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ABSTRACT

Table Question Answering (Table QA) in real-world settings must operate over
both structured databases and semi-structured tables containing textual fields.
However, existing benchmarks are tied to fixed data formats and have not sys-
tematically examined how representation itself affects model performance. We
present the first controlled study that isolates the role of table representation by
holding content constant while varying structure. Using a verbalization pipeline,
we generate paired structured and semi-structured tables, enabling direct compar-
isons across modeling paradigms. To support detailed analysis, we introduce a
diagnostic benchmark with splits along table size, join requirements, query com-
plexity, and schema quality. Our experiments reveal consistent trade-offs: SQL-
based methods achieve high accuracy on structured inputs but degrade on semi-
structured data, LLMs exhibit flexibility but reduced precision, and hybrid ap-
proaches strike a balance, particularly under noisy schemas. These effects inten-
sify with larger tables and more complex queries. Ultimately, no single method
excels across all conditions, and we highlight the central role of representation
in shaping Table QA performance. Our findings provide actionable insights for
model selection and design, paving the way for more robust hybrid approaches
suited for diverse real-world data formats.

1 INTRODUCTION

Tables are a fundamental medium for storing and communicating information across domains
such as finance (Chen et al., [2021), scientific communication (Ghosh et al., 2024}, biomedical
records (Ghosh et al.,|2024)), and the web (Chakrabarti et al.| 2020). Unlocking the knowledge con-
tained in these tables has motivated extensive research on Table Question Answering (Table QA),
where models answer natural language queries grounded in tabular data (Pasupat & Liang| 2015}
Iyyer et al.l 2017)). In practice, tables appear in both structured formats with rigid schemas and
executable SQL queries (Zhong et al.| 2017} |Li et al.l 2023} Wu et al.| 2025a)), and semi-structured
formats where columns are irregular and cells contain free text (Chen et al.,|2021;[2020; Singh et al.}
2025). Structured tables enable precision and symbolic reasoning, while semi-structured tables of-
fer robustness to noise and incomplete metadata. Since both formats coexist in real-world settings,
understanding their impact on Table QA methods is crucial.

Despite substantial progress, this key question remains unanswered: how do different modeling
paradigms handle variation in table representation? Existing benchmarks focus on query domain or
complexity (Li et al., 2023; |Wu et al.l 2025a; Zhu et al., 2025), but fix the table format itself. As
a result, models are optimized for a single representation, leaving their robustness to representation
shift unclear. Current approaches fall into three main families: NL2SQL methods (Dong & Lapatal,
2016; Zhong et al., 2017; Liu et al., 2022), LLM-based methods (Zhang et al., [2025cfa)), and hybrid
methods (Zhang et al.| 2024} |Ye et al.|, [2023; |/Abhyankar et al.| 2025} [Khoja et al., [2025). NL2SQL
methods scale and reason precisely but are brittle under noisy or irregular schemas. LLM-based
methods can handle semi-structured inputs containing free text but struggle on complex queries
and long tables. Hybrid methods combine symbolic execution with neural reasoning to balance
flexibility and precision. Without a controlled evaluation of representation effects, practitioners lack
guidance on method selection, and researchers risk overfitting to narrow benchmark conditions.
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Structured Semi-structured

Student Subject  Score Remarks

Student Subject Score Grade Standing

Alice Math 92 This student earned an A, excellent
Alice Math 92 A Excellent academic performance.
. . Charlie  History 78 This student needs improvement since he
Charlie  History 78 C Needs Improvement only gotaC.
Diana Math 95 A+ Outstanding Diana Math 95 Achieving an A+, she stands out with
outstanding results.

Representation-specific methods a)

‘ NL2SQL Student Subject  Score  Remarks

; o 1 Alice Math 92 This student earned an A, excellent

academic performance.

‘ LLM-based ‘
e 7 Charlie scored a 78 with a C in History. He needs improvement.

— Varying representations
‘ Hybrid ‘ Diana is an outstanding student. She earned A+ by scoring 95 in Math.

Figure 1: Structured vs. semi-structured formats of the same table pose challenges for Table QA
methods that assume a fixed data format.

To address this gap, we present the first controlled study of table representation in Table QA. Our
framework generates paired structured and semi-structured tables using a verbalization pipeline,
holding content constant while varying representation (Figure[T). It enables systematic comparisons
across modeling families, task conditions, and evaluation dimensions. Our contributions include:

 Controlled comparison of representations: we introduce a verbalization pipeline to convert
structured tables into semi-structured forms, isolating the effects of representation while
preserving semantics.

* Fine-grained diagnostic benchmark: we decompose task difficulty into four dimensions in-
cluding table size, table joins, query complexity, and schema quality. This enables targeted
analysis of method strengths and weaknesses.

* Comprehensive evaluation: we assess NL2SQL, LLM-based, and hybrid methods on
BIRD (Li et al., 2023), MMQA (Wu et al.l 2025a), and TableEval (Zhu et al., 2025)
datasets, revealing trade-offs that inform both model design and practical deployment.

Our experiments show that representation is a major driver of performance. NL2SQL excels on
structured inputs but drops 30-45% on semi-structured ones. LLMs are more stable (only 3.5% de-
cline) but struggle with long or compositional queries. Hybrids fall by under 5% and are generally
robust across conditions. These trade-offs intensify with larger tables, complex queries, and noisy
schemas. Long tables reduce accuracy for all methods, though NL2SQL remains strong on long
structured tables (62.9% accuracy). In contrast, hybrids outperform LLMs on long semi-structured
tables, demonstrating better scalability. Multi-table reasoning and query complexity remain chal-
lenging across all methods. Schema quality proves especially influential: noisy schemas severely
hurt NL2SQL, while verbalization often improves LLMs and hybrids by embedding schema cues in
natural language.

Ultimately, no single paradigm excels across all conditions. Our findings establish representation as
a central factor in Table QA, provide actionable insights for method selection, and motivate future
hybrid systems to operate robustly across diverse real-world table formats. We will release our
framework and benchmark to support ongoing research.

2 EXPLORING POTENTIAL FACTORS OF REASONING

Table QA is challenging not only due to the diversity of natural language queries but also due to
how information is represented. A model’s performance depends jointly on table representation
(structured vs. semi-structured) and additional factors such as table size, schema quality, and query
complexity. These challenges are salient in real-world settings, where tables are often large, noisy,
and irregularly organized. We first contrast structured and semi-structured representations, then in-
troduce four core dimensions that govern reasoning difficulty and ground our diagnostic evaluation.

2.1 TABLE REPRESENTATIONS: STRUCTURED VS. SEMI-STRUCTURED

Structured tables. Structured tables adhere to fixed schemas. Each column encodes a predefined
attribute and each row conforms to the schema. This consistency enables efficient storage, precise
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querying, and symbolic approaches such as NL2SQL (Ramakrishnan & Gehrkel [2003). However,
most NL2SQL datasets assume idealized schemas, overlooking real-world issues such as missing
attributes or misaligned semantics. For instance, a query about the ‘standing of Alice’ becomes
invalid if that information is embedded in free text rather than in a dedicated column (Figure [I).

Semi-structured tables. Semi-structured tables relax these constraints. Columns may be merged
or repurposed (e.g., combining grade and standing), rows may summarize entities, and cells may
contain long-form text, lists, or multimodal content. Web tables (Wang et al.| [2024) and spread-
sheets (Ma et al.| [2024)) exemplify this format. While they capture rich real-world information, their
irregular structure complicates parsing, schema alignment, and reasoning.

2.2 CORE DIMENSIONS OF REASONING DIFFICULTY

Prior studies have shown that representational aspects such as table length (Chen et al., 2024]), multi-
table reasoning (Wu et al., [2025a), and query complexity (Zhu et al., [2025) substantially affect
performance. Yet, these insights remain fragmented across benchmarks, and no framework has
systematically examined their interaction with representation. We close this gap by analyzing four
core dimensions: table size, table joins, query complexity, and schema quality. By varying these
conditions under both structured and semi-structured representations, we disentangle their individual
contributions and analyze robustness.

Table size. Large tables strain token windows and increase attention cost quadratically, leading to
truncation, sparse supervision, and difficulty locating relevant rows [Liu et al.| (2023); [Hsieh et al.
(2024). LLMs also approximate numbers and struggle with exact comparisons across many values,
causing errors in factual and financial QA |Chen et al.| (2019); |Zhu et al.| (2021). In this work, we
categorize short tables as under 100 rows and long tables as over 100 rows.

Table joins. Joins require aligning schemas and linking rows across multiple tables. This intro-
duces challenges of ambiguous keys, irrelevant columns/rows and compositional reasoning. Semi-
structured representations exacerbate these issues since explicit keys are often absent. We vary the
number of tables per query and the presence of explicit key constraints to probe join difficulty.

Query complexity. Queries range from simple lookups to multi-step reasoning involving aggrega-
tion, filtering, comparisons, and arithmetic. Existing datasets often target narrow slices (e.g., SQL
lookups (Zhong et al., 2017), logical forms over web tables (Pasupat & Liang, [2015)), or discrete
reasoning (Zhu et al.| [2021)). It remains unclear how methods scale from lookups to multi-step
reasoning, particularly across table representations.

Schema quality. Schema encodes column names, data types, keys, and relationships. While curated
databases maintain consistent schemas, real-world tables often have missing headers, inconsistent
formatting, and absent metadata. Such noise can severely affect symbolic methods.

Together, these factors define the major dimensions of Table QA difficulty. By systematically vary-
ing them under both structured and semi-structured settings, we disentangle their individual contri-
butions and assess model robustness.

3 FINE-GRAINED DIAGNOSTIC BENCHMARK

To systematically study the impact of table representations and disentangle the effects of the four
factors outlined in Section[2} we construct a fine-grained diagnostic benchmark. Our design follows
two guiding principles: (1) Representation pairing. Comparing structured and semi-structured
Table QA requires identical semantics; otherwise, differences may reflect content mismatches. We
achieve this by transforming structured tables into semi-structured ones via a controlled verbaliza-
tion strategy. (2) Factor isolation. We partition existing benchmarks into controlled subsets that
vary along the core factors. This allows us to assess each factor’s impact independently.

3.1 VERBALIZATION PIPELINE

Given a QA pair over a structured table, our verbalization pipeline produces a semi-structured variant
of the same table. Each question is thus paired with two versions of its table: structured and semi-
structured. The pipeline consists of three steps, illustrated in Figure
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Student SubJecf:écara 6Grade Sfandmg\\ Columns Template Student Subject Score Remarks
'
This student earned a(n) {Grade}

{Standing} academic performance

This student earned an A,

Alice Math | 92 A Excellent
! excellent academic performance

Grade Standing Alice  Math 92

Sciencé . With a grade of {Grade}, With a grade of B,
Bob clenc : 85 & 5% 6rade Standing this student is performing {Standing}. Bob Science 85 this student is performing well
Charl History 78 c Needs ! This student received a(n) {6rade}, t This student received a C,
arlie )‘: leeds : Grade Standing indicating that standing is {Standing) Charlie History 78 indicating that standing is needed
Diana  Math 195 A+ Outstanding Grade Standing Achieving a(n) {6rade}, the person stands Diana  Math 95 Achieving an A+ the person stands
A out with {Standing} results. out with outstanding results.
1. Column Selection 2. Template Construction 3. Serialization

Figure 2: Verbalization pipeline for transforming structured tables into semi-structured representa-
tions while preserving semantics.

1. Column selection. We first determine which columns to verbalize into free text. GPT-40 identi-
fies suitable candidate columns, from which we sample random combinations to introduce diver-
sity across instances. We experimented with three alternative selection strategies (Appendix
and found comparable performance trends. We, hence, adopt the random strategy as the default.

2. Template construction. For the selected columns, we generate natural language templates con-
ditioned on the table schema, into which column values are inserted to form descriptive sentences.
To reduce annotation cost, GPT-40 produces candidate templates, which are lightly corrected for
errors. For each column combination, we create five diverse templates to increase variation.

3. Serialization. Finally, templates are instantiated with table values, merging verbalized content
into a single free-text column while removing the original structured columns. The resulting
semi-structured table mirrors the semantics of the original but encodes them in a text-heavy, less
rigid format. Both versions are retained for side-by-side evaluation.

3.2 DIAGNOSTIC SPLITS

To isolate the effects of representational and structural factors, we partition benchmarks into con-
trolled subsets rather than treating them as monolithic. Each split targets one of four dimensions:
table size, number of tables, query complexity, and schema quality. This design allows us to identify
settings where different paradigms succeed or fail and provides a fine-grained view of robustness
not captured by benchmark-level scores.

We construct diagnostic splits from three complementary benchmarks: 1) BIRD (L1 et al.l [2023):
a large-scale, curated dataset with clean schemas and reliable evaluation protocols, representing the
best-case setting for structured Table QA. 2) MMQA (Wu et al., [2025a): a benchmark explicitly de-
signed for multi-table reasoning, where questions require retrieving and integrating evidence across
multiple relational tables. 3) TableEval (Zhu et al., 2025): a collection of real-world web tables
with noisy schemas, incomplete metadata, and inconsistent formatting, reflecting practical deploy-
ment challenges. Together, these datasets span clean to noisy conditions and single- to multi-table
reasoning, providing a broad testbed for our diagnostic evaluation. Table[I] summarizes the resulting
fine-grained diagnostic splits.

Table 1: Diagnostic splits for factors: table length, no. of tables, query complexity, schema quality.

Subset ID | Data Source | Table Joins | Length | Query Complexity | Schema | #Samples
S1 BIRD X short lookup clean 95
S2 TableEval X short lookup incomplete 169
S3 BIRD X short | compositional reasoning clean 435
S4 BIRD X long lookup clean 78
S5 BIRD X long compositional reasoning clean 258
Ml MMQA v short | compositional reasoning clean 427
M2 MMQA v long compositional reasoning clean 166

4 EXPERIMENTAL SETUP

We now describe our evaluation protocol for isolating representation effects, including research
questions, baselines, and metrics.
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4.1 RESEARCH QUESTIONS

We organize our comparison across method families around five key questions: RQ1. How does
performance vary across paradigms when comparing structured and semi-structured inputs with
identical content? RQ2. How do methods scale from short (<100 rows) to long (>100 rows) tables?
RQ3. How do multi-table alignment and join operations affect performance? RQ4. How does
performance change from simple lookups to multi-step compositional queries (filters, aggregations,
joins, comparisons)? RQS. How robust are methods under noisy or incomplete schemas?

4.2 BASELINES AND SETUPS

We evaluate three method families by selecting representative methods from each family.

« LLMs. We use GPT-4d| (Hurst et al) [2024), Gemini-2.5-flash?| (Anil et all 2023), and
QwenﬂYang et al.,|2025) as baselines for directly predicting the answer without any SQL exe-
cution. The detailed prompts are shown in Appendix [A]

* NL2SQL methods. We include two approaches that generate SQL queries. a) LLM-NL2SQL
baseline: a two-stage pipeline where an LLM generates SQL from the question and schema,
executed via SQLite. We provide schema information (tables, columns, keys) and a small set of
example values per column via value previews. The detailed prompts are shown in Appendix[A] b)
XiYan (Gao et al., 2024)): a recent framework that improves SQL generation via a multi-generator
ensemble design. It includes modules for schema linking via column/value retrieval, candidate
generation with diverse LLM-based generators, and candidate selection/ranking before execution.
We use GPT-40 as backbone across generators and rankers for fair comparison.

* Hybrid methods. We consider two hybrid approaches that combine SQL-based retrieval with
LLM reasoning. a) H-STAR (Abhyankar et al., [2025): a hybrid method that first performs table
extraction (relevant columns/rows via SQL and LLM filtering), then routes numeric/aggregation
tasks to SQL and relational/descriptive reasoning to the LLM. This allows H-STAR to combine
precise symbolic computation with flexible natural-language inference. b) Weaver (Khoja et al.,
2025): executes a stepwise workflow assigning operations to SQL or LLM, feeding intermediate
tables back into the plan for integrated reasoning. This tight integration allows it to combine the
precision of SQL with the flexibility of LLMs, improving robustness on complex queries that
require both symbolic computation and semantic interpretation.

4.3 EVALUATION

Previous work (Deng et al.|[2022; |Wu et al., 2025a} Zhu et al., 202 1)) has largely relied on traditional
metrics such as Exact Match (EM) and Partial Match (PM). However, these metrics suffer from
well-known limitations: they depend on strict string-level comparison with the gold answer. Con-
sequently, they penalize semantically correct predictions due to paraphrasing, formatting, or minor
rounding differences. To address these limitations, we adopt LLMs as judges, a strategy shown to
correlate strongly with human evaluation in a variety of reasoning tasks (Maekawa et al., [2025).
Concretely, GPT-40 is given both the gold answer and the model’s prediction and prompted to deter-
mine semantic correctness. This evaluator tolerates surface variation while enforcing strict semantic
equivalence. Unless stated otherwise, all results reported follow this evaluation protocol.

5 RESULTS AND ANALYSIS

5.1 RQ1: MODEL PERFORMANCE ACROSS PARADIGMS

We first examine how model performance varies across paradigms when comparing structured and
semi-structured inputs with identical content, using weighted averages over all diagnostic splits.

NL2SQL models achieve the highest accuracy on structured tables, while hybrid models per-
form best on semi-structured tables. Table [2]shows that input representation has a substantial and

'apt-40-2024-11-20
2gemini-2.5-flash
3qwen3-235b-a22b-thinking-2507
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Table 2: Comparison of model paradigms on structured vs. semi-structured tables (RQ1). Weighted
averages across diagnostic splits highlight the strong impact of input representation. Bold denotes
the best, italic the second-best result within each block.

Model | Structured Acc. (%) | Semi-structured Acc. (%) | Drop (%)
GPT-40 45.37 41.93 3.44
Gemini-2.5-flash 52.07 50.78 1.29
Qwen3-235B 38.20 36.70 1.50
LLM-NL2SQL 69.14 38.65 30.49
XiYan 69.55 24.08 45.47
H-STAR 49.48 47.14 2.34
Weaver 62.19 57.70 4.49

consistent effect on performance, with semi-structured inputs posing greater challenges across the
methods. On structured inputs, SQL-based methods outperform both hybrids and LLMs, reflecting
their reliance on clean, explicit schemas. On semi-structured inputs, this ranking reverses: hybrids
lead, LLMs degrade modestly. SQL methods suffer dramatic drops since irregular or implicit struc-
tures disrupt symbolic execution.

LLMs are the most robust to representation changes, due to their training on free-text, though
they do not attain peak accuracy in either setting. These trends highlight the central role of
representation in shaping model performance.

5.2 RQ2: IMPACT OF TABLE SIZE

We next examine how table size affects model performance across paradigms. To isolate the effect
of table length, we compare short tables S1 and S3 against long tables S4 and S5 (see Table/I)).

B Structured - Short Semi-Structured - Short
Structured - Long B Semi-Structured - Long

Accuracy (%)

o Gem‘m'\"lﬂs‘“as“Q\ve“g'ﬁSB L\JN\-?“""SQL Xaves “’5’“\“ weave*

Figure 3: Short tables vs. long tables (RQ2). All models struggle on long tables. LLMs are most
sensitive, NL2SQL excels on short structured tables, and hybrids remain relatively stable.

NL2SQL pipelines scale best on structured data but collapse on semi-structured tables. Table[3]
indicates that table size has a substantial effect on accuracy across all families. Performance declines
monotonically as tables grow. The rate of degradation, however, depends on the paradigm. NL2SQL
methods perform best on short, structured tables and remain competitive on longer structured ones,
leveraging execution engines that scale efficiently. However, semi-structured inputs expose their
reliance on clean schemas. Accuracy drops sharply at scale (e.g., XiYan drops to 25.0%).

LLMs are highly sensitive to table length, whereas hybrids offer a balanced trade-off. LLMs
perform reasonably on short tables but degrade substantially on long tables. For example, GPT-
4o falls to 28.9% on structured and 27.1% on semi-structured data; with Gemini falling to <15%.
Hybrid models, while less competitive on short structured tables, maintain relative robustness across
table sizes, particularly on semi-structured data. For example, Weaver achieves 57.2% on short semi-
structured tables and 35.4% on long ones, while H-STAR drops to <13% on long tables regardless
of representation.
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5.3 RQ3: IMPACT OF TABLE JOINS

To assess the effect of multi-table reasoning, we compare single-table subsets (S1-S5) with multi-
table subsets (M1-M2).

NL2SQL models benefit from executable joins on structured tables but lose this advantage
when schema signals are weak. Table [ indicates that multi-table reasoning has a significant im-
pact on performance, with effects varying by paradigm. On structured multi-table inputs, NL2SQL
models leverage joins to integrate information across tables. For instance, LLM-NL2SQL improves
from 71.5% (single-table) to 82.3% (multi-table), outperforming GPT-40 by over 35 points. How-
ever, this advantage disappears under semi-structured conditions, where implicit structure hinders
grounding, resulting in sharp performance drops.

LLMs are largely insensitive to join structure. They show minimal differences between single-
and multi-table inputs, reflecting limited ability to exploit relational dependencies. Gemini exhibits
modest improvements on multi-table structured inputs, but gains are small relative to SQL-based
methods. Hybrid models maintain relatively stable performance on structured multi-table inputs
but currently offer limited support for multi-table reasoning under semi-structured conditions, con-
straining their effectiveness in realistic deployments.

B Structured - Single Semi-Structured - Single
Structured - Multi B Semi-Structured - Multi

80.1

71.5| 69.4

44.644.042_3“ 3

Accuracy (%)

ar e Gem\'\t\'\-"'‘5'“‘&5“Qwe“?"ﬁs,B LLM-N“lsQL xavan “'S‘AR weave!

Figure 4: Single- vs. multi-table (RQ3). NL2SQL benefits from structured joins but fails on semi-
structured tables. LLLMs are largely insensitive to joins, while hybrids lack multi-table support.

5.4 RQ4: IMPACT OF QUERY COMPLEXITY

We assess how query complexity affects performance by comparing lookup (subsets S1, S4) and
compositional (subsets S3, S5) queries. These subsets target single tables. To isolate impact of
query complexity we exclude M1, M2 since they focus on multi-table settings.

NL2SQL models excel on structured queries but collapse under semi-structured conditions.
Figure [5] shows that NL2SQL models achieve high accuracy on structured compositional queries,
confirming the advantage of executable SQL for complex reasoning. However, their performance
drops sharply under semi-structured conditions, reflecting brittleness to representational noise.

LLMs perform well on lookup queries but struggle with multi-hop reasoning. They achieve
70% accuracy on simple lookups but degrade significantly on compositional queries, highlighting
limitations in symbolic and multi-step reasoning without execution support.

Hybrid models occupy the middle ground. They experience moderate drops from lookup to com-
positional queries, balancing flexibility and precision. In particular, Weaver sometimes outperforms
structured inputs on semi-structured lookup queries, suggesting that natural-language verbalizations
can better align with LLM pretraining and improve reasoning.

5.5 RQS5: IMPACT OF SCHEMA QUALITY

We assess the effect of schema quality by comparing clean-schema tables (S1) with incomplete-
schema tables (S2). We focus on lookup queries to isolate schema effects.
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Figure 5: Lookup vs. compositional queries (RQ4). Accuracy drops across all models on multi-hop
queries. NL2SQL excels on structured but fails on semi-structured inputs. LLMs and hybrids also
degrade, though hybrids often benefit from semi-structured lookup queries.

NL2SQL models are highly sensitive to schema quality, while LLMs and hybrids are more
robust. Figure [6] shows that NL2SQL performance drops under incomplete schemas, reflecting
their dependence on well-defined metadata. In contrast, LLMs maintain relatively high accuracy on
clean schemas and degrade only moderately on incomplete ones, leveraging surface patterns even in
noisy tables. Hybrid models are more resilient to schema noise. H-STAR mitigates irregularities via
row/column pruning and alternative table views. Weaver remains stable by automatically renaming
columns during SQL execution, reducing schema mismatches.

BN Structured - Clean Semi-Structured - Clean
I Structured - Incomplete B Semi-Structured - Incomplete

Accuracy (%)

(S st Qwe“s'”w L\M-?“J'SQL Xaves nsTAR Weaef

Gemi™

Figure 6: Clean-schema vs. incomplete-schema with lookup queries (RQ5). NL2SQL degrades
under schema noise, while LLMs and hybrids remain robust.

5.6 CASE STUDY

We now present illustrative examples that capture the main failure modes when shifting from struc-
tured to semi-structured representations. Figure [7] shows a representative case from the “supplier”
table, where the query asks for the top ten suppliers by account balance. On the structured version,
NL2SQL methods (LLM-NL2SQL and XiYan) execute correctly by leveraging explicit fields such
as “s_suppkey” and “s_acctbal”. On the semi-structured version, however, these attributes are em-
bedded into free-text descriptions. The same models either output incorrect results or raise execution
errors due to missing column references, illustrating the brittleness of NL2SQL pipelines under rep-
resentational shifts. A similar failure is observed for the hybrid method Weaver, which also relies on
SQL execution and cannot recover when key attributes are verbalized into text. This example high-
lights the challenges that semi-structured representations pose for models that depend on explicit
schema linking and executable queries. We also provide additional case studies in Appendix [D]that
highlight scenarios where different model families diverge in behavior.
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Question: Find the supply key of the top ten suppliers with the most account balance, and list the supply
key along with the account balance in descending order of account balance.

r———————————— = ————————————————— = r———————————— = —— = — —— —— —— —— ————— 1
| |

NL2SQL methods: : | NL2SQL methods: \
} correctly ranks the top suppliers by account balance using | | fail on semi-structured tables since account balances are }
| the explicit s_acctbal column. (‘ | embedded in free-text. x‘
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| Hybrid Methods: } | Hybrid Methods: \
} show mixed outcomes. Weaver producing correct results . | | break down on semi-structured inputs. Weaver missing |
| while H-STAR only outputs reasoning plans. | | several results and H-STAR failing to output answers. x

Figure 7: An illustrative case from the RQI1 experiments. A check mark or cross indicates that
all models in the series answered correctly or incorrectly, respectively, while the warning symbol
denotes mixed outcomes. Example also compares structured and semi-structured inputs.

6 RELATED WORK

Answering questions over tables requires models to reason over information that can appear in
both structured database-style formats (Li et al. Lei et al.| and semi-structured natural-
language-like representations (Chen et al., 2021} 2020). Approaches to this problem can be broadly
grouped into three paradigms, including translating questions into SQL queries (Wang et al., [2023),
directly reasoning over table representations with large language models (Wu et al., 2025b; [Zhang
2025b), and hybrid methods (Khoja et al.l 2025 [Abhyankar et al., 2025) that combine sym-
bolic and neural reasoning. Existing benchmarks (Zhong et al., 2017} [Zhu et al 2025} Wu et all}
for table QA typically categorize data by query type or task category, but pay little atten-
tion to representation factors such as table size, table joins, or schema quality together. Crucially,
no prior work has isolated the effect of semi-structured representations under the same information
conditions. Meanwhile, most analytical studies (Ashury-Tahan et al., 2025} [Singha et al, 2023}
2024) evaluate a single family of methods in isolation, without systematically comparing how
different paradigms respond to representation shifts. Our work fills these gaps by conducting a con-
trolled, same-information study of structured and semi-structured inputs, analyzing their interaction
with key reasoning factors across multiple method families.

7 CONCLUSION

We performed a controlled, same-information comparison of structured and semi-structured table
representations across LLM, NL2SQL, and hybrid paradigms using a fine-grained diagnostic dataset
constructed via an information-preserving verbalization pipeline. Our findings confirm that repre-
sentation has an first-order effect. NL2SQL attains peak accuracy on structured inputs yet is brittle
under semi-structured or noisy schemas. LL.Ms are comparatively robust across formats but trade off
peak accuracy. Hybrids mediate this trade-off and often lead under semi-structured inputs. Task fac-
tors consistently influence these trends. Long tables degrade all methods (most for LLMs), explicit
joins benefit NL2SQL on structured data, multi-hop queries challenge all paradigms (especially
NL2SQL on semi-structured inputs), and schema incompleteness severely impacts SQL-based sys-
tems. Overall, our results highlight the need for representation-aware benchmarks and systems, and
for matching method families to data conditions in deployment.
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A  PROMPTS

Prompt for Random Column Selection

Prompt: You are given a list of column names from a database table, along with a sample
value for each column. Your task consists of two steps:

Step 1: Column Suitability Classification

Label each column as either:

- ”YES”: if the column is descriptive and human-interpretable (e.g., name, title, category,
price, quantity, location, status).

- ”NO”: if it is a technical field or metadata column (e.g., id, uuid, product_id, created_at,
URL) that is unlikely to appear in a natural-language description.

Step 2: Column Combination Generation

From the columns labeled "YES”, generate a small number of diverse and meaningful com-
binations (ideally 2-5). Each combination should:

- Contain only columns labeled "YES”

- Include several columns (based on availability, usually should more than two)

- Avoid repeating the same column in a single combination

- Be suitable for use in a natural-language sentence such as: “{product_name} is sold by
{supplier_name} for {price}.”

If only one or two YES columns exist, just generate 1 or 2 simple combinations. Avoid bad
combinations like: ["ATT_CLASS”, ”ATT_CLASS”] [’ATT_CLASS_ID”] if it was labeled
“NO”

Input:
Database: db Table: table
Columns with sample values: cols

Example:
Columns = [product_name, price, category, product.id, created_at, stock quantity, sup-

CEIEEL) LEREET)

plier_name] Example Output: [ [’product_name”, “price”, “category”], [’product_name”,

99 99 LTI T)

”supplier_name”], [’product_name”, ’stock_quantity”, "price”] ]

Your Output Format:

json { “column_classification™: { "column_name_1": ”YES”, "column_name_2": "NO” },
”combinations™: [ ... ] } “

Prompt for Random Column Selection (One Column)

Prompt: You are given a list of column names from a database table, along with a sample
value for each column. Your task consists of two steps:

Step 1: Column Suitability Classification

Label each column as either:

- ”YES”: if the column is descriptive and human-interpretable (e.g., name, title, category,
price, quantity, location, status).

- ”NO”: if it is a technical field or metadata column (e.g., id, uuid, product_id, created_at,
URL) that is unlikely to appear in a natural-language description.

Step 2: Column Combination Generation

From the columns labeled ”YES”, generate a small number of diverse and meaningful com-
binations (ideally 2-5). Each combination should:

- Contain only columns labeled "YES”

- Include only one column

- Avoid repeating the same column in a single combination
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- Be suitable for use in a natural-language sentence such as: “{product_name} is sold by
{supplier_name} for {price}.”

If only one or two YES columns exist, just generate 1 or 2 simple combinations. Avoid bad
combinations like: ["ATT_CLASS”, ”"ATT_CLASS”] [’ATT_CLASS_ID”] if it was labeled
”NO”

Input:
Database: db Table: table
Columns with sample values: cols

Example:
Columns = [product_name, price, category, product.id, created_at, stock quantity, sup-

9 9 [EEEET)

plier_name] Example Output: [ [’product_-name”, “’price”, “category”], [’product_name”,

99 99 LTI T)

”supplier_name”], [’product_name”, “’stock_quantity”, “’price”] ]

Your Output Format:

json { “column_classification”: { "column_name_1": ”YES”, "column_name_2": "NO” },
”combinations™: [ ... ] } “

Prompt for Random Column Selection (Three Column)

Prompt: You are given a list of column names from a database table, along with a sample
value for each column. Your task consists of two steps:

Step 1: Column Suitability Classification

Label each column as either:

- ”YES”: if the column is descriptive and human-interpretable (e.g., name, title, category,
price, quantity, location, status).

- ”NO”: if it is a technical field or metadata column (e.g., id, uuid, product_id, created_at,
URL) that is unlikely to appear in a natural-language description.

Step 2: Column Combination Generation

From the columns labeled "YES”, generate a small number of diverse and meaningful com-
binations (ideally 2-5). Each combination should:

- Contain only columns labeled "YES”

- Include exactly three columns

- Avoid repeating the same column in a single combination

- Be suitable for use in a natural-language sentence such as: “{product_name} is sold by
{supplier_name} for {price}.”

If only one or two YES columns exist, just generate 1 or 2 simple combinations. Avoid bad
combinations like: ["ATT_CLASS”, ”ATT_CLASS”] [’ATT_CLASS_ID”] if it was labeled
“NO”

Input:
Database: db Table: table
Columns with sample values: cols

Example:
Columns = [product_name, price, category, product.id, created_at, stock_quantity, sup-

9 9 LEIET)

plier_name] Example Output: [ [’product_.name”, “price”, “category”], [’product_name”,

29 9 95 99

’supplier_name”], [’product_name”, ’stock_quantity”, price”] ]

Your Output Format:

json { ”column_classification”: { “column_name_1": ”YES”, "column_name_2": "NO” },
9 M M kR cec
combinations™: [ ... ] }
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Prompt for Random Column Selection (Six Column)

Prompt: You are given a list of column names from a database table, along with a sample
value for each column. Your task consists of two steps:

Step 1: Column Suitability Classification

Label each column as either:

- ”YES”: if the column is descriptive and human-interpretable (e.g., name, title, category,
price, quantity, location, status).

- ”NO”: if it is a technical field or metadata column (e.g., id, uuid, product_id, created_at,
URL) that is unlikely to appear in a natural-language description.

Step 2: Column Combination Generation

From the columns labeled ”YES”, generate a small number of diverse and meaningful com-
binations (ideally 2-5). Each combination should:

- Contain only columns labeled "YES”

- Include exactly six columns

- Avoid repeating the same column in a single combination

- Be suitable for use in a natural-language sentence such as: “{product_name} is sold by
{supplier_name} for {price}.”

If only one or two YES columns exist, just generate 1 or 2 simple combinations. Avoid bad
combinations like: ["ATT_CLASS”, ”ATT_CLASS”] [’ATT_CLASS_ID”] if it was labeled
"NO”

Input:
Database: db Table: table
Columns with sample values: cols

Example:
Columns = [product_name, price, category, product.id, created_at, stock_quantity, sup-

CEIEET) [TEEET)

plier_name] Example Output: [ [’product_-name”, “price”, “category”], [’product_name”,

ERINET) CLIRET)

”supplier_name”], [’product_name”, “’stock_quantity”, “’price’] ]

Your Output Format:

json { “column_classification”: { “column_name_1": ”YES”, "column_name_2": "NO” },
2 b 1 ”» X3
combinations™: [ ... ] }

Prompt for Template Generation

Prompt: You are writing five distinct fluent English sentence templates that verbalize one
row of a database table.

Database: db Table: table

Required columns (each sentence must use every one exactly once as placeholders): sel_cols
Sample values for these columns (for context): example_block

Guidelines 1. **Produce exactly 5 sentences.** Each sentence must include every required
column once and only once, wrapped as column_name. 2. You may reorder the placeholders
naturally; no extra columns should be added. 3. Keep each sentence concise, grammatically
correct, and natural to a human reader. 4. The column values are descriptive and human-
interpretable (names, dates, quantities, locations, etc.). Avoid metadata fields like IDs or
flags. 5. Return a single valid JSON object in the exact format below—no Markdown, no
commentary:

““json { "templatel”: "Sentence 1 with {coll}, {col2}, ...”, "template2”: ”Sentence 2 with
{coll}, {col2},...”, "template3”: ”Sentence 3 with {coll}, {col2},...”, “template4”: ’Sen-
tence 4 with {coll}, {col2},...”, “template5”: ”Sentence 5 with {coll}, {col2},...” }

Example for reference Columns = [product_name, price, category] Sample values = prod-

333

uct_name: “iPhone 157, price: “899 USD”, category: “Electronics” Expected output: “‘json

EXINEY)

{ "template1”: “product_name in the category category is priced at {price}.”, “template2”:
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[IINEY)

“The {category} item {product_name} costs {price}.”, "template3”: “Retailing for {price},
the {product_name} belongs to {category}.”, "template4”: ”{product_name}—a {category}

product—carries a price tag of price.”, “template5”: “Price for the {category} product
{product_name} is price.” }

Prompt for LLM inference

Prompt: You are an expert at table question answering. You need to extract answers based
on the following information:

[Tables]

{tables_md}

[Question] {question}

Please return your answer in JSON format only, with no explanation, following this structure:

99, 99

{”Answer”: ”[your answer]”}

Prompt for NL2SQL Baseline

Prompt: You are a careful NL2SQL expert for SQLite. Rules: - Return a single SQL query
that answers the question.

- Use ONLY provided tables/columns.

- Prefer explicit JOINs with ON.

- Use SQLite syntax.

- Output ONLY SQL inside one fenced block:

“‘sql SELECT ... “

SQLite schema & preview: {schema_md}

Question: {question}

Prompt for Evaluation

Prompt: You are an expert in evaluating question answering results.
[Ground-truth Answer] {ground_truth}

[Model Prediction] {prediction}

Is the prediction semantically equivalent to the ground-truth answer?
Please respond with only one word: "CORRECT” or ’INCORRECT”".

B EFFECT OF COLUMN SELECTION SETTINGS

We test whether our conclusions are sensitive to how content is chosen for verbalization. On the S3
split, we keep the questions and gold answers fixed and vary only the selection setting. We consider
four settings: query-related, where only the columns directly referenced in the question are ver-
balized; non—query-related, where only the columns not referenced in the question are verbalized;
random, where GPT-40 is prompted to randomly select a subset of columns to verbalize; and full,
where all columns in the table are verbalized into free-text. For the full strategy, directly verbalizing
all rows would collapse the table into a single unstructured text block. To avoid this, we randomly
verbalize only an a% subset of rows, while keeping the remaining rows in their original structured
form. The verbalized rows are then dropped, and the resulting semi-structured table contains both
the structured part and the generated free-text column. We report o = 50 and o« = 10 below.

For tables with fewer columns than the target verbalization count, we discard those cases; all results
are computed on the intersection of examples available under every selection setting to ensure strict
comparability.

Findings. (1) Across selection settings, GPT-40 accuracy spans 42.20%-46.45%, indicating low
sensitivity to the specific choice. (2) Column verbalization exhibits a clear downward trend as
the number of verbalized columns increases, with the unconstrained/random setting producing the
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Table 3: Effect of verbalization strategy on the S3. We vary only the selection policy while keeping
questions and gold answers fixed.

Settings Acc (%)
Column verbalization
Random (1 column) 44.68
Random (3 columns) 43.97
Random (6 columns) 42.20
Random (unconstrained count) 42.20
Query-aware
Query-Related 46.45
Non—Query-Related 43.26
Full verbalization
a=50% rows 43.97
a=10% rows 4291

lowest score (42.20%). (3) Query-aware selection is the only variant that yields a consistent gain:
verbalizing only the query-relevant columns gives the best result (46.45%), while excluding them
hurts (43.26%). (4) Full verbalization with o = 50% or 10% behaves similarly to random column
verbalization and offers no additional advantage. Given the comparable accuracy across all settings,
we adopt random column selection as the default to maximize coverage and comparability in the
main experiments.

C FINE-GRAINED RESULTS

Beyond the overall trends summarized in Section [5] we highlight several noteworthy findings from
the fine-grained results in Table {}

* NL2SQL models remain advantageous at scale. Even with semi-structured inputs,
NL2SQL sometimes outperforms LLMs and hybrids on long tables (e.g., LLM-NL2SQL
41.1% vs. Weaver 35.4% and GPT-40 27.1% on S4), showing that SQL execution can still
offset representation mismatch when contexts are large.

* NL2SQL excels with joins. On multi-table structured inputs, LLM-NL2SQL rises from
71.5% (single-table) to 82.3%, exceeding GPT-40 by more than 35 points. This highlights
that executable joins are a unique strength of NL2SQL, whereas GPT-4o is largely insensi-
tive to join structure.

* Verbalization can improve simple lookup queries. For simple lookup queries with
clean schemas, aligning headers and content with natural language boosts hybrid mod-
els (e.g., Weaver ~ +3 points on S1), demonstrating that verbalization not only enables
semi-structured evaluation but can also yield accuracy gains.

D ADDITIONAL CASE STUDIES

We present additional case studies to further illustrate the distinctive behaviors of different methods.

D.1 MODEL BEHAVIOR ON LONG TABLES

Figure 8] shows a long user profile table with hundreds of rows and a query “What is the id of
the youngest user?”. LLM-NL2SQL correctly answers the query on the structured version, which
exposes the Age column and allows SQL execution to identify the minimum value (id = 7828). In
contrast, LLMs (e.g., GPT-40) fail to reliably scan the full column and return arbitrary large ids
(e.g., 35942). Hybrid methods behave similarly. Weaver returns an arbitrary large id (e.g., 10215),
while H-STAR concludes that the task is impossible because of numerous NaN values. This example
illustrates that while NL2SQL with execution remains competitive on structured long tables, both
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LLMs and current hybrid methods are highly sensitive to table length and may produce spurious
results when the input context becomes too large.

Structured Table Semi-structured Table
I e T ame | Profieimagetr! | oo Vyear| first | middle!  tast | .. T desecription |
o d _ j_ CreationDate . _ _ .. _ Age_ Profielmagelrl, . jYear| first | middle, _ fast [ O S s i o I,
L;@-’E,J,,,E’L,,i,,,,,,},Ji,‘,,,"ﬂ,,,‘ L.Lilﬁk%i}iAllsgLlianglygliisimgsii‘i.;Li'l'he;lljojeiﬁﬂiv;i
| L (500rows) | o | J4 e e eaorewsyl L L

Question: Please list the full names of all the

Question: What is the id of the youngest user? male clients born after the year 1990.

r e
| NLZSQL methods: } LLMs: “
‘ ly identify the youngest user by executing SQL I o . P .
eiiechaicentiy young Y 9 exhibit repetitive hallucinations, duplicating names rather }
LOXQ‘I@ffPEQT,AEC;@ETn ,,,,,,,,,,,,,, \A than covering the full gold set, a failure mode amplified

\

by long expected outputs and large table inputs. This I
| | problem is amplified under long semi-structured table }

| fai i i 8 |

| fail on long tables, returning arbitrary ids or no cmswer.xJ linputs. xi‘

Figure 8: Case study: NL2SQL correctly finds the youngest user on a long structured table, while
LLMs and hybrids produce spurious results.

D.2 MODEL BEHAVIOR ON INCOMPLETE SCHEMAS

Figure [0] presents two representative examples illustrating the impact of incomplete schemas on
model performance. In the first example (left, RoboTaxi fare table), the Rest Day cell for 17:00—
20:00 is left blank, although by business rules it should inherit the weekday rate (7 RMB). In this
case, LLMs succeed by leveraging contextual cues to infer the missing value, while NL2SQL and
hybrid pipelines fail due to their inability to capture implicit inheritance. The second example (right,
biomedical citation table) involves a clinical reference for Alectinib that is embedded only within
a free-text description column. In this case, NL2SQL methods return empty outputs, and LLMs
hallucinate incorrect citations. In contrast, both hybrid methods (H-STAR and Weaver) success-
fully locate and extract the correct reference, demonstrating their ability to combine schema-guided
retrieval with flexible reasoning over unstructured content. These examples illustrate that while
NL2SQL pipelines are highly sensitive to missing schema entries, LLMs can sometimes compen-
sate via contextual reasoning, and hybrid approaches offer a middle ground capable of handling
certain forms of schema incompleteness when textual cues are present.

E USE OF LARGE LANGUAGE MODELS

We made limited use of large language models—specifically ChatGPT and GitHub Copilot—for
language polishing and routine coding assistance (autocompletion, refactoring, and boilerplate gen-
eration). LLMs were not used to generate research ideas, experimental results, or claims. No non-
public or sensitive data was shared with these tools. All suggested text and code were independently
reviewed, tested, and edited by the authors, who remain responsible for the content.
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Structured Table
T

Question: What is the starting fare for RoboTaxi

in the Shanghai region during rest days from 17:00
to 20:00?

|NL2SQL methods: |

I fail on incomplete schemas, as they cannot infer the
| inherited values (7 RMB) when cells are left blank. x

| succeed by leveraging contextual cues and inferring
: missing values through implicit contextual information (7
RMB)

| Hybrid Methods: L
I also fail — they make the plan correctly but cannot usi |
I | the implicit contextual information (7 RMB). &

___description
Compared with Alecumb
Lorlatinib shows greater
advantages in efficacy and

:_ Crizotinib 4 _safety among drug names.

Semi-s‘rruc‘rured Table
B

— Ensattinib __y__Ceritinib __

| In approval dates, 2022-04- |
'_ 20130122 _; 29.(CN) corresponds fo ...

Question: Which reference is cited for the clinical
data on Alectinib in the table?

| NL25QL methods: l
| returning empty outputs when references are embedded :
onIy in free-text. x
____________________________ I
_______________________________ :
|

I

I

| LLMs

l Hybrid Methods: :
| Both H-STAR and Weaver extract the correct |
| information from the description column i

Figure 9: Incomplete schema example. LLMs can infer missing values while NL2SQL and hybrid
methods fails (left). Hybrid methods can correctly extract the information while NLSQL and LLMs

fail (right).
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Table 4: Structured vs. Semi-Structured accuracy across all splits (S1-S5 from BIRD/TableEval,
M1-M2 from MMQA). A (pp) = semi-structured minus structured. Positive = improvement, nega-
tive = drop.

Split | Model | Structured Acc. (%) | Semi-Structured Acc. (%) | A (pp)
S1 GPT-40 89.47 90.53 +1.06
Gemini-2.5-flash 90.53 88.42 -2.11
Qwen3-235B 85.26 89.47 +4.21
LLM-NL2SQL 87.37 62.11 -25.26
XiYan 78.95 26.32 -52.63
H-STAR 75.79 80.00 +4.21
Weaver 88.42 91.58 +3.16
S2 GPT-40 71.60 63.31 -8.29
Gemini-2.5-flash 73.96 67.46 -6.50
Qwen3-235B 66.86 57.40 -9.46
LLM-NL2SQL 24.26 15.98 -8.28
XiYan 30.18 18.94 -11.24
H-STAR 88.17 81.66 -6.51
Weaver 86.39 76.33 -10.06
S3 GPT-40 46.90 43.58 -3.32
Gemini-2.5-flash 61.24 63.07 +1.83
Qwen3-235B 37.62 38.07 +0.45
LLM-NL2SQL T4.77 48.18 -26.59
XiYan 73.79 34.94 -38.85
H-STAR 48.74 47.82 -0.92
Weaver 57.47 49.66 -7.81
S4 GPT-40 53.85 48.72 -5.13
Gemini-2.5-flash 46.84 44.30 -2.54
Qwen3-235B 45.57 44.30 -1.27
LLM-NL2SQL 64.10 51.28 -12.82
XiYan 55.13 16.67 -38.46
H-STAR 28.21 23.08 -5.13
Weaver 53.85 55.13 +1.28
S5 GPT-40 21.32 20.54 -0.78
Gemini-2.5-flash 541 5.81 +0.40
Qwen3-235B 18.92 17.05 -1.87
LLM-NL2SQL 62.55 37.98 -24.57
XiYan 62.79 27.52 -35.27
H-STAR 8.11 8.14 +0.03
Weaver 31.78 29.46 -2.32
Ml GPT-40 53.40 50.82 -2.58
Gemini-2.5-flash 75.88 71.19 -4.69
Qwen3-235B 41.45 41.22 -0.23
LLM-NL2SQL 83.37 33.96 -49.41
XiYan 84.54 18.97 -65.57
M2 GPT-40 19.88 16.87 -3.01
Gemini-2.5-flash 21.69 21.69 0.00
Qwen3-235B 15.66 13.25 -2.41
LLM-NL2SQL 71.69 30.72 -40.97
XiYan 76.51 19.88 -56.63
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