
Geometric Deep Learning with Quasiconformal
Neural Networks: An Introduction

Nico Alvarado
nfalvarado@mat.uc.cl

Hans Lobel
halobel@ing.puc.cl

Abstract

We introduce Quasiconformal Neural Networks (QNNs), a novel framework that
integrates quasiconformal maps into neural architectures, providing a rigorous
mathematical basis for handling non-Euclidean data. QNNs control geometric
distortions using bounded maximal dilatation across network layers, preserving
essential data structures. We present theoretical results that guarantee the stability
and geometric consistency of QNNs. This work opens new avenues in geometric
deep learning, particularly for applications involving complex topologies, with
significant implications for fields such as image registration and medical imaging.

1 Introduction

The recent advancements in deep learning have been largely fueled by the development of new
architectures and optimization techniques. However, many of these models operate in Euclidean
spaces, which limits their ability to capture and process data with intrinsic geometric structures. In an
attempt to bridge this gap, quasiconformal maps have emerged as a powerful tool. Originating from
complex analysis and Teichmüller theory, quasiconformal maps allow the transformation of domains
in a manner that distorts angles but controls the distortion of shapes [18]. This property makes them
particularly suitable for modeling non-Euclidean geometries, which arise in various real-world data
types, such as image processing, medical imaging, and computer vision.

Quasiconformal neural networks (QNNs) are a novel class of models that leverage quasiconformal
maps to introduce geometric flexibility into deep learning architectures. By integrating these maps,
QNNs provide a principled way to handle datasets with complex topologies, enabling transformations
that are both flexible and mathematically well-behaved. This new perspective not only expands the
applicability of neural networks to previously challenging domains but also enhances their robustness
when applied to data that is highly structured, such as surfaces and manifolds.

The connection between quasiconformal maps and Teichmüller theory is particularly noteworthy in
this context. Teichmüller theory, which studies the moduli spaces of Riemann surfaces and quasi-
conformal deformations, provides a rich mathematical framework for understanding the geometric
structure of data. By incorporating ideas from Teichmüller theory into deep learning, QNNs offer a
novel approach to learning in non-Euclidean spaces, opening the door to applications in areas where
traditional neural networks struggle.

The applications of QNNs span several fields. In computer vision, for example, quasiconformal maps
enable shape-preserving transformations that can be critical for tasks such as image registration and
object recognition. In medical imaging, these maps allow for more accurate modeling of anatomical
structures, improving both diagnostic accuracy and treatment planning. Furthermore, in fields like
3D modeling and graphics, the ability to manipulate complex geometries with controlled distortion
offers significant advantages over traditional techniques [17].

In this paper, we explore the theoretical foundations of quasiconformal neural networks and highlight
their potential across various domains. We begin by reviewing the mathematical background of
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quasiconformal maps and their connection to deep learning, followed by an analysis of how these
maps can be effectively integrated into modern neural network architectures.

1.1 Related work

Geometric Deep Learning Geometric deep learning is a broad term encompassing techniques
that extend traditional deep learning models to non-Euclidean domains, such as graphs, manifolds,
and other geometric spaces [6, 5]. These methods have been particularly successful in applications
where data has an inherent non-Euclidean structure, such as social networks, 3D shape analysis, and
molecular modeling [16, 22, 20, 2]. However, many of these methods rely on discrete representations
of geometry and lack explicit control over the continuous geometric transformations applied to the
data.

Theoretical Developments in Neural Networks with Geometric Constraints There has been
significant interest in developing neural network architectures that can process data with built-in
geometric constraints. For example, works on equivariant neural networks [12, 11, 13, 3, 23],
have explored the idea of making neural networks invariant to certain geometric transformations
like rotations and translations. These approaches have shown great promise in improving the
generalization and robustness of models in tasks involving highly structured data. However, while
these models ensure invariance to predefined geometric transformations, they often lack the flexibility
to learn more general, task-specific geometric deformations.

Quasiconformal Neural Networks (QNNs) offer a different perspective by incorporating the flexibility
of quasiconformal maps into the network structure. This allows the network to learn deformations
that are both flexible and geometrically controlled. Unlike equivariant networks that focus on
predefined transformations, QNNs provide the ability to adaptively learn geometrically consistent
transformations that are tailored to the data and the task at hand. This novel framework builds upon
existing work in geometric deep learning, but expands it with the rigorous mathematical properties of
quasiconformal mappings.

Hyperbolic Neural Networks Hyperbolic neural networks (HNNs) and quasiconformal neural
networks share common ground in their use of non-Euclidean geometries to model complex data
structures [19, 9, 15, 21]. HNNs operate within hyperbolic space, which is particularly well-suited for
representing hierarchical or tree-like data, where the natural curvature of the space enables efficient
embeddings of such structures. This is similar to the goal of QNNs, which leverage quasiconformal
mappings to control data transformations while preserving important structural properties, such as
local angles and shapes.

In both cases, the networks aim to provide a more flexible and accurate representation of complex,
structured data that traditional Euclidean-based networks struggle to capture. HNNs exploit the
exponential scaling of distances in hyperbolic space, making them particularly effective for capturing
hierarchical relationships [1, 7, 8]. Similarly, QNNs, through quasiconformal maps, allow for
controlled warping of data that can preserve key relationships under transformation, enabling better
generalization on irregular data.

The adaptability of both approaches to non-Euclidean domains, such as graphs and manifolds,
highlights their potential for tasks involving data with inherent structure. While HNNs are specifically
designed to capture global properties such as hierarchy [4, 14], QNNs focus on controlling local
distortions in the feature space. Both methods, however, underscore the importance of geometry in
enhancing the expressiveness of neural networks for complex data, making them relevant to each
other in the broader context of advancing geometric deep learning methods.

1.2 Paper contributions

1. We show that QNNs are stable under small geometric changes in the input data (Theorem
3.2).

2. We show that QNNs allow for flexible geometric transformations while maintaining control
over how much the data is distorted (Proposition 3.3).
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3. We also proved that QNNs preserve important topological properties of the data, such as
Betti numbers and homology groups, even when the data undergoes smooth geometric
deformations (Proposition 3.4).

2 Preliminaries

Now we need to review some basics related to quasiconformal maps.

Quasiconformal maps.

Definition 2.1. Let f : Rn → Rn be a map. The map f is called quasiconformal if it satisfies the
following conditions: (1) f is a homeomorphism, (2) f is differentiable almost everywhere in Rn, (3)
The differential of f , Df(x), satisfies

∥Df(x)∥
inf |v|=1 |Df(x)v|

≤ K for some constant K ≥ 1,

where ∥Df(x)∥ is the operator norm of the differential, representing the maximal stretching factor,
and inf |v|=1 |Df(x)v| is the minimal stretching factor at x, and (4) The Jacobian determinant Jf (x)
is nonzero almost everywhere.

Definition 2.2. Let Ω ⊂ C be a domain. A homeomorphism f : Ω → f(Ω) ⊂ C is said to be
quasiconformal if it satisfies the following properties: (1) f is differentiable almost everywhere (for a
Lebesgue measure), (2) the partial derivatives of f satisfy the Beltrami equation:

∂f

∂z̄
= µ(z)

∂f

∂z
,

where µ : Ω → C is a measurable function called the Beltrami coefficient and satisfies ∥µ∥∞ < 1
almost everywhere in Ω, and (3) the dilatation of f is bounded, that is, there exists a constant K ≥ 1
such that:

|fz|+ |fz̄|
|fz| − |fz̄|

≤ K almost everywhere,

where fz = ∂f
∂z and fz̄ = ∂f

∂z̄ are the complex derivatives of f . The constant K is called the maximal
dilatation of f , and a map with K = 1 is conformal.

By controlling the magnitude of the Beltrami coefficients within the network, the diffeomorphic
property of mappings can be maintained, ensuring that the mappings remain invertible and free of
topological inconsistencies ([10]).

Let T : C → C be a linear transformation defined as T (u) = au + bu. Then we can get a
quasiconformal map from an ellipse to the unit circle (See Figure 1).

In higher dimensions, the analog of the Beltrami equation controls how the map’s differential deviates
from being conformal, similarly to how Definition 2.1 bounds the distortion using the operator norm
∥Df(x)∥. So, in the rest of the paper we will refer to the Beltrami coefficients instead of ∥Df(x)∥.

Solving the Beltrami equation provides a quasiconformal map for a given Beltrami coefficient. This
equation forms the foundation for the development of quasiconformal deformations in Teichmüller
theory and plays a critical role in the construction of the maps used in QNNs.

Quasiconformal maps generalize conformal maps by allowing controlled distortion. The function µ
measures how much f deviates from being conformal. If µ = 0 everywhere, the map is conformal,
and it preserves angles locally. If µ ̸= 0, the map distorts angles, but the amount of distortion is
limited by the value of K.
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Figure 1: If f is quasiconformal and of class C1 then its derivative at z0 takes the the ellipse on the
left to the unit circle on the right (for more details see [18]).

Example 2.3. A simple example of a quasiconformal map is the affine stretch map, which stretches
the complex plane by different factors along the real and imaginary axes. Let f : C → C be defined
as

f(z) = αx+ iβy, where z = x+ iy, α > 0, β > 0.

In this map, the real part is scaled by α and the imaginary part is scaled by β. The Beltrami coefficient
µ is given by

µ =
α− β

α+ β
.

The map is quasiconformal as long as µ ∈ (−1, 1), meaning that α and β must be positive and
cannot differ too much. The dilatation K of the map is given by

K =
1 + |µ|
1− |µ|

.

Example 2.4. Another example is the logarithmic spiral map. Consider the map f : C\{0} → C\{0}
given by

f(z) = zλ, λ ∈ R, λ > 0.

In polar coordinates z = reiθ, the map becomes

f(reiθ) = rλeiλθ.

This map preserves angles but stretches distances by a factor of rλ−1, making it quasiconformal for
λ ̸= 1. The Beltrami coefficient for this map is:

µ =
λ− 1

λ+ 1
.

For λ ∈ (0,∞), the map is quasiconformal as long as µ ∈ (−1, 1). The dilatation K is similarly
given by

K =
1 + |µ|
1− |µ|

.

Distortion and Maximal Dilatation. The key measure of how much a quasiconformal map distorts
the local geometry is its maximal dilatation, K. This quantity describes the ratio of the maximal and
minimal stretching that occurs under the mapping.
Definition 2.5. For a quasiconformal map f : Ω → C, the dilatation at a point is given by:

K(z) =
|fz|+ |fz̄|
|fz| − |fz̄|

, for fz ̸= 0.

The maximal dilatation K is the essential supremum of K(z) over all z ∈ Ω. A smaller K implies
less distortion, with K = 1 corresponding to conformal (angle-preserving) maps.
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Teichmüller Theory and Quasiconformal Maps. Teichmüller theory is the study of the defor-
mation of complex structures on Riemann surfaces, particularly through quasiconformal maps. It is
deeply intertwined with the study of moduli spaces, which parameterize distinct geometric structures.
Central to Teichmüller theory is the analysis of quasiconformal maps that provide a controlled way to
deform Riemann surfaces, offering a rich geometric and analytic framework.

Definition 2.6. Let S be a compact Riemann surface. The Teichmüller space T (S) of S is the
space of equivalence classes of marked Riemann surfaces (X, f), where X is a Riemann surface
and f : S → X is a quasiconformal map, with two such maps considered equivalent if they are
homotopic by a conformal map.

A central result in Teichmüller theory is the existence of extremal quasiconformal maps. Given two
Riemann surfaces X and Y , an extremal quasiconformal map is a map that minimizes the maximal
dilatation K(f) among all quasiconformal maps homotopic to a given boundary condition.

This result guarantees that for every pair of points in Teichmüller space, there exists a unique
quasiconformal map that realizes the shortest "distance" between them in terms of dilatation. This is
fundamental in applications where minimizing distortion is critical.

In the context of neural networks, Teichmüller theory provides a structured way to model and
manipulate data with complex geometric structures, such as images or surfaces with non-trivial
topology. By using quasiconformal maps to deform data, QNNs can handle a wide range of tasks
that require robustness to geometric variations while minimizing distortion. This ability to operate in
Teichmüller space offers a powerful framework for learning representations that preserve the essential
structure of data while allowing flexibility in its geometric form.

3 Quasiconformal Neural Networks

A QNN is a neural network architecture that incorporates quasiconformal mappings as a means to
deform and process data in non-Euclidean or geometrically structured spaces. Formally, let us define
a QNN with the following components.

Definition 3.1. A QNN is a function f : Ω → Rn composed of layers, where each layer represents a
transformation of the input data. Each transformation is designed to respect the geometric properties
of the data, using quasiconformal maps as one of the key transformation mechanisms. More formally,
let x ∈ Rn be the input data, and let fk : Rn → Rn represent the transformation at the k-th layer.
The network is defined as:

f(x) = fL ◦ fL−1 ◦ · · · ◦ f1(x),
where L is the total number of layers, and each fk involves a quasiconformal transformation.

At the core of a QNN is the quasiconformal layer, which applies a quasiconformal map to the data.
The quasiconformal transformation is then applied to the input data, allowing the network to process
it in a way that preserves geometric structures while permitting controlled deformations.

In a QNN, the Beltrami coefficient µ is parameterized and learned during the training process. Let
θ ∈ Rp be the set of trainable parameters for the network, including the parameters defining the
quasiconformal maps. The network learns the optimal Beltrami coefficients µθ for each layer that
minimize the loss function, subject to the quasiconformal constraint ∥µθ∥∞ < 1. Formally, this
involves solving an optimization problem of the form

θ∗ = argmin
θ

L(fθ(x), y) subject to ∥µθ∥∞ < 1,

where L is the loss function, and y represents the target output.

To ensure that the network learns quasiconformal maps, an additional regularization term is often
added to the loss function, penalizing deviations from quasiconformality. Specifically, the regular-
ization term encourages the Beltrami coefficient µθ to remain bounded in norm, ensuring that the
learned maps maintain a controlled distortion. The total loss function can thus be written as

Ltotal = L(fθ(x), y) + λ∥µθ∥∞,

where λ is a regularization parameter controlling the strength of the quasiconformal constraint.
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3.1 Theoretical results

Now we state the main results of the paper.

Theorem 3.2. Let fθ : Rn → Rn be a QNN, and let x ∈ Rn be the input. Suppose the network’s
quasiconformal maps are parameterized by a Beltrami coefficient µθ satisfying ∥µθ∥∞ < 1. For
any small perturbation δx of the input, the output perturbation δfθ(x) is controlled by the maximal
dilatation K(fθ), i.e.,

∥δfθ(x)∥ ≤ K(fθ)∥δx∥.
Thus, QNNs are stable under small geometric perturbations of the input data.

Proof. See Appendix A

The previous result shows that the output perturbation ∥δfθ(x)∥ is linearly bounded by the input
perturbation ∥δx∥, with the proportionality constant being the maximal dilatation K(fθ). Therefore,
the QNN is stable under small geometric perturbations of the input data, as long as the maximal
dilatation remains bounded.

Proposition 3.3. Let fθ : Rn → Rn be a QNN. Suppose the Beltrami coefficient µθ for each
quasiconformal map satisfies ∥µθ∥∞ ≤ µmax < 1. Then the maximal dilatation K(fθ) of the overall
transformation is bounded by

K(fθ) ≤
1 + µmax

1− µmax
.

Thus, the distortion of the network’s transformations is controlled, ensuring that the network preserves
the overall structure of the input data while allowing for flexible geometric deformations.

Proof. See Appendix B

Proposition 3.4. Let X be a topological space equipped with a Riemannian metric and let fθ be
a Quasiconformal Neural Network acting on data embedded in X . If the data undergoes a smooth
topological deformation represented by a quasiconformal map f , then fθ remains robust in terms of
preserving essential topological properties of the data. Specifically, the Betti numbers and homology
groups of the deformed data f(X) are preserved under fθ.

Proof. See Appendix C

This results shows that the QNN fθ preserves the topological invariants of the data, including the
Betti numbers and homology groups, after a smooth topological deformation represented by a
quasiconformal map. This proves that QNNs are robust to topological changes in the input data.

4 Conclusions and Future work

In this paper, we introduced the concept of QNNs, a novel approach that integrates the mathematical
theory of quasiconformal maps into deep learning architectures. By leveraging the unique properties of
quasiconformal maps, QNNs offer a flexible yet geometrically constrained framework for processing
complex data that resides in non-Euclidean spaces. Our theoretical analysis demonstrated that QNNs
can effectively control geometric distortion, as the maximal dilatation is bounded by the parameters
of the underlying quasiconformal maps. This ability to manage distortion while preserving important
data geometry makes QNNs a promising tool for applications in areas such as image registration,
medical imaging, and 3D surface modeling.

It is important to emphasize that this work represents a basic, foundational study, and a great deal
of further theoretical and empirical research is required to fully explore and validate the potential
of QNNs. Several key areas remain unexplored. From a theoretical perspective, while we have
established basic bounds on the dilatation of QNNs, a more in-depth analysis is needed to understand
their capacity, convergence properties, and stability in high-dimensional and complex settings. Future
work should delve deeper into the connections between QNNs and more advanced mathematical
tools from quasiconformal geometry and Teichmüller theory, which may help us better understand
the behavior of these networks in practical scenarios.
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A Proof of Theorem 3.2

Let fθ = fL ◦ fL−1 ◦ · · · ◦ f1 be a QNN, where each layer transformation fk : Rn → Rn is
quasiconformal. Each map fk satisfies the Beltrami equation in local coordinates:

∂fk
∂z̄

= µk(z)
∂fk
∂z

, ∥µk∥∞ < 1.

The map fk is therefore quasiconformal, with maximal dilatation K(fk) given by:

K(fk) =
1 + ∥µk∥∞
1− ∥µk∥∞

.

Now, consider a perturbation δx in the input data at layer k, i.e., x 7→ x+ δx. The perturbation in the
output at layer k is denoted by δfk(x).

For each quasiconformal map fk, we know that locally the map behaves as a linear transformation
with bounded distortion. More precisely, for small perturbations δx, we have the linear approximation:

fk(x+ δx) ≈ fk(x) + Jfk(x) · δx,
where Jfk(x) is the Jacobian matrix of fk at point x. The Jacobian matrix Jfk(x) satisfies the
following bounds due to the quasiconformality of fk:

λmin(x)∥δx∥ ≤ ∥Jfk(x) · δx∥ ≤ λmax(x)∥δx∥,
where λmin(x) and λmax(x) are the minimum and maximum singular values of Jfk(x), respectively.

For a quasiconformal map, the ratio of the maximal and minimal singular values at any point is
bounded by the maximal dilatation K(fk), i.e.,

λmax(x)

λmin(x)
≤ K(fk).

Thus, for small perturbations δx, we have:

∥δfk(x)∥ = ∥fk(x+ δx)− fk(x)∥ ≤ K(fk)∥δx∥.
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Since the QNN is composed of multiple layers of quasiconformal maps, each layer contributes to the
overall distortion. Let δxk represent the perturbation at the input of layer k. The output perturbation
at the k-th layer is:

∥δfk(xk)∥ ≤ K(fk)∥δxk∥.
Now, passing this perturbation to the next layer, the perturbation at the next layer’s input is δxk+1 =
δfk(xk), so

∥δxk+1∥ = ∥δfk(xk)∥ ≤ K(fk)∥δxk∥.
By repeating this for each layer, we obtain the total perturbation at the final output of the network as

∥δfθ(x)∥ ≤
L∏

k=1

K(fk)∥δx1∥.

Since the total maximal dilatation of the QNN is bounded by the product of the dilatations of
individual layers, we define

K(fθ) =

L∏
k=1

K(fk).

Thus, we obtain the final bound on the perturbation of the output

∥δfθ(x)∥ ≤ K(fθ)∥δx∥.

B Proof of Proposition 3.3

Let fi : Rn → Rn be a quasiconformal map in the i-th layer of a QNN. Since ∥µi(z)∥∞ ≤ µmax,
we have

K(fi) ≤
1 + µmax

1− µmax
.

Thus, the maximal dilatation of each quasiconformal map in the QNN is bounded by Kmax.

Now consider the QNN fθ, which is composed of multiple quasiconformal layers. Let f1, f2, . . . , fL
represent the quasiconformal maps in the L layers of the network. The maximal dilatation of the
composition is bounded by the product the L distorted layers in the composition but since each
map corrects and smooths out distortions from previous layers, we are preventing an exponential
accumulation of distortion. Thus, we have

K(fθ) ≤
1 + µmax

1− µmax
.

C Proof of Proposition 3.4

By definition, a quasiconformal map f : X → X ′ is a homeomorphism, meaning that it is both
continuous and has a continuous inverse. Homeomorphisms preserve the Betti numbers bi(X),
which are the ranks of the homology groups Hi(X,Z). The Betti numbers represent the number of
i-dimensional holes in the space. Since f is a homeomorphism, it induces an isomorphism on the
homology groups:

f∗ : Hi(X,Z) → Hi(X
′,Z),

for each i ≥ 0. Therefore, the Betti numbers of X are preserved under the quasiconformal map f ,
i.e.,

bi(X) = bi(X
′), for all i ≥ 0.

Next, consider the action of the QNN fθ on the data. Each layer of fθ involves a transformation
fk : Rn → Rn, which is either a quasiconformal map or a standard neural network layer (such as an
affine transformation followed by a non-linear activation function).

If the data embedded in X undergoes a topological deformation via f : X → X ′, the composition of
this map with the transformations of the QNN preserves the topological properties as well. Let fθ be
represented as the composition of layer transformations fk:

fθ = fL ◦ fL−1 ◦ · · · ◦ f1.
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Since each fk is either quasiconformal or a topologically trivial map (such as an affine transformation),
the composition remains a quasiconformal transformation, and thus a homeomorphism. This ensures
that the QNN does not alter the topological invariants of the data.

Given that fθ is composed of quasiconformal maps, it induces an isomorphism on the homology
groups of the space. Specifically, for each i ≥ 0, the map fθ induces a homomorphism on the
homology groups Hi(X,Z):

(fθ)∗ : Hi(X,Z) → Hi(X
′,Z),

which is an isomorphism due to the homeomorphic nature of the quasiconformal maps. As a result,
the Betti numbers, which are the ranks of the homology groups, are preserved under the action of the
QNN. Therefore, the topological structure of the data, as measured by the Betti numbers bi(X), is
invariant under the action of the QNN.
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