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Abstract 

A novel objective quality assessment method is proposed for super-resolution images in 

this manuscript. We not only estimate the preserved information of each spatial location 

in the super-resolution image by structural similarity, but also compute the local phase 

coherence (LPC) with which we can detect the image blur in the super-resolution image. 

After the preserved structural information and blur information is obtained, an overall 

evaluation of visual quality of the super-resolution image can be computed. Experimental 

results show that the proposed objective quality assessment method can be used in the 

real applications with the original high-resolution images unavailable. 

 

Keywords: image quality assessment; super-resolution imgae; structural similarity; 
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1. Introduction 

Image super-resolution, referring to the technique of generating a high-resolution (HR) 

image from low-resolution (LR) image(s), is keeping a hot topic since the early SR 

algorithm [1] was proposed. The image super-resolution method which is widely used in 

many applications such as medical imaging and video surveillance, is trying to provide 

the good visualization and additional information details by high resolution images. For 

example, a high resolution image can provide a better classification of regions in a remote 

sensing image or identify the edges of lesion area accurately in a medical healthcare 

system [2]. To get high-resolution images, one intuitive way is to reduce the pixel size on 

the sensor to increase the resolution of digital camera. However, this method needs 

replacing the sensor and thus expensive. Image super-resolution techniques by means of 

computer software, have been proved useful in many fields. Especially in the network era, 

the image super-resolution technology allows the usage of low resolution images for the 

fast transmission [3-4], while people can receive high resolution images in the client side 

[5]. Many super-resolution imaging frameworks have been proposed, including Iterated 

Back-Projection (IBP) [6], Maximum A Posteriori (MAP) [7], sparse representation [8], 

etc. Nevertheless, how to objectively evaluate the quality of super-resolution images 

remains a problem unsolved in the research community. 
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Image Quality Assessment (IQA) methods can be classified as subjective assessment 

and objective assessment, which denote quality evaluation by observers and by objective 

metrics, respectively. Since all the images have to be perceived by the Human Visual 

System (HVS) finally, subjective evaluation of visual image quality is the only “correct” 

metric. In practice, however, subjective evaluation is not only inconvenient and 

expensive, but also cannot be embedded into automatic systems to adjust themselves in 

real-time based on the feedback of output quality. Therefore, it is much desired to design 

objective image quality assessment metrics aiming to predict the visual quality of images 

consistent with that perceived by the humans. 

According to the availability of an original image, traditional objective image quality 

assessment methods can be classified into three types [9]: full reference (FR) metrics 

which require the original image and distorted image, reduced-reference metrics (RR) 

which require part of the original image and the distorted image, and no reference metrics 

(NR) which require only the distorted image.  

The mean squared error (MSE), as well as peak signal-to-noise ratio (PSNR), are the 

widely used FR metrics because they are simple and easy to implement and have clear 

physical meanings. However, they are failed to be consistent with perceived visual quality 

in many cases (e.g., [10-13]). The well-known Structure SIMilarity (SSIM) index [14] 

assumes that human visual system (HVS) tends to perceive the local structures in an 

image when evaluating its quality. Most FR metrics extract and compare the features of 

the original and distorted images to predict the visual quality of the distorted image. 

However, these IQA methods are not feasible to meet super-resolution image quality 

assessment task, since the image sizes are changed during image super-resolution. 

Furthermore, the original high resolution images are missing whenever the image super-

resolution methods are needed in real applications, which makes the FR metrics not 

working. So the objective image quality assessment metrics for super-resolution images 

are badly needed. 

In this manuscript, we propose a novel objective quality assessment method for super-

resolution images based on structural similarity fidelity and image blur detection. Firstly, 

structural similarity metric (SSIM) [14] and scale invariant feature transform (SIFT) [15] 

are used to compute structural similarity fidelity of the super-resolution image. Then, an 

objective image sharpness metric is applied to compute the probability of image blur at 

each edge in the image by the Local Phase Coherence (LPC) [16]. At last, the results of 

structural similarity fidelity and image blur detection are combined to get the final quality 

score of super-resolution image. 

The remainder of the paper is organized as follows. In Section II, the framework of the 

proposed method are introduced in detail. Section III presents the experimental results and 

Section IV provides the conclusion. 

 

2. The Proposed Method 

The general framework of the proposed method is depicted in Figure. 1. For each 

image pixel in the reference image (LR), we first find its best matching pixel in the super-

resolution image (HR). The SSIM measure is then calculated between the local regions 

surrounding and in the reference and super-resolution images, respectively. Then the 

SSIM map could be generated by applying this process to all pixels in the reference 

image. On the other hand, image blur will be detected at each edge in the super-resolution 

image by means of LPC. At last, the final quality score is obtained by combining the 

SSIM map and the image blur. Details about the proposed method are given in the 

following subsections. 
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Figure 1. The Framework of the Proposed Method 

2.1. SSIM Map Estimation  

Because the reference and super-resolution images have different sizes and pixel 

correspondences are missing, the original SSIM algorithm [14] cannot be utilized directly. 

To address this problem, we need to apply shift estimation methods to build dense pixel 

correspondence between these images. The scale-invariant feature transform (SIFT) 

descriptors [15] achieves a promising matching across different image sizes or contents. 

SIFT flow has been proven to be effective in finding dense correspondence between two 

images [17]. As what we have done in our previous work [18], SIFT flow is employed to 

find the matching pixel in the super-resolution image for each pixel in the reference 

image. 

Since the pixel correspondence between the reference image and the super-resolution 

image can be established through SIFT flow, the local structure in the corresponding 

regions can be compared. SSIM is used to predict the perceptual structural distortions of 

the distorted image [14-19]. In this paper, given two image patches   and   in the 

reference and super-resolution images, respectively, SSIM can be computed as follows. 

    (   )  
(        )(       )

(  
    

    )(  
    

    )
                                                                                              (1) 

where   ,     denote the local mean of    and  , respectively;   
  ,   

  and     denote the 

local variance of   and  , and the local covariance between   and   , respectively;    and 

   are small positive stability constants that account for the saturation effects of the visual 

system at low luminance and contrast [10]. Finally, the global SSIM map can be 

obtained by applying the local SSIM computation using a sliding window approach 

at every pixel across the LR image space. The mean SSIM (MSSIM) index is used 

to evaluate the overall structure similarity [10] 
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where   and   are the reference (LR) and the super-resolution images, respectively;   and 

  are the image patches of   and  ; and   is the number of patches of the image. 

 

2.2. Local Phase Coherence 

In the Section 2.1, we get the SSIM map for the structure similarity between the 

reference and the super-resolution images. However, it is not enough for super-resolution 

image quality assessment because something important is still missing. Super-resolution 

imaging algorithms are considered to recover the missing information in the image 

distortion progress. The super-resolution operation would cause different effects in the 
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edge regions but little difference in the smooth regions. For example, many classical 

image interpolation methods generate blur in the edges, such as saw-tooth and ringing 

effect. 

LPC [16] is a no-reference image blur metric which describes the alignment of local 

phase patterns in the scale-space in the vicinity of distinctive sharp image features [20]. In 

[21], a novel framework is proposed to compute LPC using samples arbitrarily extracted 

from the scale-space. Compare to the previous methods [22], the proposed framework is 

more flexible, and more importantly, can be made more space- and scale-localized, and 

thus reduces interference from nearby image features [21].  

If we have a signal  ( ) created from a feature signal   ( ) but located near position 

  , i.e..  ( )    (    ) , a general family of complex wavelet transform may be 

written as 

 (   )  ∫  ( )
 

  

    
 ( )   [ ( )  
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)       ]
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where      and     are the scale and the translation factor, respectively. The 

family of wavelets     ( ) are derived from a scaled and shifted mother wavelet 
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where    is the center frequency of the modulated band pass filter, and  ( ) is a 

slowly varying, non-negative and symmetric envelop function. 

Using the convolution theorem, and the shifting and scaling properties of the Fourier 

transform, we can derive: 
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where  ( ) ,   ( )  and  ( )  are the Fourier transforms of  ( ) ,   ( )  and g ( ) , 

respectively. The phase of  (   ) depends on the nature of   ( ). If   ( ) is scale 

invariant, meaning that 

  (   )   ( )  ( )                                                                                                                  ( ) 

where  ( ) is a real function of only s, but independent of ω, then 
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Combining the case of an impulse and an ideal step edge, the general LPC relationship 

can be obtained 

 ( (   ))   ̂(   )  
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                                                                               ( ) 

where k is an integer depending on the nature of the sharp feature. 

 If there are a set of samples  , together with a corresponding set of weights 

  ,          -
  , such that 

   ̂                                                                                                                                               ( ) 

then a simple measure of LPC strength can be defined by 

         ( 
  )                                                                                                                         (  ) 
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Since the LPC relationship holds at sharp image features only, it was conjectured that the 

visual perception of blur may be interpreted as a loss of LPC and the conjecture is 

partially supported by local phase statistics of sharp and blurred natural images [16-21]. 

The value of this LPC measure is bounded between −1 and 1, and the maximal value is 

achieved when      , which is consistent with the phase relationship defined in (9). 

Substitute (8) into (9), then 

  (    ) (∑
  
  

 

   

)  
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)                                                                                  (  ) 

In order for this to be true for all possible values of   ,  ,    and k, we would need the 

following simultaneous equations to be true 

{
∑   
 
             

∑ (     )   
 
   

                                                                                                                           (12) 

Without loss of generality, we assume   = 1. This results in     unknowns 

(          ) with two equations. For convenience we take    , the solutions are 

unique and can be given by 
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We choose s1 to be the finest scale (    ) for maximal localization, and choose the 

other    values to be evenly spaced in either linear or logarithm scale. Table I. shows the 

specific values of d and r. 

[
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Tabel 1. Weight Solutions for Three Scales 

                   

 1 1+d 1+2d 1 -

2(1+d) 

1+2d 

d=1/4 1 5/4 3/2 1 -5/2 3/2 

d=1/2 1 3/2 2 1 -3 2 

d=1 1 2 3 1 -4 3 

d=3/2 1 5/2 4 1 -5 4 

d=2 1 3 5 1 -6 5 

 1 r r2 1 -(1+r) r 

r=5/4 1 5/4 25/16 1 -9/4 5/4 

r=√  1 √  2 1 -1-√  √  

r=√  1 √  3 1 -1-√  √  

r=2 1 2 4 1 -3 2 

r=√  1 √  5 1 -1-√  √  
 

If there is an input image whose sharpness needs to be assessed, it should be passed 

through a series of N-scale M-orientation log-Gabor filters without any subsequent down-

sampling process. This results in MN “subbands” and there are MN complex coefficients 

at each spatial location across all orientations and all scales. Let      be the coefficient at 
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the i-th scale, the j-th orientation and the k-th spatial location. Then the LPC strength at 

the j-th orientation and the k-th location can be computed by 

    
*   +

    (    )     (∑   {    }
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where  * + denotes the real part of a complex number. This LPC strength measure is 

combined at each spatial location k by a weighted average across all orientations, where 

the weights are determined by the magnitude of the first (finest) scale coefficient c1jk, so 

that the orientations that contain more energy are given higher importance: 

    
* +

 
∑       
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∑ |    |   
 
   

                                                                                                                                        (  ) 

where a constant C is added to avoid instability when the magnitudes of the coefficients 

are near to 0. 

Let     
* +

 for k = 1,2,…,K be a collection of LPC values extracted from the LPC map, 

and let     
*( )+

 for  k = 1,2,…,K denote the sorted LPC strength values such that     
*( )+

 

    
*( )+

 …     
*( )+

. Then the overall LPC-based sharpness index (LPC-SI) is defined as 

[21] 

    

 
∑   
 
       

*( )+

∑   
 
   

                                                                                                                                            (  ) 

where    is the weight assigned to the k-th ranked spatial LPC value and is computed as 

an exponentially decaying function given by 

       , (
   

   
)

   -                                                                                                                                 (  ) 

which gives a weight 1 to the highest LPC value and the decaying speed of the weights is 

controlled by the parameter   .  The parameters which used in computing LPC are set as 

   ,    ,     ,       ,     ,    , and       –    . 

 

2.2. Quality Assessment Model 

The structural similarity measure MSSIM introduced in Section II-A and the image 

blur measure LPC described in Section II-B characterize different aspects of the visual 

quality of super-resolution images. Here, we combine them to obtain a joint measure, 

resulting in a Super-resolution image Quality Index (SQI) 

  

 =    

(   )                                                                                                                                           (  ) 

where   and   denote the MSSIM measure and LPC meausre, respectively;       

adjusts the relative importance of these two components, and   and   determine their 

sensitivities, respectively. The parameters in (19) are set empirically as   = 0.2,   = 0.3, 

and   = 0.7 in the experiments. 
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3. Experimental Results 

In this section, we conducted two experiments to evaluate the performance of the 

proposed SQI. The purpose of the first experiment is to compare the performance of 

different image super-resolution methods on test images from [23] with the original HR 

image available by PSNR, SSIM and SQI. The second experiment aims to test SQI on 

super-resolution images of natural scene without the original HR image. 

 

3.1. Experiment I 

In this experiment, we select 4 classical image super-resolution algorithms with 24 test 

images. To be fair for all test super-resolution algorithms, the scale factor is set to 2. As 

Figure.2 shows, the tests images are color images with the size of 512*512. In order to 

simulate the natural imaging process, we carried out the shifting, blurring and down-

sampling process to the original images to obtain LR images, as Figure.3 shows. Then 

different super-resolution algorithms are employed to LR images to get HR images. We 

select several classical image interpolation methods, such as Linear [24], Cubic [25], ICBI 

[26], and the sparse coding super-resolution method (ScSR) [8] which its matlab code is 

available on the website [27], to compare their performance on PSNR, SSIM and SQI, as 

Figure 4 shows. 

We calculate the average score of PSNR, SSIM and SQI of all reconstructed HR 

images by the picked super-resolution algorithms, as Figure.4 shows. We make no 

modification to the learning dictionary of original ScSR when we use ScSR to get HR 

images. Not surprisingly, we can easily find that the performance of Linear is worst in all 

metrics since Linear is the most naive one in these 3 interpolation algorithms, and it 

certainly not be better than the learning based algorithm. So, we only compare the other 3 

algorithms in the rest of this experiment. 

 

Figure 2. The Test Images of Experiment I 

The ICBI achieves top place in PSNR, but the PSNR of ScSR and Cubic is very close 

behind. As we all know, the PSNR is not consist with the HSV in many cases. The ScSR 

achieves top place in SSIM and SQI. The difference of SSIM score is still very small 

which means it is a hard task to find the best one of these 3 methods by SSIM. The ScSR 

has obvious advantages in SQI average score. From this result, we can easily draw the 

conclusion that ScSR is the best image super-resolution method in these 3 methods. To 
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our knowledge, ScSR which is the learning based super-resolution method, will gain a 

better performance than image interpolation method in most cases. But it is the most time-

consuming algorithm in these super-resolution methods. 

 

Figure 3. The Example of Original Image and LR Images 

 

Figure 4. The Average Score of PSNR, SSIM and SQI 

3.2. Experiment II 

In this experiment, we choose 2 natural images to implement our test. As Figure.5 

shows, the left image is an out-door scene named “Beach”, while the right image is named 

“Indoor”. The sizes of these images are 128*128. We can see that Indoor is more blur 

than Beach.  

The image super-resolution algorithms are applied to these two natural images and then 

we calculate SQI of each HR image, as shown in Table 2. 

 
Beach                                        Indoor 

Figure 5. The Natural Images for Experiment II 

In Table 2, the SQI values of Beach are higher than these of Indoor which means the 

SQI also can be used as the metric of super-resolution images which are reconstructed 
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from different LR images. As we can find, for the image “beach”, the difference between 

the worst and the best SQI score of image super-resolution method is 0.0581. But for the 

image “indoor”, the difference between the worst and the best SQI score of image super-

resolution method is 0.0816 which is bigger than the former. So, this result means the 

learning-based super-resolution method – ScSR will achieve a much better performance 

than the interpolation methods when the input image is a blurred one. 

Table 2. The SQI of the Natural Images 

 Linear Cubic ICBI ScSR 

Beach 0.8484 0.8710 0.8684 0.9065 

Indoor 0.8160 0.8516 0.8618 0.8976 

4. Conclusion 

In this paper, an objective image quality assessment for super-resolution images is 

proposed. Different from traditional image quality assessment methods, our algorithm is 

applicable to the situation where the sizes of the reference image and the super-resolution 

image are not the same. We not only consider the structural similarity between the 

reference image and the super-resolution image, but also image blur of the super-

resolution image. Experimental results demonstrate that the proposed algorithm can be 

used to assess the quality of super-resolution images. 
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