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Abstract

Deep classifier neural networks enter the terminal phase of training (TPT) when training
error reaches zero and tend to exhibit intriguing Neural Collapse (NC) properties. Neural
collapse essentially represents a state at which the within-class variability of final hidden
layer outputs is infinitesimally small and their class means form a simplex equiangular tight
frame. This simplifies the last layer behaviour to that of a nearest-class center decision rule.
Despite the simplicity of this state, the dynamics and implications of reaching it are yet to
be fully understood. In this work, we review the principles which aid in modelling neural
collapse, followed by the implications of this state on generalization and transfer learning
capabilities of neural networks. Finally, we conclude by discussing potential avenues and
directions for future research.

1 Introduction

With unprecedented growth in the size of neural networks to billions and trillions of parameters, their
capabilities seem to be limitless in the modern era (Liu et al., 2019; Brown et al., 2020; Thoppilan et al.,
2022; Chowdhery et al., 2022; Yu et al., 2022; Zhai et al., 2022). Yet, their generalization capabilities continue
to evade our understanding of deep learning techniques based on model complexity (Hu et al., 2021). One
can aim to reason about these overparameterized networks by tracking and analysing the feature learning
process over time, or by understanding simplified theoretical models. Although the theoretical foundations
(Goodfellow et al., 2016; He & Tao, 2020) are being steadily improved, the role of novel empirical analysis
is of paramount importance to speed up the process. In our work, we take a principled approach to review
and analyse one such intriguing empirical phenomenon called “Neural Collapse” (Papyan et al., 2020). NC
essentially defines four inter-related characteristics of the final and penultimate layers in deep classifier neural
networks when trained beyond zero classification error (see figure 1):

NC1: Collapse of variability: For data samples belonging to the same class, their final hidden layer (i.e the
penultimate layer) features concentrate around their class mean. Thus, the variability of intra-class features
during training is lost as they collapse to a point.

NC2: Preference towards a simplex equiangular tight frame: The class means of the penultimate layer
features tend to form a simplex equiangular tight frame (simplex ETF). A simplex ETF is a symmetric
structure whose vertices lie on a hyper-sphere, are linearly separable and are placed at the maximum possible
distance from each other.

NC3: Self-dual alignment: The columns of the last layer linear classifier matrix also form a simplex ETF in
their dual vector space and converge to the simplex ETF (up to rescaling) of the penultimate layer features.

NC4: Choose the nearest class mean: When a test point is to be classified, the last-layer classifier essentially
acts as a nearest (train)-class mean decision rule w.r.t penultimate layer features.
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Figure 1: Evolution of penultimate layer outputs of a VGG13 neural network when trained on the CIFAR10
dataset with 3 randomly selected classes. The green balls represent the coordinates of a simplex ETF, red
ball-and-sticks represent the final layer classifier, blue ball-and-sticks represent the class means and the small
blue balls represent the last hidden layer (penultimate layer) activations. Image credit: Papyan et al. (2020)

Intuitively, these properties portray the tendency of the network to maximally separate class features while
minimizing the separation within them. The benefits of such properties extend not only to generalization
but to transfer learning and adversarial robustness as well (Liu et al., 2016; Wen et al., 2016; Sokolić et al.,
2017; Liu et al., 2017; Cisse et al., 2017; Snell et al., 2017; Elsayed et al., 2018; Wang et al., 2018; Soudry
et al., 2018; Jiang et al., 2018; Deng et al., 2019; Sun et al., 2020). On a related note, prior work by Giryes
et al. (2016) showed that even in a shallow neural network with Gaussian random weights, the angle between
intra-class features shrinks faster than the inter-class features. The variability collapse (NC1) property is an
extreme version of this shrinking process when the network is deep enough. From a theoretical standpoint,
by leveraging scattering transform based convolution operators as an alternative to trainable filters, the
fundamental results of group invariant scattering by Mallat (2012); Bruna & Mallat (2013); Sifre & Mallat
(2013) show the tendency of the network to reduce the scattering variance as the number of layers increases.

Furthermore, constraining the network weights to tight-frames has been shown to improve the adversarial
robustness and training efficiency of the networks. For instance, Cisse et al. (2017) enforce the hidden layer
weights of wide residual networks (Wide ResNet) (Zagoruyko & Komodakis, 2016) to be parseval tight frames
(Kovačević et al., 2008) and show improved robustness to adversarial examples on CIFAR10 and SVHN data
sets. Unlike the parseval networks which enforce structural constraints on all the hidden layers, the line of
work by Pernici et al. (2019); Pernici et al.; 2021) fixes the final layer classifier as a regular polytope i.e, either
a simplex, cube or an orthoplex, (Coxeter, 1973) and observe similar performance to learnable baselines on
image classification tasks. Additionally, there seems to be an interesting, yet unexplored connection between
the low-rank nature of these symmetric structures (such as a simplex ETF) and the ‘rank-collapse’ phase
of training. Martin & Mahoney (2021) describe the ‘rank-collapse’ phase as a state of over-regularization
during training, where the empirical spectral density of the weight matrices is dominated by a few large
eigenvalues. On a similar note, the spectrum of the hessian of training loss was also shown to exhibit outlier
eigenvalues which inherently represent the class information in image classification settings (Sagun et al.,
2016; 2017; Wu et al., 2017; Papyan, 2018; Ghorbani et al., 2019).

The motivation behind reaching this collapsed state during TPT seems counter-intuitive as one would prefer
to avoid over-fitting on the training data. However, recent observations based on “double-descent” by Belkin
et al. (2019; 2020) and the benign effects of interpolating on the training data with over-parameterized
networks (Ma et al., 2018; Belkin et al., 2018; Allen-Zhu et al., 2019; Feldman, 2020; Papyan et al., 2020;
Bartlett et al., 2020; Zhang et al., 2021a) provide sufficient justification for further experimentation and
analysis in this regime. To this end, prior work by Cohen et al. (2018) showed that the behaviour of k-
Nearest Neighbor(k-NN) and deep classifier neural networks tend to be similar upon memorization. In fact,
their experiments on the KL divergence between k-NN and Wide ResNet classifier outputs provide evidence
for the emergence of NC4 property.

The differentiating factor of NC from prior efforts lies in the fact that canonical deep classifier networks nat-
urally exhibit all four properties without explicit structural constraints during training. Questions pertaining
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to theoretical explanations, modelling techniques and implications of NC naturally arise in this situation
and we aim to address them in this work. The rest of the paper is organized as follows: section 2 details the
preliminaries and setup that we use throughout the paper, section 3 introduces the modelling principles and
reviews community efforts in a bottom-up fashion, section 4 presents the implications of NC on generalization
and transfer learning, followed by takeaways and potential research directions in section 5.

1.1 Contributions

• We review and analyse NC modelling techniques based on the principles of unconstrained features
and local elasticity, which is currently missing in the literature.

• We review and analyse the implications of NC on the generalization and transfer learning capa-
bilities of deep classifier neural networks. Through these discussions, we hope to clarify certain
misconceptions regarding NC on test data and provide directions for future efforts.

2 Preliminaries

In this paper, the term “network” refers to a neural network. Architectural details such as depth, presence of
convolution layers, residual connections etc are omitted for brevity and will be mentioned as per the context.
Since NC analysis using recurrent neural networks or its variants is absent in the literature, we omit such
assumptions in this paper. We primarily focus on classification settings and employ a common notation
scheme for all modelling techniques.

2.1 Data

Let’s consider a data set X ∈ Rd×N , for which P is assumed to be the underlying probability distribution.
X is associated with labels [K] = {1, . . . , K}, where K ∈ N. The label function ξ : Rd → {e1, . . . , eK} ∈ RK

is a P measurable ground-truth provider that maps an input to its respective one-hot vector. Formally, by
representing the ith data point of the dataset X as xi ∈ Rd, ∀i ∈ [N ] and with a slight abuse of notation, the
ith data point of the kth class as xk

i ∈ Rd, the function call ξ(xk
i ) outputs the ground truth vector ek. For

notational convenience, we overload ξ(xk
i ) as ξxk

i
. We define a set Ck = ξ−1({ek}) as the set of data points

belonging to class k ∈ [K], with PCk
as their class conditional distribution. When indexing on the data is

not necessary, we simply use x ∈ Rd to represent a random data point. We represent the size of each class
as nk, k ∈ [K] where

∑K
k=1 nk = N . For the majority of this paper, we assume a balanced class setting and

consider n = N/K for convenience. Additionally, ∥.∥F denotes the frobenius norm, ∥(r, s)∥2
E = ∥r∥2

F +∥s∥2
F ,

⟨.⟩ denotes the inner product, tr{.} denotes the trace of a matrix and † denotes the pseudo-inverse.

2.2 Setup

A classifier network hL : Rd → RK belonging to a function class H can be formulated as a composition
of L − 1 layers followed by a linear function. Formally, hL = aL ◦ fL−1 = aL ◦ gL−1 ◦ gL−2 · · · ◦ g1 where
gi : Rmi−1 → Rmi , ∀i ∈ [L − 1] are parametric layers of the network, fL−1 = gL−1 ◦ gL−2 · · · ◦ g1 is the
function obtained by composing L − 1 layers and aL : RmL−1 → RmL is the final layer linear function. For
better readability, the number of layers L is implicitly assumed and the sub-scripts are dropped. This gives
us h := hL, a := aL, f := fL−1 and simplifies m0 = d, mL = K. We also consider m := mL−1 for the
majority of the analysis that follows. As we will be dealing with data and label matrices, we formulate the
matrix representation of a network as:

H = AF + b (1)

Where H ∈ RK×N is the network output matrix, F ∈ Rm×N is the penultimate layer feature matrix,
A ∈ RK×m is the final layer weight matrix and b ∈ RK is the final layer bias vector. We represent the
outputs of h : Rd → RK over xi ∈ Rd, i ∈ [N ] as columns of H ∈ RK×N , outputs of f : Rd → Rm over
xi ∈ Rd, i ∈ [N ] as columns of F ∈ Rm×N , and treat the one-hot label vectors {ξxi

}i∈[N ] as the columns
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of label matrix Y . For simplicity, we consider the ordered versions of A = [a1, a2, · · · , aK ]⊤ ∈ RK×m with
rows ak ∈ Rm, ∀k ∈ [K], F = [f1,1, · · · , f1,n, · · · , fK,n] ∈ Rm×N with penultimate layer features for xk

i given
by the column fk,i ∈ Rm, H = [h1,1, · · · , h1,n, · · · , hK,n] ∈ RK×N with network output for xk

i given by
the column hk,i ∈ Rm and consider label matrix Y as a Kronecker product matrix Y = IK ⊗ 1⊤

n ∈ RK×N .
To measure the performance of network h, we use a generic loss function ℓ : RK × RK → [0, ∞) and define
population risk functional R : H → [0, ∞) as:

R(h) =
∫
Rd

ℓ(h(x), ξx)P(dx) (2)

The population risk can be approximated by the empirical risk on data X, leading to the ERM problem:

arg min
h∈H

R̂(h) = 1
N

N∑
i=1

ℓ(h(xi), ξxi
) = 1

Kn

K∑
k=1

n∑
i=1

ℓ(Afk,i + b, ek) (3)

Most of the community efforts that we review in the following sections focus on the theoretical aspects of
modelling neural collapse. From an empirical viewpoint, we observed that most of them employ the SGD
optimizer for the ERM problem to validate the theory. The experimental details will be provided as per
context but the reader can assume SGD with momentum as the default choice of optimizer unless specified
otherwise. An extended set of notations for following the theory is available in Appendix.A.1.

2.3 Neural collapse

When a sufficiently expressive network h is trained on X to minimize R̂(h), a zero training error point is
reached when the classification error reaches 0. The network enters TPT when trained beyond this point
and exhibits intriguing structural properties as follows:

NC1: Collapse of Variability: For all classes k ∈ [K] and data points i ∈ [n] within a class, the penultimate
layer features fk,i collapse to their class means µk = 1

n

∑n
i=1 fk,i. We consider the within class covariance

ΣW = 1
Kn

∑K
k=1

∑n
i=1
(
(fk,i −µk)(fk,i −µk)⊤) ∈ Rm×m, global mean µG = 1

K

∑K
k=1 µk ∈ Rm and between

class covariance ΣB = 1
K

∑K
k=1

(
(µk − µG)(µk − µG)⊤) ∈ Rm×m to measure the variability collapse.

Empirical metric:
N C1 := 1

K
tr{ΣW Σ†

B} (4)

NC2: Preference towards a simplex ETF: The re-centered class means µk−µG, ∀k ∈ [K] are equidistant from
each other: ∥µk − µG∥2 = ∥µk′ − µG∥2 for every k, k′ ∈ [K] and by concatenating µk−µG

∥µk−µG∥2
∈ Rm, ∀k ∈ [K]

to form a matrix M ∈ RK×m, M now represents a simplex ETF such that:

MM⊤ = K

K − 1IK − 1
K − 11K1⊤

K (5)

cos(µk − µG, µk′ − µG) = ⟨µk − µG, µk′ − µG⟩
∥µk − µG∥2 ∥µk′ − µG∥2

= − 1
K − 1 , ∀k, k′ ∈ [K], k ̸= k′ (6)

Empirical metric:

N C2 :=
∥∥∥∥ MM⊤

∥MM⊤∥F

− 1√
K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥
F

(7)

NC3: Self-dual alignment: The last-layer classifier A is in alignment with the simplex ETF of M (up to
rescaling) as:

A

∥A∥F

= M

∥M∥F
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Empirical metric:

N C3 :=
∥∥∥∥ AM⊤

∥AM⊤∥F

− 1√
K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥
F

(8)

NC4: Choose the nearest class mean: for any new test point xtest, the classification result is determined
by: arg mink∈[K] ∥f(xtest) − µk∥2. During training, one can track this property on X as a sanity check.

Empirical metric:

N C4 := 1
Kn

K∑
k=1

n∑
i=1

I(arg max
c∈[K]

(⟨ac, fk,i⟩ + bc) ̸= arg min
c∈[K]

∥fk,i − µc∥2) (9)

Where I : {True, False} → {0, 1} is the indicator function and bc ∈ R is the cth element of the bias vector.
The metric essentially represents the fraction of misclassified data points using the nearest class center (NCC)
rule on the penultimate layer features. Based on this setup, we consider a network to be collapsed if the
empirical metrics N C1-4 → 0. Without loss of generality, when we consider a network to exhibit NC1, it
means that empirical measure N C1 → 0. The same holds for NC2-4. In the following sections, we review
recent efforts in understanding the desirability, dynamics of occurrence and implications of these properties.

3 A Principled Modelling Approach

In this section, we focus on the principles of “Unconstrained Features” and “Local Elasticity” to model NC.
The “Unconstrained Features Model (UFM)” analyzes the ideal values of F , A, b for perfect classification
and the training dynamics that lead to them. This line of analysis assumes that F is freely optimizable
and disconnected from the previous layers, including input. To the contrary, the “Local Elasticity (LE)”
based model aims to capture the gradual separation of class features using stochastic differential equations
(SDE) and similarity kernels. Additionally, this approach imitates the training dynamics of the network in
a data-dependent fashion. Although the principle of unconstrained features has been the relatively popular
approach, the earlier efforts by Wojtowytsch et al. (2020); Lu & Steinerberger (2020); Ergen & Pilanci (2021)
did not explicitly use the UFM terminology. On the other hand, Mixon et al. (2020) and Fang et al. (2021)
formalized and termed this approach as UFM and “(N-)Layer-Peeled Model (LPM)” respectively1. Thus, to
avoid confusion due to terminology in the presentation of ideas, we stick to UFM for the rest of the paper.

3.1 Networks with “Unconstrained Features”

The unconstrained features model builds on the expressivity assumption of function class H and attempts
to explain NC w.r.t ideal geometries and training dynamics. We consider a network to be expressive enough
for X if it achieves perfect classification on X. Under this assumption, the penultimate layer is disconnected
from the previous layers and treated as free optimization variables during training (see figure 2). Since the
last two layers of canonical classifier networks are fully connected/dense, we assume this to be the case for
UFM analysis as well. To this end, we study the properties of (F , A, b) under various settings pertaining
to: loss functions, regularization, and normalization to derive insights on their collapse properties.

3.1.1 Role of cross-entropy loss without regularization

A note on desirability: Prior to analysing the NC properties, we start by briefly reviewing the work of
Wojtowytsch et al. (2020) which analyses the ideal outputs of h that lead to minimal risk. By collapsing the
network outputs to a single point based on their class, and repeating it for all classes k ∈ [K], we get:

zk := 1
n

∫
Ck

h(x′)P(dx′) (10)

1Here N indicates the layer features (from the end of the network) which can be freely optimized. Additionally, note that
the UFM and its extended version by Tirer & Bruna (2022) can now be considered as the 1-LPM and 2-LPM variants.
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Figure 2: From left to right, we illustrate UFMs corresponding to an expressive Convolutional Neural
Network (CNN) and MLP respectively. The shaded regions in both plots pertain to the first L − 2 layers
which are ‘peeled away’ from the last two layers. Here Θ = (F , A, b) indicates the trainable parameters and
∇ΘR̂ indicates the gradients of the empirical risk w.r.t Θ that are backpropagated. Under the expressivity
assumption, observe that the nature of the first L−2 layers is impertinent and allows the UFM to encompass
a variety of network architectures for analysis.

Without loss of generality, if we consider a network h̄ ∈ H to exist such that h̄(x) = zk, ∀x ∈ Ck, then
Wojtowytsch et al. (2020) showed that R(h̄) ≤ R(h) when ℓ = ℓCE :

ℓCE(h(x), ξx) = − log
(

exp(⟨h(x), ξx⟩)∑K
j=1 exp(⟨h(x), ej⟩)

)
(11)

Thus, indicating the desirability of variance collapse for the network outputs (refer Appendix.A.2 for further
details on this result). Note that for sufficiently expressive function classes which are scale-invariant, if
⟨h(x), ξx⟩ > max

ei ̸=ξx,∀i∈[K]
⟨h(x), ei⟩ (i.e in TPT), then limλ→∞ R(λh) = 0. Out of these infinitely many

possible solutions, one can assume norm bounded H and focus on minimizer results whose structure can be
analysed. Based on this assumption, let’s consider H to be an expressive class of functions from the input
space to the Euclidean ball of radius R and center at the origin: BR(0) ∈ RK . The empirical risk can now
be minimized over the class means when variance collapse of network outputs occurs. Observe that when:

h∗(xk
i ) = arg min

h(xk
i

)∈BR(b)

(
− log

( exp(⟨h(xk
i ), ek⟩)∑K

j=1 exp(⟨h(xk
i ), ej⟩)

))
(12)

The Lagrange multiplier equations for this minimization problem lead to:

h∗(xk
i ) =

√
K − 1

K
Rek − R√

K(K − 1)

K∑
j ̸=k

ej

Thus, forming a simplex ETF of the collapsed network outputs. Note that the bias b led to a re-centering of
BR and didn’t affect the simplex ETF formation (Wojtowytsch et al., 2020). In a concurrent line of work, Lu
& Steinerberger (2022) showed related results for ℓCE , where the collapsed outputs of the network h satisfy
the angle property given in equation 6 and indicate the desirability of forming a simplex ETF.

The transformation from the penultimate layer to the final layer is affine w.r.t A, b as per equation 1. Now,
by noting that (A · +b)−1(zi) is an m − K dimensional affine subspace of Rm, it is desirable for collapse to
occur in the penultimate layer features when f is lp-norm constrained. This is due to the strictly convex
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nature of lp-norm (1 < p < ∞) which leads to a unique mapping from the collapsed final layer outputs
to collapsed penultimate layer features. See section 4 in Wojtowytsch et al. (2020) for detailed proofs and
additional analysis of this result.

Gradient Flow: With the desirability of collapse being established w.r.t population risk, a question that
naturally arises is whether the dynamics of the optimizers in ERM settings tend towards such states, especially
without the norm-constraints which leads to non-unique minimizers? The work by Ji et al. (2021) addresses
this question by analysing the gradient flow2 of the empirical risk with a cross-entropy loss under the zero
bias assumption. We present the key results from their analysis of the gradient flow and its relations with
a max-margin separation problem below. Firstly, observe that the empirical risk R̂ with ℓ = ℓCE leads to
ERM with R̂CE as:

min
F ,A

R̂CE(F , A) = − 1
N

K∑
k=1

n∑
i=1

log
(

exp(a⊤
k fk,i)∑K

j=1 exp(a⊤
j fk,i)

)
(13)

This leads to the gradient flow formulation as follows:

dF (t)
dt

= −∂R̂CE(F (t), A(t))
∂F

dA(t)
dt

= −∂R̂CE(F (t), A(t))
∂A

(14)

Where F (t), A(t) are indexed by time t of the gradient flow. Formally, by defining the margin of a data
point xk

i and the associated penultimate layer feature fk,i as: qk,i(F , A) := a⊤
k fk,i − maxj ̸=k a⊤

j fk,i, then
reaching TPT indicates that qk,i(F , A) ≥ 0, ∀k ∈ [K], i ∈ [n], i.e, the features can be perfectly separated. In
such a setting, Ji et al. (2021) proved that, if (F (t), A(t)) evolve as per the gradient flow of equation 14, then
any limit point of the form: {(F̂ (t), Â(t) := ( F (t)√

∥A(t)∥2
F +∥F (t)∥2

F

, A(t)√
∥A(t)∥2

F +∥F (t)∥2
F

)} is along the direction of
an (ϵ, δ)-approximate Karush-Kuhn-Tucker (KKT) (Gordon & Tibshirani, 2012) point with ϵ, δ → 0, of the
following minimum-norm separation problem:

min
A,F

1
2 ∥A∥2

F + 1
2 ∥F ∥2

F

s.t a⊤
k fk,i − a⊤

j fk,i ≥ 1, k ̸= j ∈ [K], i ∈ [n]
(15)

Now, by considering qmin(F , A) := min
k∈[K],i∈[n]

qk,i(F , A) as the margin of data set X, which is bounded by

qmin(F , A) ≤ ∥A∥2
F +∥F ∥2

F

2(K−1)
√

n
, Ji et al. (2021) show that the maximum separation is attained when ∥A∥F =

∥F ∥F and (F , A) satisfy the NC properties. Finally, to show that the approximate KKT points are indeed
the desired global minima, it is sufficient to show that the separation problem of equation 15 satisfies the
Mangasarian-Fromovitz Constraint Qualification (MFCQ) (Mangasarian & Fromovitz, 1967), refer Dutta
et al. (2013) and theorem 3.1, 3.2 in Ji et al. (2021) for detailed proofs. Although this line of analysis focuses
on NC properties of the max-margin solutions, similar proof sketches were employed by Nacson et al. (2019);
Lyu & Li (2019) to study the implicit bias of gradient descent in homogeneous neural networks.

Loss Landscape: The non-convex nature of the risk in equation 13 can result in KKT points which are
not global minimizers. If (F , A) don’t satisfy NC properties or ∥A∥F ̸= ∥F ∥F , then a direction exists in the
tangent space of (F , A) that leads to lower R̂CE values. Formally, by defining the tangent space of (F , A) as
{∆F ∈ Rm×N , ∆A ∈ RK×m : tr{F ⊤∆F }+tr{A⊤∆A} = 0}, then R̂CE(F +δ∆F , A+δ∆A) < R̂CE(F , A),
for a constant δmax > 0 and ∀0 < δ < δmax. This result by Ji et al. (2021) was proved using second-order
analysis of the empirical risk in equation 13 (without the 1/N scaling factor) and analysing the eigenvector
corresponding to a negative eigenvalue of the resulting Riemannian hessian matrix.

2Gradient flow can be treated as gradient descent with infinitesimal step sizes (Chizat & Bach, 2018; Du et al., 2018).
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These theoretical observations pertaining to gradient flow were empirically validated by Ji et al. (2021) using
ResNet18 and VGG13 networks to classify CIFAR10, MNIST, KMNIST and FashionMNIST data sets. SGD
with momentum 0.3, and learning rate 0.01 was employed as the optimizer. Thus, the implicit regularization
due to cross-entropy seems to be sufficient for converging to NC solutions.

3.1.2 Role of (mean) squared error without regularization

Following the cross-entropy case, let’s consider the squared error ℓ = ℓSE and the ERM formulated as:

min
F ,A,b

R̂SE(F , A, b) = 1
2
∥∥AF + b1⊤

N − Y
∥∥2

F
(16)

Where 1N ∈ RN is the all ones vector. Unlike cross-entropy, it is convenient to deal with matrices instead
of individual feature vectors for analysing the squared error setting. We consider the squared error in our
analysis due to its empirical effectiveness on a variety of NLP and vision-based classification tasks (Janocha
& Czarnecki, 2017; Hui & Belkin, 2020; Demirkaya et al., 2020).

Gradient Flow: In this section, we review the NC properties of squared error minimizers based on the
gradient flow analysis presented in a recent effort by Mixon et al. (2020). With near 0 initialization of
(F , A, b), Mixon et al. (2020) observed the following ‘Strong Neural Collapse (SNC)’ properties of the
minimizers as follows:

SNC1 : AA⊤ =
√

n(IK − 1
K

1K1⊤
K)

SNC2 : F = 1√
n

(A ⊗ 1n)⊤

SNC3 : b = 1
K

1K

(17)

Where n = N/K (as per setup). These properties are called ‘strong’ as the standard NC properties can be
derived from them. For instance, observe from SNC2 that µk = 1√

n
ak satisfies NC1. Similarly, from SNC1

we can deduce that:

AA⊤1K =
√

n(IK − 1
K

1K1⊤
K)1K =

√
n(1K − 1K) = 0 =⇒ 1⊤

KAA⊤1K =
∥∥A⊤1K

∥∥2
2 = 0

This result leads to:

∥µk − µG∥2
2 =

∥∥∥∥∥∥ 1√
n

ak − 1
K

K∑
j=1

1√
n

aj

∥∥∥∥∥∥
2

2

=
∥∥∥∥ 1√

n
ak − 1√

nK
A⊤1K

∥∥∥∥2

2
=
∥∥∥∥ 1√

n
ak

∥∥∥∥2

2

Where
∥∥∥ 1√

n
ak

∥∥∥2

2
is the kth diagonal element of 1

n AA⊤ and is equal to 1√
n

(1 − 1
K ). Thus, when A is

normalized, we can see from SNC1 that:〈
ak

∥ak∥
,

al

∥al∥

〉
= (AA⊤)kl√

n(1 − 1
K )

=
√

n(IK − 1
K 1K1⊤

K)kl√
n(1 − 1

K )
=
(

K

K − 1IK − 1
K − 11K1⊤

K

)
kl

Where (AA⊤)kl indicates the (k, l)th element of AA⊤, resulting in the formation of simplex ETF by A. Now,
to understand how these properties were obtained, note that the gradient flow equation with Θ = (F , A, b)
and the respective derivatives is given by:

Θ′(t) = −∇R̂SE(Θ(t))

∇F R̂SE(Θ(t)) = A⊤(AF + b1⊤
N − Y )

∇AR̂SE(Θ(t)) = (AF + b1⊤
N − Y )F ⊤

∇bR̂SE(Θ(t)) = (AF + b1⊤
N − Y )1N

(18)
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The optimal value of b can be partially decoupled from F , A when they are assumed to be small. Thus, the
resultant ODE of the parameters:

F ′(t) = −A(t)⊤(b(t)1⊤
N − Y ), A′(t) = −(b(t)1⊤

N − Y )F (t)⊤, b′(t) = −(b(t)1⊤
N − Y )1N

with initial conditions F (0) = F0, A(0) = A0, b(0) = 0 has a solution satisfying:∥∥∥(F (t), A(t)) − e
√

nt · ΠT (F0, A0)
∥∥∥

E
≤ e

1
K

√
n · ∥ΠT ⊥(F0, A0)∥E , b(t) =

(
1 − e−Nt

K

)
1K , ∀t ≥ 0 (19)

Where ∥(F , A)∥2
E = ∥F ∥2

F + ∥A∥2
F as per setup and ΠT is the orthogonal projection onto the subspace:

T :=
{

(F , A) : F = 1√
n

(A ⊗ 1n)⊤, 1⊤
KA = 0

}

For a detailed proof, see theorem 2 in Mixon et al. (2020). This result implies that, during the initial stages
of the gradient flow, a large component of F0, A0 resides in subspace T while b tends towards the span{1K}.
Thus, the initial trajectory of Θ, lies along the subspace S given by:

S =
{

(F , A, b) : F = 1√
n

(A ⊗ 1n)⊤, 1⊤
KA = 0, b ∈ span{1K}

}
(20)

To this end, when Θ lies along S, the risk modifies into:

R̂SE(F , A, b) = 1
2
∥∥AF + b1⊤

N − Y
∥∥2

F
= 1

2

∥∥∥∥A( 1√
n

(A ⊗ 1n)⊤) + b1⊤
N − Y

∥∥∥∥2

F

= 1
2

∥∥∥∥A( 1√
n

(A ⊗ 1n)⊤) + b1⊤
N − (IK − 1

K
1K1⊤

K + 1
K

1K1⊤
K) ⊗ 1⊤

n

∥∥∥∥2

F

= 1
2

∥∥∥∥( 1√
n

AA⊤ − (IK − 1
K

1K1⊤
K)
)

⊗ 1⊤
n + (b − 1

K
1K)1⊤

N

∥∥∥∥2

F

= 1
2

∥∥∥∥AA⊤ −
√

n(IK − 1
K

1K1⊤
K)
∥∥∥∥2

F

+ N

2

∥∥∥∥b − 1
K

1K

∥∥∥∥2

F

Thus, showing that (F , A, b) satisfying SNC properties are indeed the minimizers of R̂SE . The last equality
is valid since the two terms are orthogonal when Θ lies along S. The empirical setup to verify this behaviour
is simple. For some choice of K, N, m, one can randomly initialize A0, F0 and set b = 0, Y = IK ⊗ 1⊤

n .
This setup is sufficient for performing gradient descent w.r.t R̂SE and tracking the NC properties of weights
and features across steps/iterations. Such an empirical analysis by Mixon et al. (2020) showed that SNC
properties are highly sensitive to initialization of (F0, A0) i.e, by defining the SNC errors as:

δSNC1 =
∥∥AA⊤ −

√
n(IK − 1

K 1K1⊤
K)
∥∥

F
, δSNC2 =

∥∥∥F − 1√
n

(A ⊗ 1n)⊤
∥∥∥

F
, δSNC3 =

∥∥b − 1
K 1K

∥∥
F

,

Figure 3 illustrates SNC errors that are orders of magnitude higher as initialization moves away from 0.
Furthermore, Mixon et al. (2020) also confirm that, as ∥F0∥F , ∥A0∥F tend towards 0, the entire trajectory
of gradient descent tends to stay along S. The theoretical analysis of the full trajectory behaviour, especially
pertaining to the implicit bias of gradient descent towards NC solutions is still lacking and open for research.
We show in Appendix.A.3 that the mean squared error can be theoretically analysed in the same fashion, and
show resemblance to the above results.

Loss Landscape: As the UFM can be considered as a linear neural network with optimizable inputs, the
existing work by Baldi & Hornik (1989); Saxe et al. (2013); Kawaguchi (2016); Freeman & Bruna (2016) is
relevant to our study. Based on the key results of these efforts, it can be shown under mild assumptions that
the landscape of squared error loss for linear networks contains critical points which are either global minima

9
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Figure 3: (Left-right) Visualization of δSNC1, δSNC2, δSNC3 with initialization ∥A0∥F = ϵ, ∥F0∥F = ϵ, b0 =
0, K = 3, N = 9, m = 15 vs gradient descent steps on R̂SE . Image credit: Mixon et al. (2020)

or strict saddles with negative curvature. Although the landscape is benign, note that we always need some
randomness to escape these saddle points. Due to this reason, the vanilla gradient descent which doesn’t
include randomness in its updates may get stuck in one, which we believe is a possible reason for large SNC
errors in figure 3. Similar observations were made by Ji et al. (2021) for R̂CE and gradient descent.

3.1.3 Role of cross-entropy loss with regularization

Our analysis till now has been limited to simplified risk formulations. In this section, we move closer to
practical settings by incorporating weight and feature regularizations.

Lower bound: As the empirical risk is dependent on F , A, b, the regularized version of ERM with R̂CE

can be formulated as follows:

min
F ,A,b

R̂CEr(F , A, b) = 1
N

K∑
k=1

n∑
i=1

ℓCE(Afk,i + b, ek) + λA

2 ∥A∥2
F + λF

2 ∥F ∥2
F + λb

2 ∥b∥2
2 (21)

Where λA, λF , λb > 0 are penalty terms. To this end, Zhu et al. (2021) lower bound R̂CEr(F , A, b) by:

R̂CEr(F , A, b) = 1
N

K∑
k=1

n∑
i=1

ℓCE(Afk,i + b, ek) + λA

2 ∥A∥2
F + λF

2 ∥F ∥2
F + λb

2 ∥b∥2
2

≥ −
∥A∥2

F

(1 + c1)(K − 1)

√
λA

nλF
+ c2 + λA ∥A∥2

F

(22)

Where c1 > 0, c2 = 1
c1+1 log((1 + c1)(K − 1)) + c1

1+c1
log( 1+c1

c1
) and equality holds true when F , A satisfy NC

properties and ∥A∥ is finite. Zhu et al. (2021)) arrive at this result by expanding the cross-entropy formu-
lation, identifying this lower bound and showing that it can be achieved when F , A satisfy NC properties.

Loss landscape: To analyse the loss landscape, we summarize the approach of Zhu et al. (2021), which
leverages the presence of regularizing terms to form a connection between the non-convex problem in equa-
tion 21 and a convex program as follows:

min
Z,b

R̃CEr(Z, b) := 1
N

K∑
k=1

n∑
i=1

ℓCE(Zk,i + b, ek) +
√

λAλF ∥Z∥∗ + λb

2 ∥b∥2
2 (23)

Where Z = AF ∈ RK×N and ∥.∥∗ denotes the nuclear norm. The validity of this connection can be
understood from the following result by Zhu et al. (2021) (with similar results in Srebro (2004); Haeffele &
Vidal (2015)) given as:

min
AF =Z

λA

2 ∥A∥2
F + λF

2 ∥F ∥2
F =

√
λAλF min

AF =Z

√
λA

2
√

λF

(
∥A∥2

F + λF

λA
∥F ∥2

F

)
=
√

λAλF ∥Z∥∗ (24)
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By exploiting this connection with the convex program, Zhu et al. (2021) find the global minimizers of
R̃CEr in equation 23 and show that they provide a lower bound for R̂CEr(F , A, b). Formally, if (Z∗, b∗)
is the global minimizer of R̃CEr(Z, b), then R̃CEr(Z∗, b∗) ≤ R̂CEr(F , A, b), and this optimal state can be
transferred to the non-convex R̂CEr(F , A, b). For the sake of conciseness, we directly state the result of
lemma C.4 in Zhu et al. (2021) that, any critical point (F , A, b) of equation 21 satisfying:

∥∥∥∥∥∇Z=AF

(
1
N

K∑
k=1

n∑
i=1

ℓCE(Afk,i + b, ek)
)∥∥∥∥∥

2

≤
√

λAλF (25)

is a global minimizer of R̃CEr with Z = AF . To this end, Zhu et al. (2021) classify the critical points C of
R̂CEr(F , A, b) into two disjoint subsets as follows:

C =
{

F , A, b : ∇AR̂CEr(F , A, b) = ∇F R̂CEr(F , A, b) = ∇bR̂CEr(F , A, b) = 0
}

C1 := C ∩
{

F , A, b :

∥∥∥∥∥∇Z=AF

(
1
N

K∑
k=1

n∑
i=1

ℓCE(Afk,i + b, ek)
)∥∥∥∥∥

2

≤
√

λAλF

}

C2 := C ∩
{

F , A, b :

∥∥∥∥∥∇Z=AF

(
1
N

K∑
k=1

n∑
i=1

ℓCE(Afk,i + b, ek)
)∥∥∥∥∥

2

>
√

λAλF

} (26)

Note that points in C1 already satisfy the global minima conditions based on equation 25. For C2, a stronger
assumption of m > K is needed to create a negative curvature direction for the hessian of R̂CEr as follows:

∆ =
(

−
(

λA

λF

)1/4
wv⊤,

(
λA

λF

)1/4
uw⊤, 0

)
(27)

where u ∈ RK , v ∈ RN are the left and right singular vectors corresponding to the largest singular value of
∇2

Z=AF ( 1
N

∑K
k=1

∑n
i=1 ℓCE(Afk,i + b, ek)) and w ∈ Rm is a non-zero vector such that Aw = 0. Observe

that m > K is necessary to obtain a w in the null-space of A (see theorem 3.2 in Zhu et al. (2021)). Thus,
stochastic optimizers can escape these strict saddle points along ∆ and reach global minima that satisfy NC.

3.1.4 Role of (mean) squared error with regularization

Lower bound: similar to cross-entropy, we define the ERM for MSE with regularization as follows:

min
F ,A,b

R̂MSEr(F , A, b) = 1
2N

∥∥AF + b1⊤
N − Y

∥∥2
F

+ λA

2 ∥A∥2
F + λF

2 ∥F ∥2
F + λb

2 ∥b∥2
2 (28)

Where λA, λF , λb > 0 are penalty terms. In a series of recent efforts, Han et al. (2021) analysed
R̂MSEr(F , A, b) when λF = 0 (with bias b concatenated to A) and Tirer & Bruna (2022) analysed the
‘bias-free’(b = 0), ‘unregularized-bias’(λb = 0) cases. For simplicity, we consider the b = 0 case and present
the lower bound given by Tirer & Bruna (2022) based on Jensen’s inequality and strict convexity of ∥.∥2

F as:

R̂MSEr(F , A) = 1
2N

∥AF − Y ∥2
F + λA

2 ∥A∥2
F + λF

2 ∥F ∥2
F

= 1
2Kn

K∑
k=1

n

n

n∑
i=1

∥Afk,i − ek∥2
F + λA

2 ∥A∥2
F + λF

2

K∑
k=1

n

n

n∑
i=1

∥fk,i∥2
2

≥ 1
2Kn

K∑
k=1

n

∥∥∥∥∥A
1
n

n∑
i=1

fk,i − ek

∥∥∥∥∥
2

F

+ λA

2 ∥A∥2
F + λF

2

K∑
k=1

n

∥∥∥∥∥ 1
n

n∑
i=1

fk,i

∥∥∥∥∥
2

2

(29)
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Where the final equality holds when NC1 is satisfied, i.e fk,1 = · · · = fk,n, leading to F = F ⊗ 1⊤
n .

Here F ∈ Rm×K is a matrix with class feature means fk = 1
n

∑n
i=1 fk,i, ∀k ∈ [K] as columns. Under the

assumption of balanced classes, Tirer & Bruna (2022) consider ∇F R̂MSEr(F , A) = ∇AR̂MSEr(F , A) = 0
and obtain a closed form representation of A = F

⊤(F F
⊤ +KλAIm)−1. This formulation simplifies R̂MSEr

to solely depend on F , with the minimizer characterized by a flat spectrum: F
⊤

F ∝ IK . The tight-frame
obtained in this analysis is not a simplex ETF but an orthogonal frame. However, by centering the columns
of F around their mean fG := 1

K

∑K
k=1 fk, we obtain the matrix: F − fG1⊤

K which is indeed a simplex
ETF. Note that fk, fG are essentially µk, µG (as per setup). Additionally, Tirer & Bruna (2022) showed
that when b ̸= 0, λb = 0, the closed form of bias for each class is b∗

k = 1
K − a⊤

k µG. Thus, the ideal bias turns
out to be the global mean subtractor that was necessary for F to form a simplex ETF. A similar observation
was made by Han et al. (2021) in their bias concatenated setup.

Loss landscape: Although the results by Saxe et al. (2013); Kawaguchi (2016); Freeman & Bruna (2016)
have been influential, they don’t deal with regularized settings for squared error. To this end, it is essential
to characterize the deviations of critical points from global minima or strict saddles when regularization is
introduced. By considering λF = λb = 0 and small values of λA → 0+, Taghvaei et al. (2017) models this
regularized ERM problem for linear networks as an optimal control problem (Farotimi et al., 1991) and show
that not all local minimizers are global minimizers in the presence of regularization (see Mehta et al. (2021)
for an empirical analysis). However, a second-order analysis of this regularized landscape is yet to be fully
studied, especially the nature of critical points and their NC properties.

3.1.5 Does normalization facilitate collapse?

Gradient flow perspective: In the gradient flow analysis of the squared error without regularization,
recall that it was necessary for (F , A) to lie along the sub-space S (in equation 20) to exhibit NC. In the
regularized squared error setting with b = 0, λF = 0, Han et al. (2021) draw similar yet rigorous conclusions
by decomposing the mean squared error into terms that depend on the least-squares optimal value of A (which
is a function of F ), and the ones that capture the deviation of A from this optimal value. The terms which
come under the former category are of particular interest. Formally, when A is set to the least squares optimal
value ALS , let F̃ = F −µG1⊤

N ∈ Rm×N , M̃ = [µ1−µG, · · · , µK −µG] ∈ Rm×K and Σ
F̃

= 1
N F̃ F̃ ⊤ ∈ Rm×m,

then Han et al. (2021) show that the parameter space of {(ALS , F̃ ) : ALS = 1
K M̃⊤Σ−1

F̃
} holds the following

property for any symmetric full rank matrix D ∈ Rm×m:

1
K

(DM̃)⊤[(DF̃ )(DF̃ )⊤]−1
DF̃ = 1

K
M̃⊤Σ−1

F̃
F̃ (30)

The proof is a straightforward expansion of the transpose and inverse terms. This result implies that ALSF̃
is invariant to the transformation F̃ → DF̃ . Han et al. (2021) exploit the freedom to choose D and set
D = Σ−1/2

W , resulting in ‘renormalized’ features DF̃ (similar to ‘whitened’ features in statistical terms). By
incorporating this continual renormalization (N = DF̃ ) into the gradient flow, they obtain:

d

dt
N = ΠTN I

(
∇N R̂MSEr−LS(N)

)
(31)

Where R̂MSEr−LS(N) is the empirical risk pertaining to the parameter space of (ALS , F̃ ) and ΠTN I is
a projection operator onto the tangent space of the manifold I, of all identity-covariance features (refer
Absil et al. (2009) for additional information on matrix manifolds and optimization). Informally, one can
think of this operator as applying ‘renormalization’ at every step of the flow. Han et al. (2021) show in
this setting that as t → ∞, the non-zero singular values of Σ−1/2

W M̃ tend to infinity while approaching
equality. In simpler terms, the signal dominates the ‘noise’ (where ‘noise’ pertains to the deviation terms of
A from ALS during the gradient flow) and the limiting matrix of (Σ−1/2

W M̃)⊤ ∈ RK×m is a simplex ETF.
Thus, demonstrating the role of such renormalization steps in exhibiting NC. In addition to these intriguing
theoretical properties, the benefits of such ‘whitening’ techniques have been widely studied and are typical in
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modern-day deep learning settings (LeCun et al., 2012; Wiesler et al., 2014; Ioffe & Szegedy, 2015; Salimans
& Kingma, 2016; Ulyanov et al., 2016; Ba et al., 2016; Wu & He, 2018). To further demonstrate the effects
of normalization, we complement the UFM analysis with the results of Ergen & Pilanci (2021) for ReLU
networks with batch-normalization and some minor additional calculations of our own in Appendix.A.4

3.1.6 Discussion

The simplicity of UFM allowed us to leverage the rich literature on matrix factorization, and optimization
theory and identify the ideal configurations for F , A, b. In this section, we discuss additional properties and
limitations of this modelling technique.

Data independence: In data-independent models such as the UFM, we are mainly concerned with F , A, b
and Y . As a consequence, under the balanced class assumption, networks can exhibit NC after sufficiently
long training on completely random (X, Y ). This interpolating behaviour leading to NC properties was
observed by Zhu et al. (2021) in canonical networks such as ResNet18 and MLP when trained on a randomly
labelled CIFAR10 dataset (see figure 4). Thus, if a network has sufficient capacity to memorize the training
data and reach TPT, we can expect its penultimate layer features and final layer weights to satisfy NC prop-
erties. To the contrary, experiments by Papyan et al. (2020) (see figure 5) show varying magnitude/extent of
variance collapse depending on the complexity of data. For smaller data sets such as CIFAR10, a ResNet18
network attains a N C1 value of ≈ 10−2, while for ImageNet, a ResNet152 network attains a N C1 value of
≈ 1. Thus, even after memorizing the training data, empirical results show deviation from the ideal UFM
behaviour for larger, complex data sets. To understand the behaviour in figure 5, one needs to incorporate
a notion of data complexity into the UFM, which is not straightforward as it goes against the premise on
which the UFM is based. Instead, one can attempt to analyse the role of a large number of classes K on the
NC properties while enjoying the simplifications of UFM.

Figure 4: N C metrics of MLP and ResNet18 on a randomly labelled CIFAR10 dataset using cross-entropy
loss. The width of the network is maintained across layers and varied across experiments. The first row
corresponds to a 4-layer MLP, optimized using SGD with a learning rate 0.01 and weight decay 10−4. The
second row corresponds to ResNet18, optimized using SGD with momentum 0.9, weight decay 5 × 10−4,
initial learning rate 0.05, decreased by a factor of 10 every 40 epochs. Image credit: Zhu et al. (2021).

Implicit label dependence: Unlike cross-entropy and (mean) squared error losses that explicitly require Y ,
contrastive losses such as Noise Contrastive Estimation based InfoNCE (Oord et al., 2018), Jensen-Shannon
Divergence (JSD) (Lin, 1991) etc are independent of it. In the absence of labels, such losses aim to maximize
the feature similarity of closely related training samples (for instance, of samples which inherently belong
to the same class) while maximizing the dissimilarity with unrelated ones. A recent surge in unsupervised
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Figure 5: Plots of N C1 (variability collapse) for combinations of data sets and canonical networks. VGG11,
ResNet18 and DenseNet40 were chosen for MNIST and SVHN, VGG11, ResNet18 and DenseNet250 for
FashionMNIST, VGG13, ResNet18, and DenseNet40 for CIFAR10, VGG13, ResNet50, and DenseNet250
for CIFAR100, VGG13, ResNet50, and DenseNet250 for STL10, VGG19, ResNet152, and DenseNet201
for ImageNet. The networks were trained using SGD with momentum 0.9 and weight decay of 10−4 for
ImageNet and 5 × 10−4 for other data sets. The learning rates were chosen by sweeping over logarithmically
spaced values between 10−4 and 0.25 and the value resulting in the best test error was chosen. During
the parameter search, the learning rates were reduced by a factor of 10 after 100, 200 epochs for ImageNet
(total=300 epochs) and 175, 265 epochs for the rest (total=350 epochs). Image credit: Papyan et al. (2020).

representation learning can be attributed to the effectiveness of such objectives (Saunshi et al., 2019; Chen
et al., 2020; Baevski et al., 2020; Jaiswal et al., 2020; Jing & Tian, 2020). However, with an unknown number
of inherent classes, when F has a rank m < K, it is impossible for F to form a K-simplex. Nevertheless,
the supervised contrastive learning (Khosla et al., 2020) settings provide interesting insights on NC where
the label information is implicitly used in the objective:

min
F

R̂CL = 1
N

K∑
k=1

n∑
i=1

− 1
n

n∑
j=1

log
( exp(f⊤

k,ifk,j/τ)∑K
k′=1

∑n
i′=1 exp(f⊤

k,ifk′,i′/τ)

)
(32)

Where τ > 0 is known as the ‘temperature’ parameter, which controls the hardness of negative samples
(Wang & Liu, 2021). Owing to its similarity with R̂CE , Fang et al. (2021) obtained a lower bound for R̂CL

as follows:

1
N

K∑
k=1

n∑
i=1

− 1
n

n∑
j=1

log
( exp(f⊤

k,ifk,j/τ)∑K
k′=1

∑n
i′=1 exp(f⊤

k,ifk′,i′/τ)

)
≥ − c2KΩF

(c1 + c2)(K − 1)τ + c3 + log n (33)

Where c1 = exp(
√

ΩAΩF ), c2 = (K − 1) exp(−
√

ΩAΩF ), c3 = c1
(c1+c2) log( c1+c2

c1
) + c2

(c1+c2) log( (c1+c2)(K−1)
c2

),
1
K

∑K
k=1 ∥ak∥2

2 ≤ ΩA, 1
Kn

∑K
k=1

∑n
i=1 ∥fk,i∥2

2 ≤ ΩF . Similar to our previous observations, equality is at-
tained when variance collapse occurs and the columns formed by class means in optimal F resembles a
simplex ETF (Fang et al., 2021). As a takeaway, observe that even without explicit label matrix Y , a loss
function which promotes variability collapse and maximum separation leads to neural collapse based solutions.

Class imbalance: Assuming an equal number of training examples for all the classes has been critical for
analysis till now. Having n1 = n2 = · · · , nK = n = N/K gives a symmetric structure to Y in the form of
Y = IK ⊗ 1⊤

n which results in a relatively easier derivation of variance collapse and simplex ETF. When the
classes are imbalanced, the analysis is not straightforward. By considering ℓ to be any convex loss function,
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the ERM objective with norm constraints can be given by:

min
F ,A

1
N

K∑
k=1

nk∑
i=1

ℓ(Afk,i, ek) , s.t
1
K

K∑
k=1

∥ak∥2
2 ≤ ΩA,

1
K

K∑
k=1

1
nk

nk∑
i=1

∥fk,i∥2
2 ≤ ΩF (34)

Without loss of generality, one can consider the cross-entropy loss and analyze the ERM by performing
a convex relaxation into a semi-definite program. Fang et al. (2021) analyse such a convex program by
considering a subset of CIFAR10 dataset with Kmaj majority classes such that n1 = n2 · · · = nKmaj

= nmaj

and Kmin minority classes such that nKmaj+1 = · · · = nK = nmin. By defining a class imbalance ratio of rib =
nmaj/nmin > 1, the authors empirically observed that when rib ≥ t0, for some threshold t0 > 1, the average
angle between the minority class classifiers becomes zero, i.e, the rows of A pertaining to these minority
classes collapse to a single vector. The authors term this phenomenon ‘Minority Collapse’. Additionally, they
observed that the threshold t0 tends to get smaller (larger) with smaller (larger) ΩA, ΩF , Kmin. Intuitively,
when the constraints ΩA, ΩF are tighter, observe from equation 34 that majority classes (Kmaj) dominate
the objective and there is a little ‘budget’ in the gradient updates for data in Kmin minority classes. In a
formal sense, let’s consider the gradient of cross-entropy loss w.r.t ak, k ∈ [K]:

∂ℓCE

∂ak
=

nk∑
i=1

fk,i

(
exp(a⊤

k fk,i)∑K
k′=1 exp(a⊤

k′fk,i)
− 1
)

︸ ︷︷ ︸
“pull”

+
K∑

k′ ̸=k

nk′∑
j=1

fk′,j
exp(a⊤

k fk′,j)∑K
k′′=1 exp(a⊤

k′′fk′,j)︸ ︷︷ ︸
“push”

(35)

The “pull” term represents the tendency of ak to move towards features of the same class while the “push”
term represents the tendency to move away from them (see Yang et al. (2022) for analysis based on this
formulation). In the case of minority classes, the “push” term dominates the gradient, potentially leading
to minority collapse. The manifestation of minority collapse was even observed in ResNet18 networks on
CIFAR10, FashionMNIST data sets for sufficiently large rib. In practical settings, one way of avoiding this
state is to oversample data from the minority classes or under-sample from the majority class to decrease
rib (Drummond et al., 2003; Zhou & Liu, 2005; He & Garcia, 2009; Huang et al., 2016; Buda et al., 2018;
Johnson & Khoshgoftaar, 2019; Cui et al., 2019; Fang et al., 2021). Alternatively, when we are aware of
the imbalance, fixing the last layer classifier to the desired simplex ETF seems like a clever hack to prevent
minority collapse. Yang et al. (2022) confirm this intuition and achieve improved performance even in
fine-grained image classification tasks.

Extensibility: Extending the UFM with multiple non-linear layers quickly turns a tractable model into an
involved one. Thus, a good starting point in this direction is to add a single linear layer and analyse the
model properties. To this end, consider the following ERM based on MSE with regularization and an extra
linear layer as proposed by Tirer & Bruna (2022):

min
F ,A1,A2

R̂MSE−ext = 1
2N

∥A2A1F − Y ∥2
F + λA2

2 ∥A2∥2
F + λA1

2 ∥A1∥2
F + λF

2 ∥F ∥2
F (36)

Where F ∈ Rm×N are the unconstrained features, A1 ∈ Rm×m, A2 ∈ RK×m are the linear layer weights
and λA2 , λA1 , λF > 0 are penalty terms. Tirer & Bruna (2022) lower bound this risk by following the same
sketch as equation 29:

1
2N

∥A2A1F − Y ∥2
F + λA2

2 ∥A2∥2
F + λA1

2 ∥A1∥2
F + λF

2 ∥F ∥2
F

= 1
2Kn

K∑
k=1

n

n

n∑
i=1

∥A2A1fk,i − ek∥2
F + λA2

2 ∥A2∥2
F + λA1

2 ∥A1∥2
F + λF

2

K∑
k=1

n

n

n∑
i=1

∥fk,i∥2
2

≥ 1
2Kn

K∑
k=1

n

∥∥∥∥∥A2A1
1
n

n∑
i=1

fk,i − ek

∥∥∥∥∥
2

F

+ λA2

2 ∥A2∥2
F + λA1

2 ∥A1∥2
F + λF

2

K∑
k=1

n

∥∥∥∥∥ 1
n

n∑
i=1

fk,i

∥∥∥∥∥
2

2

(37)
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Where the final equality holds when within-class variability in F is 0, i.e, F = F ⊗ 1⊤
n , F ∈ Rm×K (similar

to the R̂MSEr case). The authors connect this three-factor minimization problem with two-factor objectives
based on the result in equation 24 and split the risk into two sub-problems as follows:

R̂MSE−ext1 = min
A2,Z

A1F

1
2K

∥∥∥A2ZA1F − IK

∥∥∥2

F
+ λA2

2 ∥A2∥2
F +

√
nλA1λF

∥∥∥ZA1F

∥∥∥
∗

R̂MSE−ext2 = min
ZA2A1 ,F

1
2K

∥∥ZA2A1F − IK

∥∥2
F

+ nλF

2
∥∥F
∥∥2

F
+
√

λA2λA1 ∥ZA2A1∥∗

(38)

Where sub-problems R̂MSE−ext1, R̂MSE−ext2 have a close resemblance to the one layer UFM risk formula-
tion. If (F ∗, A∗

1, A∗
2) is the global minimizer of R̂MSE−ext such that F ∗ = F ⊗ 1⊤

n , then:

(A∗
2A∗

1)F ∝ F
⊤

F ∝ (A∗
2A∗

1)(A∗
2A∗

1)⊤ ∝ IK (39)

Thus, F collapses to an orthogonal frame (to a simplex ETF if we recenter around the column means) and
is aligned with (A∗

2A∗
1)⊤. Similar results can be shown for A∗

2 and A∗
1F ∗ (see theorem 4.1 in Tirer & Bruna

(2022) for proofs). Now, by converting the linear layer A1F into σ(A1F ), where σ represents a non-linear
activation (such as ReLU), we are presented with a non-linear UFM model. Factorization of A2σ(A1F ) into
2 factors is possible in the case of R̂MSE−ext1 defined above but not for R̂MSE−ext2. Tirer & Bruna (2022)
analyse the former by considering ReLU activations as a non-negativity constraint on A1F and proceed with
the 2-factor problem. Refer to theorem 4.2 and Appendix.E in Tirer & Bruna (2022) for further details.

3.2 Models of “Locally Elastic” Networks

Theoretically modelling the training dynamics in neural networks has been a long-standing challenge and
is mostly tackled in the shallow settings (Jacot et al., 2018; Arora et al., 2019; Goldt et al., 2019; Yang,
2019; Hu et al., 2020) or in linear networks (Saxe et al., 2013; Kawaguchi, 2016; Ji & Telgarsky, 2018; Arora
et al., 2018; Lampinen & Ganguli, 2018). Nevertheless, with an understanding of the ‘desired’ structures
that a sufficiently expressive network should achieve, we transition to a modelling technique which attempts
to imitate the feature separation dynamics in canonical deep classifier neural networks and demonstrates
neural collapse as a by-product.

3.2.1 Primer

Local Elasticity (LE): Introduced in the work of He & Su (2019), local elasticity is a phenomenon which
describes classifiers whose prediction of a training sample xk

i , i ∈ [n], k ∈ [K], is insignificantly affected
by SGD updates pertaining to gradients of dissimilar samples xk′

i , i ∈ [n], k′ ̸= k ∈ [K]. Intuitively, local
elasticity represents the influence that training samples have on each other during training (see figure 6).
Analysis along these lines can be traced back to the seminal work on influence functions and curves by
Hampel (1974), followed by efforts in developing robust statistical models (Reid & Crépeau, 1985; Weisberg,
2005; Huber, 2011; Kalbfleisch & Prentice, 2011; Koh & Liang, 2017). While influence functions have been
widely adopted in the machine learning community for studying interpretable learning techniques (Adadi &
Berrada, 2018; Molnar, 2020), we restrict our focus to locally elastic networks and their training dynamics.
He & Su (2019) present a preliminary analysis of this idea in image classification settings and a geometric
interpretation using the Neural Tangent Kernel (NTK).

Stochastic Differential Equations (SDE): Stochastic differential equations are statistical variants of
classical differential equations and can be traced back to the works of Itô (1951); Van Kampen (1976);
Kloeden & Platen (1992). Their presence can be found in a wide range of important settings such as filtering
(Welch et al., 1995), boundary value problems (including the influential ‘Dirichlet problem’), the Fokker-
Plank equation (Risken, 1996), the Black-Scholes model (Karoui et al., 1998), Ornstein-Uhlenbeck processes
(Ikeda & Watanabe, 2014) and many more. From a deep learning perspective, since we are modelling the
impact of SGD updates on the gradual separability of features, the idea is to represent these changes as a
stochastic differential equation (Li et al., 2021; Zhang et al., 2021b) and study its implications.
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Figure 6: Illustration of the local elasticity phenomenon in neural networks with a toy example. At step
s = 1, the image of a football is passed to the network, resulting in its penultimate layer representation f1.
In the next step s = 2, the image of a tree is passed, which is dissimilar to the football and results in a small
feature drift in the learnt representation of a football. Finally, when an image of a basketball is passed to
the network at step s = 3, the drift from f2 to f3 will be larger than f1 to f2 due to visual similarity.

3.2.2 Feature separation via Locally elastic stochastic differential equations (LE-SDE)

Intuition: To provide an intuitive understanding of this model, we take a bottom-up approach to present the
ideas. Recall that the penultimate layer features for the ith data point of class k are given by fk,i ∈ Rm. We
extend the notation to denote this feature at iteration/step s of training as fs

k,i. Without loss of generality,
by randomly sampling xk′

i′ , i′ ∼ Unif([n]), k′ ∼ Unif([K]) at iteration s, our goal is to model the impact of
training a network with xk′

i′ on fk,i. A reasonable formulation can be given by:

fs
k,i − fs−1

k,i = Esfs−1
k′,i′ + ϕs−1(xk

i ) (40)

This indicates that the ‘drift’ in features (fs
k,i − fs−1

k,i ) is proportional to fs−1
k′,i′ , scaled by some impact term

Es, plus data dependent noise ϕs−1(xk
i )3.

LE-SDE Model: The work of Zhang et al. (2021b) formally captures this intuitive idea in their LE-SDE
model. Since back-propagation iteratively updates the features, Zhang et al. (2021b) capture the impact of
learning rate as well as transformations of fs−1

k′,i′ on fs
k,i. Thus, the formal and refined version of ‘drift’ is

presented by the authors as:

fs
k,i − fs−1

k,i = η(Es)kk′(T s)kk′fs−1
k′,i′ + √

ηϕs−1(xk
i ) (41)

Where η is the step size, ϕs−1(xk
i ) is the Gaussian noise associated with the data point xk

i (independent
of it’s feature fs−1

k,i ). Es ∈ RK×K is the local elasticity impact matrix at iteration s and (Es)kk′ ∈ R is
the (k, k′)th entry of Es which represents the LE impact that xk′

i′ has on xk
i . Similarly (T s)kk′ ∈ Rm×m

3Observe that this formulation allows us to track the separability of features in the pre-TPT phases as well.
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is the transformation matrix on features at iteration s. Next, by considering f̃s
k to be a random sample

from class k (can be informally thought of as a representative sample as well), the authors represent F̃ s =
[f̃s

1 | · · · |f̃s
K ] ∈ RKm to be a concatenation of per-class representative features and F

s = [µs
1| · · · |µs

K ] ∈ RKm

as the concatenation of per-class feature means at iteration s. This assumption and setup follows from NC1
where f̃s

k eventually collapses to µs
k. Thus, a single representative data point for each class is amenable for

analysis. Now, the continuous version of the SDE in equation 41 with t = sη, η → 0 can be represented as:

dF̃ t = BtF
t
dt + (Σt)1/2dW t (42)

This is the LE-SDE formulation where W t represents a standard Wiener process ∈ RKm, Σt ∈ RKm×Km

is the covariance matrix of representative features and Bt ∈ RKm×Km is a K × K block matrix with m × m
sized blocks, which models the combined effect of LE impact Et and transformations T t. The (k, k′)th block
of Bt is (Et)kk′(T t)kk′/K, ∀k, k′ ∈ [K]. To account for randomness involved in selecting the representative
samples F̃ t, the class means F

t satisfy:

d

dt
(F t) = BtF

t (43)

This is obtained by taking expectation on both sides of equation 42 and noting that the Wiener process can
be characterized as a martingale with W0 = 0. This implies E[W t] = 0, resulting in equation 43. Zhang
et al. (2021b) call it the LE-ODE. With this setup in place, the authors assume the diagonal entries of Et

to be αt and the off-diagonal entries to be βt. Here αt, βt ∈ R pertain to “intra-class” and “inter-class” LE
impacts respectively. Now, as t → ∞, when νt = min{αt − βt, αt + (K − 1)βt} > 0, and T is a positive
semi-definite matrix with positive diagonal entries, then Theorem 3.1 in Zhang et al. (2021b) states that:

• The features are separable with a probability p → 1 when νt = ω(1/t)

• The features are asymptotically pairwise separable with a probability p → 0 when νt = o(1/t) and
n → ∞ at an arbitrarily slow rate.

Here, pairwise separation at any time t implies, for 1 ≤ k < k′ ≤ K, there exists a direction vt
k,k′ such that:

min
i

⟨vt
k,k′ , f t

k,i⟩ > max
j

⟨vt
k,k′ , f t

k′,j⟩ (44)

Similarly, asymptotically pairwise separable implies:

P
(

min
i

⟨vt
k,k′ , f t

k,i⟩ > max
j

⟨vt
k,k′ , f t

k′,j⟩
)

→ 1 (45)

3.2.3 Neural collapse as a by-product

A powerful yet simplified aspect of this model is the freedom to choose T . This flexibility was exploited
by the authors by setting it as the outer product of residuals djd⊤

j , where residual roughly aligns along
dj = ej − 1

K 1m, ∀j ∈ [K]. Intuitively, these residuals roughly indicate the direction in which f̃j need to be
pushed for perfect classification. Thus, by setting:

(T )ij =
djd⊤

j

∥dj∥2
2

∈ Rm×m, where dj = ej − 1
K

1m ∈ Rm, j ∈ [K] (46)

the transformation T always aligns the changes in f̃j along dj for all i ∈ [K]. Formally, by considering the
“intra-class” and “inter-class” LE impacts αt, βt to be constants α, β and B = 1

K (E ⊗ IK) ⊙ T , where ⊙
represents the Hadamard product, (E ⊗ IK) ⊙ T has eigen values {α − β, α + β

K−1 , 0} with multiplicities
{1, K(K − 1), K − 1}} respectively. Additionally, by assuming m = K for satisfying the psd property of the
transformation matrix and using these quantities to solve the LE-ODE in equation 43, the authors get:
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F
t = c0 + τ1de

1
K (At−Bt) +

(K−1∑
l=1

τ2lul

)
e

1
K (At+ 1

K−1 Bt) (47)

Where d and ul ∈ RK2
, l ∈ [K − 1] are the eigen vectors of (E ⊗ IK) ⊙ T with eigen values α − β, α + β

K−1
respectively, c0 ∈ RK2

, τ1, τ2l ∈ R, l ∈ [K − 1] are constants and At =
∫ t

0 αdτ, Bt =
∫ t

0 βdτ . With the
assumption of local elasticity (νt > 0), Bt < 0, as t → ∞, F

t will eventually align towards v. Since d is
a concatenation of residuals dj , j ∈ [K] from equation 46, the matrix formed by dj ’s as columns forms a
simplex ETF (refer Appendix.C.2.4 in Zhang et al. (2021b) for details of the proof). Thus, after a certain
point in time t ≥ t0 of evaluating the LE-ODE, the class means µt

k, ∀k ∈ [K] which were evolving through
the concatenated matrix F

t, tend to a simplex ETF as t → ∞.

3.2.4 Discussion

The LE-SDE/ODE approach implicitly captures the impact of data complexity on the feature separation
dynamics and provides a unique way of modelling feature evolution. Note that the purpose of this modelling
technique is not to approximate the actual non-linear dynamics of deep classifier neural networks, but to
mimic the dynamics of the LE phenomenon during training. The key takeaway here is that by choosing
the LE transformations to be biased towards an orthogonal structure of labels ej , j ∈ [K], neural collapse
is manifested as a by-product. For additional results and experiments pertaining to the study of LE, please
refer to He & Su (2019); Zhang et al. (2021b). As we have already observed the effects of realignment in our
analysis of normalization and UFM, the LE-SDE/ODE model reinforces the role of continuous realignment
towards a maximally separable configuration for facilitating NC. As a follow-up of this observation let’s
consider the Taylor approximation of feature drifts as presented in Zhang et al. (2021b) to better understand
the realignment behaviour. As a first step, assuming that a network is being trained using the cross-entropy
loss, and considering the ‘logits-as-features’ model of Zhang et al. (2021b), observe that the drift in features
can be approximately given by:

fs
k,i − fs−1

k,i ≈ η

[
Gs

k

(
ek′ − σsoftmax(fs−1

k′,i′ )
)]

(48)

Where Gs
k = ∂fs−1

k,i

∂θ

∂fs−1
k′,i′

∂θ

⊤
∈ RK×K is the time dependent gram matrix for class k, trainable parameters θ

and softmax function σsoftmax. Recall that we assumed m = K for the transformation matrix to be psd.
With this approximation, the feature drift D(F̃ t, t) can be defined for all representative features F̃ t when
t = sη, η → 0 as:

D(F̃ t, t) = Gt

([
(e1 − σsoftmax(f̃ t

1))⊤, · · · , (ek − σsoftmax(f̃ t
K))⊤]⊤) (49)

Where Gt ∈ RK2×K2 is the gram matrix of all classes. As the actual dynamics of separation are non-linear,
the LE-SDE attempts to model it by linearizing the drift around the mean value of F

t (see Särkkä & Solin
(2019) for a similar linearization approach) to obtain:

D(F̃ t, t) ≈ D(F t
, t) + ∇

F̃ tD(F t
, t)
(
F̃ t − F

t)
≈ Gt

(
∇

F̃ tD(F t
, t)F̃ t +

[
(e1 − σ(f t

1))⊤, · · · , (ek − σ(f t

K))⊤]⊤ − ∇
F̃ tD(F t

, t)F t︸ ︷︷ ︸
“residue”

)
(50)

Where ∇
F̃ tD(F t

, t) is the Jacobian of the drift of class means w.r.t F̃ t. The “residue” term derived in the
original proof by Zhang et al. (2021b) is an approximation of the one mentioned above and is shown to tend
to 0 around convergence. The negligible residue implies a close resemblance of the class mean drifts by the
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representative feature drifts for all classes. Thus demonstrating the emergence of NC properties under the
effective training assumption. We found that the experimental setup of Zhang et al. (2021b) focuses mainly
on LE behaviour, and analysis pertaining to N C1-4 metrics was lacking. For closure, we mention that, despite
the non-negligible residues and linearization effects of the LE-SDE/ODE model, this approach provided a
faithful approximation of the feature separation dynamics on CIFAR10 and a synthetic GeoMNIST dataset.
Furthermore, if one wishes to track N C1-4 metrics, a batch size of 1 is needed to explicitly track the drift of
each and every feature, making the model susceptible to noise and extremely slow for large scale data sets
such as ImageNet. Furthermore, the complexity of data sets (w.r.t number of classes) might have different
implications on the drift behaviour, leading to unexpected deviations from exhibiting NC as a by-product.

3.3 Retrospect

After a detailed analysis of UFM and LE-SDE modelling techniques, we summarize our observations in
this section. In the work of Lu & Steinerberger (2020); Wojtowytsch et al. (2020), the authors impose
norm constraints on the weights, and features and observe that the simplex ETF configuration leads to
a global minimizer solution for the ERM with cross-entropy loss. Additionally, Wojtowytsch et al. (2020)
analyse two-layer neural networks in the mean-field setting and for non-convex input classes in their paper
to conclude that NC might not be desirable in such cases. Thus, suggesting an inherent difference in the
expressiveness of shallow networks with infinite-width and deep neural networks. In the concurrent work of
Mixon et al. (2020), the authors presented a gradient flow analysis of F , A by employing a linearized ODE.
By identifying an invariant subspace S along which strong neural collapse holds, the authors show that
solutions along S are indeed the minimizers of the ERM with squared error loss. However, the linearization
by partially decoupling F , A is valid in regimes where their norms are small, which is typically not desirable
in practical settings with deep networks suffering from vanishing gradients.

In the following work by Zhu et al. (2021), the authors take a different approach and analyse the loss-
landscape with cross-entropy and regularization. Unlike the work of Ji et al. (2021), which presented an
analysis of the cross-entropy loss and concluded that the implicit regularization of gradient flow is sufficient
for attaining NC solutions, Zhu et al. (2021) emphasizes the benign nature of the regularized landscape which
allows stochastic optimizers to reach global minima and exhibit NC properties. Additionally, by fixing the
last layer classifier of ResNet50 and DenseNet169 as a simplex ETF for classification on ImageNet, Zhu et al.
(2021) report ≈ 10% reduction in the number of trainable parameters with a negligible drop in performance.
For the regularized (mean) squared error setting, the works of Tirer & Bruna (2022) and Han et al. (2021)
present a multifaceted approach to analysing NC. Han et al. (2021) obtain a closed-form solution for A in
terms of F and show that the gradient flow trajectory of normalized features along this ‘central path’ is of
particular importance to the learning dynamics. Their experiments employ canonical deep classifier networks
and datasets to validate the theoretical results and in a sense complement the trajectory analysis of Mixon
et al. (2020) in a more rigorous fashion. The work of Tirer & Bruna (2022) analyses a similar ERM setting
with varying choices pertaining to bias and bias-regularization. Furthermore, Tirer & Bruna (2022) and Han
et al. (2021) draw similar conclusions that the ideal bias value pertains to that of a global mean subtractor
for the penultimate layer features. Additionally, Tirer & Bruna (2022) presented an extended version of
the UFM by adding an extra linear layer. In the absence of non-linearity, they show that NC solutions are
indeed desirable by splitting the 3-factor optimization problem into multiple 2-factor variants. Although
they partially address the non-linear case, a rigorous analysis is still open for research. To this end, the
work of Ergen & Pilanci (2021) analyses this extended variant of the UFM with respect to practical settings
such as ReLU activations and batch-normalization4. Their approach is based on a convex-dual formulation
of the ERM for any convex loss function and highlights the importance of batch-normalization in obtaining
bounded and NC-satisfying optimal solutions.

Unlike the above efforts which rely on a balanced class setting, Fang et al. (2021) explored the implications
of class imbalance on the geometry of minimizers. Their approach relies on the work of Sturm & Zhang
(2003) and relaxes a quadratically constrained quadratic program as a semidefinite program. Their work
highlights the ‘minority collapse’ phenomenon and studies the effects of class imbalance ratio on the features
of minority classes. To this end, the empirical results of Yang et al. (2022) complement the work of Zhu et al.

4We present a simple application of their results in the Appendix.A.4
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Table 1: Unified comparison of modelling techniques (MT) (UFM, LE or a generic analysis) based on
weight/feature constraints or regularization (Reg), loss function ℓ, class distribution constraints (balanced
(B), imbalanced (IB)) for theoretical modelling, the main approach for analysis, the NC properties (NC1-4)
that are derived and finally whether the authors provide the relevant empirical analysis (EA).

MT Reg ℓ nk Approach NC EA

Wojtowytsch et al. (2020) UFM - CE B Global Minimizer 1, 2 -
Lu & Steinerberger (2020) UFM - CE B Global Minimizer 1, 2 -

Ji et al. (2021) UFM - CE B
Gradient Flow

+ KKT
+ Loss Landscape

1, 2, 3 ✓

Zhu et al. (2021) UFM ✓ CE B Global Minimizer
+ Loss Landscape 1, 2, 3 ✓

Fang et al. (2021) UFM ✓ CE,CL B, IB Convex Relaxation
+ Global Minimizer

1, 2, 3
+ MC ✓

Mixon et al. (2020) UFM - SE B
Gradient Flow
at Initialization
+ Linearization

1, 2, 3 ✓

Han et al. (2021) UFM ✓ MSE B Gradient Flow
+ Central Path 1, 2, 3 ✓

Tirer & Bruna (2022) UFM ✓ MSE B Global Minimizer
+ Extended UFM 1, 2, 3 ✓

Poggio & Liao (2019) - ✓ SE B, IB Gradient Flow 1, 2, 3 -

Ergen & Pilanci (2021) - ✓ SE B, IB Convex Dual
+ Whitening 1, 2, 3 -

Zhang et al. (2021b) LE - CE B, IB Dynamics SDE
+ Linearization 1, 2 -

(2021) and highlight the practical relevance of fixing the final layer weights as a simplex ETF to address the
minority collapse issue.

The ‘local elasticity’ based approach is relatively less explored than the UFM and is primarily analyzed in
the work of Zhang et al. (2021b). In the case of UFM, the expressivity of the network was exploited by
considering the penultimate layer features to be freely optimizable. Whereas in the LE-SDE setup, the local
elasticity of the network was expected to result in sufficiently expressive features. Based on this assumption,
Zhang et al. (2021b) showed that similar drift patterns of representative features and class means as t → ∞
lead to NC-based solutions. However, the authors did not present any experimental results to validate these
theoretical results. On a related and non-rigorous note, the LE-SDE formulation can be considered as a
flexible version of the gradient flow of features/logits. Especially, the linearization of the drift in LE-SDE to
model the non-linear dynamics allowed Zhang et al. (2021b) to faithfully approximate the training dynamics
around convergence (see Appendix.B.2 in Zhang et al. (2021b) for additional discussion on the initialization
regime). Such an approach avoids the negligible weight norm assumptions that Mixon et al. (2020) had to
employ for linearization of the gradient flow ODE.

Overall, by employing the UFM approach, one can analyse the optimal closed-form solutions and gradient
flow dynamics of F , A while also leveraging convex relaxation approaches to study the otherwise non-convex
ERM problem. On the other hand, the LE-SDE approach is limited to gradient flow-like analysis and heavily
relies on the linearization of the SDE to derive insights on NC. Although both approaches fail to provide an
accurate picture of the pre-TPT phases of training5, the drift formulation and transformation matrix choices
in the LE-SDE approach present a good starting point to analyse the initial phases of training. Similarly,

5Note that the difficulty primarily lies in accurately modelling the non-linear dynamics of the gradient flow. Thus, a majority
of the efforts aim to faithfully approximate it through linearization.
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in the case of UFM, we believe that incorporating non-linearity and additional layers can be a first step in
deriving new insights for inner layers. Especially, as discussed above, the difficulty in solving this problem lies
in factorizing the matrices after an activation function has been applied. A detailed comparison of various
implementations of these models is presented in Table 16.

4 Implications on Generalization and Transfer Learning

In this section, we primarily focus on the connections between NC and the generalization capabilities of
over-parameterized networks. The modelling techniques discussed in the previous section are limited to the
training regime and explain the desirability/dynamics of attaining NC-based minimizers. To this end, we
shed light on the empirical results by Zhu et al. (2021), which indicate the discrepancy in test performance of
networks exhibiting NC during the training phase (see figure 7). This observation highlights that NC during
training (let’s call it train-collapse for convenience) doesn’t necessarily guarantee good generalization. Also,
one might wonder if train-collapse is just a result of the optimization process and doesn’t necessarily describe
the effectiveness of the learnt features. So, what is an effective approach to capture the impact of train
collapse on test data? If train collapse doesn’t guarantee generalization, how does it affect transfer learning?
We address the questions by analysing recently proposed generalization and transfer learning bounds based
on NC and discuss their validity.

Figure 7: Train vs test performance of ResNet18 on MNIST (first two plots) and CIFAR10 (last two plots)
with SGD, Adam and LBFGS optimizers. SGD with momentum 0.9 and Adam with β1 = 0.9, β2 = 0.999
were initialized with learning rate 0.05, 0.001 respectively and scheduled to decrease by a factor of 10 every
40 epochs. LBFGS was initialized with memory size 10, learning rate 0.1 and employed a Wolfe line-search
strategy for following iterations. Weight decay is commonly set to 5 × 10−4. Image credit: Zhu et al. (2021)

4.1 How to evaluate a test collapse?

NC properties during training are measured when perfect classification has already been achieved by the
network. Since we generally cannot guarantee perfect classification on test data, we consider a relaxation of
perfect classification during testing as proposed by Hui et al. (2022) and define:

Weak test-collapse: This variant of collapse mandates that test samples should collapse to either one of
the K class means: µ1, µ2, . . . , µK , and not necessarily to the mean of the class that it actually belongs to.

Strong test-collapse This variant mandates that test samples should collapse to the ‘correct’ class mean.

Intuitively, the “weak” and “strong” notions of test collapse seem reasonable but they bring forward additional
challenges. Strong test-collapse requires a Bayes-optimal classifier to exist based on the features of a limited
number of samples. This is infeasible and too rigid of a requirement. On the other hand, weak test-collapse
can be satisfied by fixing the penultimate layer of a network as an orthogonal frame representing the one-hot
logits. However, this setup doesn’t guarantee good performance as the network can misclassify all the test
points to the wrong class means and still attain weak test-collapse.

6Although most of the approaches derive NC1-3 properties in their results, it is sufficient as Papyan et al. (2020) showed
that NC1-2 imply NC3-4. Additionally, the experiments column is ticked only if the paper presents NC-related experiments.
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In the empirical studies of Hui et al. (2022), when a ResNet18 was trained and tested on CIFAR10, the
magnitude/extent of weak/strong test collapse was observed to be lesser than the train collapse. Surprisingly,
we observed that the value of weak/strong test collapse of ResNet18 on CIFAR10 in Hui et al. (2022) is on-
par with the train-collapse of ResNet152 on ImageNet. Thus, the notion of NC occurring on test data is
entirely data-dependent and is not convincing enough for understanding generalization.

To the contrary, recent work by Galanti et al. (2021) presents a generalization bound based on the variance
collapse property (NC1) and states that train collapse favours generalization. Formally, by defining a “Class
Distance Normalized Variance (CDNV)” metric over class conditional distributions:

Vf (PCi
,PCj

) =
Varf (PCi

) + Varf (PCj
)

2
∥∥µf (PCi) − µf (PCj )

∥∥2
2

(51)

Where µf (PCi) = Ex∼PCi
[f(x)] and V arf (PCi) = Ex∼PCi

[∥f(x) − µf (PCi)∥
2
2], the generalization bound by

Galanti et al. (2021) states that:

P

(
Vf (PCi

,PCj
) ≤ (Vf (DCi

, DCj
) + B)(1 + A)2

)
≥ 1 − δ (52)

Where B ∝ 1/(
∥∥µf (DCi

) − µf (DCj
)
∥∥2

2), A ∝ 1/(
∥∥µf (PCi

) − µf (PCj
)
∥∥

2), µf (DCi
) is the mean of features

f(xi
j), ∀j ∈ [ni] pertaining to class i7, sampled from the empirical distribution DCi

and DCi
∼ Pni

Ci
denotes

an empirical distribution on class i with ni data points. The bound in equation 52 essentially relates the
population CDNV with empirical CDNV and the generalization gap (details omitted here for brevity). From
the UFM analysis presented in the previous sections, we saw that

∥∥µf (DCi
) − µf (DCj

)
∥∥2 is maximized when

the class means µf (DCi
), i ∈ [K] attain the ideal simplex ETF configuration. Thus, by bounding A, B and

considering sufficiently large values of ni, nj , the generalization gap can be reduced and a train-collapse on
classes i, j i.e, Vf (DCi , DCj ) → 0 would indicate Vf (PCi ,PCj ) → 0 with a high probability.

From a theoretical standpoint, the assumption of large ni, nj is a natural way to approximate a true data
distribution and seldom applies to practical settings (since a large amount of labelled data is usually hard to
obtain). Thus, even though the experimental values of strong/weak test-collapse in Hui et al. (2022) showed
higher values than train-collapse, their analysis conveys the same observation that, with an increase in the
size of train data, the weak/strong test collapse can potentially tend to lower values (although the setting
itself is not a good indicator of typical practical scenarios). Furthermore, from the experimental results
on Mini-ImageNet by Galanti et al. (2021) in figure 8, we observed that for the same number of classes,
the test CDNV is approximately an order of magnitude larger than train CDNV and holds resemblance
with the trend of plots presented by Hui et al. (2022). This observation is of paramount importance as the
absence of thresholds for CDNV or N C1-4, which indicate whether collapse has occurred or not, can lead to
misleading/contradicting results in the community. We believe that better metrics or thresholds can help in
drawing objective conclusions on the occurrence of collapse (train/test) and avoid subjective interpretations
in future efforts. Developing such objective metrics can prove to be tricky, especially when considering the
varying number of classes in data sets, network architectures, optimizers etc and we open this question to
the community for further thought.

4.2 A ‘depth’ based generalization bound

Till now, we observed that networks exhibit NC when they interpolate on train data and such memorization
doesn’t necessarily guarantee good test performance (for instance, based on the choice of optimizers). The
CDNV-based generalization bound fails to explain such discrepancies. In this section, we analyse a gener-
alization bound based on the seemingly obvious NC4 property and shed light on the occurrence of NC in
random label settings. We begin by presenting simplified definitions from Galanti (2022) as follows:

7Think of it as an empirical approximation of µf (PCi
) based on DCi

.
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Figure 8: CDNV on train(left) and test(right) data of a Wide ResNet-28-4 (i.e depth factor of 28, width factor
of 4) trained on Mini-ImageNet using SGD with momentum 0.9, learning rate 2−4. The legend indicates
randomly selected classes for training/testing. Image credit: Galanti et al. (2021)

ϵ-effective depth: For a network h composed of L layers, let ĥl(x) = arg min
k∈[K]

∥fl(x) − µfl
(XCk

)∥ , l ∈ [L].

The ϵ-effective depth ρϵ
X(h) of h on X is the minimum depth l ∈ [L] for which errX(ĥl) ≤ ϵ. If such an l

doesn’t exist then ρϵ
X(h) = L.

Here errX(ĥl) = 1
N

∑N
i=1 I[ĥl(xi) ̸= arg maxk∈[K] ξ(xi)] is the nearest class center (NCC) misclassification

error, µfl
(XCk

) indicates the mean of features fl(.) for samples of class k, and finally recall from the
preliminaries that fl = gl ◦ gl−1 · · · ◦ g1 : Rd → Rml is the composition of l layers of the network. Essentially,
the ϵ-effective depth ρϵ

X(h) represents the minimum depth at which the features can be classified by the NCC
decision rule and achieve at most ϵ classification error.

ϵ-Minimal NCC depth: Let G represent a function class of layers in a network, the ϵ-Minimal NCC depth
ρϵ

min(G, X) on data set X is the minimum number of layers (belonging to G) that can be composed to result
in an output function f̃ such that errX(h̃) ≤ ϵ, where h̃(x) := arg mink∈[K]

∥∥∥f̃(x) − µf̃ (XCk
)
∥∥∥.

Now, consider the following setup: X1, X2 ∼ P are two balanced data sets of size N . With a slight
abuse of notation, we represent hκ

X1
: Rd → RK as a network with weight initialization κ and trained on

dataset X1. When this network is evaluated on X2, we assume that the misclassified samples are uniformly
distributed over the samples in X2 with probability 1 − δ1

N . In practical settings, this assumption can
be thought of as representing scenarios with non-hierarchical classes. As a second assumption, if X1, X2
contain noisy/random labels and both were to be used for training, we consider that with probability
1 − δ2

N,p,α, p ∈ (0, 1/2), α ∈ (0, 1), the ϵ-minimal NCC depth to fit (2 − p)N correct labels and pN random
labels is upper bounded by the expected ϵ-minimal NCC depth to fit (2−q)N correct labels and qN random
labels for any q ≥ (1 + α)p. Under these assumptions, the generalization bound proposed by Galanti (2022)
can now be formulated as follows:

EX1Eκ[errP(hκ
X1

)] ≤ P
X1,X2,Ỹ2

[
Eκ[ρϵ

X1
(hκ

X1
)] ≥ ρϵ

min(G, X1 ∪ X̃2)
]

+ (1 + α)p + δ1
N + δ2

N,p,α (53)

Where errP(h) = EPI[arg maxk∈[K] h(x) ̸= arg maxk∈[K] ξ(x)] and X̃2 is obtained by randomly relabelling
pN samples from X2. The noisy labels are now represented as Ỹ2. Essentially, the bound indicates that, by
randomly selecting p ∈ (0, 1/2), if the expected ϵ-effective depth of hκ

X1
for all κ is smaller than the ϵ-minimal

NCC depth ρϵ
min(G, X1 ∪ X̃2), then the network is bound to do well on the test data. For comprehensive

proofs and tightness comparison of the bound, refer Galanti (2022).
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Additionally, based on the empirical results of Galanti (2022) presented in figure 9, one can observe a
clear indication of CDNV collapse as NCC train accuracy reaches 1 after a certain depth. Cohen et al.
(2018) performed a similar study using a Wide ResNet on MNIST, CIFAR10, CIFAR100 & their random
counterparts. It was observed that the layers gradually learn the k-NN based features when the dataset is
clean and demand sufficient depth for randomly labelled data. The experiments by Galanti (2022) corroborate
this observation and align such behaviour with the learning gap induced by δ2

N,p,α in equation 53 presented
above. Furthermore, observe from figure 9 that NCC test accuracy and CDNV test of the final layer of the
MLP saturates at ≈ 0.6, ≈ 2−1 respectively in both the cases. Interestingly, we can observe a similar pair of
these values during training, i.e when NCC train is ≈ 0.6 in the pre-TPT stages, the CDNV train is ≈ 2−1.
On the other hand, a CNN whose final layer was able to achieve ≈ 0.85 NCC test accuracy showed a CDNV
Test of ≈ 2−2 (see figure.5 in Appendix.A of Galanti (2022)). Such a pattern underscores the definition
of strong test-collapse and a Bayes-optimal classifier that Hui et al. (2022) demand is the one we would
ideally require to achieve that state. As a takeaway, note that for a network which is collapsed on train
data, attaining collapse on test data depends on various factors such as data distribution, the implicit bias
of a network and the optimizers used. Since attaining strong test collapse is usually an ambitious setting,
one can nevertheless employ multifaceted approaches to track the extent of test collapse and gain a better
understanding of the learning dynamics. For instance, Ben-Shaul & Dekel (2022) extend the cross-entropy
loss by enforcing NCC behaviour across intermediate layers and show improved performance across vision
and NLP sequence classification tasks.

Figure 9: Layer-wise CDNV and NCC plots of an MLP trained on CIFAR10. Each hidden layer has a width
of 300 and undergoes batch-normalization followed by ReLU activation. Cross-entropy loss is minimized
using SGD with momentum 0.9, weight decay 5 × 10−4, and initial learning rate 0.1, which is reduced by a
factor of 10 at epochs 60, 120, 160. Image credit: Galanti (2022)

4.3 Does collapse favour transferable representations?

Good classification performance is achieved when the networks are powerful enough and sufficient data is
available for ERM (in a statistical sense). In settings where quality labelled data is scarce, transfer learning is
a widely adopted technique for classification (Caruana, 1994; Thrun, 1998; Pan & Yang, 2010; Bengio, 2012;
Weiss et al., 2016). In typical transfer learning settings, a large network is trained on a plethora of source
tasks, followed by fine-tuning on downstream target tasks. The literature on the empirical effectiveness of
this approach is quite rich (Long et al., 2015; Zamir et al., 2018; Houlsby et al., 2019; Raghu et al., 2019;
Raffel et al., 2020; Kolesnikov et al., 2020; Brown et al., 2020) and various attempts have been made to
theoretically understand this capability (Ben-David et al., 2006; Blitzer et al., 2007; Mansour et al., 2008;
Zhang et al., 2013; Tripuraneni et al., 2020). A natural question that arises in this context is the role of
collapse in learning transferable features.
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The work by Galanti et al. (2021; 2022) addresses this question by extending the theoretical analysis of
collapse from unseen data (as discussed in the previous section) to unseen classes. Specifically, their anal-
ysis focuses on multi-task settings where the source and target class conditionals are sampled i.i.d from
a distribution over class conditionals. For a better understanding of the framework, consider a transfer
learning setup with a t-class classification problem as the downstream task and a s-class classification prob-
lem as the source/auxiliary task. Formally, we extend our notation and assume the data for downstream
and source tasks is sampled from P, P̃ respectively. Next, similar to the setup for CDNV-based general-
ization bound, let DCi

∼ Pn
Ci

denote a target data set for class i ∈ [t] where n data points have been
sampled from PCi

. Along these lines, the target data set is comprised of D = DC1 ∪ · · · ∪ DCt
, and

the source data set is comprised of D̃ = D̃C1 ∪ · · · ∪ D̃Cs
. Finally, the class conditionals PCi

, ∀i ∈ [t]
and P̃Cj

, ∀j ∈ [s] are assumed to be sampled i.i.d from a distribution Q over class conditional distribu-
tions U8. In the work of Galanti et al. (2021), the authors randomly select two classes k, k′ ∈ [t] from
the target task and bound the expected CDNV between them, EPCk

̸=PC
k′

[Vf (PCk
,PCk′ )] using the aver-

age CDNV of the source classes, 2
s(s−1)

∑s
i=1
∑s

i′ ̸=i[Vf (P̃Ci
, P̃Ci′ )], and terms which inversely depend on

inff infPCk
,PC

k′

∥∥µf (PCk
) − µf (PCk′ )

∥∥
2. Now, by defining the expected transfer error as follows:

LQ(f) := EPED
[
E(x,y)∼P

[
I[(a ◦ f)D(x) ̸= y]

]]
(54)

the authors bound the transfer error by EPCk
̸=PC

k′
[Vf (PCk

,PCk′ )] up to scaling (see Proposition.2 and Ap-
pendix.D in Galanti et al. (2021)). Here the expectation is taken over randomly selected target tasks from P
and the limited available data D, and (a◦f)D indicates the network (as per preliminaries) trained on D. The
issue with this bound pops up when

∥∥µf (PCi
) − µf (PCj

)
∥∥

2 tends to be very small. Thus, in settings where
the transfer error is small, there is a possibility that the upper bound is very large and not indicative of the
network’s performance. Such scenarios occur when the support U for Q is infinitely large and an anomalous
pair of target classes can turn this bound vacuous. To address this issue, Galanti et al. (2022) consider a
specific case of ReLU networks with depth r and bound the transfer error with the averaged CDNV over
source classes (instead of target classes presented above) plus additional terms that depend on t, s, r and a
spectral complexity term which bounds the Lipschitz constant of f (Golowich et al., 2018). Their theoretical
results indicate that, with a sufficiently large number of source classes s and data samples per source class,
the prevalence of neural collapse on source data leads to small transfer errors, even with limited data samples
in target data sets.

Figure 10: (a)-(b) Source train and test CDNV, (c)-(d) Target CDNV and accuracy for 5-shot classification
on Mini-ImageNet using Wide ResNet-28-4. A varying number of classes (as per legend) are chosen for the
source task and 5 classes are randomly selected for target tasks. SGD with momentum 0.9, learning rate
2−4 was employed to minimize the cross-entropy loss during training. Image credit: Galanti et al. (2021)

Empirical results on Mini-ImageNet pertaining to 100 5-shot classification experiments by Galanti et al.
(2021) are shown in figure 10. In this experimental setup, a varying number of classes are randomly chosen

8On a lateral note, the setup is also amenable to covariate shift (Shimodaira, 2000) analysis and has been studied by Gretton
et al. (2006); Huang et al. (2006); Zhang et al. (2013)
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from the data set for pre-training a Wide ResNet-28-4 network. Next, a ridge-regression classifier is used
as the final layer (with all the previous layers kept fixed) and trained on 5 randomly selected target classes.
Finally, the network is tested on 100 random test samples from each of the 5 target classes for reporting the
metrics. Observe that a clear pattern emerges in this plot, showcasing the benefits of pre-training on a large
number of source classes as per the theoretical analysis.

Although the results look promising, recall that the bound and empirical analysis is restricted to a setting
where the class conditional distributions are sampled from a common Q. Thus, we cannot guarantee similar
results for settings where the source and target distributions come from different Q. The empirical results
presented in Kornblith et al. (2021) are of significance in this context. The authors show that networks
pre-trained on ImageNet tend to perform poorly on different downstream data sets (such as CIFAR10,
CIFAR100, Flowers etc) when exhibiting a higher extent of collapse during pre-training. They especially
show that softmax cross-entropy loss leads to relatively smaller margins between classes during pre-training
and in turn results in better downstream performance when compared to losses such as squared error and
cosine softmax. The impact of distribution changes (also known as model shift (Wang & Schneider, 2014))
is clearly evident from the experiments by Kornblith et al. (2021) and the bounds presented above fail to
analyze this generalized setting.

5 Takeaways and Future Research

In retrospect, the study of neural collapse is essentially a study of desirable geometries and feature evolu-
tion dynamics in deep neural networks. Although each of the four NC properties has been studied in the
literature, their unification under a common notion of ‘collapse’ has certainly piqued the interest of the
community. Firstly, an extensive theoretical analysis of the global minimizers for cross-entropy loss from
an NC perspective by Wojtowytsch et al. (2020); Lu & Steinerberger (2020) highlighted the difference in
the expressive power of shallow and deep neural networks. In the following work by Han et al. (2021),
the authors decomposed the MSE loss based on the gradient flow trajectory of features aligned with NC
properties and demonstrated this behaviour for canonical deep classifier networks. Thus, shedding light on
their training dynamics. Additionally, Zhu et al. (2021) leverage the simplex ETF property (NC2) and show
≈ 20% reduction in the memory footprint of training ResNet18 on MNIST and ≈ 52% reduction in the
number of trainable parameters of ShuffleNet for ImageNet with 1000 classes. On a related note, Fang et al.
(2021); Yang et al. (2022) propose solutions to address class imbalance training by analysing the collapse
properties of under-represented classes. Furthermore, the study of NC has led to a series of efforts which
attempt to explain the effectiveness of learnt representations for generalization and transfer learning. In
summary, the studies pertaining to neural collapse have presented a unique approach to questioning and
understanding the heuristic design choices and training dynamics involved in deep network training. In the
following, we discuss open questions and future efforts that can have a broader impact:

Modelling techniques: The “unconstrained features” and “local elasticity” based models have provided
a good theoretical ground for analysis. However, both are simplified presentations of the actual networks.
Since it is extremely challenging to model every aspect of training a deep neural network in a theoretically
tangible fashion, one can either extend these models incrementally (such as adding more layers to the UFM
analysis) or approach this problem in a radically different way. The complexity lies in modelling the role of
depth, non-linearities, normalization, loss functions, optimizers etc, all in a single model. During our review,
we analysed each of these aspects individually but the challenge of unification is still an open problem and
is of significance.

Desirable geometries: A m-simplex is one of the three regular polytopes that can exist in an arbitrarily
high dimension m. The other two are m-cube and m-orthoplex (a cross-polytope) (Coxeter, 1973). Pernici
et al. (2019; 2021) empirically show that by fixing the last layer of a VGG19 network as a m-cube with
m = ⌈log2 K⌉ or as a m-orthoplex with m = ⌈K/2⌉, the performance on CIFAR10, MNIST, EMNIST and
FashionMNIST is comparable to that of a learnable baseline. However, if we desire maximum intra-class
separation from our network, a m-simplex fits our needs. Interestingly, when m increases, the angle between
the weight vectors that form a m-simplex tends towards π/2, which is similar to the case of m-orthoplex. The
question that arises in this context is whether a deep classifier network attains the m-orthoplex configuration
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if the penultimate later features dimension is fixed to m = ⌈K/2⌉. Also, how does this structure affect class-
imbalance training? Similar questions arise for m-cube as well.

Learning objectives: In addition to supervised classification settings using cross-entropy or squared error
losses, we analysed that contrastive losses in supervised settings also favour collapse. This implies that either
explicit or implicit label information is necessary for attaining the collapse state. It would be interesting to
explore a similar phenomenon in unsupervised clustering tasks where labels are entirely absent (Xie et al.,
2016; Min et al., 2018). Additionally, based on the results in Kornblith et al. (2021), a network exhibiting
a relatively high extent of collapse on ImageNet was shown to transfer relatively badly to downstream
classification tasks. To this end, it would be interesting to explore schemes such as “maximal coding rate
reduction (MCR2)” (Yu et al., 2020; Chan et al., 2020; Wu et al., 2021; Chan et al., 2022), which aims to
preserve the intrinsic structure of within-class features along a subspace, while also increasing the distance
between these subspaces. A rigorous analysis of such objectives from an NC perspective can shed light on
the seemingly elusive implications of collapse.

Generalization: From our review of efforts which analyse test-collapse, it was highly subjective whether a
certain value of N C1 or CDNV can be deemed as exhibiting collapse or not. It is necessary for the community
to standardize such observations in the early stages of this research direction and promote objective results.
Furthermore, we observed that empirical results by Zhu et al. (2021) showcased the disparity in generalization
performance of networks which attained train collapse using different optimizers. This is at odds with the
CDNV-based generalization bounds that Galanti et al. (2021) propose, which heavily rely on train collapse.
Further empirical and theoretical analysis is required to model such observations and improve the bounds.

The special case of large-language models (LLM): Based on the transfer learning bounds and ex-
periments by Kornblith et al. (2021); Galanti et al. (2021; 2022), it would be interesting to track collapse
metrics on the learned representations of large language models. Specifically, consider a case where an LLM
is pre-trained in an unsupervised fashion on billions of text sequences and fine-tuned for a variety of clas-
sification tasks. In this setting, how would the collapse metrics differ when fine-tuning on tasks such as
sentiment classification, document classification etc? Is it possible to propose transfer learning bounds when
pre-training is unsupervised? Although such questions are primarily relevant at the scale of LLMs, novel
methods to analyse such settings at a smaller scale can be of broad interest.

Data domains: From a geometric deep learning perspective (Bronstein et al., 2017), neural networks have
been quite effective in learning on non-euclidean data such as graphs and manifolds. Since the architecture
of such networks is highly dependent on the topological structure of data, novel modelling techniques are
required to empirically and theoretically analyse NC in such settings.

6 Conclusion

In this work, we presented a principled review of modelling techniques that analyse NC and discussed its
implications on the generalization and transfer learning capabilities of deep classifier neural networks. We
presented a comprehensive review of the unconstrained features and local elasticity-based models by analysing
their assumptions, settings and limitations under a common lens. Next, we discussed the possibility of neural
collapse on test data, followed by an analysis of recently proposed generalization and transfer learning bounds.
We hope our review, discussions and open questions would be of broad interest to the community and will
lead to intriguing research outcomes.
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A Appendix

A.1 Extended notations

Table 2: An extended set of notations for lookup.
Notation Description

X ∈ Rd×N Input data to the network
nk, n ∈ N Imbalanced and balanced class sizes

ei one-hot vector w.r.t index i
0 vector of all zeros of suitable dimension

1K ∈ RK , IK ∈ RK×K Vector of all ones, Identity matrix
xi ∈ Rd ith data point (ith column of X)
xk

i ∈ Rd ith data point of kth class
Ck Set of all data points belonging to class k

ξ : Rd → {e1, · · · , eK} A ground truth labelling function
P,PCk

Data and class conditional data distributions
H A function class of networks

hL : Rd → RK , overload: h A network composed of L layers
aL : Rm → RK , overload: a Final layer linear function

gl : Rml−1 → Rml The feature function for layer l
fL−1 : Rd → Rm, overload: f Composition of L − 1 feature functions
HL ∈ RK×N , overload: H The network output matrix
AL ∈ RK×m, overload: A The final layer classifier matrix

FL−1 ∈ Rm×N , overload: F Penultimate layer feature matrix
bL ∈ RK , overload: b Bias vector for layer L

Y ∈ RK×N Label matrix
ℓ : RK × RK → [0, ∞) Generic loss function

R : H → [0, ∞) Population risk function
R̂ : H → [0, ∞) Empirical risk function

µk ∈ Rm Mean of penultimate layer features of class k
µG ∈ Rm Mean of penultimate layer features class means

ΣW ∈ Rm×m Within class covariance matrix for F
ΣB ∈ Rm×m Between class covariance matrix for F

I : {True, False} → {0, 1} Indicator function
qk,i(F , A) ∈ R Margin of a data point xk

i

γj , υj ∈ R Batch-normalization scaling, shifting constants for Fj:
αt, βt ∈ R Intra-class, inter-class LE impact at time t

νt ∈ R Local elasticity condition for feature separability
fs

k,i ∈ Rm Penultimate layer features for xk
i at iteration s

Et ∈ RK×K LE impact matrix at time t
T t ∈ RKm×Km LE-SDE transformation matrix at time t
Bt ∈ RKm×Km LE-SDE block transformation matrix at time t

W t ∈ RKm Wiener process at time t
Vf (PCi ,PCj ) ∈ R Population CDNV for classes i, j
Vf (DCi , DCj ) ∈ R Empirical CDNV for classes i, j

ρϵ
X(h) ∈ R ϵ-effective depth of h w.r.t X

errX(ĥl), errP(ĥl) ∈ R Empirical, population NCC misclassification error
LQ(f) ∈ R Transfer learning error/Transfer error
∥.∥F , ∥.∥∗ Frobenius norm, Nuclear norm

⟨.⟩, ⊙ Inner product, Hadamard product
tr{.}, †, ⊤ Trace, Pseudo-inverse and Transpose of a matrix
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A.2 A note on lower bounds for population risk with collapsed outputs and cross-entropy loss

Without loss of generality, for a subspace B ∈ Rd where ℓCE is strictly-convex, we can show that R(h̄) ≤ R(h)
for P-almost every x, where h̄ ∈ H such that h̄(x) = zk, ∀x ∈ Ck (Where zk is given by Eq.10). A brief
sketch of the proof by Wojtowytsch et al. (2020) is as follows:

Let Φ : Rk → Rk be the softmax function, given by:

Φ(h) =
(

exp(⟨h, e1⟩)∑K
i=1 exp(⟨h, ei⟩)

, · · · ,
exp(⟨h, eK⟩)∑K
i=1 exp(⟨h, ei⟩)

)
, Φk(h) = exp(⟨h, ek⟩)∑K

i=1 exp(⟨h, ei⟩)
(55)

Where h is a vector input. Now, by taking the Taylor expansion of Φk near zk, we get:

∫
Ck

Φk(h(x))P(dx) ≈

∫
Ck

[
Φk(zk) + ∇Φk(zk) · (h(x) − zk) + 1

2(h(x) − zk)⊤D2Φk(zk)(h(x) − zk)
]
P(dx)

≥

∫
Ck

Φk(zk)P(dx)

since
∫

Ck
∇Φk(zk) · (h(x) − zk) = 0 from equation 10, and the hessian of Φk is positive semi-definite. The

equality holds when h(x)−h̄(x) ∈ span{(1, . . . , 1)} since ℓCE is strictly convex on the orthogonal complement
of (1, . . . , 1). See Lemma 2.1, 3.1 in Wojtowytsch et al. (2020) for the complete proof.

A.3 Gradient flow analysis of Mean Squared Error without regularization

Based on our analysis of the squared error without regularization, we show that the same line of reasoning
holds true for MSE as well. At first glance, the scaling factor of 1

N seems benign as (F , A, b) satisfying SNC
for the squared error, minimize MSE as well. However, the purpose of this analysis is to observe how the
subspace S and the rate of convergence of b to 1

K 1K is modified due to this scaling factor. We follow the
same sketch as Mixon et al. (2020) and define the ERM for MSE as:

min
F ,A,b

R̂MSE(F , A, b) = 1
2N

∥∥AF + b1⊤
N − Y

∥∥2
F

(56)

The corresponding gradient flow equation for Θ = (F , A, b) is given by:

Θ′(t) = −∇R̂MSE(Θ(t))

∇F R̂MSE = 1
N

A⊤(AF + b1⊤
N − Y )

∇AR̂MSE = 1
N

(AF + b1⊤
N − Y )F ⊤

∇bR̂MSE = 1
N

(AF + b1⊤
N − Y )1N

(57)

Assuming that F , A have small norms (leading to uncoupled bias), we analyse the following ODE:

F ′(t) = − 1
N

A(t)⊤(b(t)1⊤
N − Y ), A′(t) = − 1

N
(b(t)1⊤

N − Y )F (t)⊤, b′(t) = − 1
N

(b1⊤
N − Y )1N

with initial conditions F (0) = F0, A(0) = A0, b(0) = 0. Let’s begin by solving for the bias term:

b′(t) = − 1
N

(b(t)1⊤
N − Y )1N = 1

N
(IK ⊗ 1⊤

n − b(t)1⊤
N )1N = 1

N
(n1K − Nb(t)) = 1

K
(1K − Kb(t))
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Based on the initial condition b(0) = 0, if we consider b(t) = β(t)1K , then:

β′(t) = 1
K

(1 − Kβ(t)) =⇒
∫

Kβ′(t)
1 − Kβ(t)dt =

∫
1dt =⇒ β(t) = 1 − e−t

K
=⇒ b(t) = (1 − e−t

K
)1K

Let U = (F , A) and U(t)′ = Lt(U(t)), where:

Lt(F , A) =
(

A⊤ 1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
,

1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
F ⊤
)

(58)

The self-adjoin property of Lt is straightforward to check and is shown in Mixon et al. (2020). Next, we
define the following sub spaces over which {Lt}t≥0 are simultaneously diagonalizable.

Eϵ
1 = {(F , A) : F = ϵ√

n
(A ⊗ 1n)⊤, 1⊤

KA = 0}

Eϵ
2 = {(F , A) : F = ϵ · z1⊤

N , A =
√

n1Kz⊤, z ∈ Rm}
E3 = {(F , A) : (IK ⊗ 1⊤

n )F ⊤ = 0, A = 0}

where ϵ ∈ {±1}. Now let’s verify that these spaces are indeed the eigen spaces of Lt.

Case 1: (F , A) ∈ Eϵ
1

A⊤ 1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
= 1

N
(A⊤ ⊗ 1⊤

n ) = ϵ

√
n

N
F

1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
F ⊤ = ϵ

N
√

n

(
IK ⊗ 1⊤

n − β(t)1K1⊤
K ⊗ 1⊤

n

)
(A ⊗ 1n) = ϵ

√
n

N
A

This implies, {(F , A), ϵ
√

n
N } form the eigen-pair for Lt in Eϵ

1.

Case 2: (F , A) ∈ Eϵ
2

A⊤ 1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
= 1

N
(
√

nz1⊤
K)
(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
=

√
n

N
z
(
1⊤

K ⊗ 1⊤
n − Kβ(t)1⊤

N

)
=

√
n

N
(I − Kβ(t))z1⊤

N = ϵ
√

n

N
(1 − Kβ(t))F

1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
F ⊤ = 1

N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
(ϵ · 1N z⊤)

= 1
N

(
(IK ⊗ 1⊤

n )(1K ⊗ 1n) − β(t)1K1⊤
N 1N

)
(ϵ · z⊤)

= ϵ

N

(
n1K − Nβ(t)1K

)
z⊤

= nϵ

N

(
I − Kβ(t)

)
1Kz⊤ = ϵ

√
n

N

(
1 − Kβ(t)

)
A

This implies, {(F , A), ϵ
√

n
N

(
1 − Kβ(t)

)
} form the eigen-pair for Lt in Eϵ

2.

Case 3: (F , A) ∈ E3

A⊤ 1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
= 0

1
N

(
IK ⊗ 1⊤

n − β(t)1K1⊤
N

)
F ⊤ = −β(t)1K1⊤

N F ⊤ = 0

40



Published in Transactions on Machine Learning Research (04/2023)

since the eigen value is 0 in E3, we can ignore it and represent the spectral decomposition of Lt as:

Lt =
√

n

N

(
Π+

1 − Π−
1 + (1 − Kβ(t))Π+

2 − (1 − Kβ(t))Π−
2
)

(59)

Where Πϵ
i is the orthogonal projection onto Eϵ

i . This allows us to solve U(t)′ = Lt(U(t)) by finding the
orthogonal projection of U(t) onto Eϵ

i . Thus, we get:

Πϵ
1U ′(t) = ϵ

√
n

N
Πϵ

1U(t) =⇒ Πϵ
1U(t) = e

ϵ
√

n
N tU(0)

Πϵ
2U ′(t) = ϵ

√
n

N
(1 − Kβ(t))Πϵ

2U(t) =⇒ Πϵ
2U ′(t)

Πϵ
2U(t) = ϵ

√
n

N
(1 − K(1 − e−t

K
)) = ϵ

√
n

N
(e−t)

=⇒ Πϵ
2U(t) = exp

(
ϵ
√

n

N
(1 − e−t)

)
Πϵ

2U(0)

As the final step in the analysis, we can apply the Pythagoras theorem and get:

∥∥∥U(t) − e
√

n
N tΠ+

1 (0)
∥∥∥2

E
=
∥∥∥∥e−

√
n

N tΠ−
1 (0) + exp

(√
n

N
(1 − e−t)

)
Π+

2 U(0) + exp
(

−
√

n

N
(1 − e−t)

)
Π−

2 U(0)
∥∥∥∥2

E

= e− 2
√

n
N t

∥∥Π−
1 (0)

∥∥2
E

+ exp
(

2
√

n

N
(1 − e−t)

)∥∥Π+
2 U(0)

∥∥2
E

+ exp
(

−2
√

n

N
(1 − e−t)

)∥∥Π−
2 U(0)

∥∥2
E

≤
∥∥Π−

1 (0)
∥∥2

E
+ e

2
√

n
N

∥∥Π+
2 U(0)

∥∥2
E

+
∥∥Π−

2 U(0)
∥∥2

E

≤ e
2

√
n

N

∥∥(I − Π+
1 )U(0)

∥∥2
E

Thus, by consider the subspace T = E+
1 , we get the final result that (F , A, b) along the gradient flow satisfy:∥∥∥(F (t), A(t)) − e

√
n

N t · ΠT (F0, A0)
∥∥∥

E
≤ e

√
n

N · ∥ΠT ⊥(F0, A0)∥E , b(t) =
(

1 − e−t

K

)
1K , ∀t ≥ 0

Where ∥(F , A)∥2
E = ∥F ∥2

F + ∥A∥2
F and ΠT ⊥ is the orthogonal projection onto the subspace:

T :=
{

(F , A) : F = 1√
n

(A ⊗ 1n)⊤, 1⊤
KA = 0

}
Note that the subspace T which in turn leads to subspace S is the same as the squared error case, but the
rate at which b → 1

K 1K has changed from e−Nt to e−t. The empirical consequences of this modified setting
on SNC would be interesting to observe (especially the role of initialization), which we defer to future work.

A.4 Applying the results for ReLU networks with batch-normalization to UFM

As a follow-up of the role of normalization in attaining NC based on unconstrained features and gradient flow,
we leverage the results of Ergen & Pilanci (2021) for ReLU networks with the popular batch-normalization
(BN) layer to present a different perspective on UFM based NC. Firstly, let the BN output of F be given as:

(FBN)j: = BNγ,υ(Fj:) =
(IN − 1

N 1N 1⊤
N )Fj:∥∥(IN − 1

N 1N 1⊤
N )Fj:

∥∥
2

· γj + 1N√
N

· υj , ∀j ∈ [m] (60)

Where the batch-normalization output for every row of unconstrained features Fj: ∈ RN , ∀j ∈ [m] is denoted
by (FBN)j:. Here γj ∈ R is the scaling factor and υj ∈ R is the shift factor. For the sake of analysis, we
consider the modified risk based on the squared loss, similar to Ergen & Pilanci (2021); Ergen et al. (2021):
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min
F ,A

R̂SE−BN = 1
2 ∥A(FBN )+ − Y ∥2

F + λA

2

m∑
j=1

(γ2
j + υ2

j + ∥aj∥2
2) (61)

Where (FBN )+ indicates a ReLU non-linearity on FBN . In our analysis till now, the non-linearity was
implicitly assumed for sufficient expressivity of F . In this example, we take a step further and break down
the role of batch-normalization and ReLU on the optimal configurations for such expressive features. We
can obtain a closed-form solution to this optimization problem based on a convex dual formulation R̃SE−BN

for R̂SE−BN (see Ergen & Pilanci (2021) for an elaborate formulation). Let yj be the jth row of Y , then:

γ∗
j =

∥∥yj − 1
N 1N 1⊤

N yj

∥∥
2

∥yj∥2
, υ∗

j = 1⊤
N yj√

N ∥yj∥2
, F ∗ =

[
Y

0(m−K)×N

]
(62)

The proof by Ergen & Pilanci (2021) was originally given for ReLU networks with batch-normalization where
strong duality was shown to hold true, i.e the global optimum for R̃SE−BN are the solutions for R̂SE−BN

as well. The values in equation 62 are obtained as a direct application of theorem 4.4 from Ergen & Pilanci
(2021) to the UFM, where the output of penultimate layer is now unconstrained. The optimal values can
now be used to calculate F ∗

BN as:

(F ∗
BN)j: =

(IN − 1
N 1N 1⊤

N )F ∗
j:∥∥(IN − 1

N 1N 1⊤
N )F ∗

j:
∥∥

2
· γ∗

j + 1N√
N

· υ∗
j

=⇒ F ∗
BN =

√
K

N

[
Y

0(m−K)×N

] (63)

For simplicity, if we consider m = K and center F ∗
BN around its global mean, we get:

F ∗
BN (IN − 1

N
1N 1⊤

N ) =
√

K

N
(IK ⊗ 1⊤

n )(IN − 1
N

1N 1⊤
N ) =

√
K

N
(IK ⊗ 1n − 1

K
1N 1⊤

K) (64)

Thus, the features of class k have collapsed to their mean value of
√

K
N (ek − 1K

K ) and one can verify that
the class means lie on the rotated and scaled version of the simplex ETF. Although this setting enables us
to obtain a closed form solution for R̂SE−BN using techniques such as interior points methods on R̂∗

SE−BN

(Alizadeh, 1995; Nemirovski & Todd, 2008), this convexity doesn’t come for free as the convex program now
consists of exponentially more terms to optimize (Ergen & Pilanci, 2021; Ergen et al., 2021).

Interestingly, equation 62 shows that the first K rows of F ∗, F ∗
BN are just the scaled versions of Y . Does

this indicate that batch-normalization layers in canonical deep neural networks facilitates collapse even in
the earlier layers? Furthermore, can this intrinsic bias towards a symmetric structure in batch-normalization
layers explain its role in faster convergence (Ioffe & Szegedy, 2015; Luo et al., 2018; Wei et al., 2019)? A
recent work by Poggio & Liao (2019; 2020) shows an interesting relationship between norms of weights and
margins of classification for squared error loss with regularization in ReLU networks. A consequence of this
result is that batch-normalization leads to weights with smaller norms which allows the network to learn
large margins for classification. A comprehensive gradient flow analysis is presented in Poggio & Liao (2019)
and is a valuable follow up of the UFM to canonical deep neural networks.
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A.5 Code availability

Table 3: List of NC related open-source implementations.
Model Implementation Reference

Neural Collapse (Papyan et al. (2020)) pytorch neuralcollapse
LE-SDE (Zhang et al. (2021b)) pytorch zjiayao/le_sde
SVAG (Li et al. (2021)) pytorch sadhikamalladi/svag
Layer Peeled Model (Fang et al. (2021)) pytorch HornHehhf/LPM
Local Elasticity (He & Su (2019)) pytorch hornhehhf/le
Max Margin (Lyu & Li (2019)) tensorflow vfleaking/max-margin
Separation and Concentration (Zarka et al. (2020)) pytorch j-zarka/separation
Unconstrained Feature Model (Zhu et al. (2021)) pytorch tding1/Neural-Collapse
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https://github.com/zjiayao/le_sde
https://github.com/sadhikamalladi/svag
https://github.com/HornHehhf/LPM 
https://github.com/hornhehhf/localelasticity
https://github.com/vfleaking/max-margin
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https://github.com/tding1/Neural-Collapse 
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