

√
2,

the number of broadcasts of the optimal arm’s observations is O(log(log T )). Additionally, the
observation buffering mechanism also aggregates the suboptimal arms O(log T ) observations into
O(log(log T )) broadcasts. So, in this case, UCB-TCOM only incurs O(log(log T )) communication
time. (4) Combined with (3), Theorem 1 shows that when 1 < α <

√
2, UCB-TCOM has near-optimal

group and individual regret upper bounds with only O(log(log T )) communication cost. We refer to
the interval

(
1,
√
2
)

as the preferable range for α. Figure 2 summarizes the impact of parameter α
on the regret-communication trade-off.

Impact of observation buffering ratio β. In addition to α, the β can also be used to tune the
regret-communication trade-off. When the β increases, Theorems 1 shows that both group and
individual regrets increase. At the same time, note that β is the logarithm base in (6) of Theorem 2(ii),
which means the communication times of TCOM decreases as β increases. Similarly, the regrets
decrease and communication times increases as the ratio β decreases.

D.3 SIMULATIONS ON TUNABILITY

Figure 3 illustrates the impact of communication set parameter α and observation buffering ratio
β on the performance of UCB-TCOM. From regret aspect, Figure 3a shows that both the group and
individual regrets do not change much as α increases, which confirms the regret upper bounds in
Theorem 1 where α does not appear on the dominating logarithmic term of (4) and (5). Figure 3b
shows that the regrets increase with respect to β, which corresponds to the appearance of β in the
dominating logarithmic term of regret bounds in Theorem 1. From communication aspect, Figure 3a
and Figure 3b also corroborate (6) of Theorem 2, where the communication times increases with
respect to α and decreases with respect to β.

E SIMULATIONS ON THE PERFORMANCE OF UCB-TCOM IN DIFFERENT
ENVIRONMENTS

In Figures 4a and 4b, we vary the number of agents M in {5, 25, 45, 65, 85, 105} and the number of
arms K in {10, 20, 40, 60, 80, 100} respectively while fixing other default values. The group regret
in Figure 4a is flat (compared to Figure 4b’s group regret), corroborating that it does not increase
rapidly with respect to number of agents M (discussed in Section 4.2(b), also note that the second
term in (4) does not depend on T ). Its decreasing individual regret curve corroborates the scalability
advantage of the multi-agent system — the more agents in the system, the smaller the maximum
individual cost these agents need to pay (discussed in Section 4.2(c)). Figure 4b shows that both
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Algorithm 2 The TS-UCB Algorithm (for each agent)

1: Input: the communication arm set parameter α and buffering ratio β
2: Initialization: n̂t(k) = 0, Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do
4: For each arm k ∈ K, sample θt(k) from the Beta(n̂t(k)µ̂t(k) + 1, n̂t(k) + 1) distribution.
5: Pull arm At with the highest θt(k)
6: Observe arm At’s reward Xt(At)
7: if At ∈ Ct(α) then
8: Increase Nt(At) by 1
9: Update this phase’s empirical mean µ̃t(At)

10: end if
11: if Nt(At) ⩾ ⌈βNτt(At)(At)⌉ then
12: Broadcast the message (µ̃t(At), Nt(At), At)
13: τt(At)← t
14: end if
15: end for
16: for each newly received message (µ̃t(k), Nt(k), k) from the past decision round do
17: Update the empirical mean µ̂t(k)← µ̂t(k)n̂t(k)+µ̃t(k)⌊Nt(k)(1−1/β)⌋

n̂t(k)+⌊Nt(k)(1−1/β)⌋
18: Increase n̂t(k) by ⌊Nt(k)(1− 1/β)⌋
19: Update the communication arm set Ct(α) via (3) based on tunable confidence bounds
20: end for

group and individual regrets, and communication cost increase linearly as the number of arms K
increases, which signifies the linear dependence of regret on the number of arms.

(a) Different # agents M (K = 20) (b) Different # arms K (M = 25)

Figure 4: The performance of UCB-TCOM with different number of agents and arms

F APPLY TCOM TO OTHER BANDITS ALGORITHMS

In this section, we illustrate how TCOM can be applied to other bandits algorithms. Specifically, we
devise the TS-TCOM algorithm based on the Thompson sampling (TS) algorithm (Agrawal & Goyal,
2012) and the AAE-TCOM algorithm based on the active arm elimination (AAE) algorithm (Even-Dar
et al., 2006).

For the ease of presenting TS-TCOM, we restrict our reward distributions to Bernoulli (same as our
simulation setting) and assume the prior of all arms’ rewards are Beta(1, 1). Then, at time t, the
arm k’s reward posterior distribution is Beta(n̂t(k)µ̂t(k) + 1, n̂t(k) + 1), where the n̂t(k) and µ̂t(k)
are the global pulling times and the global reward mean estimate of arm k respectively. We present
TS-TCOM in Algorithm 2. The only difference between TS-TCOM and UCB-TCOM is in Line 4-5.

In AAE-TCOM, agents need to construct a global candidate arm set Dt which is defined as follows,

Dt := {k ∈ [K] : UCBt(k) ⩾ LCBt(k
′), ∀k′ ∈ [K]}, (13)
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Algorithm 3 The AAE-TCOM Algorithm (for each agent)

1: Input: the communication arm set parameter α and buffering ratio β
2: Initialization: n̂t(k) = 0, Nt(k) = 0, µ̂t(k) = 0, τt(k) = 0
3: for each decision round t do
4: Update candidate arm set Dt via (13)
5: Pull arm At with the smallest global observation times n̂t(k) among arms in Dt

6: Observe arm At’s reward Xt(At)
7: if At ∈ Ct(α) then
8: Increase Nt(At) by 1
9: Update this phase’s empirical mean µ̃t(At)

10: end if
11: if Nt(At) ⩾ ⌈βNτt(At)(At)⌉ then
12: Broadcast the message (µ̃t(At), Nt(At), At)
13: τt(At)← t
14: end if
15: end for
16: for each newly received message (µ̃t(k), Nt(k), k) from the past decision round do
17: Update the empirical mean µ̂t(k)← µ̂t(k)n̂t(k)+µ̃t(k)⌊Nt(k)(1−1/β)⌋

n̂t(k)+⌊Nt(k)(1−1/β)⌋
18: Increase n̂t(k) by ⌊Nt(k)(1− 1/β)⌋
19: Update the communication arm set Ct(α) via (3) based on tunable confidence bounds
20: end for

(a) Group regret (b) Individual regret (c) Communications

Figure 5: UCB-TCOM vs. AAE-TCOM, TS-TCOM

where UCBt(k) := µ̂t(k) +
√

2 log t/n̂t(k) is the same as UCB-TCOM, and LCBt(k) := µ̂t(k) −√
2 log t/n̂t(k). We note that since both µ̂t(k) and n̂t(k) are global, all agents’ candidate arm set

are the same. Then, at each time slot t, agents pull the arm with smallest observation times among all
arms in the candidate arm set, i.e., argmink∈Dt

n̂t(k). We present AAE-TCOM in Algorithm 3. The
difference between AAE-TCOM and UCB-TCOM is also in Line 4-5.

In Figure 5, we report the performance comparison between UCB-TCOM, TS-TCOM, and AAE-TCOM.
The simulations are conducted under the default setting in §5. In Figure 5a and 5b, the AAE-TCOM
algorithm has the worse regret performance than UCB-TCOM, and UCB-TCOM is worse than TS-TCOM.
This matches the folklore in bandits that the empirical performance of TS is better than that of UCB,
and UCB is better than AAE. Comparing the individual regret in Figure 5b to the group regret
in Figure 5a shows that the AAE-TCOM and TS-TCOM algorithms have good individual regret
performance. Figure 5c shows that these three algorithms need the similar communication times,
which validates the communication efficiency of TS-TCOM and AAE-TCOM.

We believe that the TS-TCOM and AAE-TCOM algorithms (like UCB-TCOM) also enjoy the
O(log(log T )) communication times and near-optimal group and individual regrets. However, this
requires new analysis, especially for the Thompson sampling case, because its Bayesian approach
is very different from the method utilized in UCB and TS-TCOM needs to validate the symmetric
learning structure. Studying both new algorithms’ theoretical performance is an interesting future
work.
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G EXTENSION OF TCOM TO CMA2B WITH COMMUNICATION WITH DELAYS
AND COMMUNICATION OVER A GRAPH

In this section, we extend the basic CMA2B model in §2 to allow deterministic communication
delays and also from that the agents can broadcast to any others to the case that agents residing on a
network can only communicate with their neighbors (i.e., cannot broadcast). In the communication
network model, we also allow agents to passing its received messages to other neighbors, i.e., allow
message-passing. We show that UCB-TCOM (with minor changes) still enjoys the near-optimal group
and individual regret upper bounds as in Theorem 1 with only constant additional cost (independent
of T ). We also note that the communication times results in Theorem 2 still hold because its proofs
are not influenced by these extensions.

G.1 DETERMINISTIC DELAY

Denote d ∈ N+ as the deterministic delay of agents’ message broadcasts. The deterministic delay
can also be relaxed to random delay but with the d as the delay upper bound. Algorithmically, the
global UCB utilized for selecting arms to pull should be re-defined to those observations that have
been broadcast d time slots before. Because only these reward observations have been received by all
agents even with the communication delay and thus agents utilize the same observations to make
decisions.
Theorem 3. When the communication arm set parameter α > 1 and buffering-ratio β > 1, given all
delays of communication is no greater than d, UCB-TCOM attains a near-optimal group regret upper
bound in terms of number of decision rounds T , arms K, and agents M , or formally,

E[RT(A)] ⩽
∑
k>1

8β log T

∆k
+MK

2α2 − 1

α2 − 1
+ dM

∑
k>1

∆k

and UCB-TCOM also attains a near-optimal individual regret upper bound, or formally,

E[Rind
T (A)] ⩽

∑
k>1

8β log T

M∆k
+K

2α2 − 1

α2 − 1
+ d

∑
k>1

∆k.

Proof of Theorem 3. The proof procedure of Theorem 1 still applies to Theorem 3. The only change
is that the inequality (9) should be updated as follows,∑

i∈[M ]

N i
t (k)

(a)

⩽
∑
i∈[M ]

(βN i
τ i
t (k)

(k) + d) ⩽ β
∑
i∈[M ]

Nτt(k)(k) + dM
(b)

⩽
8β log T

∆2
k

+ dM,

where inequality (a) is because the counter Nt(k) is at most β times greater than its value at the last
broadcast time slot plus the delay d, and inequality (b) is because

∑
i∈[M ] Nτt(k)(k) is total global

observations of arm k at time slot t which is less than 8∆−2
k log T by Lemma 3.

With the rest proof the same as Theorem 1’s, UCB-TCOM’s group regret is upper bounded as follows:

E[RT(A)] ⩽
∑
k>1

8β log T

∆k
+ dM

∑
k>1

∆k +MK
2α2 − 1

α2 − 1
.

As the symmetry of UCB-TCOM still holds, the individual regret upper bound immediately follows,

E[Rind
T (A)] ⩽

∑
k>1

8β log T

M∆k
+ d

∑
k>1

∆k +K
2α2 − 1

α2 − 1
.

G.2 COMMUNICATION TOPOLOGY: PEER-TO-PEER AND MESSAGE PASSING COMMUNICATION

We assume the communication network is a connected graph, i.e., there exists a path between any
two nodes, and the diameter of the graph is D. In the message-passing protocol (following Dubey
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et al. (2020)’s model), agents i ∈ [M ] communication via messages (i, t, µ̃i
t(A

i
t), N

i
t (A

i
t), A

i
t). This

message is sent to its neighbors in the graph and then is forwarded to by any agents when receives it
to their neighbors until the time slot t +D. Under this protocol, the broadcast message will final
reach to any agents with a delay at most D. In algorithmic aspect, the TCOM algorithm still works
with minor modifications:

1. Change the Line 11 in Algorithm 1 from broadcast to communication to neighbors;
2. Add a line after Line 11 that an agent should also send all its received messages with time

index t′ < t+D to neighbors on the graph;
3. Line 15 should be changed to receive all messages that have not been received before (i.e.,

with unique i, t prefix in the message).

With the above modifications in UCB-TCOM, the algorithm solves a problem equivalent to a CMA2B
with communication delay D on a complete graph. Therefore, based on Theorem 3, one obtains the
following corollary to bound the group and individual regrets of the modified UCB-TCOM algorithm.
Corollary 4. When the communication arm set parameter α > 1 and buffering-ratio β > 1, given
all agents residing on a network with diameter D, UCB-TCOM attains a near-optimal group regret
upper bound in terms of number of decision rounds T , arms K, and agents M , or formally,

E[RT(A)] ⩽
∑
k>1

8β log T

∆k
+MK

2α2 − 1

α2 − 1
+DM

∑
k>1

∆k

and UCB-TCOM also attains a near-optimal individual regret upper bound, or formally,

E[Rind
T (A)] ⩽

∑
k>1

8β log T

M∆k
+K

2α2 − 1

α2 − 1
+D

∑
k>1

∆k.
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