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ABSTRACT

Markov game is a popular reinforcement learning framework for modeling com-
petitive players in a dynamic environment. However, most of the existing works
on Markov game focus on computing a certain equilibrium following uncertain in-
teractions among the players but ignore the uncertainty of the environment model,
which is ubiquitous in practical scenarios. In this work, we develop a tractable so-
lution to Markov games with environment model uncertainty. Specifically, we pro-
pose a new and tractable notion of robust correlated equilibrium for Markov games
with environment model uncertainty. In particular, we prove that robust correlated
equilibrium has a simple modification structure, and its characterization of equi-
librium critically depends on the environment model uncertainty. Moreover, we
propose the first fully-decentralized stochastic algorithm for computing such ro-
bust correlated equilibrium. Our analysis proves that the algorithm achieves the
polynomial sample complexity Õ(SA2H5ϵ−2) for computing an approximate ro-
bust correlated equilibrium with ϵ accuracy.

1 INTRODUCTION

Markov game is a general and popular reinforcement learning framework for modeling multiple
players competing with each other in a dynamic environment (Littman, 1994). In a Markov game,
players interact with each other through a Markov decision process, and each player aims to im-
prove its own decision-making to compete for more reward. In particular, many important real-life
applications fit into this framework, including multi-player games (e.g., GO game (Silver et al.,
2016; 2017)), decentralized multi-agent robotic control (Brambilla et al., 2013) and distributed au-
tonomous driving (Shalev-Shwartz et al., 2016), etc.

One of the central goals of Markov game is to achieve Nash equilibrium (NE) among the players,
i.e., an optimal product policy so that no player can improve its gain by deviating from its own
policy alone. Such NE has been shown to exist for general Markov games (Filar & Vrieze, 2012).
However, it turns out that finding NE of a Markov game is generally a PPAD-complete problem
that cannot be efficiently solved in polynomial time (Deng et al., 2021; Jin et al., 2022b), except
for some special Markov games with either zero-sum reward (Bai & Jin, 2020; Jin et al., 2018) or
potential structure (Leonardos et al., 2021; Zhang et al., 2021). Therefore, instead of computing NE,
researchers have proposed a tractable surrogate notion – the correlated equilibrium (CE) (Moulin &
Vial, 1978), which is similar to NE but allows dependency among the players’ policies (see Defini-
tion 2.3). Recently, many computation-efficient algorithms have been developed for computing CE
with provable convergence guarantees (Jin et al., 2022a; Liu et al., 2021; Li et al., 2021).

Although Markov games have been extensively investigated, this standard framework only consid-
ers the competition among the players but ignores the ‘competition’ from the environment, i.e.,
environment model uncertainty, which is a critical factor that often reduces players’ gains and must
be considered in practical applications. For example, many applications such as autonomous driv-
ing and network robotic control naturally involve uncertain environments that have non-stationary
or even adversarial transition kernels. As another example, the policy trained in a simulated en-
vironment often suffers from significant performance degradation when implemented in the real
environment, due to model mismatch. In all these scenarios, it is much desired to learn an optimal
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robust policy against such model uncertainty. In fact, to account for model uncertainty, many robust
reinforcement learning approaches have been developed and extensively studied in the single-agent
case (Wang & Zou, 2021; Li et al., 2022b;a; Neufeld & Sester, 2022). However, model uncertainty
is still underexplored in the general case with multiple competing agents, where only two works
(Kardeş et al., 2011; Zhang et al., 2020) exist to our knowledge. Specifically, Kardeş et al. (2011)
applied the robust Markov game with model uncertainty to the application of queueing control.
(Zhang et al., 2020) proposed provably convergent Q-learning and actor-critic type algorithms to
compute a certain robust variant of NE of robust Markov games. However, computing robust NE of
general Markov games with model uncertainty is in general a PPAD-complete problem and there-
fore no polynomial-time algorithm can exist. This motivates the two major goals of this work: (i)
to propose a tractable surrogate robust equilibrium notion and study its fundamental properties; and
(ii) to develop a fully decentralized, provably-convergent and computation-efficient algorithm for
computing such robust equilibrium.

1.1 OUR CONTRIBUTIONS

In this work, we study episodic Markov games in an uncertain environment, i.e., the environment
transition kernel in every time step is queried from an underlying uncertainty set. To find a proper
equilibrium policy of such Markov games with model uncertainty,within polynomial time, we make
the following technical contributions.

• We propose a new tractable notion of robust correlated equilibrium (CE) for Markov games with
model uncertainty (see Definition 3.4). Specifically, robust CE generalizes the standard CE in
that it is defined based on robust value function (see eq. (2)), which corresponds to the worst-case
value function achieved under model uncertainty.

• We study the fundamental properties of robust CE. Specifically, we show that robust CE can be
equivalently defined using either stochastic modification or deterministic modification (see Propo-
sition 3.5). This indicates that robust CE inherits the modification structure from the standard CE.
Moreover, through an illustrative example (see Proposition 3.6), we prove that the characteriza-
tion of equilibrium of robust CE critically depends on the specific environment model uncertainty
model, i.e., robust CE reduces to robust Nash equilibrium under certain uncertainty models.

• We develop a fully decentralized robust V-learning algorithm for finding robust CE of Markov
games with model uncertainty. This algorithm is a generalization of the original V-learning al-
gorithm (for solving standard Markov games) and adopts robust TD learning in its critic update.
Under low level of model uncertainty, we prove that this algorithm achieves a polynomial episode
complexity Õ(SA2H5ϵ−2) for computing an approximate robust CE with ϵ accuracy. This is
the first non-asymptotic convergence result for solving Markov games with model uncertainty.
Moreover, our analysis of robust V-learning is substantially different from that of the original V-
learning. Please refer to the elaboration of technical novelty after Corollary 4.5 for more details.
To briefly elaborate, this is because the use of robust TD update enables tracking the desired ro-
bust value function at the cost of introducing uncertainty to the state transitions when unrolling the
iterative updates. Therefore, we need to bound the model uncertainty via a stronger convergence
metric, which leads to solving a linear system that involves an upper triangular Toeplitz matrix.

1.2 RELATED WORK

Markov games Markov games, also known as stochastic games, are standard formalism in multi-
agent RL (Littman, 1994). The existence of NE for multi-player general-sum Markov games has
been established in (Fink, 1964). Various algorithms have been designed to find NE, such as Nash-
Q learning (Hu & Wellman, 2003), FF-Q learning (Littman et al., 2001), and correlated-Q learn-
ing (Greenwald et al., 2003). The first polynomial-time algorithm for finding NE is developed in
(Hansen et al., 2013), but works only for zero-sum games. Recent studies showed that finding
NE of general-sum multi-player games is PPAD-complete, so they cannot be solved in polynomial
time (Deng et al., 2021; Jin et al., 2022b). Another notable goal in Markov games is to find a
weaker version of NE, such as correlated equilibrium (CE) or coarse correlated equilibrium (CCE).
Polynomial-time algorithms such as V-learning (Jin et al., 2022a; Mao & Başar, 2022; Song et al.,
2021) and Nash value iteration (Liu et al., 2021) have been developed for computing CE and CCE.
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Robust reinforcement learning Single-agent robust reinforcement learning has been widely ex-
plored (Nilim & Ghaoui, 2003; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013; Satia & Lave Jr,
1973), which assume the environment transition kernel belongs to a given uncertainty set. Under a
specific uncertainty model, Roy et al. (2017) and Wang & Zou (2021) developed model-free online
robust Q-learning algorithms to solve the robust reinforcement learning problem. For robust multi-
agent reinforcement learning, value iteration-based algorithm has been developed in (Kardeş et al.,
2011) but with no explicit analytical form. For cooperative multi-agent reinforcement learning with
model uncertainty, Huang et al. (2021) proposed a robust policy iteration algorithm to maximize
the gain of the whole group. For non-cooperative Markov games with model uncertainty, Zhang
et al. (2020) introduced robust Q-learning and actor-critic algorithms with asymptotic convergence
guarantees of finding robust NE. To the best of our knowledge, there is no existing polynomial-time
algorithm for solving Markov games with model uncertainty.

2 PRELIMINARIES OF MARKOV GAME

An episodic m-player Markov game is specified by the five-element tuple (H,S,A,P, {r(j)}mj=1),
where H is the length of each episode, S and A :=×m

j=1
A(j) correspond to the state space and

joint action space, respectively, and they are assumed to be finite. Moreover, r(j) : S × A → [0, 1]
denotes the reward function of the j-th player and P := {Ph}Hh=1 corresponds to the collection of
transition kernels at time steps h = 1, ...,H . At every time step h, the players observe a global state
sh ∈ S of the environment. Then, they take a joint action ah = [a

(1)
h , . . . , a

(m)
h ] following a joint

stochastic policy πh(·|s1:h, a1:(h−1)), which corresponds to a distribution on the joint action space
A that depends on the past states s1:h := {st}ht=1 and past actions a1:(h−1) := {at}h−1

t=1 . After that,
the global state transfers to a new state sh+1 following the state transition kernel P(·|sh, ah), and
each player j receives a local reward r

(j)
h (sh, ah) from the environment.

In the above Markov game, each player j collects its own rewards over the episodes. In particular,
denote π := {πh}Hh=1 as the collection of joint policies over the time steps, we can define the
following value function for the j-th player at state s and time step h under policy π.

(Value Function): v
(j)
π,h(s) := E

[ H∑
ℓ=h

r
(j)
ℓ (sℓ, aℓ)

∣∣∣sh = s, π,P
]
, (1)

which corresponds to the expected cumulative reward received by player j starting from state s at
time step h under joint policy π. The goal of the player j is to optimize its own policy π(j) :=

{π(j)
h }Hh=1 in order to maximize its associated value function. However, since every player’s value

function is also affected by the other players’ policies and actions, the players must compete with
each other to gain more rewards until they reach a certain equilibrium. Here, we introduce two
popular equilibrium notions that will be discussed throughout the paper.
Definition 2.1 (Nash Equilibrium (NE)). A joint policy π is called an NE if the following two
conditions are met: (i) for any time step h, the joint policy πh is a product of independent policies,
i.e., πh = π

(1)
h × . . . × π

(m)
h ; (ii) For any player j with any associated policy π̃(j), it holds that

v
(j)
π,1(s) ≥ v

(j)

π̃(j)×π(\j),1
(s) for all states s ∈ S . Here, π(\j) denotes the joint policy of all the other

players excluding the player j, and ‘×’ means that π̃(j) is independent from π(\j).

In the existing literature, it has been shown that computing NE is in general a PPAD-complete
problem (Deng et al., 2021; Jin et al., 2022b), for which it is not possible to develop polynomial-
time algorithms. This has motivated researchers to propose a surrogate correlated equilibrium (CE)
notion (Moulin & Vial, 1978). Before introducing the formal definition of CE, we first define the
following stochastic modification operator.

Definition 2.2 (Stochastic Modification). At any time step h, denote a
(j)
h as player j’s action

induced by joint policy πh. Given the past states and actions s1:h, a1:(h−1), a stochastic mod-
ification ϕ

(j)
h associated with player j randomly maps a

(j)
h to another action ã

(j)
h , i.e., ã

(j)
h ∼

ϕ
(j)
h (·|s1:h, a1:h−1, a

(j)
h ). Moreover, we denote ϕ

(j)
h ◦ πh as the joint policy modified by ϕ

(j)
h , i.e.,

πh first generates a joint action ah := [a
(j)
h , a

(\j)
h ], and then ϕ

(j)
h maps a(j)h to another ã(j)h .
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Throughout, we denote ϕ(j) := {ϕ(j)
h }Hh=1 and ϕ(j) ◦ π := {ϕ(j)

h ◦ πh}Hh=1 as the collections of
stochastic modifications and modified policies over the episode, respectively. We are now ready to
introduce the definition of correlated equilibrium (CE).
Definition 2.3 (Correlated Equilibrium (CE)). A joint policy π is called a CE if for any player j and
any stochastic modification ϕ(j), it holds that v(j)

π,1(s) ≥ v
(j)

ϕ(j)◦π,1(s) for all states s ∈ S.

Intuitively, at CE, no player can improve its value function by modifying its own action induced by
the joint CE policy. Compare to NE policies, CE policies do not require joint independence among
all the players. In fact, it has been shown that any NE policy is guaranteed to be a CE policy (Jin
et al., 2022a; Liu et al., 2021; Song et al., 2021), and hence CE is a weaker equilibrium notion than
NE. Moreover, CE can be reformulated as linear programming and hence is tractable.

3 MARKOV GAME WITH MODEL UNCERTAINTY

In this section, we study episodic general-sum Markov games with uncertainty in the environment
transition kernel. We aim to define a tractable notion of correlated equilibrium under such model
uncertainty and study its fundamental properties.

3.1 ROBUST CORRELATED EQUILIBRIUM

We adopt the same episodic Markov game settings as described in Section 2, but consider uncertain
transition kernel. Specifically, at every time step h and for every state-action pair (s, a), the envi-
ronment transition kernel P̃h(·|s, a) is uncertain and belongs to a general uncertainty set Ph(s, a).
Below we list some popular examples of uncertainty set.
Example 3.1 (KL divergence). The uncertainty set under KL divergence dKL is defined as
Ph(s, a) :=

{
P̃h(·|s, a) : dKL

(
Ph(·|s, a), P̃h(·|s, a)

)
≤ ρ

}
, where dKL

(
P, P̃

)
:=
∑

s∈S P̃(s) ln P̃(s)
P(s)

and Ph(·|s, a) denotes a fixed transition kernel.
Example 3.2 (R-contamination model). The uncertainty set under R-contamination model is
Ph(s, a) :=

{
(1−R)Ph(·|s, a) +Rq : q ∈ ∆|S|}, where Ph(·|s, a) is a fixed transition kernel.

In the above examples, Ph(·|s, a) can be understood as the original stationary transition kernel, and
the parameters ρ > 0 and R > 0 characterize the level of uncertainty. In a Markov game with
model uncertainty, the state transitions are determined by uncertain transition kernels queried from
the uncertainty sets. Therefore, it is possible that a certain transition kernel in the uncertainty set can
lead to frequent low-reward state transitions, which are unacceptable to the players. Hence, under
model uncertainty, each player aims to learn a robust optimal policy that maximizes its expected
accumulated reward in the worst case. Motivated by this intuition, we define the following robust
value function for the j-th player at state s and time step h under joint policy π. For simplicity of
notation, we denote P :=

⊗
h,s,a Ph(s, a) as the product of uncertainty sets.

(Robust Value Function): V
(j)
π,h(s) := inf

P̃∈P
E
[ H∑
ℓ=h

r
(j)
ℓ (sℓ, aℓ)

∣∣∣sh = s, π, P̃
]
. (2)

Intuitively, the robust value function characterizes the minimum expected total reward one can obtain
over all possible transition kernels in the uncertainty set. We note that the above robust value function
is defined for every single player in the Markov game. In particular, the worst-case (adversarial)
transition kernels associated with the players’ robust value functions are generally different from
each other. To deal with model uncertainty, the players aim to achieve a certain equilibrium in terms
of the robust value function. Specifically, we define the following robust Nash equilibrium (NE).
Definition 3.3 (Robust NE). A joint policy π is called robust NE if (i) for all h, πh is a product
policy; (ii) for any player j with any policy π̃(j), we have V

(j)
π,1 (s) ≥ V

(j)

π̃(j)×π(\j),1
(s) for all s ∈ S.

It can be seen that robust NE is similar to the NE defined in Definition 2.1, with the main difference
being that robust NE is defined based on the robust value function. However, robust NE is generally
more difficult to compute than NE. For example, NE is known to be tractable in zero-sum Markov
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games. As a comparison, in a zero-sum Markov game with model uncertainty, the environment
model uncertainty can be viewed as a third adversarial player that competes with both players and
breaks the zero-sum structure. Therefore, robust NE is not tractable in general, and this further
motivates us to define the following tractable surrogate notion of robust correlated equlibrium (CE).

Definition 3.4 (Robust CE). A joint policy π is called a robust CE if for any player j and any
stochastic modification ϕ(j), it holds that V (j)

π,1 (s) ≥ V
(j)

ϕ(j)◦π,1(s) for all states s ∈ S.

Although robust CE is a straightforward generalization of the standard CE defined in Definition 2.3,
it incorporates model uncertainty into the nature of correlated equilibrium and turns out to have more
complex structures than the standard CE as we elaborate in the next subsection.

3.2 PROPERTIES OF ROBUST CORRELATED EQUILIBRIUM

Stochastic modification is the key element to define CE. In particular, it has been shown that the
standard CE defined by stochastic modification is equivalent to that defined by deterministic modi-
fication. Our next result shows that robust CE inherits this property.

Proposition 3.5. In a Markov game with model uncertainty, for any robust CE π and any player j,
there exists a deterministic modification ϕ(j) such that V (j)

π,1 (s) = V
(j)

ϕ(j)◦π,1(s) for all s ∈ S.

This result shows that robust CE can be equivalently defined based on deterministic modifications,
which provides a way to simplify the CE notion as there are only finitely many deterministic mod-
ifications but uncountable stochastic modifications. and we will leverage this property to build our
convergence analysis later. Since robust CE is defined over all stochastic modifications (including
deterministic ones), it is non-trivial to establish the above equivalence, and we need to develop the
following new techniques.

• Finding the optimal deterministic modification ϕ(j) with regard to a robust CE policy π is chal-
lenging, since the modification ϕ

(j)
h at step h depends not only on the past states s1:h and past

actions a1:(h−1) but also on player j’s current action a
(j)
h generated by πh. Moreover, the opti-

mal choice of ϕ(j)
h at step h depends on the optimal choice of ϕ(j)

h−1 for the previous step. These
structures motivate us to build an induction over the cases of horizon length 1, 2, ...,H .

• Specifically, we first rewrite the modified policy ϕ
(j)
h ◦ πh in terms of ϕ

(j)
h (see eq. (9) in

Appendix A) so that the robust value function can be expressed as a functional of ϕ(j). To
build the induction, we assume that the optimal deterministic ϕ(j) exists for the robust value
functions with horizon length up to H − 1. Then, for the robust value function with hori-
zon length H , the optimal deterministic ϕ

(j)
H for the last step H can be easily found since it

only involves the final-step reward r
(j)
H . After that, we replace r

(j)
H−1 with the surrogate re-

ward r̃
(j)
H−1 = r

(j)
H−1 + infPH−1

E(r(h)H |s1:H−1, a1:H−1, ϕ
(j)
H ◦ π,PH−1) which only relies on

s1:H−1, a1:H−1 (see eq. (11)). Therefore, this robust value function is reduced to that with horizon
length H − 1, for which the optimal deterministic modification exists by the induction assump-
tion. Note that the proof of Lemmas F.2, F.3, F.4, F.6 and F.8 for proving Theorem 4.4 about
convergence analysis also use induction, which is different from the induction used for proving
Proposition 3.5

Our next result shows that for robust CE, its characterization of equilibrium can be different from
that of robust NE and critically depends on the specific environment uncertainty model.

Proposition 3.6. Robust CE and robust NE have the following relations.

1. In any robust Markov game, the set of robust CE includes the set of robust NE, or equivalently,
any robust NE is a robust CE.

2. There exists a Markov game whose robust CE is not robust NE.
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4 DECENTRALIZED ROBUST V-LEARNING

In this section, we develop a fully decentralized algorithm for finding robust CE of Markov games
with model uncertainty. Our algorithm is inspired by the V-learning algorithm for solving standard
Markov games (Jin et al., 2022a), and adopts new techniques to address model uncertainty.

4.1 ALGORITHM DESIGN

We let every player j keep a value table V
(j)
h ∈ R|S| for each time step h, and denote {V (j)

k,h}Hh=1

as the value tables held by player j in the k-th episode. The main steps of our algorithm consist
of a critic step and an actor step. In the critic step, we aim to learn the robust state value function
associated with the current policy. To do so, we apply the following robust TD-learning type updates
with every state-action transition sample (s, a, s′) to update the players’ value tables.

Ṽ
(j)
k,h (s) = (1− αt)Ṽ

(j)
k−1,h(s) + αt

(
r
(j)
h + σPh(s,a)(V

(j)
k−1,h+1) + βt

)
,

V
(j)
k,h (s) =

{
H + 1− h, Ṽ

(j)
k,h (s)

}
,

where the first update performs a robust TD type update and the second update performs a simple
upper truncation. Here, αt > 0 is a learning rate parameter where t := Nk,h(s) denotes that state
s has been visited at step h for t times at the beginning of the k-th episode, and the value function
mapping σPh(s,a)(·) is defined via the following linear program for any value table V .

σPh(s,a)(V ) := inf
P̃h(·|s,a)∈Ph(s,a)

⟨P̃h(·|s, a), V (·)⟩. (3)

Intuitively, the above mapping corresponds to the worst-case expected state value of the next state.
In particular, when there is no model uncertainty and the transition kernel is Ph(·|s, a), it reduces
to the expected state value at the next state, i.e., Es′∼Ph(·|s,a)[V (s′)]. Moreover, this linear program
can be numerically solved for several important classes of uncertainty sets, as we elaborate below.
Example 4.1 (KL divergence). Consider the uncertainty set Ph(s, a) defined under the KL di-
vergence in Example 3.1. Then, the linear program (3) reduces to the following one-dimensional
optimization problem, as proved in Theorem 1 of (Hu & Hong, 2013).

min
α≥0

α lnEs′∼Ph(·|s,a)
[
eV (s′)/α

]
+ αη. (4)

In practice, we can query some samples to approximate the expectation involved in the above one-
dimensional problem and solve it to obtain a sample-based estimator σ̂Ph(s,a)(V ).

Example 4.2 (R-contamination model). Consider the uncertainty set Ph(s, a) defined by the R-
contamination model in Example 3.2. Then, the linear program (3) can be approximated by the
sample-based estimator σ̂Ph(s,a)(V ) = Rmaxs∈S V (s) + (1−R)V (s′) (Wang & Zou, 2021).

In the actor step, we leverage the adversarial bandit algorithm developed in (Jin et al., 2022a) to
update the current policy. To briefly explain, in step h of episode k, every player j takes an action

a
(j)
h ∼ π

(j)
k,h(·|sh) and observes an adversarial loss 1− r

(j)
h +σ̂Ph(sh,ah)(V

(j)
k,h+1)

H , both of which are then

fed into the adversarial bandit algorithm to produce the policy π
(j)
k+1,h(·|sh). The specific updates of

this algorithm are shown in Algorithm 2 in Appendix C. In particular, Jin et al. (2022a) proved that
it achieves a regret bound in the order of Õ(B

√
H/t) (see Lemma C.1 in the appendix).

The entire decentralized robust V-learning algorithm is summarized in Algorithm 1 below, where
we use the estimator σ̂Ph(s,a) instead of σPh(s,a) in the critic update. After obtaining all the policies
{πk,h}k,h, the final non-Markov output policy π̂ is defined by randomly selecting an episode k at
each step h and taking an action ah ∼ πk,h (see Algorithm 3 in Appendix C for more details).

4.2 CONVERGENCE AND COMPLEXITY ANALYSIS

For any joint policy π, we measure its optimality gap toward achieving exact robust CE as follows,
where we define V

(j)
ϕ∗◦π,1(s) := maxϕ(j) V

(j)

ϕ(j)◦π,1(s) as player j’s value function associated with
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Algorithm 1: Decentralized Robust V-Learning (j-th player)

Initialize: Set Ṽ (j)
1,h (s) = V

(j)
1,h (s) = H+1−h, π1,h(a|s) = 1

|A| , N
(j)
1,h(s) = 0 for all s, a, h

for episode k = 1, . . . ,K do
Observe initial state s1, V (j)

k,H+1(s) = 0 for all s
for step h = 1, . . . ,H do

Take action a
(j)
h ∼ π

(j)
k,h(·|sh)

Transfer to next state sh+1 ∼ P̃h(·|sh, ah) with P̃h ∈ Ph(sh, ah)

Let Ṽ (j)
k+1,h ← Ṽ

(j)
k,h , V (j)

k+1,h ← V
(j)
k,h , π(j)

k+1,h ← π
(j)
k,h

Receive reward r
(j)
h and set t := N

(j)
k+1,h(sh)← N

(j)
k,h(sh) + 1

Ṽ
(j)
k+1,h(sh) =(1− αt)Ṽ

(j)
k,h (sh) + αt

(
r
(j)
h + σ̂Ph(sh,ah)(V

(j)
k,h+1) + β

(j)
t

)
(5)

V
(j)
k+1,h(sh) =min{H + 1− h, Ṽ

(j)
k+1,h(sh)} (6)

π
(j)
k+1,h(·|sh)=ADV_BANDIT

(
t, ah, 1−

r
(j)
h +σ̂Ph(sh,ah)(V

(j)
k,h+1)

H
,π

(j)
k,h(·|sh)

)
(7)

end
end
Output: Joint policy π̂ defined by Algorithm 3 in Appendix C with hyperparameters αi

t.

the policy π modified by player j’s best-response modification ϕ∗.

(Optimality gap): max
j∈[J]

max
s∈S

[
V

(j)
ϕ∗◦π,1(s)− V

(j)
π,1 (s)

]
≥ 0. (8)

In particular, policy π is a robust CE if the gap vanishes. We also need the following definitions to
characterize the impact of model uncertainty on Algorithm 1’s convergence rate.

Definition 4.3. Regarding the uncertainty sets {Ph(s, a)}h,s,a, value function mapping σPh(s,a)

and state exploration probability, we define the following quantities.

• Uncertainty diameter: D := maxh,s,a,a′ maxP∈Ph(s,a),P̃∈Ph(s,a′) ∥P(·)− P̃(·)∥∞.

• Estimation error: e := suph,s,a,V
∣∣σPh(s,a)(V ) − σ̂Ph(s,a)(V )

∣∣, where the supremum is taken
over all bounded value tables that satisfy 0 ≤ V (s) ≤ H + 1 for all s.

• State exploration: pmin := mins,h,k P(sk,h = s), which denotes the minimum probability of
visiting an arbitrary state s at any step h of any episode k.

The uncertainty diameter D defined above characterizes the diameter of the uncertainty set Ph. That
is, a larger D means that the transition kernel Ph can change over a wider range and therefore induces
larger uncertainty. For example, for the uncertainty set defined by the R-contamination model in
Example 3.2, the uncertainty diameter is analytically given by D = Rmax

{
maxs′ Ph(s

′|s, a), 1−
mins′ Ph(s

′|s, a)
}

, which monotonically increases with regard to the uncertainty set parameter R.
We obtain the following convergence rate of decentralized robust V-learning.

Theorem 4.4. Let S := |S| and A := max1≤j≤m |A(j)| correspond to the size of the state space
and action space, respectively. Choose β(j)

t , αt and αi
t according to eqs. (19)-(21). Let the diameter

of uncertainty set D satisfy D ≤ max{pmin

H , ϵ
SH2 }. The output policy π̂ produced by Algorithm 1

satisfies the following convergence rate with probability at least 1− cδ for some constant c > 0.

1. If pmin > ϵ
SH , then

max
j∈[J]

max
s∈S

(
V

(j)
ϕ∗◦π̂,1(s)− V

(j)
π̂,1 (s)

)
≤ O

( H

pmin −DH

(
A

√
H3S

K
ln

mKHSA2

δ
+ e
))

.

To achieve an ϵ gap, we set e = O( ϵpmin

H ) and require K = Õ(SA2H5p−2
minϵ

−2) episodes.
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2. If pmin ≤ ϵ
SH , then

max
j∈[J]

max
s∈S

(
V

(j)
ϕ∗◦π̂,1(s)− V

(j)
π̂,1 (s)

)
≤5DSH2 +O

(
H
(
A

√
H3S

K
ln

mKHSA2

δ
+ e
))

.

To achieve an ϵ gap, we set e = O( ϵ
H ) and require K = Õ(SA2H5ϵ−2) episodes.

Theorem 4.4 characterizes the convergence rate and episode complexity of decentralized robust V-
learning. We note that the optimality gap adopted in the above theorem takes the maximum over all
the states and hence is stronger than that used in the original V-learning (Jin et al., 2022b). This is
because we need to develop new techniques to address the state transition uncertainty caused by the
environment model uncertainty. As a result, the environment model uncertainty diameter D should
not be too large compared to the state exploration probability pmin and the target accuracy ϵ.

When there is only a single player (m = 1), we can prove that every robust CE policy achieves the
optimal robust value function, by noticing that for any given policies π, µ over the action space A
there always exists a stochastic modification ϕ such that ϕ ◦ π(a) = µ(a) for all a ∈ A. Therefore,
the robust V-learning algorithm can be applied to single-agent reinforcement learning to address
model uncertainty. We obtain the following corollary.
Corollary 4.5. In the case of a single player, the output policy π̂ produced by Algorithm 1 achieves
an approximate optimal robust value function at the same convergence rate as that in Theorem 4.4.

Technical novelty of Theorem 4.4. Our analysis leverages the following technical developments to
address model uncertainty and establish the convergence rate.
• To address model uncertainty, our decentralized robust V-learning algorithm adopts the worst-case

expected value function estimator σ̂Ph(s,a)(V ) in the critic update, as opposed to the exact value
V (s) used in the standard V-learning. Such a nonlinear operator allows us to track the robust value
function in the analysis. In particular, we developed various important properties of this operator
in Lemma F.1, including boundedness, monotonicity, etc., which are crucial to establish the key
Lemmas F.2, F.3, F.4 and F.6 that lead to the desired convergence rate result.

• The proof of the original V-learning algorithm (Jin et al., 2022a) tracks the upper bound of
the optimality gap δk,h := Vk,h(sk,h) − V k,h(sk,h) at a single state and builds a recursion
on it. This approach cannot be applied to our case as this gap turns into an uncertainty form
σPh(s,a)(Vk,h+1) − σPh(s,a)(V k,h+1), which inevitably involves all possible states. To ad-
dress this issue, we decompose this term as σPh(s,a)(Vk,h+1) − σPh(s,a)(V k,h+1) = δk,h+1 +
σPh(s,a)(Vk,h+1)− σPh(s,a)(V k,h+1)− δk,h+1 to link it to the desired term δk,h+1 (see eq. (12)).
Consequently, we need to solve a more challenging recursion that we build in Lemma F.8.

• The decomposition mentioned in the previous bullet point involves an error term
σPh(s,a)(Vk,h+1)− σPh(s,a)(V k,h+1)− δk,h+1 that critically depends on the level of uncertainty.
For example, this error term vanishes when there is no model uncertainty. We develop an upper
bound of this error term in Lemma F.7 by leveraging the uncertainty diameter (Definition 4.3) and
introducing a stronger convergence metric ∆(j)

k,h :=
∑

s∈S
(
V

(j)
k,h (s)−V

(j)
k,h(s)

)
compared to δk,h.

• To derive the desired convergence rate, we build a recursion on the convergence metric
{
∑K

k=1 ∆
(j)
k,h}h∈[H] in Lemma F.9. The key challenge in solving this recursion is to rewrite it

as a vectorized linear system that involves an upper triangular Toeplitz matrix, whose spectrum
can be characterized analytically and used to derive the final result.

5 EXPERIMENTS

In this section, we compare the performance of V-learning and robust V-learning in the two-player
coordination game described in the proof of Proposition 3.6. Specifically, the game consists of five
states and each player has two actions. The state transition probability at step h = 1 is shown
in Figure 2, and the state remains unchanged at step h = 2. The two-player reward function is
defined as r(s0, a) = [0.5, 0.5], r(s1, a) = [0, 1], r(s2, a) = [1, 0], r(s3, a) = [0.95, 0.95] and
r(s4, a) = [0, 0] for all actions a ∈ A. We consider the following types of uncertainty models.
1. Discrete uncertainty model Ph = {Ph,p : p ∈ {0, 5

14}}: In this case, the analytical form of the
value function mapping σPh(sh,ah)(V ) can be explicitly calculated.
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2. KL divergence model in Example 3.1: We set the centroid transition kernel to be Ph = P1,0.1

and choose uncertainty level parameter ρ = 0.1.
3. R-contamination model in Example 3.2: We set the centroid transition kernel to be Ph = P1,0.1

and choose uncertainty level parameter R = 0.01.
We generate episodic data by randomly querying transition kernels from these uncertainty sets in
every time step through a non-stationary process. Then we feed the generated data to both the
V-learning algorithm and our robust V-learning algorithm. The performance of the output policy
is evaluated by estimating the optimality gap used in our theoretical analysis (defined in eq. (8)).
Specifically, to evaluate an approximated optimality gap for the KL divergence and R-contamination
uncertainty models, we sample multiple transition kernels uniformly at random from these uncer-
tainty sets and evaluate the optimality gap over them. More details on the experiment setup and
hyper-parameter choices are described in Appendix G.

Figure 1: Comparison of estimated optimality gap of the policies produced by V-learning and robust
V-learning. The optimality gap we estimate is maxj∈[J][V

(j)
ϕ∗◦πK+1,1

(s4)− V
(j)
πK+1,1

(s4)].

Figure 1 shows the results on the estimated optimality gap of the policies produced by both al-
gorithms, where each curve consists of 30 repetitions. It can be observed that robust V-learning
consistently outperforms V-learning and achieves a smaller optimality gap under all three types of
uncertainty models. This demonstrate that robust V-learning is good at computing approximate ro-
bust CE under general environment model uncertainty. In particular, under the discrete uncertainty
model, robust V-learning obtains the most substantial improvement over V-learning. This is because
the experiment setup chooses a high level of uncertainty and we can compute σPh

(V ) exactly. For
both the KL divergence model and R-contamination model, we choose lower levels of uncertainty
and approximately compute σPh

(V ). Hence, the corresponding performance gaps between robust
V-learning and V-learning are smaller.

6 CONCLUSION

In this work, we proposed a new and tractable notion of robust correlated equilibrium for Markov
games with environment model uncertainty. We showed that the robust correlated equilibrium has
a simple modification structure, and its characterization of equilibrium critically depends on the en-
vironment model uncertainty. Moreover, we proposed the first fully-decentralized robust V-learning
algorithm for computing such robust correlated equilibrium and established a polynomial sample
complexity for computing an approximate robust correlated equilibrium. We believe this work pro-
vides an initial solution to competitive multi-agent reinforcement learning in uncertain environment,
and an interesting future direction is to explore if it is possible to establish convergence of the algo-
rithm under relaxed requirements on the uncertainty diameter.

REFERENCES

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In
International conference on machine learning, pp. 551–560. PMLR, 2020.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

9



Under review as a conference paper at ICLR 2023

Xiaotie Deng, Yuhao Li, David Henry Mguni, Jun Wang, and Yaodong Yang. On the complex-
ity of computing markov perfect equilibrium in general-sum stochastic games. arXiv preprint
arXiv:2109.01795, 2021.

Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science & Business
Media, 2012.

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the hiroshima
university, series ai (mathematics), 28(1):89–93, 1964.

Amy Greenwald, Keith Hall, Roberto Serrano, et al. Correlated q-learning. In ICML, volume 3, pp.
242–249, 2003.

Thomas Dueholm Hansen, Peter Bro Miltersen, and Uri Zwick. Strategy iteration is strongly poly-
nomial for 2-player turn-based stochastic games with a constant discount factor. Journal of the
ACM (JACM), 60(1):1–16, 2013.

Junling Hu and Michael P Wellman. Nash q-learning for general-sum stochastic games. Journal of
machine learning research, 4(Nov):1039–1069, 2003.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
mization. Available at Optimization Online, pp. 1695–1724, 2013.

Feng Huang, Ming Cao, and Long Wang. Optimal control of robust team stochastic games. arXiv
preprint arXiv:2105.07405, 2021.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decen-
tralized algorithm for multiagent rl. In ICLR 2022 Workshop on Gamification and Multiagent
Solutions, 2022a.

Yujia Jin, Vidya Muthukumar, and Aaron Sidford. The complexity of infinite-horizon general-sum
stochastic games. arXiv preprint arXiv:2204.04186, 2022b.
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A PROOF OF PROPOSITION 3.5

First, we re-state Proposition 3.5 here.
Proposition A.1. In a Markov game with model uncertainty, any robust CE policy π can be achieved
by deterministic modifications, i.e., for any player j there exists a deterministic modification ϕ(j)

such that V (j)
π,1 (s) = V

(j)

ϕ(j)◦π,1(s).

Proof. We will prove this proposition for a more general setting where each reward r
(j)
h =

r
(j)
h (s1:h, a1:h) relies on all the past and current states s1:h := {sh′}hh′=1 and actions a1:h :=

{ah′}hh′=1. Then the conclusion directly applies to the special case of interest where r
(j)
h =

r
(j)
h (sh, ah).

We will find ϕ(j) by applying mathematical induction to the horizon H .

When H = 1, the MDP does not involve transition kernel, so

V
(j)

ϕ(j)◦π,1(s) =
∑
a1

(ϕ
(j)
1 ◦ π1)(a1|s)r(j)1 (s, a1)

(i)
=

∑
a1,ã

(j)
1

ϕ
(j)
1 (a

(j)
1 |s, ã

(j)
1 )π1([ã

(j)
1 , a

(\j)
1 ]|s)r(j)1 (s, a1)

=
∑
ã
(j)
1

(∑
a
(j)
1

ϕ
(j)
1 (a

(j)
1 |s, ã

(j)
1 )

∑
a
(\j)
1

π1([ã
(j)
1 , a

(\j)
1 ]|s)r(j)1 (s, a1)

)
(ii)

≤
∑
ã
(j)
1

(
max
a
(j)
1

∑
a
(\j)
1

π1([ã
(j)
1 , a

(\j)
1 ]|s)r(j)1 (s, a1)

)
,

where (i) uses the following formula that directly follows from the definition of stochastic modifica-
tion ϕ(j), and (ii) becomes “=” using the deterministic modification such that ϕ(j)

1 (a
(j)
1 |s, ã

(j)
1 ) := 1

12
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for a certain a
(j)
1 ∈ argmax

a
(j)
1

∑
a
(\j)
1

π1([ã
(j)
1 , a

(\j)
1 ]|s))r(j)1 (s, a1).

(ϕ
(j)
h ◦ πh)

(
ah|s1:h, a1:h−1

)
=
∑
ã
(j)
h

ϕ
(j)
h (a

(j)
h |s1:h, a1:h−1, ã

(j)
h )πh([ã

(j)
h , a

(\j)
h ]|s1:h, a1:h−1). (9)

This proves the existence of the optimal deterministic solution ϕ(j) for H = 1. Suppose it also
exists for horizon H − 1. Then it suffices to prove the existence of ϕ(j) for H as follows.

V
(j)

ϕ(j)◦π,1(s) :

= inf
P∈P

E
[ H∑
h=1

r
(j)
h (s1:h, a1:h)

∣∣∣s1 = s, ϕ(j) ◦ π,P
]

= inf
P1:H−2∈P1:H−2

(
E
[H−1∑

h=1

r
(j)
h (s1:h, a1:h)

∣∣∣s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2

]
+ inf

PH−1∈PH−1

E
[
r
(j)
H (s1:H , a1:H)

∣∣∣s1 = s, ϕ(j) ◦ π,P1:H−1

])

= inf
P1:H−2∈P1:H−2

(
E
[H−1∑

h=1

r
(j)
h (s1:h, a1:h)

∣∣∣s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2

]
+

∑
s1:H−1,a1:H−1

Pr(s1:H−1, a1:H−1|s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2)

inf
PH−1(·|sH−1,aH−1)
∈PH−1(sH−1,aH−1)

∑
sH

PH−1(sH |sH−1, aH−1)
∑
aH

(ϕ
(j)
H ◦ πH)(aH |s1:H , a1:H−1)r

(j)
H (s1:H , a1:H)

)

(i)
= inf

P1:H−2∈P1:H−2

(
E
[H−1∑

h=1

r
(j)
h (s1:h, a1:h)

∣∣∣s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2

]
+

∑
s1:H−1,a1:H−1

Pr(s1:H−1, a1:H−1|s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2)

inf
PH−1(·|sH−1,aH−1)
∈PH−1(sH−1,aH−1)

∑
sH

PH−1(sH |sH−1, aH−1)

∑
aH ,ã

(j)
H

ϕ
(j)
H (a

(j)
H |s1:H , a1:H−1, ã

(j)
H )πH([ã

(j)
H , a

(\j)
H ]|s1:H , a1:H−1)r

(j)
H (s1:H , a1:H)

)

= inf
P1:H−2∈P1:H−2

(
E
[H−1∑

h=1

r
(j)
h (s1:h, a1:h)

∣∣∣s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2

]
+

∑
s1:H−1,a1:H−1

Pr(s1:H−1, a1:H−1|s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2)

inf
PH−1(·|sH−1,aH−1)
∈PH−1(sH−1,aH−1)

∑
sH ,ã

(j)
H

PH−1(sH |sH−1, aH−1)
∑
a
(j)
H

ϕ
(j)
H (a

(j)
H |s1:H , a1:H−1, ã

(j)
H )

∑
a
(\j)
H

πH([ã
(j)
H , a

(\j)
H ]|s1:H , a1:H−1)r

(j)
H (s1:H , a1:H)

)

(ii)

≤ inf
P1:H−2∈P1:H−2

(
E
[H−1∑

h=1

r
(j)
h (s1:h, a1:h)

∣∣∣s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2

]
+

∑
s1:H−1,a1:H−1

Pr(s1:H−1, a1:H−1|s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2) inf
PH−1(·|sH−1,aH−1)
∈PH−1(sH−1,aH−1)
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∑
sH ,ã

(j)
H

PH−1(sH |sH−1, aH−1)max
a
(j)
H

∑
a
(\j)
H

πH([ã
(j)
H , a

(\j)
H ]|s1:H , a1:H−1)r

(j)
H (s1:H , a1:H)

)

(iii)
= inf

P1:H−2∈P1:H−2

E
[H−2∑

h=1

r
(j)
h (s1:h, a1:h) + r̃

(j)
H−1(s1:H−1, a1:H−1)

∣∣∣s1 = s, {ϕ(j)
h ◦ πh}H−1

h=1 ,P1:H−2

]
,

(10)

where we denote P1:h := {Ph′}hh′=1 and P1:h := {Ph′}hh′=1, (i) uses eq. (9), (ii) becomes “=”
using the deterministic modification ϕ

(j)
H such that ϕ(j)

H (a
(j)
H |s1:H , a1:H−1, ã

(j)
H ) := 1 for a certain

a
(j)
H ∈ argmax

a
(j)
H

∑
a
(\j)
H

πH([ã
(j)
H , a

(\j)
H ]|s1:H , a1:H−1)r

(j)
H (s1:H , a1:H), and (iii) denotes the fol-

lowing surrogate reward at step H − 1,

r̃
(j)
H−1(s1:H−1, a1:H−1) = r

(j)
H−1(s1:H−1, a1:H−1) + inf

PH−1(·|sH−1,aH−1)
∈PH−1(sH−1,aH−1)

∑
sH ,ã

(j)
H

PH−1(sH |sH−1, aH−1)

max
a
(j)
H

∑
a
(\j)
H

πH([ã
(j)
H , a

(\j)
H ]|s1:H , a1:H−1)r

(j)
H (s1:H , a1:H). (11)

Note that eq. (10) can be seen as the value function with horizon H − 1, so there are deterministic
modifications ϕ

(j)∗
h for h ∈ [H − 1] that maximize eq. (10), which along with ϕ

(j)
H above forms

the deterministic modification ϕ(j) := {ϕ(j)
h }h∈[H] that maximizes V (j)

ϕ(j)◦π,1(s). This completes the
proof.

B PROOF OF PROPOSITION 3.6

Proposition 3.6. Robust CE and robust NE have the following relations.

1. In any robust Markov game, the set of robust CE includes the set of robust NE, or equivalently,
any robust NE is a robust CE.

2. There exists a Markov game whose robust CE is not robust NE.

Proof. First, we will prove item 1 that the set of robust CE always includes the set of robust NE. This
part of proof is directly taken from Proposition 9 (Jin et al., 2022a) with changing the V-function to
the robust V-function. Let π = π1 × π2 × · · · × πm be a robust Nash equilibrium; then

max
ϕi

V
(i)

(ϕi◦πi)×π(\i)(s)

(i)
=max

π′
i

V
(i)

π′
i×π(\i)(s)

(ii)

≤ V (i)
π (s),

where (i) is because that π is a product policy and (ii) applies the definition of robust Nash equilib-
rium (see Definition 2.1). It implies that π is also a robust CE by Definition 2.3.

Next, we prove item 2. It suffices to give an example of a Markov game setting and a robust CE
policy π that is not NE. Consider a two-player coordination game in which there are five states
S = {si}4i=0 and each player has two actions A = {a(1)i }1i=0 × {a

(2)
i }1i=0. At time step h = 1,

Figure 2 depicts the transition kernel P1,p parameterized by a parameter p ∈ [0, 1
2 ). At time step

h = 2, we set the transition kernel P2,p(s|s, a) = 1 for all s and a, i.e., players stay in their current
state no matter what actions are taken. The rewards of both players are set as r(s0, a) = [0.5, 0.5],
r(s1, a) = [0, 1], r(s2, a) = [1, 0], r(s3, a) = [0.95, 0.95], and r(s4, a) = [0, 0] for any action a ∈
A. The initial state is fixed to be s = s4. We consider the uncertainty set Ph = {Ph,p : p ∈ ( 1029 ,

1
2 )}

where there are two robust NE, i.e., π1(a = [0, 1]|s = s4) = 1 and π1(a = [1, 0]|s = s4) = 1 (π2

can be arbitrary). Moreover, any convex combination of these two policies is a robust CE but not
robust CE.

14
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C POLICIES IN ALGORITHM 1

Figure 2: Transition kernel at h = 1

In this section, we will elaborate how is πk,h in
Algorithm 1 obtained from the adversarial ban-
dit algorithm, and the definition of the output
policy π̂.

Obtaining πk,h: In Algorithm 1, to output
robust equilibrium (robust CE), we adopt V-
learning algorithm (Jin et al., 2022a) for single-
agent adversarial bandit to update the cur-
rent policy. To elaborate, we denote the i-
th iteration of this algorithm as πi+1(·) ←
ADV_BANDIT(bi, ℓi(·)), where the player
takes action bi ∈ B following its own policy
πi(·) obtained from its previous iteration and observes the noisy bandit-feedback ℓi(bi) with the loss
function ℓi selected by the adversary. The procedure of implementing ADV_BANDIT algorithm for
multiple iterations is shown in Algorithm 6 of (Jin et al., 2022a) and we extracted the i-th iteration
as shown in the following Algorithm 2.

Algorithm 2: Adversarial bandit algorithm (ADV_BANDIT)

Input: Iteration index i, action b̃ and the corresponding bandit-feedback ℓ(̃b), the previous
policy πi.

for each action b ∈ B do
ℓ̂i(̃b|b)← πi(b)ℓ(̃b)

πi (̃b)+γi

ℓ̂i(b
′|b)← 0,∀b′ ∈ B/{b̃}

π̃(·|b) ∝ exp
[
− ηi

wi

∑i
j=1 wj ℓ̂j(·|b)

]
, where ℓ̂j is obtained from the j-th iteration of

ADV_BANDIT algorithm
end
Output: πi+1 obtained by solving the linear equation πi+1(·) =

∑
b∈B πi+1(b)π̃(·|b)

It has been proved by Corollary 25 of (Jin et al., 2022b) that Algorithm 2 has the following conver-
gence rate.
Lemma C.1. Implement Algorithm 2 for iterations i = 1, . . . , t with hyperparameter choices wt =

αt∏t
i=2(1−αi)

(αi is defined in eq. (21)), γt = ηt =
√
(H lnB)/t. Then for any δ ∈ (0, 1), with

probability at least 1− δ, we have

min
ϕ

t∑
i=1

αi
t

[
⟨πi(·), li(·)⟩ − ⟨(ϕ ◦ πi)(·), li(·)⟩

]
≤ 10B

√
H ln(B2/δ)

t
,

where ϕ ◦ πi can be defined by reducing the definition of stochastic modification in Definition 2.2 to
single-agent policy πi.

Implementing output policy π̂: After obtaining all πk,h by calling Algorithm 2 in Algorithm 1,
we define the final output policy π̂ as Algorithm 4 below.

To facilitate the technical proof in Lemma F.4 and Lemma F.6, we also define policy π̂k,h for all
k ∈ [K] and h ∈ [H] in Algorithm 4, which can be seen as part of Algorithm 3.

D PROOF OF THEOREM 4.4

Definition D.1. Let sk,h be the state visited at h-th step k-th episode. The density of sk,h is univer-
sally bounded below by pmin; that is

pmin = inf
s∈S,k∈N,h∈[H]

P(sk,h = s).

15
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Algorithm 3: Implement output policy π̂.
Input: States s1:H , policies {πk,h}k∈[K],h∈[H] obtained from Algorithm 1.
Sample k ∈ [K] uniformly at random.
for step h = 1, . . . ,H do

Let t← Nk,h(sh) and {kih(sh)}ti=1 (k1h(sh) < k2h(sh) < . . . < kth(sh) < k) be the
episodes where state sh is visited at the h-th step, i.e., ski

h(sh),h
= sh.

Randomly select i ∈ [t] with probability αi
t and set k ← kih(sh).

Generate ah ∼ πk,h(·|sh).
end
Output: Joint actions a1:H .

Algorithm 4: Implement policy π̂k,h.

Input: Time step h, episode k, states sh:H , policies {πk′,h:H}kk′=1 obtained from Algorithm 1.
for step h′ = h, h+ 1, . . . ,H do

Set t← Nk,h′(sh′) and let {kih′(sh′)}ti=1 (k1h′(sh′) < k2h′(sh′) < . . . < kth′(sh′) < k) be
the episodes where state sh′ is visited at h′-th step, i.e., ski

h′ (sh′ ),h = sh′ .
Randomly select i ∈ [t] with probability αi

t and set k ← kih′(sh′).
ah′ ∼ πk,h′(·|sh′).

end
Output: Joint actions ah:H .

Theorem 4.4. Let S := |S| and A := max1≤j≤m |A(j)| correspond to the size of the state space
and action space, respectively. Choose β(j)

t , αt and αi
t according to eqs. (19)-(21). Let the diameter

of uncertainty set D satisfy D ≤ max{pmin

H , ϵ
SH2 }. The output policy π̂ produced by Algorithm 1

satisfies the following convergence rate with probability at least 1− cδ for some constant c > 0.

1. If pmin > ϵ
SH , then

max
j∈[J]

max
s∈S

(
V

(j)
ϕ∗◦π̂,1(s)− V

(j)
π̂,1 (s)

)
≤ O

( H

pmin −DH

(
A

√
H3S

K
ln

mKHSA2

δ
+ e
))

.

To achieve an ϵ gap, we set e = O( ϵpmin

H ) and require K = Õ(SA2H5p−2
minϵ

−2) episodes.

2. If pmin ≤ ϵ
SH , then

max
j∈[J]

max
s∈S

(
V

(j)
ϕ∗◦π̂,1(s)− V

(j)
π̂,1 (s)

)
≤5DSH2 +O

(
H
(
A

√
H3S

K
ln

mKHSA2

δ
+ e
))

.

To achieve an ϵ gap, we set e = O( ϵ
H ) and require K = Õ(SA2H5ϵ−2) episodes.

Proof. Note that V (j)
k,h (s) (defined by eqs. (5) & (6)) and V

(j)
k,h(s) (defined by eqs. (25) & (26)) are

respectively the upper bound and the lower bound of V (j)
π̂k,h,h

(s) (Since V
(j)
k,h (s) ≥ V

(j)
ϕ∗◦π̂k,h,h

(s) ≥
V

(j)
π̂k,h,h

(s) ≥ V
(j)
k,h(s) based on Lemmas F.4 & F.6). Denote the gap between the upper bound and

the lower bound as follows

δ
(j)
k,h := V

(j)
k,h (sk,h)− V

(j)
k,h(sk,h) ≥ 0.

Let sk,h, ak,h respectively be the state and action at the h-th step in the k-th episode. Let
{kik,h}1≤i≤nk,h

(k1k,h < k2k,h < . . . < k
nk,h

k,h < k) be the set of episodes in which the state sk,h is
visited at the h-th step. nk,h := Nk,h(sk,h) is the number of such visits.

Then we unroll the update rule for both V
(j)
k,h (sk,h) and V

(j)
k,h(sk,h) along k as follows.

δ
(j)
k,h

(i)

≤Ṽ (j)
k,h (sk,h)− ˜V (j)

k,h (sk,h)
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(ii)
= α0

nk,h
(H − h+ 1) +

nk,h∑
i=1

αi
nk,h

(
σ̂Ph(sk,h,aki

k,h
,h
)(V

(j)

ki
k,h,h+1

)− σ̂Ph(sk,h,aki
k,h

,h
)(V

(j)

ki
k,h,h+1

) + 2β
(j)
i

)
(iii)

≤
nk,h∑
i=1

αi
nk,h

(
σPh(sk,h,aki

k,h
,h
)(V

(j)

ki
k,h,h+1

)− σPh(sk,h,aki
k,h

,h
)(V

(j)

ki
k,h,h+1

)

)
+ 2

nk,h∑
i=1

αi
nk,h

β
(j)
i + 2e

nk,h∑
i=1

αi
nk,h

(iv)

≤
nk,h∑
i=1

αi
nk,h

(
σPh(sk,h,aki

k,h
,h
)(V

(j)

ki
k,h,h+1

)− σPh(sk,h,aki
k,h

,h
)(V

(j)

ki
k,h,h+1

)

)
+Θ

(
Aj

√
H3

nk,h
ln

mKHSA2
j

δ

)
+ 4e,

where (i) uses eqs. (6) & (26), (ii) unrolls the update rules (5) & (25), (iii) uses eq. (27) and α0
t = 0

(eq. (21)), and (iv) uses eqs. (22) & (24). By summing over k, we obtain the following recursion:

K∑
k=1

δ
(j)
k,h ≤

K∑
k=1

nk,h∑
i=1

αi
nk,h

(
σPh(sk,h,aki

k,h
,h
)(V

(j)

ki
k,h,h+1

)− σPh(sk,h,aki
k,h

,h
)(V

(j)

ki
k,h,h+1

)

)

+

K∑
k=1

Θ
(
Aj

√
H3

nk,h
ln

mKHSA2
j

δ

)
+ 4Ke

(i)

≤
K∑

k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

) ∞∑
i=nk′

h +1

α
nk′
h

i

+

K∑
k=1

Θ
(
Aj

√
H3

nk,h
ln

mKHSA2
j

δ

)
+ 4Ke

(ii)

≤
(
1 +

1

H

) K∑
k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)

+
∑
s

NK+1,h(s)∑
n=1

Θ
(
Aj

√
H3

n
ln

mKHSA2
j

δ

)
+ 4Ke

(iii)

≤
(
1 +

1

H

) K∑
k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)

+ S · 1
S

∑
s

Θ
(
Aj

√
H3NK+1,h(s) ln

mKHSA2
j

δ

)
+ 4Ke

(iv)
=
(
1 +

1

H

) K∑
k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)
−
(
1 +

1

H

) K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
+
(
1 +

1

H

) K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
(12)

+ SΘ
(
Aj

√√√√H3
1

S

∑
s

NK+1,h(s) ln
mKHSA2

j

δ

)
+ 4Ke

(v)
=
(
1 +

1

H

) K∑
k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)
−
(
1 +

1

H

) K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
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+
(
1 +

1

H

) K∑
k′=1

δ
(j)
k,h+1 +Θ

(
Aj

√
H3SK ln

mKHSA2
j

δ

)
+ 4Ke

where (i) changes the order of summation, (ii) uses eq. (23) and pigeonhole argument, (iii) uses∑NK+1,h(s)
n=1

√
1/n = Θ

(
NK+1,h(s)

)
, (iv) applies Jensen’s inequality to the convex function

√
·,

and (v) is by the definition of δk,h+1. Now we apply Lemma F.7 to the first two terms above on the
right-hand side,

K∑
k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)
−

K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
. (13)

Then we obtain the recursion
K∑

k=1

δ
(j)
k,h ≤D

(
1 +

1

H

) K∑
k=1

∑
s∈S

(
V

(j)
k,h+1(s)− V

(j)
k,h+1(s)

)
+
(
1 +

1

H

)√
32KH2 ln

2mH

δ

+
(
1 +

1

H

) K∑
k=1

δ
(j)
k,h+1 +Θ

(
Aj

√
H3SK ln

mKHSA2
j

δ

)
+ 4Ke. (14)

We apply Lemma F.8 to solve this recursive relation by setting

ah =

K∑
k=1

δ
(j)
k,h, bh =

K∑
k=1

∑
s∈S

(
V

(j)
k,h (s)− V

(j)
k,h(s)

)
,C1 = 1 +

1

H
,C2 = D

(
1 +

1

H

)
,

C3 =
(
1 +

1

H

)√
32KH2 ln

2mH

δ
+Θ

(
Aj

√
H3SK ln

mKHSA2
j

δ

)
+ 4Ke.

Then we obtain
K∑

k=1

δ
(j)
k,h ≤D

(
1 +

1

H

)H−h∑
i=0

(
1 +

1

H

)i K∑
k=1

∑
s∈S

(
V

(j)
k,h+1+i(s)− V

(j)
k,h+1+i(s)

)
(15)

+ 3H
[(

1 +
1

H

)√
32KH2 ln

2mH

δ
+Θ

(
Aj

√
H3SK ln

mKHSA2
j

δ

)
+ 4Ke

]
,

where we also apply (1 + 1
H )H−h+1 < 3. For convenience, we define

∆
(j)
k,h :=

∑
s∈S

(
V

(j)
k,h (s)− V

(j)
k,h(s)

)
and

Uj := 3H
[(

1 +
1

H

)√
32KH2 ln

2mH

δ
+Θ

(
Aj

√
H3SK ln

mKHSA2
j

δ

)
+ 4Ke

]
.

Then we can have the following compact form of eq. 15:

K∑
k=1

δ
(j)
k,h ≤ D

H−h∑
i=0

(1 +
1

H
)i+1

K∑
k=1

∆
(j)
k,h+1+i + Uj .

Starting here, we let D ≤ max{pmin

H , ϵ
SH2 }. For, the case where D ≤ pmin

H , we take expectation on
both sides and obtain

K∑
k=1

∑
s∈S

P(sk,h = s)
(
V

(j)
k,h (s)− V

(j)
k,h(s)

)
≤ D

H−h∑
i=0

(1 +
1

H
)i+1

K∑
k=1

∆
(j)
k,h+1+i + Uj .
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The left-hand side can be further lower bounded using Definition D.1 when pmin > ϵ
SH . We have

pmin

K∑
k=1

∆
(j)
k,h ≤ D

H−h∑
i=0

(1 +
1

H
)i+1

K∑
k=1

∆
(j)
k,h+1+i + Uj . (16)

To solve this recursion, we apply Lemma F.9 by setting

ah =

K∑
k=1

∆
(j)
k,h,C1 =

Uj

pmin
, and C2 =

D

pmin
.

Let D
pmin

< 1
H . Then we obtain the following upper bound:

max
h∈[H]

K∑
k=1

∆
(j)
k,h ≤

Uj

pmin −HD
. (17)

Lastly, we bound the optimality gap at the step h. In expectation with respect choosing k, we have

max
j∈[m]

max
s∈S

[V
(j)
ϕ∗◦π̂,1(s)− V

(j)
π̂,1 (s)]

≤ max
j∈[m]

∑
s∈S

[V
(j)
ϕ∗◦π̂,1(s)− V

(j)
π̂,1 (s)]

(i)

≤ max
j∈[m]

1

K

K∑
k=1

∑
s∈S

[V
(j)
ϕ∗◦π̂k,1,1

(s)− V
(j)
π̂k,1,1

(s)]

(ii)

≤ max
j∈[m]

1

K

K∑
k=1

∑
s∈S

(
V

(j)
k,1 (s)− V

(j)
k,1(s)

)
(iii)
= max

j∈[m]

1

K

K∑
k=1

∆
(j)
k,1

(iv)

≤ 3H

pmin −HD

[
2

√
32H2

K
ln

2mKHSA

δ
+Θ

(
A

√
H3S

K
ln

mKHSA2

δ

)
+ 4e

]
where (i) uses the definitions of π̂ and π̂k,h given by Algorithms 3 & 4 respectively, (ii) uses Lemmas
F.4 & F.6 and sampling rule of k given in Algorithm 3, (iii) is by the definition of ∆(j)

k,h, and (iv)
uses eq. (17) and A := max1≤j≤m Aj . It completes the proof.

When evaluating the sample complexity, we set e = pmin−HD
24H ϵ. Then the last term is bounded by

ϵ/2. Then we let 1
pmin−HD

√
H5SA2 ln mKHSA2

δ /K ≤ 1
2ϵ. It solves the number of episodes for

achieving ϵ-approximation of robust correlated equilibrium is K = Õ(SA2H5p−2
minϵ

−2).

For the second case where D ≤ ϵ
SH2 , we recall that the first term of the recursion eq. (15),

D
(
1 +

1

H

)H−h∑
i=0

(
1 +

1

H

)i K∑
k=1

∑
s∈S

(
V

(j)
k,h+1+i(s)− V

(j)
k,h+1+i(s)

)
measures the influence of diameter of uncertainty set on the convergence error of robust V-learning.
We can estimate this term with a universal upper bound; that is, for h = 1,

D
(
1 +

1

H

) H∑
i=1

(
1 +

1

H

)i−1 K∑
k=1

∑
s∈S

(
V

(j)
k,1+i(s)− V

(j)
k,1+i(s)

)

≤D
(
1 +

1

H

)H−1∑
i=0

(
1 +

1

H

)i K∑
k=1

∑
s∈S

(
H − i

)

=DSK

H−1∑
i=0

(
1 +

1

H

)i
(H − i)
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≤5DSKH2.

Then eq. (15) can be bounded by

K∑
k=1

δ
(j)
k,1 ≤5DSKH2 + 3H

[(
1 +

1

H

)√
32KH2 ln

2mH

δ
+Θ

(
Aj

√
H3SK ln

mKHSA2
j

δ

)
+ 4Ke

]
.

(18)

The derived upper bound of optimality gap based on this inequality becomes

max
j∈[m]

[V
(j)
ϕ∗◦π̂,1(s1)− V

(j)
π̂,1 (s1)]

≤5DSH2 + 3H
[
2

√
32H2

K
ln

2mKHSA

δ
+Θ

(
A

√
H3S

K
ln

mKHSA2

δ

)
+ 4e

]
,

where s1 is the initial state. Since the initial state can be any state over S due to the initialization,
we obtain the desired bound. If D ≤ ϵ

SH2 , then this bound implies the same sample complexity;
the number of episodes for achieving ϵ-approximation of robust correlated equilibrium is K =

Õ(SA2H5ϵ−2) .

E PROOF OF COROLLARY 4.5

Corollary E.1. In the case of a single player, the output policy π̂ produced by Algorithm 1 achieves
an approximate optimal robust value function at the same convergence rate as that in Theorem 4.4.

Proof. It suffices to prove that for the single-agent case, all stochastic modifications of a policy form
the space of all policies. Let Π be all distributions over A and π ∈ Π is given with π(a) > 0 for all
a ∈ A. We will prove that

{ϕ ◦ π : ϕ is a stochastic modification} = Π.

For any µ ∈ Π, we can construct the desired ϕ as follows: define ϕ(·|b) = µ for all b ∈ A. Then we
will show that ϕ ◦ π is same µ.

ϕ ◦ π(a) =
∑
b∈A

π(b)ϕ(a|b)

=
∑
b∈A

π(b)µ(a) = µ(a).

This implies that Π = {ϕ ◦ π : ϕ is a stochastic modification}. It concludes that enumerating all
stochastic modifications of a given policy is equivalent to enumerating all policies.

F SUPPORTING LEMMAS

Hyperparameter choices Throughout this subsection, we use the following hyperparameter
choices

β
(j)
t := cAj

√
H3

t
ln

mKHSA2
j

δ
+ e, (19)

αt :=
H + 1

H + t
, (20)

α0
t = 0, αi

t = αi

t∏
j=i+1

(1− αj)(i ≥ 1) (21)
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where c > 0 is an absolute constant. It can be seen that the above hyperparameters satisfy the
following conditions. (Eq. (22) is obvious and eqs. (23) & (24) are proved in Lemma 10 of Jin et al.
(2022a).)

t∑
i=1

αi
t = 1 (22)

∞∑
t=i

αi
t = 1 +

1

H
(23)

t∑
i=1

αi
tβ

(j)
i = Θ

Aj

√
H3

t
ln

mKHSA2
j

δ

+ e (24)

Pessimistic estimation of V function: To facilitate the proof, we also provide a pessimistic es-
timator of V functions denoted as V

(j)
k,h, which is constructed by the following update rules with

initial values ˜V (j)
1,h (s) = ˜V (j)

k,H+1(s) = 0 for all s, h, k, j

˜V (j)
k+1,h(sh)← (1− αt)˜V (j)

k,h (sh) + αt

(
r
(j)
h + σ̂Ph(sh,ah)(V

(j)
k,h+1)− β

(j)
t

)
; (25)

V
(j)
k+1,h(sh)← max{0,˜V (j)

k+1,h(sh)}. (26)

The above update rules are similar to those for optimistic estimation in eqs. (5) & (6), with the major
difference that +β

(j)
t > 0 in eq. (5) yields optimism (i.e. V (j)

k,h (s) ≥ V
(j)
ϕ∗◦π̂k,h,h

(s) ≥ V
(j)
π̂k,h,h

(s) as

shown by Lemma F.6) while −β(j)
t < 0 in eq. (25) yields pessimism (i.e. V (j)

k,h(s) ≤ V
(j)
π̂k,h,h

(s) as
shown by Lemma F.4)
Lemma F.1. The operator σPh(s,a) defined in eq. (3) has the following properties:

1. Boundedness: infs′ V (s′) ≤ σPh(s,a)(V ) ≤ sups′ V (s′).

2. Monotonicity: σPh(s,a)(V
′) ≤ σPh(s,a)(V ) for any V-tables V, V ′ such that V ′(s) ≤

V (s),∀s.

3. Estimation bound: The estimator σ̂Ph(s,a) has the following bounds for any V function V .

σPh(s,a)(V )− e ≤ σ̂Ph(s,a)(V ) ≤ σPh(s,a)(V ) + e. (27)

Proof. Proof of boundedness: The upper bound σPh(s,a)(V ) ≤ sups′ V (s′) can be directly proved
based on eq. (3) as follows.

σPh(s,a)(V ) = inf
P̃h(·|s,a)∈Ph(s,a)

∑
s′∈S

P̃h(s
′|s, a)V (s′)

≤ inf
P̃h(·|s,a)∈Ph(s,a)

∑
s′∈S

P̃h(s
′|s, a) sup

s′′∈S
V (s′′)

(i)
= sup

s′′∈S
V (s′′),

where (i) uses
∑

s′∈S P̃h(s
′|s, a) = 1. The proof logic for the lower bound infs′ V (s′) ≤

σPh(s,a)(V ) is similar.

Proof of monotonicity: Suppose p ∈ Ph(s, a) achieves the infimum in σPh(s,a)(V ) defined by eq.
(3), i.e.

σPh(s,a)(V ) =
∑
s′∈S

p(s′)V (s′). (28)

Then the monotonicity can be proved as follows.

σPh(s,a)(V )− σPh(s,a)(V
′)
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=
∑
s′∈S

p(s′)V (s′)− inf
P̃h(·|s,a)∈Ph(s,a)

∑
s′∈S

P̃h(s
′|s, a)V ′(s′)

(i)

≥
∑
s′∈S

p(s′)V (s′)−
∑
s′∈S

p(s′)V ′(s′)
(ii)

≥ 0, (29)

where (i) will be used later and (ii) uses p(s′) ≥ 0 and V (s′) ≥ V ′(s′) for all s′ ∈ S.

Proof of estimation bound: e := suph,s,a,V
∣∣σPh(s,a)(V )− σ̂Ph(s,a)(V )

∣∣ defined by Definition 4.3
directly implies eq. (27).

Lemma F.2. For any player j and all s ∈ S, the V-table Ṽ
(j)
k,h and ˜V (j)

k,h tracked by Algorithm 1 at

the h-th step in the k-th episode satisfying Ṽ
(j)
k,h (s) ≥ 0 and ˜V (j)

k,h (s) ≤ H + 1− h.

Proof. We will only prove ˜V (j)
k,h (s) ≤ H + 1 − h since the proof logic for Ṽ (j)

k,h (s) ≥ 0 is similar.

For k = 1, the initial value ˜V (j)
1,h (s) := 0 ≤ H + 1− h. Then we assume ˜V (j)

k,h (s) ≤ H + 1− h for

a certain fixed k ≥ 1 and we prove ˜V (j)
k+1,h(s) ≤ H + 1− h as follows.

˜V (j)
k+1,h(sh)

(i)
= (1− αt)˜V (j)

k,h (sh) + αt

(
r
(j)
h (sh, ah) + σ̂Ph(sh,ah)(V

(j)
k,h+1)− β

(j)
t

)
(ii)

≤ (1− αt)(H + 1− h) + αt

(
1 + σPh(sh,ah)(V

(j)
k,h+1)− β

(j)
t +e

)
(iii)

≤ H + 1− h,

where (i) uses the update rules (25) & (26), (ii) uses ˜V (j)
k,h (s) ≤ H + 1 − h and eq. (27), and (iii)

uses β(j)
t ≥ e based on eq. (19) and the following inequality based on item 1 of Lemma F.1. This

concludes the proof.

σPh(sh,ah)(V
(j)
k,h+1) ≤ max

s
V

(j)
k,h+1(s) ≤ max

s

[
max

(
0,˜V (j)

k,h+1(s)
)]
≤ H − h.

The following lemma says that the tracked upper confidence bound V
(j)
k,h (s) is always larger than the

lower confidence bound V
(j)
k,h(s).

Lemma F.3. For any player j and all s ∈ S, the V-tables V (j)
k,h (s) and V

(j)
k,h(s) tracked by Algorithm

1 at the h-th step in the k-th episode satisfy the following inequality

V
(j)
k,h (s) ≥ V

(j)
k,h(s). (30)

Proof. It suffices to show Ṽ
(j)
k,h (s) ≥ ˜V (j)

k,h (s) since it implies eq. (30) as follows

V
(j)
k,h (s)− V

(j)
k,h(s)

(i)
=min{H + 1− h, Ṽ

(j)
k,h (sh)} −max{0,˜V (j)

k,h (sh)}
(ii)
= min{H + 1− h,max[0, Ṽ

(j)
k,h (sh)]} −min{H + 1− h,max[0,˜V (j)

k,h (sh)]}
(iii)

≥ 0, (31)

where (i) uses eqs. (6) and (26), (ii) uses Lemma F.2, and (iii) uses Ṽ (j)
k,h (s) ≥ ˜V (j)

k,h (s).

Then we prove Ṽ (j)
k,h (s) ≥ ˜V (j)

k,h (s) via induction with regards to k. For k = 1, Ṽ (j)
1,h (s) = H+1−h ≥

˜V (j)
1,h (s) = 0 due to initialization. Suppose Ṽ

(j)
k,h (s) ≥ ˜V (j)

k,h (s) and thus eq. (30) holds for a certain

fixed k. Then we aim to prove Ṽ (j)
k+1,h(s) ≥ ˜V (j)

k+1,h(s) (i.e., eq. (30) also holds for k+1). It suffices
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to consider the case where s is the state visited at the h-th step in the k-th episode, that is, s = sk,h.
Otherwise, Ṽ (j)

k+1,h(s) = Ṽ
(j)
k,h (s) ≥ ˜V (j)

k,h (s) = ˜V (j)
k+1,h(s). When s = sk,h, the update rules (5) &

(25) imply that

Ṽ
(j)
k+1,h(s)− ˜V (j)

k+1,h(s)

=(1− αt)
(
Ṽ

(j)
k,h (s)− ˜V (j)

k,h (s)
)
+ αt

(
σ̂Ph(s,a)(V

(j)
k,h+1)− σ̂Ph(s,a)(V

(j)
k,h+1)

)
+ 2αtβ

(j)
t

(i)

≥αt

(
σPh(s,a)(V

(j)
k,h+1)− σPh(s,a)(V

(j)
k,h+1)−2e+ 2β

(j)
t

) (ii)

≥ 0 (32)

where (i) uses Ṽ (j)
k,h (s) ≥ ˜V (j)

k,h (s) and eq. (27), and (ii) uses V (j)
k,h+1 ≥ V

(j)
k,h+1, the monotonicity of

σPh(s,a) (see item 2 of Lemma F.1) and β
(j)
t ≥ e (see eq. (19)). This concludes the proof.

Lemma F.4. The V-tables V (j)
π̂k,h,h

and V
(j)
k,h satisfy the following inequality with probability at least

1 − δ for all players j ∈ [m], episodes k ∈ [K], time steps h ∈ [H] and states s ∈ S and any
δ ∈ (0, 1

2 ),
V

(j)
π̂k,h,h

(s) ≥ V
(j)
k,h(s).

Proof. It suffices to prove V
(j)
π̂k,h,h

(s) ≥ ˜V (j)
k,h (s); it implies V

(j)
π̂k,h,h

(s) ≥ V
(j)
k,h(s) because

V
(j)
π̂k,h,h

(s) ≥ 0 by its definition (2) (note that r(j)ℓ (sℓ, aℓ) ≥ 0) and V
(j)
k,h(s) := max{0,˜V (j)

k,h (sh)}.
Now we start to prove V

(j)
π̂k,h,h

(s) ≥ ˜V (j)
k,h (s) by induction with respect to h backward. When

h = H + 1, the proof is trivial as V
(j)
π,H+1(s) = ˜V (j)

0,H+1(s) = 0 for any policy π. Then suppose

V
(j)
π̂k,h+1,h+1(s) ≥ ˜V (j)

k,h+1(s) holds so V
(j)
π̂k,h+1,h+1(s) ≥ V

(j)
k,h+1(s) for a certain fixed h, and we

will prove that V (j)
π̂k,h,h

(s) ≥ ˜V (j)
k,h (s). Let {ki}1≤i≤t (k1 < k2 < . . . < kt < k) be the set of

episodes where the state s is visited at the h-th step. Then we unroll the update rule (25) of ˜V (j)
k,h (s)

as follows with respect to the episode k.

˜V (j)
k,h (s) =

t∑
i=1

αi
t

[
r
(j)
h (s, aki,h) + σ̂Ph(s,aki,h)

(V
(j)
ki,h+1)− β

(j)
i

]
(i)

≤
t∑

i=1

αi
t

[
r
(j)
h (s, aki,h) + σPh(s,aki,h)

(V
(j)
ki,h+1) + e− β

(j)
i

]
, (33)

where (i) uses eq. (27). Let

Xi := αi
t

[
r
(j)
h (s, aki,h) + σPh(sh,aki,h)

(V
(j)
ki,h+1)

]
.

Then Xi always has the following bound since V
(j)
ki,h+1 = max{0,˜V (j)

ki,h+1(sh)} ≤ H − h based
on Lemma F.2.

0 ≤ Xi ≤ αi
t(H + 1− h).

Then by using Azuma’s inequality and applying union bound to all j ∈ [m], i ∈ [t] ⊂ [K], h ∈
[H], s ∈ S, we have the following bound with probability at least 1− δ.

t∑
i=1

Xi − E
[ t∑

i=1

Xi

]
≤

√√√√1

2

(
ln

2mKHS

δ

) t∑
i=1

(αi
t)

2(H + 1− h)2
(i)

≤
√

H3

t
ln

2mKHS

δ
, (34)

where (i) uses
∑t

i=1(α
i
t)

2 ≤ 2H
t in Lemma 10 of Jin et al. (2022a). Therefore, with probability at

least 1− δ, the following inequality holds for all j, k, h, s.

˜V (j)
k,h (s)

(i)

≤
t∑

i=1

Xi
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(ii)

≤
t∑

i=1

αi
tEπki,h

[
r
(j)
h (s, aki,h)+σPh(sh,aki,h)

(V
(j)
ki,h+1)

]
+

√
H3

t
ln

2mKHS

δ
−

t∑
i=1

αi
t(β

(j)
i − e)

(iii)

≤
t∑

i=1

αi
tEπki,h

[
r
(j)
h (s, aki,h) + σPh(sh,aki,h)

(V
(j)
π̂ki,h+1,h+1)

]
(iv)
= V

(j)
π̂k,h,h

(s),

where (i) uses eq. (33), (ii) uses eq. (34), (iii) uses eq. (24) and the assumption that V (j)
π̂ki ,h+1(s) ≥

V
(j)
ki,h+1(s) holds for ℓ = ki ≤ k − 1, and (iv) uses the robust Bellman equation and the definition

of π̂k,h given by Algorithm 4.

F.1 LEMMAS ON ROBUST CORRELATED EQUILIBRIUM

The following lemma follows Lemma 15 of (Jin et al., 2022a), with the bandit input changed from
(ah,

H−rh−Vh+1(sh+1)
H ) to (ah,

H−rh−σ̂Ph(sh,ah)(Vh+1)

H ).
Lemma F.5. Let πk+1,h be the policy given by the ADV_BANDIT_UPDATE algorithm at the h-th
step of the k-th episode. Then the following bound holds for all j ∈ [m], k ∈ [K], h ∈ [H] and
s ∈ S with probability at least 1− δ under Lemma C.1.

max
ϕ(j)

t∑
i=1

αi
t

[
Ea∼ϕ(j)◦(πki,h)

[r
(j)
h (s, a) + σPh(s,a)(V

(j)
ki,h+1)]

]

≤
t∑

i=1

αi
t

[
Ea∼πki,h

[r
(j)
h (s, a) + σPh(s,a)(V

(j)
ki,h+1)]

]
+ 10Aj

√
H3

t
ln

mKHSA2
j

δ
, (35)

Proof. By applying Lemma C.1 to the loss function li(a) =
H−rh(s,a)−σPh(s,a)(Vh+1)

H for any s, we
obtain that the following bound holds for all k ∈ [K], h ∈ [H] and s ∈ S with probability 1− δ (we
replace δ in the bound in Lemma C.1 with δ

KHS by applying union bound to all k ∈ [K], h ∈ [H]
and s ∈ S), which is equivalent to the above bound and thus concludes the proof.

max
ϕ(j)

t∑
i=1

αi
tEa∼πki,h

[H − r
(j)
h (s, a)− σPh(s,a)(V

(j)
ki,h+1)

H

]

≤max
ϕ(j)

t∑
i=1

αi
tEa∼ϕ(j)◦πki,h

[H − r
(j)
h (s, a)− σPh(s,a)(V

(j)
ki,h+1)

H

]

+ 10Aj

√
H

t
ln

mKHSA2
j

δ
.

Lemma F.6. For the j-th player, the V-tables V (j)
ϕ∗◦π̂k,h,h

(s) := maxϕ(j) V
(j)

ϕ(j)◦π̂k,h,h
(s) and V

(j)
k,h (s)

at h-th step in the k-th episode, satisfy the following inequality with probability at least 1 − 2δ for
any δ ∈ (0, 1

2 )

V
(j)
k,h (s) ≥ V

(j)
ϕ∗◦π̂k,h,h

(s)

for all s ∈ S.

Proof. It suffices to prove Ṽ
(j)
k,h (s) ≥ V

(j)
ϕ∗◦π̂k,h,h

(s); it implies V
(j)
k,h (s) ≥ V

(j)
ϕ∗◦π̂k,h,h

(s), since

V
(j)
k,h (sh) = min{H+1−h, Ṽ (j)

k,h (sh)} (see eq. (6)) and V
(j)
ϕ∗◦π̂k,h,h

(s) := maxϕ(j) V
(j)

ϕ(j)◦π̂k,h,h
(s) ≤
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H + 1 − h (since r
(j)
h ≤ 1 for all j, h). Let {ki}1≤i≤t (k1 < k2 < . . . < kt < k) be the set of

episodes where the state s is visited at the h-th step. Then we unroll the update rule (5) of Ṽ (j)
k,h (s)

with respect to the episode k as follows.

Ṽ
(j)
k,h (s) = α0

t (H − h+ 1) +

t∑
i=1

αi
t

[
r
(j)
h (s, aki,h) + σ̂Ph(s,aki,h)

(V
(j)
ki,h+1) + β

(j)
i

]
≥

t∑
i=1

αi
t

[
r
(j)
h (s, aki,h) + σPh(s,aki,h)

(V
(j)
ki,h+1) + β

(j)
i −e

]
.

where the above ≥ uses α0
t = 0 (see eq. (21)) and eq. (27). Substituting (34) which holds with

probability at least 1− δ into the above inequality, we obtain that the following bound holds for all
j, k, h, s with probability at least 1− δ,

Ṽ
(j)
k,h (s) ≥

t∑
i=1

αi
tEπki

h

[
r
(j)
h (s, aki,h) + σPh(s,aki,h)

(V
(j)
ki,h+1)

]
+

t∑
i=1

αi
t(β

(j)
i −e)−

√
H3

t
ln

2mKHS

δ
. (36)

By substituting eq. (35) into eq. (36), we obtain the following bound which holds for all j, k, h, s
with probability at least 1− 2δ (since eq. (35) holds with probability at least 1− δ and so does eq.
(36)).

Ṽ
(j)
k,h (s) ≥max

ϕ(j)

t∑
i=1

αi
tEϕ(j)◦πki,h

[
r
(j)
h (s, aki,h) + σPh(s,aki,h)

(V
(j)
ki,h+1)

]

+

t∑
i=1

αi
t(β

(j)
i −e)−

√
H3

t
ln

2mKHS

δ
− 10Aj

√
H3

t
ln

mKHSA2
j

δ

(i)

≥max
ϕ
(j)
h

t∑
i=1

αi
tEa∼ϕ

(j)
h ◦πki,h

[
r
(j)
h (s, a) + σPh(s,a)(V

(j)
ki,h+1)

]
(37)

where (i) holds using eq. (24).

Then we can apply induction to h backward to prove Ṽ
(j)
k,h (s) ≥ V

(j)
ϕ∗◦π̂ki ,h

. For the base case

h = H + 1, it can be easily seen that Ṽ (j)
k,H+1(s) = V

(j)
ϕ∗◦π̂k,H+1(s) = 0 based on Algorithm 1

and the definition of V
(j)
π,h given by eq. (2). Suppose Ṽ

(j)
k,h+1(s) ≥ V

(j)
ϕ∗◦π̂k,h+1(s) for a certain

fixed h and all j, k, s, so V
(j)
k,h+1(s) ≥ V

(j)
ϕ∗◦π̂k,h+1(s). Then eq. (37) further implies the following

inequality, which concludes the proof. (Note that the whole induction builds on eq. (37) which holds
for all k, h, j, s with probability at least 1− 2δ.)

Ṽ
(j)
k,h (s) ≥ max

ϕ
(j)
h

t∑
i=1

αi
tEa∼ϕ

(j)
h ◦πki,h

[
r
(j)
h (s, a) + σPh(s,a)(V

(j)
ϕ∗◦π̂ki,h+1,h+1)

]
≥ V

(j)
ϕ∗◦π̂ki,h,h

,

where the second ≤ uses the following inequality obtained via the same proof logic as Lemma 13
of Jin et al. (2022a) (see the beginning of page 19 of Jin et al. (2022a)).

V
(j)
ϕ∗◦π̂k,h,h

(s) := max
ϕ(j)

V
(j)

ϕ(j)◦π̂k,h,h
(s)

(i)
= max

ϕ
(j)
h

max
ϕ
(j)

(h+1):H

E
a∼ϕ

(j)
h ◦[π̂k,h]h

(
r
(j)
h (s, a) + σPh(s,a)

(
V

(j)

ϕ
(j)

(h+1):H
◦π̂k,h+1,h+1

))
(ii)
= max

ϕ
(j)
h

max
ϕ
(j)

(h+1):H

t∑
i=1

αi
tEa∼ϕ

(j)
h ◦πki,h

(
r
(j)
h (s, a) + σPh(s,a)

(
V

(j)

ϕ
(j)

(h+1):H
◦π̂ki,h+1,h+1

))
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(iii)

≤ max
ϕ
(j)
h

t∑
i=1

αi
tEa∼ϕ

(j)
h ◦πki,h

(
r
(j)
h (s, a) + max

ϕ
(j)

(h+1):H

inf
P̃h(·|s,a)∈Ph(s,a)

∑
s′

P̃h(s
′|s, a)V (j)

ϕ
(j)

(h+1):H
◦π̂ki,h+1,h+1

(s′)
)

≤ max
ϕ
(j)
h

t∑
i=1

αi
tEa∼ϕ

(j)
h ◦πki,h

(
r
(j)
h (s, a) + inf

P̃h(·|s,a)∈Ph(s,a)

∑
s′

P̃h(s
′|s, a) max

ϕ
(j)

(h+1):H

V
(j)

ϕ
(j)

(h+1):H
◦π̂ki,h+1,h+1

(s′)
)

(iv)
= max

ϕ
(j)
h

t∑
i=1

αi
tEa∼ϕ

(j)
h ◦πki,h

(
r
(j)
h (s, a) + σPh(s,a)

(
V

(j)
ϕ∗◦π̂ki,h+1,h+1

))
,

where (i) uses robust Bellman equation and denotes [π̂k,h]h as the marginal distribution of ah based
on policy π̂k,h defined by Algorithm 4, (ii) uses the definition of π̂k,h given by Algorithm 4, (iii)
and (iv) use the definition of σPh(s,a) given by eq. (3).

F.2 KEY LEMMAS TO HANDLE UNCERTAINTY

Lemma F.7.
K∑

k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)
−

K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
≤D

K∑
k=1

∑
s∈S

(
V

(j)
k,h+1(s)− V

(j)
k,h+1(s)

)
+

√
32KH2 ln

2mH

δ
. (38)

Proof. For the k′-th episode, let σPh(sk,h,ak′,h)
(V

(j)
k′,h+1) =

∑
s pk′,h(s)V

(j)
k′,h+1(s) =

pTk′,hV
(j)
k′,h+1, i.e., the minimum is achieved at pTk′,h. Then

K∑
k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)
−

K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
≤

K∑
k′=1

pTk′,h

(
V

(j)
k′,h+1 − V

(j)
k′,h+1

)
−

K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

)
≤

K∑
k′=1

pTk′,h

(
V

(j)
k′,h+1 − V

(j)
k′,h+1

)
−

K∑
k′=1

E
(
V

(j)
k′,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

∣∣∣sk′,h, ak′,h

)
︸ ︷︷ ︸

(A)

+

K∑
k′=1

E
(
V

(j)
k′,h+1(sk′,h+1)−V (j)

k′,h+1(sk′,h+1)
∣∣∣sk′,h, ak′,h

)
−

K∑
k′=1

(
V

(j)
k′,h+1(sk′,h+1)−V (j)

k′,h+1(sk′,h+1)
)

︸ ︷︷ ︸
(B)

.

Then we will bound terms (A) and (B), respectively. For term (A), we define p′k,h(s) :=

Ph(sk,h+1 = s|sk,h, ak,h) for some distribution sampled from the uncertainty set Ph(sk,h, ak,h).
Then we obtain

K∑
k′=1

pTk′,h

(
V

(j)
k′,h+1 − V

(j)
k′,h+1

)
−

K∑
k′=1

E
(
V

(j)
k,h+1(sk′,h+1)− V

(j)
k′,h+1(sk′,h+1)

∣∣∣sk′,h, ak′,h

)
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(i)
=

K∑
k′=1

pTk′,h

(
V

(j)
k′,h+1 − V

(j)
k′,h+1

)
−

K∑
k′=1

p′Tk′,h

(
V

(j)
k′,h+1 − V

(j)
k′,h+1

)
(ii)
=

K∑
k′=1

(pk′,h − p′k′,h)
T
(
V

(j)
k′,h+1 − V

(j)
k′,h+1

)
(iii)

≤ max
s∈S
|pk′,h(s)− p′k,h(s)|

K∑
k′=1

∑
s∈S

(
V

(j)
k′,h+1(s)− V

(j)
k′,h+1(s)

)
(iv)

≤ D

K∑
k=1

∑
s∈S

(
V

(j)
k,h+1(s)− V

(j)
k,h+1(s)

)
,

where (i) expands the conditional expectation, (ii) combines the same term together, (iii) applies the
Hölder’s inequality ⟨u, v⟩ ≤ ∥u∥∞∥v∥1, and (iv) uses e := suph,s,a,V

∣∣σPh(s,a)(V )− σ̂Ph(s,a)(V )
∣∣

defined by Definition 4.3.

Now we turn to bound term (B). Let

Yk′ =E
(
V

(j)
k′,h+1(sk′,h+1)−V (j)

k′,h+1(sk′,h+1)
∣∣∣sk′,h, ak′,h

)
−
(
V

(j)
k′,h+1(sk′,h+1)−V (j)

k′,h+1(sk′,h+1)
)
.

Then
∑k

k′=1 Yk′ forms a martingale with |Yk′ | ≤ 4H . By Azuma-Hoeffding inequality, with a
probability at least 1− δ,

K∑
k′=1

Yk′ ≤
√
32KH2 ln

2mH

δ
.

Combining the bounds of (A) and (B), we obtain the upper bound of eq. (13):
K∑

k′=1

(
σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)− σPh(sk,h,ak′,h)

(V
(j)
k′,h+1)

)
≤D

K∑
k=1

∑
s∈S

(
V

(j)
k,h+1(s)− V

(j)
k,h+1(s)

)
+

√
32KH2 ln

2mH

δ
.

This lemma gives a more general version of recursion used in Jin et al. (2022a). When setting bh ≡ 0
and iterating to h = 1, this result is reduced to Jin et al. (2022a).
Lemma F.8. Suppose the sequence {ah, bh}h∈[H+1] satisfies the following recursion:

aH+1 = bH+1 = 0,

ah ≤ C1ah+1 + C2bh+1 + C3.

Then for any h ∈ [H],

ah ≤ C2

H−h∑
i=0

Ci
1bh+1+i +

(CH−h+1
1 − 1

C1 − 1

)
C3.

Proof. We prove it by induction with respect to h backward. For h = H , the statement obviously
holds. Then assuming the statement holds for h+1 (for some h < H), we consider the upper bound
of ah:

ah
(i)

≤ C1ah+1 + C2bh+1 + C3

(ii)

≤ C1

[
C2

H−h−1∑
i=0

Ci
1bh+2+i +

(CH−h
1 − 1

C1 − 1

)
C3

]
+ C2bh+1 + C3

(iii)
= C2

[H−h−1∑
i=0

Ci+1
1 bh+2+i + bh+1

]
+
[
C1

(CH−h
1 − 1

C1 − 1

)
+ 1
]
C3
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= C2

H−h∑
i=0

Ci
1bh+1+i +

(CH−h+1
1 − 1

C1 − 1

)
C3,

where (i) uses the recursion, (ii) applies the induction hypothesis, and (iii) rearranges the order of
each term. It completes the proof.

Lemma F.9. Suppose the sequence {ah, bh}h∈[H+1] satisfies the following recursion:

aH+1 = 0,

ah ≤ C1 + C2

H−h∑
i=0

(
1 +

1

H

)i+1

ah+1+i.

If C2 < 1/H , then

max
h

ah ≤
C1

1−HC2
.

Proof. We re-write the recursion in matrix form. Here inequality holds for entry-wise.


a1
a2
...
aH

 ≤ C11H + C2



0
(
1 + 1

H

) (
1 + 1

H

)2
. . .

(
1 + 1

H

)H−1

0 0
(
1 + 1

H

)
. . .

(
1 + 1

H

)H−2

0 0 0 . . .
(
1 + 1

H

)H−3

...
...

...
. . .

...
0 0 0 . . . 0




a1
a2
...
aH

 .

Denote the upper triangular Toeplitz matrix by T. Then we take ∥ · ∥∞ on both sides and obtain

max
h

ah ≤ C1 + C2 ∥T∥∞ max
h

ah

≤ C1 + C2

H−1∑
h′=1

(
1 +

1

H

)h′

max
h

ah

≤ C1 + C2H
[(

1 +
1

H

)H
− 1
]
max
h

ah

≤ C1 +HC2 max
h

ah.

When C2 < 1/H , it solves the upper bound of maxh ah as

max
h

ah ≤
C1

1−HC2
.

G EXPERIMENTS SETUP

In this section, we clarify the details of the experiment setup. For fair comparison, both V-learning
and robust V-learning are implemented in the same way as follows:

1. Adversarial bandit algorithm: the maximum size of saved ℓ̂j in Algorithm 2 is limited to
10000; for example, when reaching the iterate i = 10001, we will remove the first element
to save more computation memory.

2. Hyper-parameters: Both {αt} and {β(j)
t } depend on environment parameters S,A,H and

the high-probability bound parameter δ. For simplicity, we set the same fixed coefficients
for V-learning and robust V-learning.

3. Solve σ(V ) for KL-type uncertainty set: For numerical stability, the minimum is solved
over a bounded interval [0.01, 9.9].
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To simulate the non-stationary environment, we sample the transition probability as follows: (1)
Pre-set a list of environments with the length n from the given uncertainty set. For discrete model,
the uncertainty set contains exact two elements Ph = {Ph,p : p ∈ {0, 5

14}}. For KL-divergence
model and R-contamination model, we sample multiple Gaussian noises with the same dimension
as the transition kernel; then we remove unqualified transition until there are 5 left. (2) We define
the index function i(h) = ⌊sin(h) +Xh⌋%n, where % is the module operation, n is the number of
transitions, Xh is a Gaussian random variable. For each step h, we choose the transition selected by
the index function to sample the next state.

For KL-divergence and R-contamination model, exactly solving the optimality gap over the whole
uncertainty set is not possible. The steps below are used to calculate the optimality gap of an output
policy π numerically in our experiment: (1) Evenly draw 5 transition kernels from the uncertainty
set. (2) For each sampled transition and each player, we estimate the expected future return of all
deterministic modifications of π starting from the initial state by running the environment for 100
times. (3) We choose the modification with the highest worst-case expected future return among
all simulations; this is the best response of π. (4) The gap between the best response of π and the
V-table of π at the initial state is the optimality gap. We use this to evaluate the performance of all
models.

H ADDITIONAL EXPERIMENTS

We add additional experiments on different parameters:
1. Discrete uncertainty model: (a) Ph = {Ph,p : p ∈ {0, 0.1}}; (b) Ph = {Ph,p : p ∈ {0, 0.2}};

and (c) Ph = {Ph,p : p ∈ {0, 5
14}}.

2. KL divergence model in Example 3.1: We set the centroid transition kernel to be Ph = P1,0.1

and choose uncertainty level parameter (a) ρ = 0.15; (b) ρ = 0.12; and (c) ρ = 0.1.
3. R-contamination model in Example 3.2: We set the centroid transition kernel to be Ph = P1,0.1

and choose uncertainty level parameter (a) R = 0.03; (b) R = 0.02; and (c) R = 0.01.

(a)

(b)

(c)

Figure 3: Comparison of estimated optimality gap of the policies produced by V-learning and robust
V-learning. The optimality gap we estimate is maxj∈[J][V

(j)
ϕ∗◦πK+1,1

(s4)− V
(j)
πK+1,1

(s4)].
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