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Abstract001

With the rapid advancement of Reinforce-002
ment Learning from Human Feedback (RLHF)003
and autoregressive transformers, state-of-the-004
art models such as GPT-4.0, DeepSeek R1,005
and Llama 3.3 increasingly emphasize an-006
swer depth and personalization. However,007
most existing RLHF approaches (e.g., PPO,008
DPO) still rely on a binary-preference (BT)009
paradigm, which, while reducing annotation010
costs, still requires substantial human effort011
and captures only group-level tendencies rather012
than individual preferences. To overcome013
these limitations, we propose Adaptive Reward-014
Following (ARF), a self-assessment framework015
that leverages a high-precision emotion ana-016
lyzer—achieving over 70% accuracy on GoE-017
motions, Sentiment140, and DailyDialog—to018
convert free-form user feedback into contin-019
uous preference scores. We further enrich020
and debias these signals through lightweight021
data augmentations, including synonym re-022
placement, random trace truncation, and score023
bias annotation algorithm. A Dynamic Adapter024
Preference Tracker continuously models evolv-025
ing user tastes in real time, enabling our novel026
Trace Bias (TB) fine-tuning algorithm to op-027
timize directly on these tracked rewards in-028
stead of coarse binary labels. Experiments on029
Qwen-2/2.5, Gemma-2, and Llama-3.2 across030
four preference domains demonstrate that ARF031
achieves an improvement of 3.3% over PPO032
and 7.6% over DPO. Moreover, TB preserves033
theoretical alignment with PPO and DPO ob-034
jectives. Overall, ARF presents a scalable, per-035
sonalized, and cost-effective approach to RLHF036
LLMs through autonomous reward modeling.037

1 Introduction038

The rapid development of Large Language Mod-039

els (LLMs) has led to remarkable improvements in040

comprehensive task performance. As robustness041

and general capability increase, the focus of LLM042

development has shifted from knowledge cover- 043

age and factual accuracy toward better fulfilling 044

user’s demands. To this end, Reinforcement Learn- 045

ing with Human Feedback (RLHF) has become a 046

widely adopted fine-tuning technique, exemplified 047

by models such as OpenAI’s GPT-4 (OpenAI et al., 048

2024), DeepSeek-AI’s DeepSeek-R1 (DeepSeek- 049

AI et al., 2025), and Meta’s Llama-3 (Grattafiori 050

et al., 2024). 051

Early RLHF efforts often relied on continuous 052

human scoring. However, this approach was costly 053

in terms of time and annotation resources, with 054

few large-scale open datasets available for public 055

research. To reduce the burden, the Bradley-Terry 056

(BT) model (BRADLEY, 1955) was first applied to 057

RLHF in (Christiano et al., 2023), replacing contin- 058

uous scoring with binary preference comparisons 059

(Good/Bad). This significantly lowered the annota- 060

tion threshold and enabled broader participation. 061

Despite these advantages, BT-based RLHF meth- 062

ods still suffer from critical limitations. They still 063

require substantial human evaluation efforts, and 064

due to annotator bias and understanding inconsis- 065

tencies, collected datasets often introduce positive 066

feedback artifacts and noise (del Arco et al., 2024). 067

Moreover, because human evaluation lags behind 068

user preference shifts, BT-based datasets face up- 069

date hysteresis. Although recent techniques such 070

as RLAIF (Lee et al., 2024a) attempt to reduce 071

human intervention, they still require human su- 072

pervision during prompt engineering and feedback 073

distillation. 074

To address these issues, we propose Adap- 075

tive Reward-Following RLHF (ARF-RLHF), a 076

framework that dynamically tracks user prefer- 077

ences without human annotation. We observe 078

that user follow-up queries and conversational re- 079

sponses implicitly contain rich satisfaction signals, 080

a phenomenon also supported by emotion analysis 081

research (Chen and Chen, 2016; Shanahan et al., 082

2006; Henry et al., 2021; Prabhumoye et al., 2017). 083
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Figure 1: Illustrates the overall workflow of our framework. We begin by automatically collecting satisfaction QA
data based on user feedback (Step 1). These samples are then stored and augmented through synonym substitution,
truncation, and reweighting to form a diversified reward corpus (Step 2). The ARF scorer is trained with soft labels
to predict satisfaction scores and is continuously updated (Step 3). Finally, the TraceBias algorithm leverages
ARF-generated rewards to fine-tune the LLM (Step 4), completing a fully self-supervised RLHF pipeline.

Building on this, we design the following innova-084

tions:085

• Data Augmentation ER Base: We annotate086

previous question-answer pairs based on user087

replies, and enhance data diversity through088

synonym substitution, random path truncation,089

and Preference-Biased Data Scoring annota-090

tion algorithm.091

• Dynamic Preference Tracking Scorer: Us-092

ing soft label learning and an experience re-093

play (ER) mechanism, we periodically update094

the scorer to dynamically adapt to user prefer-095

ence changes and avoid overfitting.096

• TraceBias Fine-tuning Algorithm: Without097

relying on BT-pair data, we propose a novel098

optimization strategy based on dynamic scorer099

feedback, random path truncation, and path100

deviation correction to enable stable and theo-101

retically grounded fine-tuning.102

2 Related Work103

2.1 The Core Pipeline of RLHF for LLMs104

Despite design variations, The BT model and pol-105

icy gradient optimization form the foundation of106

RLHF training. While implementations vary (e.g.,107

PPO (Schulman et al., 2017b) and DPO (Rafailov108

et al., 2024)), all methods share these core compo-109

nents.110

Supervised Fine-Tuning (SFT): The pipeline111

begins with SFT on large-scale corpora to instill112

general knowledge in LLMs. For downstream ap-113

plications, domain-specific datasets are used for114

further fine-tuning. While this results in high task-115

specific accuracy, such models often lack adapt-116

ability and personalization in real-world interactive 117

settings. 118

Preference Data Collection: To incorporate 119

human feedback, a preference dataset is con- 120

structed using paired outputs (e.g., (prompt, 121

answer1, answer2)). A Bradley-Terry (BT) 122

model (BRADLEY, 1955) is commonly used to 123

estimate the preference probability between re- 124

sponses yw ≻ yl as: 125

P(yw ≻ yl|x) =
exp(R(x, yw))

exp(R(x, yw)) + exp(R(x, yl))
,

(1) 126

where R(x, y) denotes a learned reward function. 127

Reinforcement Learning with Human Feedback: 128

RLHF methods rely primarily on: (1) reward mod- 129

eling from preferences, and (2) policy gradient(PG) 130

optimization. The policy is trained to maximize 131

expected return: 132

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st) ·Rt

]
,

(2) 133

where Rt =
∑T

k=t γ
k−trk is the discounted return. 134

Advantage-based methods refine this further: 135

∇θJ(θ) = Et [∇θ log πθ(at|st) ·Aπ(st, at)] ,
(3) 136

with the advantage function defined as: 137

Aπ(st, at) = Qπ(st, at)− V π(st). (4) 138

The multi preference-based dataset and PG op- 139

timization constitutes the foundation of RLHF 140

training, often enhanced by optimization tech- 141

niques such as Trust Region Policy Optimization 142
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(TRPO) (Schulman et al., 2017a), Rank Responses143

to Align Language Models with Human Feedback144

(RRHF) (Yuan et al., 2023), and Reinforcement145

Learning from Human Feedback with AI Feed-146

back(RLAIF) (Lee et al., 2024a).147

2.2 Preference-Based Optimization has a148

Constant Foundation149

While RLHF methods continue to evolve, most re-150

main grounded in the BT preference modeling and151

policy gradient framework defined in Section 2.1.152

To demonstrate this, we analyze the two dominant153

approaches: PPO and DPO.154

PPO-Based Optimization: Building on Equa-155

tion 2.1, PPO first trains a reward model via156

Bradley-Terry ranking loss:157

LR = −E(x,yw,yl) log σ(R(x, yw)−R(x, yl)),
(5)158

then applies clipped policy gradients to optimize159

πθ:160

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), ϵ)Ât

)]
.

(6)161

DPO as a Reward-Free Alternative: DPO by-162

passes explicit reward modeling by directly opti-163

mizing function’s preference margin:164

LDPO(θ) = −E(x,yw,yl) log σ165 (
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
(7)

166

where β is a temperature parameter and πref is a167

reference policy.168

In essence, PPO and DPO are structurally simi-169

lar—both optimize over preference pairs to align170

models with human intent. Their main difference171

lies in whether an explicit reward model is used.172

However, both remain reliant on human-generated173

comparisons and operate within the constrained174

policy optimization framework, which fundamen-175

tally limits their autonomy and scalability, We have176

conducted a more in-depth theoretical analysis in177

the appendix B.178

3 Methodology179

Our autonomous RLHF-LLM framework innovates180

through three core components:181

• ARF Scorer: Automates preference scoring 182

through dynamic interaction analysis of QA 183

pairs 184

• Augmented DB: Enhances data diversity via 185

synonym conversion and random truncation, 186

with ER mechanism preventing model drift 187

• TraceBias: Actor-critic based algorithm with 188

novel normalization, achieving PPO/DPO- 189

level performance without pairwise compar- 190

isons. (pseudo code shows in appendix C) 191

The overall flowchart of the ARF framework is 192

shown in Figure 1 193

3.1 Adaptive Reward-Following(ARF) Scorer 194

Recent studies suggest that human communication 195

not only conveys explicit semantic content but also 196

implicitly reflects user satisfaction and willingness 197

to continue the interaction (Chen and Chen, 2016; 198

Shanahan et al., 2006; Henry et al., 2021; Prabhu- 199

moye et al., 2017). Building upon this observation, 200

we propose a method that enables lightweight mod- 201

els to infer user satisfaction from prior interactions, 202

producing explicit scalar feedback scores to replace 203

traditional binary comparison scores used in BT- 204

based RLHF methods. 205

3.1.1 Static Satisfaction Cornerstone 206

Both the static satisfaction scorer and the ARF 207

scorer are built upon the lightweight RoBERTa- 208

mini (Liu et al., 2019) architecture, balancing low 209

latency with strong semantic understanding. 210

To enable self-supervised reward modeling, the 211

static scorer predicts the quality of a given (prompt, 212

response) pair based on the user’s subsequent reply. 213

Specifically, it takes the user’s follow-up message 214

as input and outputs a satisfaction score reflecting 215

the user’s sentiment toward the previous system 216

response. 217

We project the final hidden states of RoBERTa- 218

mini to three sentiment classes: bad, neutral, and 219

good, and aggregate token-level logits to obtain 220

sequence-level satisfaction distribution: 221

C3 = Linear(HLast) (8) 222

223

Cavg = Softmax

(
1

n

n∑
i=1

C(i)
3

)
(9) 224

Here, HLast denotes the final hidden states from 225

RoBERTa-mini, and C3 ∈ RBatch×Seq_Len×3 rep- 226

resents token-level satisfaction logits. The final 227
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Figure 2: We compare the gradient norm statistics between PPO (with clip range ϵ = 0.2) and TraceBias with DAM.
DAM exhibits lower variance and more stable gradient magnitudes, suggesting improved training stability and
potential for enhanced performance.(V is shown in appendix I)

prediction Cavg ∈ RBatch×3 summarizes sequence-228

level satisfaction via mean pooling and normaliza-229

tion.230

These static predictions are collected as soft-231

labels to train the ARF scorer, which learns to as-232

sign reward scores to collected or new (prompt,233

response) pairs in an offline fashion. The ARF234

scorer then serves as the reward function in Trace-235

Bias, guiding LLM fine-tuning without requiring236

manual preference annotations.237

3.1.2 ARF Scorer238

During user interaction, the ARF scorer is fine-239

tuned online. It is initialized from the static sat-240

isfaction scorer to retain basic satisfaction estima-241

tion capabilities and accelerate convergence. To242

preserve richer label information, we treat the av-243

eraged satisfaction vector Cavg as a soft label, and244

employ the standard cross-entropy loss for supervi-245

sion:246

Lsupervised = CE(Ĉ, Cavg) (10)247

To mitigate overfitting and catastrophic forget-248

ting due to limited data, we incorporate an Expe-249

rience Replay (ER) mechanism. A sampling ratio250

ERratio determines whether the model trains on past251

experiences or current user feedback:252

Ltotal =

{
LER = CE(Ĉ, Cstatic), if p < ERratio

Lsupervised = CE(Ĉ, Cavg), otherwise
253

where Ĉ is the predicted satisfaction distribution,254

Cavg is the soft label from user feedback, and Cstatic255

denotes labels from the static satisfaction dataset.256

3.2 Augmentation Database 257

To further leverage the limited amount of real user 258

feedback, we design an augmentation database that 259

incorporates synonym substitution, controlled trun- 260

cation, and a preference-biased data scoring algo- 261

rithm. This database increases data diversity and 262

volume, enabling the ARF-scorer to generalize bet- 263

ter under limited real feedback supervision. 264

3.2.1 Preference-Biased Data Scoring 265

Algorithm 266

Directly applying the ARF-scorer to evaluate 267

synonym-augmented samples is suboptimal, espe- 268

cially in the early stages when the scorer has not 269

yet adapted to the user’s evolving preferences. To 270

address this, we propose a preference-biased data 271

scoring algorithm that considers both the static sat- 272

isfaction scorer’s output Cbasic_avg and the ARF- 273

scorer’s output CARF_avg. 274

We compute a dynamic weighting coefficient 275

Scos based on the cosine similarity between the two 276

score vectors, adjusted via a sigmoid function: 277

Scos = σ
((

CosSim(CARF_avg, Cbasic_avg)− 0.5
)
· Ssig

)
(11)

278

Here, σ denotes the sigmoid function, and Ssig 279

is a scaling hyperparameter (see Appendix D for 280

selection strategy). Since the outputs Cadapter_avg 281

and Cbasic_avg are normalized as in Eq. 8, their co- 282

sine similarity falls within [0, 1], which we center 283

around 0 by subtracting 0.5 to achieve a symmetric 284

input range for the sigmoid. 285

The final score for augmented data is computed 286

as a convex combination of both scores: 287

CAug = Cadapter_avg·Scos+Cbasic_avg·(1−Scos) (12) 288
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3.2.2 Regular Re-Evaluation of Historical289

Scores290

As user preferences naturally evolve over time, pre-291

viously collected feedback and augmented data292

may become misaligned with current expectations.293

However, since the ARF-scorer is continuously294

updated, using it alone to re-score historical data295

could result in loss of alignment with past prefer-296

ences.297

To maintain continuity across preference shifts,298

we propose to regularly update old scores using the299

same preference-biased data scoring mechanism.300

Let Cold_avg denote the original score and Cnew_avg301

the updated ARF-scorer’s output. The updated302

weight is computed as:303

Scos = σ
((

CosSim(Cnew_avg, Cold_avg)− 0.5
)
· Ssig

)
(13)304305

CNew = Cnew_avg · Scos + Cold_avg · (1−Scos) (14)306

This mechanism ensures that new scoring re-307

flects both the current user preference and the his-308

torical decision boundary, enabling the ARF-scorer309

to retain knowledge of previous patterns rather than310

overfitting to recent feedback alone.311

3.3 TraceBias Algorithm312

To enable direct score-based optimization, we pro-313

pose a novel actor-critic-style algorithm named314

TraceBias. A theoretical analysis provided in315

the appendix B.3 demonstrates its equivalence to316

PPO and DPO in terms of optimization objectives.317

TraceBias integrates random-length trajectory re-318

ward bias, discounted step-wise preferences for319

advantage estimation, and a newly introduced Dou-320

ble Average Method (DAM) a smooth surrogate321

strategy. These components collectively ensure322

stable updates and enable TraceBias to match or323

even surpass PPO and DPO in certain scenarios.324

The overall objective can be expressed in a concise325

actor-critic form:326

Lfinal = −
N∑
i=1

(
S(i)

t-label − S(i)
t-real

)
· π(i)

ratio (15)327

Where:328

• S(j)
real and S(j)

label denote the j-th step scores329

from the fine-tuned model and the reference330

(base) model, respectively.331

• π
(i)
ratio represents the DAM normalized token-332

level policy ratio for the i-th sample (see Sec-333

tion 3.3.3).334

3.3.1 Trace Scores with Discounted Step-wise 335

Evaluation 336

To aggregate per-step evaluation signals while re- 337

flecting historical performance, TraceBias com- 338

putes a trajectory-level score using discounted(γ) 339

step-wise preferences: 340

St-real =

T∑
j=1

γj−1·S(j)
real, St-label =

T∑
j=1

γj−1·S(j)
label

(16) 341

Here, each step’s score S(j) is computed based 342

on the relative evaluation of the average scores: 343

S(j) = C(j)
avg[:2] − C(j)

avg[0] (17) 344

Where C(j)
avg[:2] represent good and C(j)

avg[0] repre- 345

sent bad. 346

3.3.2 Advantage Estimation 347

With the trajectory scores St-real and St-label, we 348

compute the advantage function, representing the 349

reward bias between the fine-tuned and reference 350

models: 351

Ai = S(i)
t-label − S(i)

t-real (18) 352

This advantage guides the optimization direction 353

during policy updates. 354

3.3.3 Double Average Method (DAM) 355

To stabilize the optimization without resorting to 356

explicit gradient clipping, which may discard use- 357

ful information, we propose two mechanisms: 358

• Normalize Cavg to constrain the score magni- 359

tude in eq 8. 360

• Normalize token-level policy ratios to address 361

instability due to variable sequence lengths. 362

We observe that summing log-probabilities over 363

sequences of varying lengths leads to unstable 364

gradient updates: longer sequences accumulate 365

larger log-prob norms, resulting in disproportion- 366

ately large updates, while shorter sequences receive 367

weaker log-prob norms. 368

To address this issue, we adopt a token-level 369

normalized policy ratio: 370

π
(i)
θ =

1

T

T∑
t=1

logPθ(y
(i)
t | x(i)) (19) 371

π
(i)
old =

1

T

T∑
t=1

logPold(y
(i)
t | x(i)) (20) 372
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π
(i)
ratio = exp(π

(i)
θ − π

(i)
old) (21)373

where T is the sequence length, i indexes the sam-374

ple, x(i) is the input context, and y
(i)
t is the t-th375

output token. Pθ and Pold denote the current and376

previous policy probabilities, respectively.377

This stabilizes training while preserving gradient378

information better than direct clipping, validated379

by gradient norm analysis (Fig. 2).380

4 Experiments381

4.1 Experimental Setup382

Datasets. Datasets. We employ five QA datasets383

from the Big-Bench benchmark (BBM) (Srivas-384

tava et al., 2023) to evaluate the generalizabil-385

ity of our RLHF-LLM framework across diverse386

task types: instruction following (Alpaca (Pawlik387

and Grigoriadis, 2024)), mathematical reasoning388

(GSM8K (Cobbe et al., 2021)), commonsense QA389

(StrategyQA (Geva et al., 2021)), open-domain390

dialogue (TopicalChat (Gopalakrishnan et al.,391

2023)), and summarization (CNN/DailyMail (See392

et al., 2017))—used primarily for robustness testing393

due to noise.394

To support preference-based training in DPO and395

PPO, we construct a preference-labeled dataset via396

synonym substitution and scoring using pretrained397

preference models (see Appendix E).398

We also introduce a multi-domain satisfac-399

tion dataset, Emotion3, by aggregating and re-400

annotating instances from DailyDialog (Li et al.,401

2017), GoEmotions (Demszky et al., 2020),402

ISEAR (Scherer and Wallbott, 1997), and Senti-403

ment140 (Go et al., 2009). This dataset comprises404

78,630 samples, partially re-scored using LLaMA3-405

13B and Qwen2.5-7B. Emotion labels are mapped406

to satisfaction levels and manually verified for qual-407

ity. (Details in Appendix G.)408

LLM Backbones, RLHF Methods, and Eval-409

uation Protocols. To evaluate effectiveness un-410

der constrained capacity we conduct experiments411

using four lightweight large language models412

(LLMs) as backbones: Gemma2-2B (Team et al.,413

2024), Qwen2-1.5B (Yang et al., 2024), Qwen2.5-414

1.5B (Qwen et al., 2025), and LLaMA3.2-415

2B (Grattafiori et al., 2024).416

We fine-tune each model using four distinct417

RLHF methodologies:418

• TraceBias: Our proposed method, which419

avoids reliance on binary comparison datasets420

by leveraging trajectory-level bias and Double 421

Average Method (DAM) for stable training. 422

• DPO (Rafailov et al., 2024): A baseline 423

RLHF method that eliminates explicit reward 424

models by leveraging pairwise preference 425

comparisons derived from the Bradley-Terry 426

framework. 427

• PPO (Schulman et al., 2017b): A widely 428

adopted policy optimization method in RLHF 429

that operates over scalar rewards and compar- 430

ison data. 431

• RAIHF (Lee et al., 2024b): A recent 432

paradigm aiming to reduce human supervi- 433

sion by utilizing LLMs to automatically con- 434

struct comparison datasets. This framework 435

is compatible with multiple underlying RLHF 436

methods (e.g., DPO, PPO). 437

The experiments adopting the fine-tuning 438

method of LoRA (Hu et al., 2021)(All experiments 439

hyper paramaters shows in appendix A). 440

4.2 Main Results 441

To fully discover our framework’s performance 442

we adopt a component-wise verification strategy. 443

Specifically, we conduct extensive ablation and 444

analysis experiments to validate the effectiveness 445

of each module. 446

• Static Scorer: Experiment 4.3 evaluates the 447

quality of the static satisfaction scorer. 448

• ARF Scorer: Experiment 4.4 examines the 449

ARF scorer’s ability to trace evolving prefer- 450

ences. 451

• TraceBias Effectiveness: Experiments 4.5 452

and 4.6 demonstrate that TraceBias consis- 453

tently provides better feedback signals under 454

both simulated and AI-agent settings. 455

• Mechanism Validation: Experiments 4.7, 456

4.8, and Discussion 5.2 highlight the im- 457

portance of key design components such as 458

Experience Replay (ER), Dynamic Advan- 459

tage Matching (DAM), and Preference-Biased 460

Scoring. 461

By integrating insights from the above studies, 462

we demonstrate the general effectiveness and adapt- 463

ability of the proposed ARF framework across di- 464

verse scenarios. We also added CaseStudy in ap- 465

pendix K. 466

4.3 Evaluation of the Static Satisfaction 467

Scorer 468

The overall performance of the ARF framework 469

strongly depends on the quality of the static satis- 470
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Figure 3: Tracking preference shifts using ARF. A drop
in score indicates alignment with newly introduced neg-
ative preferences.

faction model used for initial data collection and471

supervision. While we describe the construction of472

this model and its large-scale annotation base in Ap-473

pendix G, its effectiveness must still be validated.474

We evaluate the scorer on five benchmark emotion475

classification datasets: DailyDialog, GoEmotions,476

ISEAR, Sentiment140, and Emotion3 (a merged477

set). As shown in Table 1, the model consistently478

achieves over 70% accuracy across all datasets.479

4.4 Adaptive Preference Tracking via ARF480

Leveraging the static scorer’s accuracy, we test481

the ARF scorer’s dynamic tracking by injecting482

bias-specific data every 500 steps in the order483

ALPACA→GSM8K→StrategyQA→TopicalChat.484

When more than two biases overlap, we apply485

negative supervision to the earliest bias. The486

resulting scoring shifts are shown in Figure 3.487

The results demonstrate that ARF adapts effec-488

tively to changing preferences. Initially, we ob-489

serve synchronized gain/loss patterns between AL-490

PACA and StrategyQA, and between GSM8K and491

TopicalChat, likely due to semantic similarity. De-492

spite this, ARF successfully distinguishes between493

tasks once negative preferences are introduced (e.g.,494

ALPACA at step 1500), indicating its robustness to495

subtle semantic correlations.496

4.5 RLHF Method Comparison under Unified497

Evaluation498

Due to the instability and prompt sensitivity of499

AI-judge evaluations, we instead employ a unified500

reward model for both data filtering and evaluation.501

This removes variation from prompt design, sam-502

pling temperature, and model architecture(More503

in discussion 5.1). We compare PPO, DPO, and504

our TraceBias method under identical scoring su-505

pervision, across four tasks and four base models:506

Dataset DailyDialog GoEmotions ISEAR Sentiment140 Emotion3

Accuracy (%) 70.05 73.65 76.00 74.10 71.60

Table 1: Test accuracy of the static satisfaction scorer
on various sentiment datasets. Hyperparameter details
are provided in Appendix 7.

Figure 4: Average performance comparison of RLHF
methods (PPO, DPO, TraceBias) under consistent scor-
ing and preference targets. Single models’ preformance
in appendix J.

Qwen2 1.5B, Qwen2.5 1.5B, LLaMA3.2 3B, and 507

Gemma2 2B. The normalized performance relative 508

ratio compare to SFT is shown in Figure 4. 509

On average, TraceBias outperforms both PPO 510

and DPO, with an improvement of 3.3% over PPO 511

and 7.6% over DPO. We attribute this to the sta- 512

bility introduced by the DAM mechanism and the 513

expressiveness of the trace-based update design. 514

While there are isolated tasks where PPO or DPO 515

perform better, TraceBias consistently ranks high- 516

est in aggregate performance. 517

4.6 LLM-Based Preference: RAIHF vs. ARF 518

To test TraceBias under machine-generated pref- 519

erences, we construct a 1K preference dataset on 520

StrategyQA using DeepSeek-v3(The detailed AI 521

evaluation output in appendix F). Using this dataset, 522

we train RLHF pipelines using PPO and DPO, de- 523

noted RAIHF-PPO and RAIHF-DPO. We compare 524

them against TraceBias using the same reward su- 525

pervision. As shown in Table 2, TraceBias outper- 526

forms both RAIHF variants, indicating its robust- 527

ness to the quality of preference data. 528

Interestingly, while DPO slightly outperforms 529

PPO in this setting, its dependence on precise com- 530

Evaluation method RAIHF-PPO RAIHF-DPO TraceBias

Score Ratio 30.3 32.8 36.9

DeepSeek V3(win rate vs SFT) 43% 49% 52%

Table 2: The evaluation of multiple RAIHF variants
against the TraceBias method on the StrategyQA dataset,
using DeepSeek-v3 preference annotations.
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ER Ratio GSM8K (Preference) Emotion3

Basic 53.52 73.84
0 60.59 59.32
0.5 56.40 70.88

Table 3: Ablation of ER ratio in ARF training. ER=0.5
balances adaptation and generalization.

parisons makes it more sensitive to data quality. In531

contrast, TraceBias and PPO are better suited for532

noisy or weakly-supervised preference signals.533

4.7 Effect of Experience Replay (ER) in ARF534

We hypothesize that ER helps mitigate catastrophic535

forgetting or overfitting in ARF training. To test536

this, we compare ARF with and without ER under537

1000 training steps. As shown in Table 3, disabling538

ER leads to better accuracy on recent data but a539

significant drop in generalization, supporting our540

claim.541

4.8 Gradient Stability Analysis-DAM vs. Clip542

As shown in Figure 2, we analyze gradient norms543

across PPO and TraceBias (using traceStep = 1 for544

fairness). TraceBias consistently exhibits lower545

gradient magnitude and variance, even compared546

to PPO with clipping. This supports our claim that547

DAM promotes smoother and more stable learning548

dynamics.549

5 Discussion550

5.1 How to proof our experiments’ accuracy?551

As noted in Section 4.5, AI-agent–based evaluation552

(e.g., using an LLM judge) exhibits high variance553

from prompt wording, task quirks, model archi-554

tecture, and random seeds, yielding inconsistent555

and unreliable results. To mitigate this, we com-556

plement AI-agent metrics (Section 4.6) and a uni-557

fied, scorer-based protocol: for reward-oriented558

methods (e.g., TraceBias, PPO), we train against559

a pretrained reward model and evaluate with a560

shared, immutable scorer; for comparison-based561

methods (e.g., DPO), we use the same scorer to as-562

sess preference alignment. Crucially, every method563

and run uses the exact same held-out test exam-564

ples (none seen during training), and the scorer565

never changes—eliminating any method-specific566

coupling or information leakage. This ensures a567

stable, unbiased comparison of each method’s con-568

vergence to the target preference.569

5.2 On the Necessity of Rescoring in 570

Preference-Biased Scoring 571

To evaluate our preference-biased rescoring, we 572

add an ablation (Table 6, Appendix H) comparing 573

identical training with and without periodic score 574

updates. Without rescoring, examples originally la- 575

beled positive continue to be optimized for positive 576

preference even after flipping to negative, causing 577

stale signals that mislead the reward model and vi- 578

olate dynamic adaptation. This demonstrates that 579

periodic rescoring is essential to keep data annota- 580

tions aligned with evolving user preferences, and 581

validates the effectiveness of our mechanism in 582

maintaining robust preference alignment. 583

6 Conclusion 584

We propose ARF-RLHF, a reinforcement learn- 585

ing framework that autonomously aligns language 586

models with user preferences through dialogue. It 587

features three innovations: 1) an Adaptive Reward- 588

Following (ARF) scorer for dynamic satisfaction 589

modeling; 2) a perturbation-augmented preference 590

generalization database; 3) the TraceBias algorithm 591

unifying actor-critic-style optimization with token- 592

level stabilization. Theoretical analysis shows 593

structural compatibility with PPO/DPO while en- 594

abling fully score-driven optimization. Experi- 595

ments demonstrate its effectiveness in scalable pref- 596

erence optimization under limited supervision. 597

Limitations 598

While our method offers significant theoretical and 599

empirical advantages, we acknowledge the follow- 600

ing limitations: 601

• Lack of Real Huamn evaluation: The 602

scorer-based evaluation protocol is designed 603

for fair comparison of RLHF methods, focus- 604

ing on minimizing noise factors. It does not 605

yet capture generalization performance in real- 606

world scenarios. Future work will include 607

human blind testing or cross-validation with 608

alternative scorers to further validate the re- 609

sults. 610

• Model Scale Constraint: Due to resource 611

constraints, we conduct experiments on 612

1.5B–3B models. While our method is 613

architecture-agnostic and theoretically scal- 614

able, its effectiveness on larger LLMs (e.g., 615

7B, 13B, 65B) remains to be explored in fu- 616

ture work. 617
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A Hyper Parameters 786

All experiments’ Hyper parameters shows below: 787

1. Static Scorer Evaluation: table 7 788

2. Adaptive Preference Tracking: table 8 789

3. RLHF Comparison: table 9 790

4. RAIHF vs. ARF: table 10 791

5. Effect of Experience Replay (ER) in ARF 11 792

6. Gradient Stability Analysis for DAM 12 793

All experiments were conducted on 2 * NVIDIA 794

GTX 2080 Ti GPUs with CUDA unified memory 795

enabled, using multi-GPU parallelism. Training 796

consumed approximately 390 GPU-hours per de- 797

vice. 798

B The Essential Homology of DPO, PPO, 799

and TraceBias 800

The Actor-Critic (AC) algorithm can be formulated 801

as: 802

LAC(θ) = −
N∑
t=1

log πθ(at | st) ·At (22) 803

In this section, we demonstrate the theoretical 804

connections among PPO, DPO, and our proposed 805

TraceBias. We argue that these methods share a 806

common optimization structure, thereby validating 807

the theoretical soundness of TraceBias. 808

B.1 PPO as a clip Constrained Actor-Critic 809

Variant 810

PPO (Schulman et al., 2017b) can be defined as: 811

LPPO(θ) = Et [min (rt(θ)At, clip(rt(θ), ϵ)At)]
(23) 812

where rt(θ) is the importance sampling ratio 813

between the current and previous policies: 814

rt(θ) =
πθ(at | st)
πθold(at | st)

(24) 815

and the clipping function is defined as: 816

clip(rt(θ), ϵ) =


1− ϵ, if rt(θ) < 1− ϵ

rt(θ), if 1− ϵ ≤ rt(θ) ≤ 1 + ϵ

1 + ϵ, if rt(θ) > 1 + ϵ
(25) 817
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By expanding the objective, we obtain:818

LPPO(θ) = Et

[
min

(
πθ(at | st)
πθold(at | st)

At, clip819

(
πθ(at | st)
πθold(at | st)

, ϵ

)
At

)]
(26)

820

If we ignore the clipping operation—which821

serves as a regularization mechanism to limit the822

policy update magnitude—the PPO objective re-823

duces to:824

LPPO(θ) ∝
N∑
t=1

rt(θ)At (27)825

Here, rt(θ) reflects the policy ratio πθ(at|st)
πθold (at|st)

,826

which encourages increasing the likelihood of ac-827

tions with high advantage At. This shows that PPO828

essentially shares the same optimization direction829

as AC, differing only in the incorporation of a trust-830

region-inspired constraint to stabilize training.831

B.2 DPO as a KL-Constrained Actor-Critic832

Variant833

Direct Preference Optimization (DPO) (Rafailov834

et al., 2024) leverages the Bradley-Terry model to835

represent pairwise preferences as follows:836

P(y+ ≻ y− | x) = exp(r(y+))

exp(r(y+)) + exp(r(y−))
(28)837

Its associated loss is:838

LR(ϕ,D) = −E(x, yw, yl)839 [
log

exp(r(yw))

exp(r(yw)) + exp(r(yl))

]
(29)840

The DPO objective derived from this model is:841

LDPO(πθ; πref) = −E(x,yw,yl) [ log842

σ

(
β log

πθ(yw | x)πref(yl | x)
πθ(yl | x)πref(yw | x)

)]
(30)

843

Introducing a normalization constant Z(x), the844

implicit optimal policy π∗(y | x) can be defined845

as:846

π∗(y | x) =
πref(y | x) · exp( 1β r(y))

Z(x)
(31)847

where the partition function Z(x) is: 848

Z(x) =
∑
y′

πref(y
′ | x) · exp

(
1

β
r(y′)

)
(32) 849

Taking the logarithm of both sides yields: 850

log π∗(y | x) = log πref(y | x)+ 1

β
r(x, y)−logZ(x)

(33) 851

We can then derive: 852

r(x, y) = β log
π∗(y | x)
πref(y | x)

+ β logZ(x) (34) 853

By applying r(x, y) in the pairwise preference 854

model P(y+ ≻ y− | x) and utilizing the Plackett- 855

Luce model (see Appendix A.3 of (Rafailov et al., 856

2024) for more details), the DPO objective can be 857

equivalently rewritten as: 858

max
πθ

{
Ex∼D, y∼πθ(·|x)

[
rϕ(x, y)

]
− βKL

(
πθ(· | x) ∥πref(· | x)

)} (35) 859

Here, the optimization objective is to maximize 860

the expected reward regularized by a KL diver- 861

gence term. Assuming A(x, y) = r(x, y), and 862

temporarily ignoring the KL regularization, this 863

reduces to an actor-critic style objective: 864

LDPO(θ) ∝ Ey∼πθ(·|x) [A(x, y)] (36) 865

This implies that DPO and actor-critic share ef- 866

fectively the same optimization objective when the 867

reward signal is defined as the advantage. In prac- 868

tice, this expectation can be approximated by: 869

LDPO(θ) ≈
N∑
i=1

log πθ(yi | xi) ·A(xi, yi) (37) 870

Thus, DPO can be interpreted as a KL- 871

regularized actor-critic method, where the reward 872

signal is derived from preference feedback rather 873

than scalar returns. 874

B.3 TraceBias as a DAM-Constrained 875

Actor-Critic Variant 876

We have previously outlined the Actor-Critic (AC) 877

interpretation of TraceBias in our methodology. 878

Here, we provide a formal derivation from the ex- 879

panded formulation to its AC-style representation. 880

Lfinal = −
T∑
i=1

(St-label − St-real) · exp(π(i)
θ − π

(i)
old)

(38)
881
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Following our methodology, the token-level re-882

ward (or score) is defined via discounted(γ) step-883

wise preferences as follows:884

St-real =
T∑

j=1

γj−1·S(j)
real, St-label =

T∑
j=1

γj−1·S(j)
label

(39)885

Accordingly, we define the advantage function886

by measuring the difference between the real and887

reference trajectories:888

Ai = S(i)
t-label − S(i)

t-real (40)889

Substituting this into the objective, TraceBias890

can be rewritten in an actor-critic form:891

LTraceBias =
T∑
i=1

Ai · exp(π(i)
θ − π

(i)
old) (41)892

To improve optimization stability, we introduce893

the DAM smooth surrogate strategy, which pools894

token-level scores and normalizes the policy ratio895

across the trajectory. Analogous to the clipping896

term in PPO and the KL regularization in DPO,897

DAM serves as a regularization mechanism: We898

define the token-level ratio as:899

π
(i)
θ =

1

T

T∑
t=1

logPθ(y
(i)
t | x(i)) (42)900

π
(i)
old =

1

T

T∑
t=1

logPold(y
(i)
t | x(i)) (43)901

Then, the normalized trajectory-level policy ratio902

is computed as:903

π
(i)
ratio = exp(π

(i)
θ − π

(i)
old) (44)904

Thus, the final form of TraceBias is:905

LTraceBias =
T∑
i=1

Ai · π(i)
ratio (45)906

This derivation shows that TraceBias can be di-907

rectly interpreted as an Actor–Critic method with-908

out introducing additional approximations, high-909

lighting its theoretically grounded and streamlined910

formulation.911

Scale value Scale Impact on Sigmoid under 0.2 interval

1(Too small) 0.5498 [0.3775,0.6225]
4 0.6900 [0.1192,0.8808]
6 0.7685 [0.0474,0.9526]
8 0.8320 [0.018,0.9820]
16(Too big) 0.9608 [0.0003,0.9997]

Table 4: The table shows how different scale values map
to specific intervals after applying the Sigmoid function.

B.4 Summary 912

Although PPO, DPO, and TraceBias differ sig- 913

nificantly in their final objectives, all can be re- 914

formulated as variants of the Actor-Critic (AC) 915

framework. By optimizing the expected reward 916

weighted by advantage, each method introduces dis- 917

tinct regularization strategies—such as PPO’s clip- 918

ping, DPO’s KL constraint, or TraceBias’s DAM 919

normalization—to improve training stability. This 920

unified perspective highlights that TraceBias is not 921

only theoretically grounded but also competitive 922

with existing policy optimization techniques. 923

C The pseudo code of TraceBias 924

The TraceBias pseudo code shows in alg 1. 925

D The selection of sigmoid Scale 926

Scale plays a crucial role in determining the sen- 927

sitivity of the norm function, as it directly affects 928

most parameters. We recommend selecting scales 929

within the range of [4,8], as excessively large val- 930

ues can push most parameters towards the bound- 931

aries of the Sigmoid function interval, limiting 932

their effective range. Table 4 illustrates when 933

(CosSim(CARF_avg, Cbasic_avg)− 0.5) equals values 934

0.2 is converted together with the corresponding 935

function value range by the Sigmoid function under 936

different proportional settings. It is worth noting 937

that when the scale is set to 1, the relatively large 938

0.2 level in sigmoid results in a mapping value of 939

only 0.5498. However, when the ratio increases to 940

16, the same input is mapped to nearly 1, indicating 941

that the range is overly compressed. Based on these 942

observations, we strongly recommend selecting a 943

scale within the range of [4,8] for the numerical 944

deviation annotation algorithm, as it ensures a bal- 945

anced transformation without pushing values to 946

extremes. 947

E RLHF Dataset Construction 948

To support comparison-based fine-tuning methods 949

such as DPO and PPO, we construct a simulated 950
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binary preference dataset. Given the prohibitive951

cost of large-scale human annotation, and the fact952

that this dataset is primarily used to compare fine-953

tuning preferences across methods rather than for954

real-world deployment, we adopt a surrogate con-955

struction strategy that also aligns with the training956

of our ARF preference model.957

Concretely, we employ the naw.SynonymAug958

module from the nlpaug library to perform four959

rounds of synonym substitution using WordNet,960

generating paraphrased variants that preserve se-961

mantic intent while introducing surface-level diver-962

sity.963

Before constructing the binary comparison964

dataset, we annotate the augmented ’former’ sam-965

ples with soft labels using our fine-tuned static966

satisfaction scorer. To amplify preference signals967

and avoid potential overfitting, we prepend task-968

specific prompts that were never included in the969

scorer’s training data. Specifically:970

• Good prompt: Great! You gave a971

correct answer. Here is the next972

question: ...973

• Bad prompt: Your answer is absolutely974

wrong! This is the next question.975

Stop giving such terrible and976

misleading feedback! ...977

The annotated samples are then used to fine-978

tune the ARF scorer, which serves as a proxy979

for user-aligned preferences. To ensure fairness,980

each RLHF method (including PPO and DPO) con-981

structs its training pairs using the same ARF scorer:982

for each pair, the sample with a higher score is des-983

ignated as the preferred (positive) response, while984

the lower-scored one is treated as negative. This985

guarantees that all methods are aligned in their op-986

timization direction and evaluated under consistent987

supervision.988

F DeepSeek agent’s Evaluation under989

RAIHF task990

We using below prompt to compare the output of991

baselines and SFT, the win/loos/evqual tabel shows992

in tabel 5. The prompt of comparison shows below:993

Question: ’...’ Answer1: ’...’ Answer2:994

’...’ Please use strict criteria to995

determine which answer is more in line996

with human preferences 1 or 2 only answer997

a number.998

Evaluation method Win Loss Equal

RAIHF-PPO 43% 50% 7%

RAIHF-DPO 49% 47% 4%

TraceBias 52% 44% 4%

Table 5: The win, loos, equal rate compare to SFT
method

G Satisfaction Dataset Construction 999

To construct a large-scale, diverse, and high-quality 1000

satisfaction classification dataset aligned with our 1001

three-level labeling schema (bad, neutral, good), 1002

we aggregate a total of 78,630 samples from four 1003

widely-used emotion and sentiment datasets: 1004

• DailyDialog (Li et al., 2017): A multi-turn 1005

dialogue dataset that closely mirrors everyday 1006

conversational scenarios. 1007

• GoEmotions (Demszky et al., 2020): A fine- 1008

grained, high-quality emotion classification 1009

dataset spanning a wide range of affective 1010

states. 1011

• ISEAR (Scherer and Wallbott, 1997): A clean 1012

and structured emotion dataset based on psy- 1013

chological self-reports. 1014

• Sentiment140 (Go et al., 2009): A large-scale 1015

Twitter sentiment dataset that reflects informal 1016

and noisy online communication. 1017

To unify the labeling across datasets with hetero- 1018

geneous annotation schemes, we define a common 1019

strength-based mapping strategy, converting exist- 1020

ing emotion tags into a standardized 7-level satis- 1021

faction scale (see Table 13). For relatively clean 1022

datasets (DailyDialog, GoEmotions, ISEAR), we 1023

directly apply this mapping to assign satisfaction 1024

scores. 1025

Given the informal nature of Sentiment140, ad- 1026

ditional cleaning is necessary. We sample 15,000 1027

instances and perform multi-round evaluation using 1028

both Qwen2 7B and LLaMA3 13B. Each sample 1029

is scored twice by each model; the maximum and 1030

minimum scores are discarded, and the mean of the 1031

remaining two is taken as the final label. Samples 1032

with high variance across scores are further man- 1033

ually verified to ensure annotation reliability. The 1034

result is a cleaned subset of 15,000 samples from 1035

Sentiment140 with stable satisfaction labels. 1036

After consolidating all datasets, we create a uni- 1037

fied Emotion7 dataset with 7 satisfaction levels. 1038

We then perform a coarse mapping to form the final 1039
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Figure 5: V Gradient norm comparison between PPO (with clip range ϵ = 0.2) and TraceBias with DAM.

Emotion3 dataset: levels [0, 1] as bad, 1.5 as neu-1040

tral, and [2, 3] as good. This dataset provides broad1041

domain coverage, consistent labels, and stylistic1042

diversity, serving as the basis for training our static1043

satisfaction scorer.1044

H Ablation analysis of ReScoring1045

We doing a ablation study on use the ReScoring and1046

not using the ReScoring on Experiment of Adaptive1047

Preference Tracking via ARF, and calculating the1048

value change on ALPACA and GSM8K, while they1049

are turned to negative preference the tabel 6 shows1050

the importance of re-scoring.1051

I Gradient Comparison V1052

Figure 5 V Gradient norm comparison between1053

PPO (clip) and TraceBias (DAM). Lower variance1054

and norm suggest improved stability.1055

J Models’ Performance under different1056

RLHF Baselines1057

We shows all models’ RLHF performance below:1058

• Qwen2-1.5B: table 61059

• Qwen2.5-1.5B: table 71060

• Gemma2-2B: table 81061

• Llama3.2-3B: table 91062

We applied softmax with temperature (set to 0.1)1063

purely for visualization purposes.1064

K CaseStudy under Llama3.21065

To preserve the original formatting of model out-1066

puts, we retain their format in the paper. For ex-1067

cessively long responses, we replace parts with1068

ellipses ("...") for clarity. Representative examples1069

are provided in Table 14, Table 15, Table 16, and1070

Table 17.1071

Figure 6: Qwen2’s Performance

Figure 7: Qwen2.5’s Performance

Figure 8: Gemma2’s Performance

Figure 9: Llama3.2’s Performance
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Algorithm 1: TraceBias with DAM
Input: Augmented dialogue dataset Daug, reward

modelR, policy model πθ , reference model
πref, max length Lmax, discount factor γ,
environment E

Output: Updated parameters θ
while training do

repeat
Sample a dialogue trajectory
{(xt, y

∗
t , st)}Tt=1 ∼ Daug;

Initialize context C ← [system prompt],
total loss L ← 0;

Initialize LabelReward← 0,
RealReward← 0;

for t = 1 to T do
Append user input xt to context C;
LabelReward += γt−1 · st;
Generate output yt ∼ πθ(· | C);
if length(C) > Lmax then

break
// Compute per-token

log-probabilities from both
models

log πθ = log_softmax(πθ(C));
log πref = log_softmax(πref(C));
// Compute average token-level

log-probs (DAM token -level
average)

log πθ(yt) =
1

|len(yt)|
∑|yt|

i=1 log πθ(y
(i)
t | C);

log πref(yt) =
1

|len(yt)|
∑|yt|

i=1 log πref(y
(i)
t | C);

// Compute real reward via
environment

rt ← E(yt);
RealReward += γt−1 · rt;
// Importance sampling ratio
wt = exp (log πθ(yt)− log πref(yt));
// Add weighted reward mismatch

to loss
L +=
−wt · (LabelReward− RealReward);

Append assistant response yt to context
C;

until valid sample obtained;
// Gradient update
Backpropagate: ∇θL;
Update: θ ← θ − η · ∇θL;

Hyper Parameters ALPACA GSM8K

With ReScore -9.4 -0.5

Without ReScore 7.2 3.7

Table 6: ReScore analysis
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Hyper Parameters TrainStep Test Step Learning Rate Batch MLP Hidden Size

Static Scorer 20000 500 1e-6 20 328

Table 7: hyper-parameters of Static Scorer Evaluation

Hyper Parameters TrainStep Test Step Learning Rate ERRatio MLP Hidden Size

ARF Scorer 2000 500 1e-6 0.5 328

Table 8: hyper-parameters of Adaptive Preference Tracking via ARF

Hyper Parameters LoRA Rank Epoch Test Step/Epoch Train Step/Epoch Learning Rate TraceBias gamma clip epsilon PPO [c1,c2] DPO beta

PPO 8 4 100 500 1e-6 - 0.2 [0.01,0.01] -

DPO 8 4 100 500 1e-6 - - - 0.1

TraceBias 8 4 100 500 1e-6 0.99 - - -

Table 9: hyper-parameters of Adaptive Preference Tracking via ARF

Hyper Parameters LoRA Rank Epoch Test Step/Epoch Train Step/Epoch Learning Rate TraceBias gamma clip epsilon PPO [c1,c2] DPO beta

PPO 8 2 100 250 1e-5 - 0.2 [0.01,0.01] -

DPO 8 2 100 250 1e-5 - - - 0.1

TraceBias 8 2 100 250 1e-5 0.99 - - -

Table 10: hyper-parameters of RAIHF vs. ARF

ERRatio TrainStep Test Step Learning Rate MLP Hidden Size

0.5 1000 500 1e-5 328

0 1000 500 1e-5 328

Table 11: hyper-parameters of Experience Replay (ER) in ARF

Hyper Parameters LoRA Rank Train Step Learning Rate TraceBias gamma clip epsilon PPO [c1,c2]

PPO 8 300 1e-6 - 0.2 [0.01,0.01]

TraceBias 8 300 1e-6 0.99 - -

Table 12: hyper-parameters of Gradient DAM test
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Strength Label DailyDialog ISEAR GoEmotion
0.0 extremely neg disgust disgust disappointment

embarrassment
grief
sadness

0.5 neg anger, sadness sadness anger
disgust
remorse

1.0 neg nero fear fear annoyance
confusion
disapproval
nervousness

1.5 nero no emotion caring
curiosity
neutral

2.0 pos nero approval
desire
realization
relief
surprise

2.5 pos surprise joy admiration
amusement
excitement
joy
love
optimism
pride

3.0 extreme pos happiness admiration
gratitude

Table 13: Emotion categories mapped to continuous strength scores across datasets.

Table 14: GSM8K

Field Content
Prompt Q: Reggie and his brother are having a basketball shooting contest. They each

get to take 10 shots. Layups are worth 1 point, free throws are worth 2 points,
and anything further away is worth 3 points. Reggie makes 3 layups, two free
throws, and one long shot. His brother only shoots long shots and makes 4 of
them. How many points does Reggie lose by? A:

label Reggie makes 3 points off layups because 3 × 1 = <<3*1=3>>3 Reggie makes
4 points off free-throws because 2 × 2 = <<2*2=4>>4 Reggie makes 3 points
off long shots because 1 × 3 = <<1*3=3>>3 Reggie scores 10 points because
3 + 4 + 3 = <<3+4+3=10>>10 His brother scores 12 points because 4 × 3 =
<<4*3=12>>12 Reggie loses by 2 because 12 minus 10 = <<12-10=2>>2 2

SFT To find out how many points Reggie lost by, we calculate both totals explicitly:
Reggie’s points: layups 3 × 1 = 3; free throws 2 × 2 = 4; long shot 1 × 3 = 3;
sum = 10. Brother’s points: 4 × 3 = 12. Since 10 < 12, Reggie loses by 2 points.

TraceBias To determine the points Reggie scored, we need to calculate the points from
each type of shot. Reggie made 3 layups (3 × 1 = 3 points), 2 free throws (2 ×
2 = 4 points), and 1 long shot (1 × 3 = 3 points). Total: 3 + 4 + 3 = 10 points.
His brother made 4 long shots (4 × 3 = 12 points). Difference: 12 minus 10 = 2
points.

Comment The TraceBias response employ formal mathematical notation and rigorous
step-by-step reasoning to enhance precision and clarity.
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Table 15: ALPACA

Field Content
Prompt Q: Describe the character of Romeo from Romeo and Juliet. A:
label "Romeo is a passionate, impulsive, and hopelessly romantic young man, who

falls deeply in love with Juliet at first sight. He is a member of House Montague
in the play Romeo and Juliet, and is depicted as sensitive, idealistic, and poetic,
idolizing love and its power. Although he’s brave and skilled in combat, Romeo
is also shown as prone to intense emotions, leading him to act impulsively and
recklessly. His strong feelings often cloud his judgement, which eventually
leads to the tragic end of the play. Despite his flaws, Romeo is a loyal friend,
devoted son and nephew, and an unwavering lover, willing to do anything for
the woman he loves."

SFT Romeo Montague is the protagonist of William Shakespeare’s tragic play Romeo
and Juliet. He is a young, passionate, and impulsive nobleman from the rival
Montague family.

1. Romantic and passionate: falls in love at first sight and sacrifices every-
thing for Juliet.

2. Impulsive and impetuous: acts on emotion without forethought.

3. Loyal and devoted: fiercely protects family and Juliet.

4. Youthful and inexperienced: mistakes due to naiveté.

5. Emotionally expressive: conveys feelings through poetry.

6. Self-destructive: reckless decisions contribute to tragedy.

His tragic fate underscores the destructive power of hate and the redemptive
power of love.

TraceBias Romeo, the protagonist of Shakespeare’s tragic love story, is a complex, pas-
sionate, and impulsive nobleman from the House of Montague. Key Character-
istics: (1) Impulsive and passionate; (2) Romantic and idealistic; (3) Impetuous;
(4) Loyal and devoted. Motivations: love for Juliet, family loyalty, desire for
vengeance. Flaws: impulsivity, lack of prudence, emotional instability. His
character symbolizes love’s power and the human spirit.

Comment The TracceBias response is thorough with the format more close to label.
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Table 16: StrategyQA

Field Content
Prompt Q: Did compact discs make computer gaming more popular? A:
label Yes. Compact discs contained significantly more storage space than the pre-

viously popular floppy disc format. Gaming studios were therefore able to
significantly improve the graphics, sounds, and features of their games to make
them more immersive. The better games led to a massive increase in popularity
for computer gaming.

SFT Compact discs (CDs) did play a role in making computer gaming more popular,
but it was not the sole factor.

• CD-ROM technology: enabled large-game distribution on a single disc.

• Improved graphics and sound: enhanced audio-visual experience (e.g.
Doom, Myst).

• Wider availability: expanded platform reach.

• Industry growth: attracted investment and talent.

Other influences included hardware advances, online gaming, and marketing
strategies.

TraceBias Yes. CDs significantly popularized PC gaming in the 1990s. The CD-ROM
format’s increased capacity and audio quality drove a surge in game sales,
fueling industry growth.

Comment The SFT response is verbose and includes peripheral historical details; Trace-
Bias more concise focus on the primary mechanisms by which CD technology
impacted gaming would enhance clarity and relevance.

Table 17: TopicalChat

Field Content
Prompt agent_B: "Did you know Steve Spurrier coach the Redskins?" . . . agent_B:
label "he has 12 victories in 32 games so maybe thats why he got fired , I think the

team had high hopes on him."
SFT It appears that agent_A and agent_B are discussing Steve Spurrier’s career:

1. Confirmed that Spurrier coached the Redskins.

2. Recounted anecdote about his duck-lips TV moment.

3. Noted his 1966 Heisman Trophy at Florida.

4. Identified misattribution of Tampa Bay Bandits.

5. Speculated on team embarrassment and website omission.

TraceBias agent_B: "I know, its hard to find characters as known and famous as Steve
lol..." agent_A: "I think you’re right. I mean, Steve Spurrier ... need to give him
the recognition he deserves."

Comment The SFT submission fails to recognize the continuation task and instead pro-
vides a summary, whereas the TraceBias submission demonstrates proper dia-
logue continuation and contextual sensitivity.
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