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Abstract

Although retrieval-augmented generation001
(RAG) remains essential for knowledge-002
based question answering (KBQA), current003
paradigms face critical challenges under004
specific domains. Existing methods struggle005
with targeted adaptation on small-scale KBs:006
vanilla unsupervised training exhibits poor007
effectiveness, while fine-tuning incurs pro-008
hibitive costs of external signals. We present009
KBAlign, a self-supervised framework that010
enhances RAG systems through efficient model011
adaptation. Our key insight is to leverage the012
model’s intrinsic capabilities for knowledge013
alignment through two innovative mechanisms:014
multi-grained self-annotation that captures015
global knowledge for data construction, and016
iterative tuning that accelerates convergence017
through self verification. This framework018
enables cost-effective model adaptation019
to specific textual KBs, without human020
supervision or external model assistance.021
Experiments demonstrate that KBAlign022
can achieve 90% of the performance gain023
obtained through GPT-4-supervised adaptation,024
while relying entirely on self-annotation of025
much smaller models. KBAlign significantly026
improves downstream QA accuracy across027
multiple domains with tiny costs, particularly028
benefiting scenarios requiring deep knowledge029
integration from specialized corpora. We030
release our experimental data, models, and031
process analyses to the community for further032
exploration 1.033

1 Introduction034

Large language models (LLMs) have demonstrated035

their general capabilities across a wide range of036

downstream tasks (Achiam et al., 2023), and the037

factual reliability of the models could be enhanced038

with common techniques such as retrieval aug-039

mented generation (RAG) (Lewis et al., 2020).040

1 https://anonymous.4open.science/r/
KBAlign-303B
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Figure 1: KBAlign schematic. We design special self-
annotation methods to help master global KB knowl-
edge, conduct iterative verifying to save training time
costs, and adopt targeted inference to improve accuracy.

When applied in specific domains, however, the 041

adaptation of models to knowledge base (KB) ma- 042

terials remains a crucial strategy to further im- 043

prove performance (Ling et al., 2023). Intuitively, 044

adapted models align with the knowledge scope 045

of the given KBs, rewriting the retrieval queries 046

in a targetd manner and utilizing the KB informa- 047

tion more fully. For example, when refering to 048

the word “LLM”, both general QA model and the 049

retriever may regard it as an AI term, while the 050

aligned model can supplement keywords to the ini- 051

tial query according to the scope of legal KBs, and 052

then generates a disambiguated response with the 053

help of a more precise retrieved context, in which 054

“LLM” stands for master of laws. 055

Existing adaptation methods usually construct 056

domain models with large-scale training data (Zhao 057

et al., 2024), while there are quite specific needs in 058

real-world scenarios corresponding to small-scale 059

textual KBs, such as providing customized services 060

based on user-specific document repositories, or 061

plug-and-play integration of modules. In these 062

cases, simple LM training on raw data may degrade 063

performance, necessitating alternative approaches 064

to align with specific domains (Cheng et al., 2023). 065

Targeted fine-tuning, on the other hand, typically 066
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involves the incorporation of external knowledge067

signals (Tan et al., 2024) to transform data into068

more structured tasks. When faced with constraints069

such as confidentiality, convenience, and limited070

computational resources, involving human anno-071

tation or relying on online large models becomes072

unpractictible. Therefore, a low-cost adaptation073

to small-scale KBs that does not rely on external074

supervisions is urgently needed.075

Drawing an analogy to the human learning pro-076

cess, RAG is similar to open-book tests in which077

students could query KB materials. If they con-078

duct self-study in advance, quickly grasping the079

fundamental content of the books themselves, the080

effectiveness and efficiency in tests can be im-081

proved. Based on this idea, we purpose KBAlign, a082

highly efficient self-adaptation approach tailored to083

specific KBs comprising self-improvement learn-084

ing. Generally, we align the model with the small085

domain in a highly efficient and completely self-086

supervised manner. As shown in Fig. 1, for self087

annotation, we organize the original KB materials088

in multiple grains and conduct self annotation to get089

instruction-response pairs that can cover various090

downstream task scenarios. For iterative tuning,091

we require the model to check its own responses092

and help modify common mistakes in the current093

stage for a faster convergence. Meanwhile, we con-094

duct targeted inference in which strategies such095

as query expansion and confidence verification are096

adopted to refine the response.097

Experiments on fact QA, long-form QA, and098

professional field test have shown the effectiveness099

of our method across different backbone models.100

With a low cost, KBAligned models master the gen-101

eral knowledge content from the KB and achieves102

significant performance improvements. Side ex-103

periments including ablation studies and perfor-104

mance curve analyses identify the most efficient105

self-annotated data amount and optimal training106

volumes, offering valuable guidance for effectively107

applying KBAlign in practical scenarios.108

Our main contributions are as follows: (1) We109

propose KBAlign, a novel method for autonomous110

LLM adaptation tailored to textual KBs. It helps111

LLMs perform KB adaptation relying entirely on112

self annotations; (2) We provide empirical insights113

into efficient self-adaptation to KBs, offering practi-114

cal parameters and settings for deploying KBAlign;115

(3) We conduct a comprehensive analysis of the116

proposed self-adaptation framework. Through a117

range of evaluation metrics and case studies, we118

identify the effectiveness of KBAlign and discuss 119

the current limitations of our approach, highlight- 120

ing areas for future improvement. 121

2 Related Work 122

Domain Adaptation.Though LLMs have shown 123

their impressive capabilities in various scenar- 124

ios (Jablonka et al., 2023), training methods for 125

LLMs to adapt to certain domains still emerge in 126

endlessly, due to the vertical application require- 127

ments. For domains with plenty of data resources, 128

researchers directly take domain materials in pre- 129

training (Wang et al., 2023a; Madani et al., 2023). 130

In more cases, they continue to train based on gen- 131

eral LLMs or mix domain data with the general cor- 132

pus (Wu et al., 2023). To adopt domain knowledge 133

in a more efficient way, format conversion and an- 134

notation are often performed (Zhang et al., 2024a) 135

for fine-tuning. Some works focus on different set- 136

tings for synthetic generation of QA data (Heydar 137

et al., 2024; Ushio et al., 2023), while with the 138

development of annotation model capabilities, the 139

impact of specific synthetic strategies diminishes 140

significantly. More crucially, existing approaches 141

predominantly focus on local information and ig- 142

nore global knowledge in synthesis. 143

Knowledge Enhancement. For some specific 144

downstream requirements, there often exist high- 145

quality knowledge materials (e.g., domain KBs, 146

personal documents or records), of which the data 147

amount is not enough for model tuning, and knowl- 148

edge enhancement methods can help improve the 149

performance. There are two mainstream solutions. 150

The first one is to rely on the strong in-context 151

learning capability of LLMs (Dong et al., 2022), 152

and adopt RAG (Lewis et al., 2020) to enhance 153

the model. Apart from textual materials such as 154

Internet passages, it is proven that integrating spe- 155

cial KBs and tools is also a good approach to im- 156

prove the model performance with specific knowl- 157

edge (Cui et al., 2023; Jin et al., 2024; Qin et al., 158

2023). To provide more useful information in con- 159

text, strategies including designing better queries 160

for retrieval are proposed (Wang et al., 2023b; Qian 161

et al., 2024). The second solution is to augment 162

training data based on knowledge materials. LLMs 163

can help synthesize data in more styles (Sun et al., 164

2023) or convert the original data into formats more 165

suitable for training (Cheng et al., 2023). Our 166

method is special, emphasizing the self annotation 167

instead of introducing new LLMs into the system. 168
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Self Improvement. There are some works ex-169

ploring the self-improve capability of LLMs, most170

of which focus on the automatic generation and171

selection of reasoning steps for existing answers,172

being helpful in tuning (Huang et al., 2023a) and173

inference (Jiang et al., 2023). Self-play fine-tuning174

in an iterative manner (Chen et al., 2024) also un-175

locks the full potential of golden data. Even with-176

out the ground-truth answers, intern consistency177

of LLMs can be adopted as an important supervi-178

sion signal that can achieve improvement (Liang179

et al., 2024). Nevertheless, challenge remains for180

human-like self improvement, such as how to self181

correct the reasoning process (Huang et al., 2023b).182

We observe the human learning process and design183

corresponding self-improvement methods.184

3 Methodology185

3.1 Task Setup186

We define KB adaptation as the process in which,187

given a knowledge base K (textual materials in188

our case), an original generative model M , and a189

retriever R for RAG, the goal is to efficiently align190

the models with the information in K without any191

external signals, thus improving the knowledge-192

intensive tasks based on K. The optimization ob-193

jectives are to maximize the performance scores in194

downstream tasks while minimizing training costs.195

There are two common approaches utilizing K196

to enhance model performance: tuning-based and197

inference-based methods. Tuning-based methods198

involve generating tuning data of M from K us-199

ing unsupervised techniques, or designing specific200

R for the current domain which is not covered in201

this work. Inference-based methods, on the other202

hand, focus on optimizing the retrieved content in203

the basic RAG setups, or post-processing the gen-204

erated results to enhance relevance and accuracy.205

We now introduce our method which combines206

unsupervised tuning and RAG improvement, opti-207

mizing both the tuning and inference approaches.208

Examples are shown in Fig. 2.209

3.2 Self Annotation210

To learn the knowledge from KBs without any su-211

pervised data, we conduct self annotation with the212

backbone model M on the K text. To be specific,213

we choose a paragraph of golden context Cg as the214

knowledge source and require M to raise a set of215

questions Q. We then supplement the related con-216

text CR by the retriever R, and ask M to annotate217

the answers A based on Cg+CR. When answering 218

the questions with RAG, M sometimes fails due to 219

the vague context provided by R; while in the an- 220

notation process, A is comparably precise because 221

of the ensured existence of Cg and our handcrafted 222

keyword filters (e.g., questions should not mention 223

pronouns such as “in this paragraph”). 224

Owing to the diverse forms and attributes of 225

K and associated downstream tasks, we propose 226

multi-grained annotation corresponding to different 227

organization strategies for C. The detailed process 228

is shown in algorithm 1. 229

Short-dependency Annotation. For down- 230

stream tasks that prioritize precise fact knowledge 231

expressed in one specific paragraph, we employ 232

this approach to simply divide K into fixed-length 233

chunks, each with no more than 1, 024 words while 234

keeping continuity of information across bound- 235

aries. One chunk is adopted directly as the annota- 236

tion context Cg. 237

Long-Dependency Annotation. Considering 238

that real-world tasks often require a comprehensive 239

understanding of multiple pieces of information at 240

long distances in text, we design long-dependency 241

annotation methods that split K into shorter seg- 242

ments with less than 256 words. Several segments 243

S1,...,n with the same hierarchical directory, or with 244

the highest embedding similarities across different 245

directories, are concatenated as Cg. When generat- 246

ing Q, the model is required to raise questions that: 247

(1) involve knowledge from different segments to 248

emphasize the multi-hop reasoning capability; (2) 249

are as vague as possible, corresponding to a series 250

of information I1,...,n annotated on S, based on 251

which a refined long-form answer A is generated 252

to improve the integration capability. 253

3.3 Iterative Tuning 254

Apart from summarizing and self-questioning to 255

help deep understanding, human students also take 256

tests at each learning stage and strengthen the 257

knowledge they have not yet mastered by correct- 258

ing their answers. Similarly, we hope that the 259

model can improve itself through self-verification 260

in addition to understanding. The detailed process 261

is also provided in algorithm 1. 262

Initial Tuning. With the self-annotation <Q, A> 263

data, we tune M to get an initially adapted version. 264

Due to the limitations of the retriever, the retrieved 265

CR in test scenario may differ from the annota- 266

tion context C (in which the golden paragraph Cg 267

must be included). Therefore, we randomly con- 268
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① Self Annotation Q: When did Taylor Swift debut? 
A:  In 2003.Short
Q: Who won the war between Ethiopia & 
Italy? 

Long
I: The war was won by the Ethiopian army 
after the Battle of Adwa (1895-1896)
I: The war was fought from 1935 to 1937 and 
was won by the Italians in Battle of Maychew.
A:  The first war was won by Ethiopia, 
and the second war was won by Italy.

P: Ethiopia won the war against Italy.
(P+A for annotating V)
V: Partially correct because the first war 
was won by Ethiopia. However, it does 
not mention the second war won by Italy.
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Figure 2: (a) Details for the KBAlign framework; (b) Instances for different annotation strategies and tasks.

catenate either C or CR with the question Q as the269

input. This mixed paradigm aims to bridge the gap270

between tuning and inference.271

Self-Verify Tuning. We divide the annotated272

data into k parts <Q1,2,...k, A1,2,...k>, and adapt273

the model with the first part <Q1, A1> to get the274

initial version M1. Using this model, we perform275

RAG inference in the second part Q2 to obtain the276

predicted answer P2 reflecting current capability of277

M1. Given the ground-truth answer A2, the model278

verifies its own prediction and analyzes the wrong279

reason, which we name V2. In the next stage, we280

can then use <Q2, P2> as input and V2 as output to281

continue tuning M0. And so on, we generate the282

verification data based on current performance, and283

conduct the Q&A task and verify task at the same284

time in an iterative manner. In experiments, we use285

25% of verify and 75% of Q&A, and implement286

2-3 iterations.287

3.4 Targeted Inference288

We improve the downstream performance mainly289

by training the model to learn more specific knowl-290

edge. We also employ Query Expansion (QE) to291

refine the retrieval results in reference stage. To be292

specific, directly applying Q as the search query293

may miss useful information due to the short ex-294

pression and the limitation of the retriever R. Con-295

sidering that our model has memorized the overall296

knowledge, it can provide a prediction P that is297

relevant to the KB content. We then expand the298

search query as Q+P , and this may help make the299

retrieval results much better.300

The other strategy that can be used in reference is301

Self Verification, which is based on the capabilities302

learned in iterative verifying. For the generated P , 303

the model can check the correctness by itself. It 304

should be emphasized that this is not the standard 305

strategy setting in subsequent experiments, because 306

it will increase the time cost, and it is also difficult 307

for the model to correct the error after realizing 308

it. However, the model can at least provide an 309

uncertainty warning, or sample a new response 310

when the confidence score is low when needed, 311

which helps improve reliability. 312

4 Experiment 313

4.1 Datasets and Models 314

In order to evaluate the effectiveness of our method 315

as comprehensively as possible, we use four 316

datasets in the experiment, each could form a corre- 317

sponding KB (from 0.41 to 21 M tokens). Details 318

are displayed in section A. 319

LooGLE (Li et al., 2023). This is a long-text 320

dataset, with textual materials that can be regarded 321

as KBs and high-quality questions. We evaluate 322

the specific knowledge memorizing capability of 323

the model in this dataset. 324

ASQA (Stelmakh et al., 2022). This is a long- 325

form QA dataset. We evaluate the knowledge recall 326

and organizing capability of the model in test set, 327

and do not use any training data from it. 328

JEC-QA (Zhong et al., 2020). This is a legal 329

multiple choice dataset in Chinese. We evaluate 330

the professional learning capability and instruction 331

following in different inference formats. 332

BioASQ 2. This is a biomedical question answer- 333

2https://huggingface.co/datasets/kroshan/
BioASQ
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ing dataset. We evaluate the model’s biomedical334

knowledge retrieval and reasoning capabilities.335

We choose the following models as the backbone336

and comparison objects of the experiments:337

MiniCPM (Hu et al., 2024). This refers to338

MiniCPM-2B which is one of the backbone models339

in our experiment. It is an end-side LLM gaining340

the instruction following ability during pre-training,341

and has achieved the best performance among342

lightweight LLMs on several datasets. Therefore,343

we believe that it has wide personal applications344

and is suitable for efficient adaptation scenarios.345

LLaMA-3.1. This refers to LLaMA-3.1-8B-346

Instruct 3 which is aligned from one of the most347

popular open-source model families. We choose it348

to evaluate whether our method is universally help-349

ful when the backbone model becomes stronger.350

GPT series. GPT-3.5 refers to GPT-3.5-turbo-351

0125 4 which is a representative closed-source352

LLM with stable performance and comprehensive353

capability. GPT-4o is an even stronger LLM.354

LM. This represents directly conducting the lan-355

guage modeling task to align the model with KBs.356

Knowledgeable text is segmented into 512-token-357

length paragraphs, and mixed with general instruc-358

tion tuning data (Ding et al., 2023) to keep the359

instruction following capability.360

RAFT (Zhang et al., 2024b). This represents361

adapting language models to domain-specific RAG.362

Follow this method, we use GPT-4o to annotate363

data from the KBs, generating both Chain-of-364

Thought(CoT) reasoning and final answers to help365

the model focus on useful information while disre-366

garding distractors. The annotated data used for su-367

pervised fine-tuning (SFT). We adopt this method368

as one of the baselines in our experiments.369

4.2 Evaluation Metrics370

For LooGLE, ASQA and BioASQ, we consider371

the evaluation of the original dataset and decide372

to utilise the following metrics: (1) Rule metrics:373

F1 score, which measures the harmonic mean of374

precision and recall; Match score, which measures375

the recall of key elements in long-form answer; For376

JEC-QA, only precise prediction of options could377

be scored, regardless of whether the questions were378

single or multiple-choice.379

(2) Similarity metrics: BERT score (Zhang*380

et al., 2020) calculates cosine similarity to assess381

3https://huggingface.co/meta-llama/Llama-3.
1-8B

4https://platform.openai.com/docs/models

semantic consistency, utilizing embeddings gener- 382

ated by the text2vec (Xu, 2023) model from sen- 383

tences; BLEU (Papineni et al., 2002), ROUGE (Lin, 384

2004), which are traditional text generation simi- 385

larity metrics provided in ablation studies. 386

(3) Intelligent metrics: semantic judgment by 387

the representative OpenAI LLM, GPT-4o, is used to 388

evaluate the quality of responses further. Detailed 389

prompts are provided in Section A. 390

4.3 Other Settings 391

We tune all parameters of MiniCPM, while conduct 392

a parameter-efficient tuning for LLaMA-3.1, utiliz- 393

ing the LoRA (Hu et al., 2021) strategy to reduce 394

the need for computing power costs. In the test 395

scenario, the chunks of KB materials are divided 396

with less than 128 tokens, and the top 8 relevant 397

chunks are provided. 398

Hyper-parameters, retrieval and speed-up set- 399

tings are provided in Section A. 400

4.4 Result Analysis 401

Time Costs. We first estimate the time cost to 402

prove the efficiency of our method. We provide 403

the result on ASQA after scaling to the capacity of 404

an A100 GPU: short-dependency annotation for 1k 405

data items takes 30 min, long-dependency annota- 406

tion for 1k data items takes 140 min, and iterative 407

tuning process takes 160 min. Comparably, direct 408

language modeling training takes 480 min, which 409

is longer than the whole process of KBAlign. As 410

for RAFT, it involves larger models and longer CoT 411

responses requiring more annotation time, and the 412

tuning time is controlled to be the same with us. 413

Main Experiments. Results for our experiments 414

are shown in Table 1. We provide the GPT-series 415

results, the initial version and the self-adapted ver- 416

sion of both MiniCPM-2B and LLaMA-3.1-8B- 417

Instruct on the four dataset. Overall, comparing the 418

“Ours” lines with the corresponding vanilla RAG, 419

we can see that KBAlign ensures an obvious im- 420

provement on most of the metrics, regardless of 421

the dataset and the backbone model, showing its 422

generalization and effectiveness. 423

The simple language modeling helps align the 424

model to several KBs and gets marginal promo- 425

tion, while not always effective, further proving 426

the necessity of self annotation. The advanced 427

baseline RAFT relies on the quality of CoT reason- 428

ing, which requires quite large amount of training. 429

When aligned with our high-efficient training set- 430

ting, its effect is not always obvious. 431

5

https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://platform.openai.com/docs/models


Methods LooGLE ASQA JEC-QA BioASQ
F1 BERT LLM Match BERT LLM Single Multi Total F1 BERT LLM

GPT series
GPT-3.5 35.42 80.99 78.08 26.79 86.61 51.66 14.49 17.92 16.32 17.80 80.55 93.85

w/o QE 35.27 80.94 77.91 27.40 86.71 51.52 13.84 19.15 16.68 18.55 80.57 93.23
GPT-4o 40.20 81.70 82.93 32.18 87.14 67.76 21.95 26.42 24.33 31.73 81.31 94.15

w/o QE 40.21 81.71 83.29 32.15 87.10 67.88 20.11 27.36 23.98 31.39 80.83 94.46
MiniCPM-2B

Vanilla RAG 30.92 80.70 64.76 11.91 82.30 22.92 39.24 13,87 25.69 29.27 82.37 84.92
w/o QE 30.31 80.37 64.72 12.37 82.90 22.42 38.38 14.06 25.39 30.23 82.71 83.69

RAFT 44.36 84.05 70.73 12.03 85.94 16.18 17.30 14.06 15.57 6.66 81.96 89.23
LM 50.15 84.77 65.62 10.72 81.27 21.03 47.36 7.98 23.73 55.44 88.62 81.85
Ours 54.09 86.48 75.19 15.68 85.41 24.81 49.95 9.94 28.91 61.38 89.95 87.69
∆ (+23.17) (+5.78) (+10.43) (+3.77) (+3.11) (+1.89) (+10.71) (-3.93) (+3.22) (+32.11) (+7.58) (+2.77)
w/o QE 53.76 86.23 73.19 16.12 85.48 25.69 49.41 10.92 29.16 61.91 89.91 89.54

LLaMA3.1-8B-Instruct
Vanilla RAG 40.46 81.57 77.15 20.21 84.93 37.28 22.70 24.66 23.73 27.96 81.55 92.62

w/o QE 39.94 81.50 77.08 20.03 85.14 35.64 22.92 24.07 23.53 27.74 81.66 91.08
RAFT 42.13 84.88 77.91 23.42 85.92 38.74 23.24 15.47 19.09 44.94 83.36 93.54
LM 54.06 85.53 78.58 19.07 82.52 38.04 20.40 9.57 13.90 56.28 88.02 90.15
Ours 62.07 88.63 80.16 25.23 86.29 42.44 34.59 14.13 23.83 70.97 92.06 93.54
∆ (+21.61) (+6.06) (+2.85) (+5.02) (+1.36) (+5.16) (+11.89) (-10.53) (+0.10) (+43.01) (+10.51) (+0.92)
w/o QE 61.79 88.55 79.96 25.56 86.89 41.31 34.16 14.42 23.78 73.30 92.72 94.48

Table 1: KBAlign adaptation experiments on LooGLE, ASQA, JEC-QA and BioASQ. We report average for 3
random seeds.

Task Differences. Nevertheless, our strategies432

still produce differentiated effects in the four sce-433

narios. For LooGLE which evaluates the master434

of precise local knowledge, self-annotated tuning435

brings a huge improvement (over 20% on F1) and436

the adapted 2B model can surpass LLaMA-3.1-8B437

& GPT-4o performance. For ASQA emphasizing438

long-form answer that covers global information,439

however, the improvement is comparably marginal440

(less than 5% on Match). The first possible rea-441

son is that backbone models have already mastered442

the WikiPedia knowledge in pre-training, and extra443

adaptation is redundant. The second reason is the444

over emphasis of local knowledge in the responses,445

making QE strategy provide even more limited re-446

trieval results.447

The same trend is also reflected in the single-448

choice and multiple-choice tests of JEC-QA. Our449

method easily surpasses some legal-domain models450

in the former (such as 40.8 single-choice score451

reported for 7B legal LLM (Wan et al., 2024)),452

while in the latter the performance even declines453

slightly due to reasons such as the output format.454

This indicate the challenge of learning knowledge455

with a long information span and logical chain.456

Numerical Analysis. We search the best values457

for key settings including the training steps, amount458

of data and iteration by evaluating checkpoints in459

process. From Fig. 3 we can see, when learned460

on more QA pairs (only once), scores on LooGLE461

F1 (represents fact accuracy) for both backbone462

60

50
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30
10 20 30 40

F1

pairs / w token

miniCPM


wo verify
LLaMA3.1


wo verify

ours

GPT-3.5

GPT-4o 

miniCPM




w GPT

LLaMA3.1




w GPT

Figure 3: The impact of training amount on LooGLE
performance. ‘w GPT‘ refers to training with GPT-
annotated data.

models improve. Interestingly, directly learning 463

without iterative tuning (dotted curve) also displays 464

a similar trend, while the tipping point for slowing 465

growth comes much later. This reveals the possible 466

mechanism of self-verify task, that is, to guide the 467

model to focus more on the problems of current 468

stage, so as to reach convergence faster. According 469

to the curve, we choose to provide 15 data items per 470

10,000 tokens for LooGLE training, and increase 471

the data density of ASQA due to the smaller KB 472

scale. Besides, although the tuning phase usually 473

reuses the same data for multiple epochs of training, 474

we observe from Fig. 4 that using half of the data to 475
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Figure 4: The impact of iteration times and data amount
for fixed training steps on LooGLE performance.

tune 2 epoch brings a quite obvious score decrease.476

Consider that the inference time for data annotation477

is acceptable compared with the training time, we478

recommend annotating more data and tuning with479

only 1 epoch.480

From Fig. 4 we can also observe the performance481

change for different number of iterations when con-482

ducting iterative tuning. With the self-verify data,483

the score first increases and then keeps comparably484

stable as the iterations increases, showing that the485

verification capability helps improve model perfor-486

mance on downstream QA, while requiring the data487

quality to be high enough with a certain granularity.488

From the curve we recommend conducting at least489

3 iterations, while it depends on actual situation in490

practical implementation.491

Methods F1 BLEU ROUGE BERT LLM
MiniCPM-2B

GPT Data 56.92 20.72 52.30 87.16 72.83
Ours 54.09 18.32 49.75 86.48 75.19

w/o know 52.16 14.71 47.85 85.75 69.35
w/o RAG 15.40 1.66 15.16 73.54 11.64
w/o QE 53.76 18.55 49.61 86.23 73.19
w/o verify 42.69 15.95 39.57 82.74 72.37

Llama3.1-8B-Instruct
GPT Data 64.97 26.41 59.85 89.56 80.21
Ours 62.07 21.73 57.34 88.63 80.16

w/o know 58.32 21.22 52.32 87.12 78.31
w/o RAG 14.75 0.70 14.22 74.1 15.89
w/o QE 61.79 21.60 57.09 88.55 79.96
w/o verify 61.76 20.94 57.20 88.53 77.81

Table 2: Detailed results on LooGLE.

Ablation Study. We assess the effectiveness of492

our strategies by side experiments in LooGLE and493

ASQA, and provide the results in Table 2 and 3.494

To validate the quality of self annotated data, we495

try to replace the annotation model with GPT-4-496

turbo (“GPT Data”) in LooGLE, and further re-497

place the data with golden training set (“Golden”)498

Methods Match BLEU ROUGE BERT LLM
MiniCPM-2B

Golden 18.90 4.39 26.89 88.16 23.43
Ours 15.68 2.67 24.59 85.41 24.81

w/o long 13.34 1.18 21.26 81.91 24.32
w/o verify 14.28 2.22 24.32 84.02 23.20

Llama3.1-8B-Instruct
Golden 28.41 3.95 26.75 88.30 44.08
Ours 25.23 3.43 23.59 86.29 42.44

w/o long 20.45 0.64 17.29 79.85 43.95
w/o verify 24.88 2.18 22.01 83.32 35.14

Table 3: Detailed results on ASQA.

in ASQA. We find that the eventual scores are not 499

much higher than current setting, especially when 500

compared with the vanilla setting without adapta- 501

tion, proving the usefulness of self annotation. 502

By conducting ablation study on ASQA, we 503

prove that the long-dependency annotation (“Ours” 504

vs. “w/o long”) plays a vital role, in which the 505

comprehensive responses are expected. Consider- 506

ing the higher time cost (about 4 times of short- 507

dependency), we discard this strategy to the local 508

QA task in LooGLE. Meanwhile, self-verify tuning 509

(“Ours” vs. “w/o verify”) also helps improve the 510

performance for both dataset by correcting errors 511

of the current stage in a targeted manner. 512

To explore the mechanism of improvement more 513

clearly, we also conduct a cross-validation on 514

LooGLE (“w/o know”), in which the amount of 515

training data keeps the same while the exact infor- 516

mation corresponding to the test questions are re- 517

moved during self-annotation. We can see that the 518

self adaptation still helps refine the performance, 519

but worse than the complete setting. This indicates 520

that domain knowledge from KB and task format 521

is the main reason of the score rising, while the pre- 522

cise information related to the test data also helps. 523

4.5 Case Studies 524

We display typical cases in Fig. 5 to explain the spe- 525

cific usefulness of our strategies. “Baseline” refers 526

to MiniCPM-2B and “ours” refers to the adapted 527

version of it. Overall, KBAlign achieves a general 528

grasp of current KB, a better knowledge answering, 529

and a reasonable confidence verification. 530

Cases (a) proves the effectiveness of learning 531

knowledge from the self-annotated data. The base 532

model fails to extract useful knowledge (scores in 533

1932 season) from the indirect context, while the 534

model learns the precise knowledge during self 535

adaptation. Case (b) shows that our model gener- 536

ates a decent prediction (in 2007) though the re- 537
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�: How many tries did Ted Brimble 
score for Newton in the 1932 season?
�:  6.

�: When was the first apple iPhone made?
�: ...After some trial, the first iPhone was 
officially launched  on June 29, 2007.

(a) (b)

�: How is the chairman of the board of 
supervisors of a joint stock limited company 
elected? 
�: (C) by a majority of all supervisors.

(c)

�: Representatives shall be democratically 
elected by all employees...The chairman of 
the board of supervisors shall be elected by 
more than half of all supervisors..
�풃풂��:  (C) by a majority of all 
supervisors; (D) by employees.

�: iPad was announced on January, 2010...It 
was included with iPhone since its first 
generation, which came out in 2007...
�풃풂��:  iPad was announced on January, 
2010.

�: The 1932 season was remarkable for 
Ted ...For Newton he scored 5 tries 
through the 1931 season...He had an 
impressive season for Newton, scoring 
6 tries in 10 matches for them...
�풃풂��:  5 tries.

Self Anno: <How many tries did Ted 
Brimble score in season of 1932?,  6.>
�풐풖��:  6.

�풘풐��: The first iPhone came out in 2007...
���: ...The iPhone previously released on 
June, 2007...
�풐풖��:  The first Apple iPhone was made in 
June 2007...

�: ...D is wrong because representatives 
are democratically elected, not the 
chairman. The correct answer is C.

Test 
QA

Base-
line

Ours

Figure 5: Cases for KBAlign and baseline comparison. We display the translation for the Chinese JEC-QA task.
The bold text and underlined text providing correct and wrong information for the QA process.

triever fails to locate precise information from KB,538

and this prediction can then help find out useful539

knowledge with QE, therefore the model eventu-540

ally provides an even better response (in June 2007).541

Further, from case (c) we can see that due to the542

self-verify task mixed into adaptation tuning, the543

model can check its own prediction and provide a544

hint of error or incompleteness. Though the verify545

reason is not always accurate or helpful for modifi-546

cation, it is still meaningful to provide a warning547

when the confidence is low. Meanwhile, we can548

also use the verify function as a self-selector for549

multiple sampling results.550

We also see some limitations when observing551

more cases. To be specific, the self-annotated con-552

tains some bias or error, and this may damage the553

model performance on related questions. Due to554

the concise language style of annotated data, our555

model tends to provide short responses in which556

some useful information may be discarded. QE557

strategy, in addition, does not always necessary.558

These negative instances remind us that we should559

continue to design better annotation and tuning560

strategies. More cases on different dataset and with561

various performance are provided in section A.562

5 Discussion and Limitations563

In this paper, we introduced KBAlign, a highly ef-564

ficient self-adaptive method tailored for specific565

KBs. During the tuning stage, inspired by hu-566

man learning strategies such as summarizatio and567

self-reflection, we propose a combined long- and568

short-dependency annotation method, as well as569

an iterative tuning approach. These techniques en-570

able low-cost targeted training data augmentation571

and efficient adaptation without requiring external572

supervision. In the inference stage, we enhance 573

the model’s performance on KBQA tasks using 574

query expansion and sampling-based self-verify 575

strategies. Our approach demonstrates significant 576

improvements across various datasets spanning dif- 577

ferent domains and formats. Additionally, detailed 578

analysis provides empirical guidance regarding the 579

best data amount required. 580

Still, our approach has some limitations: (1) 581

Global information: While the current method 582

excels in KBQA tasks, especially those focused 583

on local information within the KB, it offers less 584

support for tasks requiring comprehensive global 585

information analysis. This suggests a need for more 586

refined data annotation strategies. 587

(2) General Capability: Training on small- 588

scale targeted data can lead to a reduction in 589

the model’s general domain abilities, such as 590

instruction-following. Mixing specific KB data 591

with general domain data, in fact, has proved to be 592

helpful in our side experiment, which is displayed 593

in section A. However, this conflicts with our goal 594

of minimizing adaptation time and cost. We may 595

need to explore techniques like model plugins and 596

routing selection to strike a better balance. 597

(3) Retriever Adaptation: Given the strong in- 598

fluence of retrieval quality on QA performance 599

found in our practice, it may be necessary to con- 600

sider adapting the retriever during specific KB 601

adaptations. Applying self-supervised strategies 602

to retriever training could be a promising direction. 603

In future work, we aim to focus on adaptive per- 604

formance enhancement in more complex scenarios, 605

such as utilizing new tools. Additionally, we will 606

explore the integration and collaboration of multi- 607

ple models adapted to different subdomains. 608
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A Appendix 818

A.1 Dataset Details 819

LooGLE (Li et al., 2023). We use the short- 820

dependency data in LooGLE for retrofitting, com- 821

bining altogether 2.2M tokens of text as K, and the 822

corresponding 1,951 Q&A pairs for test. 823

ASQA (Stelmakh et al., 2022). For each ques- 824

tion, there exists several related segments of text 825

from WikiPedia, and a comprehensive long answer 826
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that covers much information from them. We col-827

lect 794 Q&A pairs for test, their targeted segments828

and other related passages from WikiPedia, and get829

1.8M tokens of text as K.830

JEC-QA (Zhong et al., 2020). Related laws831

and reference books are seen as K, including 21M832

tokens of text. The train set has also not been used833

for adaptation, and the test set contains 1,985 of834

multiple choices.835

BioASQ 5. This contains 324 English questions836

for testing, each annotated with relevant documents,837

snippets, and both exact and ideal answers. We838

utilize 0.41M tokens of text as K.839

A.2 Detailed Settings840

For hyper-parameter settings, we conduct a grid841

search in the vicinity based on the empirical val-842

ues provided in the sample code of the MiniCPM-843

2B model, and finally determine batch size as 8844

and learning rate as 1e − 5. Other settings in-845

clude warm-up steps as 50 and weight decay as846

0.1. For the LLaMA-3.1-8B-Instruct model, we847

adopt a parameter-efficient tuning approach using848

the LoRA strategy, with alpha as 16 and rank as 8.849

Other settings include a cosine learning rate sched-850

uler with a warm-up ratio of 0.1 and a weight decay851

of 0.1.852

For the training process, we adopt the mixed-853

precision training with the BMTrain 6 and LLaMA854

Factory (Zheng et al., 2024) framework to speed855

up.856

For the inference process in both annotation and857

test, we adopt the bge-large-en-v1.5 model for858

English materials and bge-base-zh-v1.5 for Chi-859

nese (Xiao et al., 2024) as the basic retriever of860

RAG. To ensure continuity of information, we ap-861

ply an overlap rate of 15% between consecutive862

chunks. We adopt vLLM (Kwon et al., 2023) to863

speed up inference.864

A.3 Prompts865

Below are the prompt templates used for self an-866

notation. For short-dependency annotation, we di-867

rectly generate by:868
869

You are a master of extracting questions and870
answers from text.871
Based on the provided content, construct five872
questions and answers873

5https://huggingface.co/datasets/kroshan/
BioASQ

6https://github.com/OpenBMB/ModelCenter?tab=
readme-ov-file

that should be directly based on the text 874
content, separated by line breaks. 875
Please ensure that the expression of the 876
question clearly points to 877
the specific information in the text, and avoid 878
using vague or overly 879
broad references. At the same time, emphasize 880
direct references or 881
specific details in the text to increase the 882
accuracy and depth of the problem. 883
The questions should be answerable in a few 884
words. 885
Output question and answer alternately on each 886
line. 887
Content: {content} 888
Response: 889890

For long-dependency annotation, we first gener- 891

ate questions: 892
893

You will receive a document. Please generate 3 894
generalizable, 895
ambiguous questions based on the document 896
content. The questions 897
should align with the themes of the document. 898
Separate the questions 899
by line breaks. 900
document: {document} 901
output: 902903

Based on the questions, we then annotate the 904

related information: 905
906

You will receive a document and a question. 907
Please provide an answer 908
to the question based on the document 909
information. If unable to answer, 910
return ’none’; otherwise, output the answer 911
directly. 912
document: {document} 913
question: {question} 914
output: 915916

Last, we refine the information to get the answer: 917
918

You will receive a concatenated answer from 919
multiple sources. 920
Please refine and optimize the expression to 921
make it smoother. 922
Output the final answer directly without 923
unnecessary explanation. 924
question: {question} 925
answer: {answer} 926
output: 927928

In the iterative tuning phase, we self-verified by: 929
930

You are a teacher evaluating student responses. 931
Remember: 932
1. If the student’s response fully aligns with 933
the golden answer, start your response with ’The 934
student’s response is correct because’. 935
2. Otherwise, start your response with ’The 936
student response is wrong because’, and provide 937
the ERROR TYPE!!! (e.g., does not answer the 938
question directly, provides totally wrong 939
information, provides only part of the 940
information, provides unrelated information) 941
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3. Notice! You are NOT ALLOWED to directly point942
out the correct answer in your verification.943
You are NOT ALLOWED to directly point out the944
correct answer in your verification. You are NOT945
ALLOWED to directly point out the correct946
answer in your verification. You should only947
tell me the correctness and the error type.948
Now here are the materials:949
Reference: {reference}950
Question: {question}951
Golden Answer: {golden_answer}952
Student Response: {student_response}953
Please generate your verification. You should954
start with the judgement, and then EXPLAIN the955
reason / the error type.956957

Below is the prompt template used for down-958

stream QA tasks:959
960

You are an expert who has read a lot of961
knowledge base.962
Please answer the question according to the963
content of the KB.964
<KB_{kb_id}> You can refer to some segments from965
the KB to help966
you answer the question.967
References:{references}968
Now the question is: {question}969
{dataset_prompt}970971

For different datasets, we change the972

dataset_prompt to adjust the output style.973

Specifically, we refer to ALCE (Gao et al., 2023)974

when designing the ASQA prompt.975
976

LooGLE: Please answer this question.977
978

ASQA: Write an accurate, engaging, and concise979
answer for the given question. Use an unbiased980
and journalistic tone.981

982
JEC-QA: The answer may be multiple or single, so983
be sure to choose all the correct options.984985

Below is the prompt template used for LLM986

evaluation (Li et al., 2023):987
988

Given one question, there is a groundtruth and a989
predict_answer.990
Please decide whether they are the same or not991
in semantic.992
Please only output ’True’ or ’False’.993
Question: {question}994
groundtruth = {ground_truth}995
predict_answer = {predict}996997

A.4 Supplementary Case998

We provide several more cases in Fig. 6. Case999

(d) shows that for different forms of tasks such as1000

multiple choices, the self-annotated data can also1001

provide key knowledge for the model. Case (e)1002

shows a verification example in which the error1003

can only be described in explicit natural language1004

instead of a wrong label. Case (f) shows that our1005

method does not always help improve the perfor- 1006

mance. In this case, the model discards some useful 1007

information due to the concise language style bias. 1008

A.5 General Domain Performance 1009

We conduct experiments on the widely adopted 1010

MMLU benchmark (Hendrycks et al., 2021) to 1011

evaluate the general ability reduction of KBAlign 1012

brought to the backbone model. w mix refers to 1013

mixing general instruction tuning data (Ding et al., 1014

2023) with specific KB data. As shown in Table 4, 1015

tuning on mixed data could also achieve most of 1016

the downstream improvement with a fairly small 1017

general performance degradation. 1018

Methods MMLU LooGLE F1
MiniCPM-2B

Vanilla RAG 44.07 30.92
Ours 38.54 54.09

w mix 43.45 52.84
Llama3.1-8B-Instruct

Vanilla RAG 57.38 40.46
Ours 49.41 62.07

w mix 54.61 61.33

Table 4: Balance between domain knowledge and gen-
eral capacity.
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�: Which of the following options 
does not belong to the autonomous 
organs of ethnic autonomous areas? 
�: (B) People's Court..

�: Who has the highest goals in world football?
�: ...Josef Bican, recognized by FIFA with 805 
goals. Christine Sinclair has highest in women's 
international football with 187... Cristiano Ronaldo  
and Ali Daei tied for men's with 109 in 2020.

(d) (e)

�: Who did Picardo collaborate with for 
building preservation projects?
�: He collaborated with Spanish architect 
and historian Fernando Chueca Goitia.

(f)

�: ...collaborate with Spanish architect and 
historian Fernando Chueca Goitia...
�풃풂��:  He collaborated with Spanish 
architect and historian Fernando Chueca 
Goitia on building preservation projects.

�: Cristiano Ronaldo holds the all-time record 
with 123 international goals in 2021...
�풐풖��:  Cristiano Ronaldo...with a total of 123 
international goals as of 2021...

�: The people's courts do not fall 
within scope of autonomous 
organs...are the congresses and 
governments...
�풃풂��:  (D) People's Congress...
Self Anno: <What institutions are 
included in the autonomous organs?, 
Organs include the people's 
congresses and  governments of 
regions...>
�풐풖��:  (B) People's Court..

�: Correct but not comprehensive enough. You 
should also mention Daei, who was the top 
goalscorer until his record was broken by 
Cristiano, and Bican, who was recognized by 
FIFA as the record scorer with 805 goals.

Test 
QA

Base-
line

Ours

�풐풖��: Fernando Chueca Goitia.

Figure 6: More cases for KBAlign and baseline comparison.
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Algorithm 1 KBAlign Framework

Require: Model M , Retriever R, Golden context
Cg, Question Q, Answer A, Split size k

Ensure: Fine-tuned model Mk

1: Annotation Process:
2: procedure SHORTANNOTATION(Cg)
3: Qshort ←M(Cg)
4: CR ← R(Qshort)
5: C ← Cg ⊕ CR

6: Ashort ←M(Qshort ⊕ C)
7: return ⟨Qshort, Ashort⟩
8: end procedure
9: procedure LONGANNOTATION({Si}ni=1)

10: Cg ←
⊕n

i=1 Si

11: Qlong ←M(Cg)
12: CR ← R(Qlong)
13: for i = 1, . . . , n do
14: Ci ← Si ⊕ CR

15: Ii ←M(Qlong ⊕ Ci)
16: end for
17: Along ←M(Qlong ⊕

⊕n
i=1 Ii)

18: return ⟨Qlong, Along⟩
19: end procedure
20: Training Phase:
21: Split annotated data {⟨Q,A⟩} into k parts
{⟨Qi, Ai⟩}ki=1

22: Initial Tuning:
23: L1 = 0.5E[∥M(Q1)−A1∥]+0.5E[∥M(Q1⊕

R(Q1))−A1∥]
24: M1 ← argminM L1
25: Iterative Verifying:
26: for i = 2 to k do
27: CR ← R(Qi)
28: Pi ←Mi−1(Qi ⊕ CR)
29: Vi ←Mi−1(Qi ⊕ Pi ⊕Ai)
30: Li = 0.375E[∥M(Qi) − Ai∥] +

0.375E[∥M(Qi ⊕ CR)−Ai∥]
31: +0.125E[∥M(Qi ⊕ Pi) − Vi∥] +

0.125E[∥M(Qi ⊕ CR ⊕ Pi)− Vi∥]
32: Mi ← argminMi−1 Li
33: end for
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