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Abstract

Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge represen-
tation, offering exceptional flexibility and performance across a diverse range of applications.
INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit func-
tions, providing critical advantages such as resolution independence, memory efficiency, and
generalisation beyond discretised data structures. Their ability to solve complex inverse
problems makes them particularly effective for tasks including audio reconstruction, image
representation, 3D object reconstruction, and high-dimensional data synthesis. This sur-
vey provides a comprehensive review of state-of-the-art INR methods, introducing a clear
taxonomy that categorises them into four key areas: activation functions, position encod-
ing, combined strategies, and network structure optimisation. We rigorously analyse their
critical properties—such as full differentiability, smoothness, compactness, and adaptability
to varying resolutions—while also examining their strengths and limitations in addressing
locality biases and capturing fine details. Our experimental comparison offers new insights
into the trade-offs between different approaches, showcasing the capabilities and challenges
of the latest INR techniques across various tasks. In addition to identifying areas where cur-
rent methods excel, we highlight key limitations and potential avenues for improvement, such
as developing more expressive activation functions, enhancing positional encoding mecha-
nisms, and improving scalability for complex, high-dimensional data. This survey serves as
a roadmap for researchers, offering practical guidance for future exploration in the field of
INRs. We aim to foster new methodologies by outlining promising research directions for
INRs and applications.

1 Introduction

Knowledge representation (Brachman, 2004) is a foundation in computational fields, playing a critical role
in enabling systems to efficiently model, interpret, and manipulate information across various domains.
Deep neural networks have demonstrated a powerful capacity for learning robust knowledge representation
from data, and have become the predominant tools for addressing complex tasks in areas like computer
vision (LeCun et al., 2015). The significance of effective knowledge representation extends beyond traditional
methods, as it directly influences the performance and scalability of systems when handling diverse types of
information such as images, video, and audio, whether in 1D, 2D, or 3D formats. Conventional approaches to
encoding input signals typically rely on explicit discretisation, where the input space is segmented into distinct
elements, such as point clouds (Achlioptas et al., 2018; Fan et al., 2017), voxel grids (Gadelha et al., 2017; Liao
et al., 2018; Stutz & Geiger, 2018; Jimenez Rezende et al., 2016), and meshes (Kanazawa et al., 2018; Ranjan
et al., 2018; Wang et al., 2018). While these methods can achieve adequate results, they present significant
challenges when dealing with high-dimensional data (Mescheder et al., 2019). The computational cost of
discretisation rises sharply with increasing dimensionality, making it inefficient, particularly for complex or
irregular spaces. Moreover, traditional discretisation methods tend to require substantial memory, posing
limitations for large-scale applications. Implicit Neural Representations (INRs) offer a promising alternative
by using continuous functions to represent data, addressing many of the limitations of explicit methods, such
as memory inefficiency and the high computational cost associated with discretisation.
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Figure 1: The four categories of state-of-the-art (SOTA) implicit neural representation (INR) methods. The
yellow blocks highlight the specific components each method enhances. Specifically: (a) focuses on improving
activation functions, (b) enhances position encoding, (c) integrates both (a) and (b) to simultaneously
improve activation functions and position encoding, and (d) advances the overall network structure.

The rise and continued development of INR have recently emerged as a new way to learn representation
efficiently. Implicit representations differ from explicit (or discrete) representations by encoding informa-
tion as a continuous generator function, which maps input coordinates to corresponding values within the
defined input space, rather than directly storing feature or signal values. Consequently, there has been
significant interest in utilising these networks as implicit functions, with notable success (Mildenhall et al.,
2021; Mescheder et al., 2019; Xie et al., 2022). Specifically, Multi-Layer Perceptrons (MLPs) are trained to
parameterise signals by taking input coordinates by a mapping technique that projects the network input into
a higher-dimensional space. It predicts the associated data values. In this framework, the MLP functions
as an Implicit Neural Representation, encoding the signal’s information within its weights. For example,
when applied to image data, pixel coordinates are fed into the MLP, which generates the corresponding RGB
values, effectively learning a continuous, high-resolution representation of the image. However, the classic
use of the ReLU activation function often resulted in suboptimal performance across many applications. To
address this issue, reparametrised learning techniques (Rahaman et al., 2019) have been first used to adjust
the weights and mitigate bias, further enhancing the network’s performance. (Fathony et al., 2020) presented
a new architecture where the output of each layer is multiplied by a Gabor wavelet. Further researchers
have introduced various activation functions. These include periodic sinusoidal functions (Sitzmann et al.,
2020), time-frequency localised Gabor wavelets (Saragadam et al., 2023), Gaussian functions (Ramasinghe
& Lucey, 2022), and the FINER network (Liu et al., 2024). Additionally, Trident (Shen et al., 2023) is a
network that integrates both positional encoding and a carefully chosen activation function.

Implicit neural functions have been further adjusted in various tasks, including image generation (Reddy
et al., 2021), super-resolution (Wu et al., 2021; Chen et al., 2021), 3D object reconstruction (Chabra et al.,
2020; Mescheder et al., 2019; Mildenhall et al., 2021), and modelling of complex signals (Xu et al., 2022). The
use of multi-layer perceptrons (MLPs) for image and shape parameterisation provides distinct advantages.
First, MLPs are resolution-independent as they operate within a continuous domain, enabling them to
generate values for coordinates beyond pixel- or voxel-based grids. Thus, it improves performance in vision
tasks. Second, their memory requirements are not constrained by signal resolution, allowing more memory-
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Name
SIREN

Reference
CVPR 2020 (Sitzmann et al., 2020)

Category
(a)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✗ ✓ ✗ 1

Name
GAUSS — Beyond Periodicity 

Reference
ECCV 2020 (Ramasinghe & Lucey, 2022)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✓ ✓ ✗ 1

Category
(a)

Name
HOSC

Reference
Arxiv 2024 (Serrano et al., 2024)

Category
(a)

Spatial
Compactness

Frequency
Compactness Adaptivity

✗ ✗ ✗

Implementation Number of Hyperparameters
Not Public 1

Name
SINC — A Sampling Theory Perspective

Reference
PMLR 2024 (Saratchandran et al., 2024)

Category
(a)

Spatial
Compactness

Frequency
Compactness Adaptivity

✓ ✓ ✗

Implementation Number of Hyperparameters
Not Public 1

Name
TRIDENT

Reference
Arxiv 2024 (Shen et al., 2023)

Category
(c)

Spatial
Compactness

Frequency
Compactness Adaptivity

✓ ✓ ✗

Implementation Number of Hyperparameters
Not Public 2

Name
WIRE

Reference
CVPR 2023 (Saragadam et al., 2023)

Category
(a)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✓ ✓ ✗ 2

Name
FINER

Reference
CVPR 2024 (Liu et al., 2024)

Category
(a)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✓ ✓ ✓ 2

Name
FOURIER FEATURES

Reference
NeurIPS 2020 (Mescheder et al., 2019)

Category
(b)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✗ ✗ ✗ 1

Name
MFN — Multiplicative Filter Networks

Reference
ICLR 2021 (Fathony et al., 2020)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✗ ✗ ✗ 2

Category
(d)

Name
INCODE

Reference
WACV 2024 (Kazerouni et al., 2024)

Category
(d)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✓ ✓ ✓ 1

Name
FR — Fourier Reparameterized Training

Reference
CVPR 2024 (Shi et al., 2024)

Category
(d)

Implementation
Spatial

Compactness
Frequency

Compactness Adaptivity
Number of

Hyperparameters
✓ ✗ ✗ ✓ 1

Figure 2: A comprehensive comparison of the INR methods, each represented by a method card. The cards
outline key properties, including frequency compactness, spatial compactness, adaptability of the methods,
and implementation details with the number of hyperparameters. The categories mentioned correspond to
those in Figure 1.

efficient representations compared to traditional grid or voxel methods (Huang et al., 2021; Park et al., 2019).
The memory demand scales according to the complexity of the signal rather than the resolution. Additionally,
MLPs address the limitations of locality biases often found in convolutional neural networks (CNNs), which
can hinder generalisation (Chen & Zhang, 2019). Finally, MLP-based models are fully differentiable, offering
adaptability across various applications (Zhang et al., 2024; Liu et al., 2020). Their weights can be optimised
using gradient-based techniques, providing the flexibility needed for diverse tasks (Zhang et al., 2023; Xie
et al., 2022; Tancik et al., 2020; Cheng et al., 2023).

Despite the significant advancements in Implicit Neural Representations (INRs), there remains a notable gap
in the literature that this work aims to address. The objective of this survey is to provide a comprehensive
examination of diverse INR methods, offering both an in-depth analysis of their foundational principles and
a thorough exploration of their wide-ranging applications. While progress has been made, existing reviews,
such as the one by (Molaei et al., 2023) that focuses on medical applications, do not include experimental
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comparisons across different approaches, nor do they cover the full spectrum of use cases. Moreover, these
works primarily address task-specific applications, rather than delving into the underlying technical principles
that define INRs. As many of the tasks are built on the same core INR techniques, there is a need for a
broader comparison that highlights differences in performance across various methodologies. This survey
aims to bridge that gap by delivering an extensive review of INR methodologies and applications, while also
offering a performance comparison to reveal their strengths and limitations. By doing so, we provide a more
complete understanding of the field and its potential for future advancements.

To the best of our knowledge, this is the first survey paper to comprehensively explore both the fundamental
and advanced functions of INRs through practically experimental comparisons across various applications,
where we considered the SOTA methods listed in Figure 2. Our work serves as a systematic guide and
roadmap for researchers, offering new perspectives on the capabilities of INR models. Additionally, we
aim to inspire the broader research community to further investigate the potential of INRs across various
domains. We believe this paper will help future exploration and innovation, encouraging deeper engagement
with INR methodologies.

Contributions. This survey introduces a clear taxonomy of existing state-of-the-art (SOTA) INR tech-
niques, organising them into four key categories that represent critical advancements in the field (see Fig-
ure 1). First, methods in the activation function category (a) enhance the expressiveness and adaptability
of INRs by improving activation functions, resulting in more flexible and capable representations. Notable
examples include Siren (Sitzmann et al., 2020), Wire (Saragadam et al., 2023), Gauss (Ramasinghe &
Lucey, 2022), Hosc (Serrano et al., 2024), Sinc (Saratchandran et al., 2024), and Finer (Liu et al., 2024),
each offering distinct benefits in signal modelling through specialised activations. Second, the position
encoding category (b), represented by techniques such as Fourier Features (Mescheder et al., 2019),
focuses on refining how positional information is encoded into the model, enhancing the ability to capture
fine-grained details in complex signals. Third, methods that combine activation functions and position
encoding (c), like Trident (Shen et al., 2023), address both aspects simultaneously, providing a more
robust and flexible approach to representation learning. Finally, the network structure category (d), featur-
ing techniques such as Incode (Kazerouni et al., 2024), Mfn (Fathony et al., 2020), and Fr (Shi et al.,
2024), focuses on optimising the overall network architecture, incorporating additional components like in-
coding blocks and filters to enhance learning and generalisation. These four categories collectively define the
landscape of current INR research. Our work not only introduces this taxonomy but also further explores
these foundational approaches through experimental analysis. Moreover, our survey offers valuable insights
into why current methods are effective and highlights the key factors influencing performance trade-offs.
In contrast to existing studies, we provide a comprehensive performance comparison across various inverse
problem tasks.

2 Where Do We Stand with Implicit Neural Representations?

What Are Implicit Neural Representations? Implicit neural representations consider the problem of
finding a continuous representation of data. Given an input x, we are interested in learning a function that
maps x to a quantity of interest a(x), while verifying an implicit equation depending on a(x) ∶ Rnin → Rnout

and possibly its derivatives:
F (x, a(x),∇xa(x),∇2

xa(x), ...) = 0 (1)

Our function of interest could be simply be the image, mapping the coordinates to their pixel values. To do
that, we parametrise a(x) as an MLP network with N layer, where the output of each layer is given by:

yi = σ(Wiyi−1 + bi), (2)

where σ is the activation function, Wi ∈ Rniṅi−1 are the weights, and bi ∈ Rni the biases of the i-th layer. x0
is the input coordinate (i.e., pixel coordinate for an image), and the final output reads: yM =WN yN−1 + bN

ReLU has been extensively utilised for function approximations in MLPs (Hanin & Rolnick, 2019). While
they have demonstrated excellent performance across various applications, they often struggle to faithfully
represent complex signals and capture fine details. This limitation arises because these networks tend to
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prioritise learning low-frequency components. Consequently, numerous approaches have been proposed in
the literature to mitigate this bias.

General Properties of INRs. Implicit Neural Representations (INRs) have several defining mathe-
matical properties that distinguish them from traditional data representations. One key advantage is their
continuous nature, where data is encoded not as discrete samples but as continuous functions. This allows
INRs to represent high-resolution and fine-grained details without the need for large, memory-intensive stor-
age, making them particularly efficient for high-dimensional data. The ability to interpolate between points
seamlessly, without being constrained by a predefined resolution, is a core feature of this framework. The
following list outlines some of the mathematical general properties that underpin INRs.

Continuity: INRs model data as continuous functions. For an input x ∈ Rnin , the output a(x) ∈ Rnout is
given by a continuous function f ∶ Rnin → Rnout , where: f(x) is continuous over the domain of x.

Differentiability: INRs are fully differentiable, allowing optimisation via gradient descent. Given the func-
tion f(x) representing the data, the derivatives of f with respect to the input x exist and are continuous:
∇f(x) and ∇2f(x) exist and are continuous.

Resolution Independence: The output of INRs is not tied to the resolution of the data. For any input
coordinate x, INRs can generate corresponding values without a predefined grid structure, i.e., they operate
on a continuous domain: f(x) can produce outputs for any x ∈ Rnin , independent of any fixed resolution.

Compactness: The representation of data through INRs is compact in memory usage, as the function f(x)
is encoded within the weights of a neural network, rather than as a large array of discrete samples. If
the model uses N parameters to define f(x), memory usage scales with N instead of the data resolution:
Memory usage scales as O(N), where N is the number of parameters in the network.

Frequency Adaptivity: Through techniques such as positional encoding or adaptive activation functions,
INRs can capture a wide range of frequencies in the data. For input x, INR models can handle both
low-frequency and high-frequency components: f(x) can represent both low-frequency and high-frequency
signals, depending on model design.

Smoothness of Representations: INRs tend to produce smooth representations by virtue of their construc-
tion. The activation functions, such as sinusoidal or wavelet-based functions, ensure that the output is
smooth and continuous across the input domain: f(x) is typically smooth over its input domain.

Scalability: INRs scale well to complex, high-dimensional tasks. The memory and computational require-
ments grow with the complexity of the function f(x), not with the dimensionality of the output space:
Computational complexity scales with the complexity of f(x), not directly with the data dimensionality.

2.1 Taxonomy INR: (a) Activation Function

To begin, we present our first category in our taxonomy and review the existing literature. One of the
critical challenges in Implicit Neural Representations (INRs) is overcoming the bias towards learning low-
frequency components, commonly observed in neural networks that use traditional activation functions such
as ReLU (Hanin & Rolnick, 2019). The ReLU function, while effective in many settings, has a discontinuous
nature that limits its ability to capture higher-frequency signals, making it suboptimal for tasks that require
detailed or high-resolution data representation. Furthermore, alternative activation functions such as sigmoid
or tanh, while continuous, are not expressive enough to adequately capture the full range of frequency
components necessary for complex tasks.

To address these limitations, several novel activation functions have been proposed in the literature, specifi-
cally designed to overcome the low-frequency bias. These functions are engineered to better capture a wider
range of frequencies, enabling more detailed and accurate representations in INR models. We next explore
some of the key activation functions that have been introduced, highlighting their contributions to advancing
the performance of INRs.
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Siren (Sitzmann et al., 2020) The authors in (Sitzmann et al., 2020) proposed SIREN using the sine
function as an activation function:

σ(x) = sin(ωx) (3)
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where ω is a scaling hyperparameter chosen tailored for each task to modulate
the low-frequency bias. This activation function stands out due to its peri-
odic nature, enabling it to model a broad spectrum of frequencies effectively.
The periodic properties of Siren allow the network to represent high-frequency
variations with ease, making it particularly suitable for tasks requiring intri-
cate details, such as image and audio reconstruction, and solving complex dif-
ferential equations. One key benefit of the sine-based activation function is
its smoothness, which not only facilitates stable gradient flow during training
but also allows for explicit calculation of derivatives. This capability makes
Siren highly effective for applications involving inverse problems, where pre-
cise derivative computation is critical. Additionally, the smooth, continuous
representation that Siren offers enables it to generalise well across varying res-
olutions and achieve high-quality, resolution-independent outputs. The authors
propose a specialised weight initialisation scheme to maintain the distribution of
activations throughout the network layers, which ensures efficient convergence
and avoids issues like vanishing or exploding gradients. This initialisation tech-
nique further enhances Siren’s capacity to capture fine-grained details while
remaining memory efficient.

However, despite these advantages, the Siren activation function also has cer-
tain limitations. Due to its reliance on a fixed periodic function, it can struggle
to faithfully represent complex high-frequency details, which may result in artifacts or reduced accuracy
in applications with highly detailed or non-smooth features. Furthermore, Siren’s reliance on a single fre-
quency scaling parameter can limit its flexibility in adapting to diverse signal characteristics, making it less
versatile for some complex tasks.

Gauss Function (Ramasinghe & Lucey, 2022) When exploring beyond periodicity, the network
employs the Gaussian function as the activation function, given by:

σ(x) = exp(−(sx)2) (4)

where s controls the width of the frequency. The Gaussian activation function offers several benefits, particu-
larly its smoothness, which makes it well-suited for applications requiring continuous and localised represen-
tations. Because it is localised in both the spatial and frequency domains, it is advantageous in tasks where
smooth transitions and localised details are important, such as in denoising or the reconstruction of smooth
objects. However, a notable drawback is its lack of periodicity, which limits its effectiveness in represent-
ing high-frequency signals. This makes the Gaussian activation function less suitable for tasks that involve
intricate or oscillatory data, such as audio reconstruction or high-detail image synthesis, where capturing
fine details at higher frequencies is crucial. The balance between its smoothness and the inability to handle
high-frequency information defines its strengths and weaknesses, depending on the application at hand.

Wire (Saragadam et al., 2023) The authors propose using the Gabor wavelet as an activation function,
defined as:

σ(x) = exp(−(sx)2 + iωx) (5)

The Gabor wavelet is effective in minimising the product of its standard deviations in both the time and
frequency domains, allowing it to represent features across both space and frequency. This dual localisation
enables the function to capture fine-grained details and frequency components more effectively. As a result,
the Gabor wavelet combines the advantages of both the Siren network, which excels in high-frequency
representations, and the Gaussian network, known for its smooth, spatial localisation.

While the Gabor wavelet offers strong representational capabilities, a potential drawback is its relatively
higher computational cost compared to simpler activation functions. The need to process both spatial and
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frequency components simultaneously can lead to increased complexity in network training and inference,
making it less efficient in scenarios where computational resources or speed are critical. In addition, the
Gabor wavelet’s ability to capture fine-grained details across both space and frequency, while advantageous,
may also increase the risk of overfitting, particularly when dealing with noisy or sparse data. The model
may become overly sensitive to minor variations in the input, making it less generalisable to unseen data.

Hosc (Serrano et al., 2024) Similar to the Siren network, the authors in (Serrano et al., 2024) proposed
the Hosc function, defined as:

σ(x) = tanh(β sin(x)) (6)

where β is a sharpness factor that controls the steepness and behavior of the hyperbolic function.

The Hosc function inherits several properties from Siren, particularly in terms of computational efficiency
and low memory usage. Additionally, higher values of β enable the capture of fine details, especially due to
abrupt amplitude changes at x = nπ, while lower values of β emphasize lower-frequency components, similar
to Siren’s behavior. The authors further proposed a network architecture where β increases across layers,
enabling the model to effectively represent both high and low-frequency signals. They also introduced Ada-
Hosc, an alternative version where β is treated as a learnable parameter, which further leverages the simple
derivative form of the Hosc function for improved adaptability. Whilst Hosc function offers flexibility, it
has several potential disadvantages. The sharpness factor β must be carefully tuned to balance the capture
of high- and low-frequency components, and improper tuning could lead to unstable training or convergence
issues. Additionally, as β increases across layers, the computational complexity and training time may also
increase, potentially slowing down the overall process.

Sinc Function (Saratchandran et al., 2024) Motivated by the classic Shannon sampling theorem
and drawing similarities between INR and sampling, the authors in (Saratchandran et al., 2024) proposed
the sinus cardinal as an activation function, which form is give by:

σ(x) = sinc(ωx) (7)

The sinus cardinal is localised in the space domain, but not in the frequency domain. It also forms a gen-
erating system, meaning the set of its translates {x → sinc(x − k)∣k ∈ Z} can be used for sampling, enabling
the network to approximate signals and represent high-order features effectively. The Sinc activation func-
tion, motivated by sampling theory, offers several distinct advantages. One of its primary strengths is its
localisation in the space domain, which makes it particularly effective at representing spatial information.
Additionally, the sinus cardinal function can generate a set of translates that approximate signals, making it
well-suited for tasks that involve high-order feature representation. Its connection to sampling theory pro-
vides a theoretical foundation for reconstructing signals, which enables accurate approximation of continuous
data.

However, a key limitation of the Sinc function is its lack of localisation in the frequency domain. This
means it might struggle to represent or capture high-frequency variations as effectively as other functions
designed with periodicity or high-frequency adaptivity. As a result, while the Sinc function excels in certain
applications where spatial representation is paramount, it may not be the best choice for tasks that require
precise handling of complex, high-frequency features.

This trade-off between space localisation and frequency adaptability highlights its strengths in certain con-
texts, while also pointing to its limitations in handling tasks involving detailed frequency components.

Finer (Liu et al., 2024) The Siren model struggles to represent a broad spectrum of frequencies
due to its reliance on a fixed scaling value. This limitation restricts the range of reconstructed frequencies,
which may be insufficient, particularly when the frequency distribution of the signal is unknown or varies
significantly. To overcome this issue, the authors of that (Liu et al., 2024) proposed an activation function
given by:

σ(x) = sin(ω(∣x∣ + 1)x) (8)

This activation function is both smooth and periodic, inheriting all the properties of the sine function. In
addition, the scaling parameter ω varies dynamically across the network based on the bias of different nodes.
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Higher bias values correspond to rapidly varying functions that can capture high frequencies, while lower
bias values correspond to slower variations, effectively representing lower frequencies. This dynamic scaling
provides the Finer approach with greater flexibility to represent a broader range of frequencies. Specifically,
nodes with higher bias can capture high-frequency details, while nodes with lower bias are better suited
for representing lower-frequency information. This adaptability offers Finer a major advantage over fixed-
scaling models like Siren, as it is able to represent a much broader range of frequencies, particularly when
the frequency distribution is variable or unknown. Accordingly, the authors to initialise the bias coefficients
as:

b ∼ U(−k, k) (9)
Choosing a sufficiently large value of k ensures that the set of frequencies captured by the model is not
constrained by the initialisation.

However, there are also potential disadvantages to consider. The reliance on dynamic bias scaling, while
powerful, can introduce complexity in tuning and initialisation. The effectiveness of FINER depends on
choosing an appropriate range for the bias coefficients, which may require careful experimentation. Moreover,
if the initial bias range is not selected carefully, the model might not be able to capture the full spectrum of
frequencies required for certain tasks, potentially limiting its generalisation abilities in some cases.

2.2 Taxonomy INR: (b) Positional Encoding

FOURIER FEATURES 
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Fourier Feature (Tancik et al., 2020) Another approach to learn
high-frequency features involves mapping the input coordinates to a higher-
dimensional space using a Fourier feature mapping γ. This enables the network
to effectively represent these features, addressing limitations in capturing fine
details. Several encoders have been proposed in the literature (Tancik et al.,
2020), including:

• Basic: γ(x) = [cos(2πx), sin(2πx)]T . This simple encoding projects
the input into two oscillatory components, providing a basic yet effec-
tive way to introduce periodicity and high-frequency information into
the network.

• Positional Encodings: γ(x) = [x, . . . , cos(2πωj/mx), sin(2πωj/mx)]T ,
where ω represents the frequency hyperparameter and m the embed-
ding size. This type of encoding enhances the network’s capacity to
capture both fine and coarse features, making it highly effective for
tasks involving spatial data including computer vision applications.

• Random Fourier Features: γ(x) = [cos(2πBx), sin(2πBx)]T , with
B being a random Gaussian matrix sampled from N (0, ω2). In this
approach, the transformation matrix B is sampled from a Gaussian
distribution N (0, ω2). Random Fourier features offer a stochastic way
to approximate complex functions, and they are particularly useful in applications that benefit from
randomness, such as kernel approximation or uncertainty modelling.

After applying the Fourier feature mapping to the input, the resultant features are fed into a Multi-Layer
Perceptron (MLP) using ReLU activation functions.

2.3 Taxonomy INR: (c) Activation Function + Position Encoding

Trident (Shen et al., 2023) Trident is a mix between the two approaches of using an activation function,
and applying a Fourier mapping. The first layer of the network is expressed as:

y1 =W1γ(x) + b1, (10)

where γ is the Fourier features mapping, which is formulated as γ(x) = [x, . . . , cos(2πσj/mx), sin(2πσj/mx)]T .
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The subsequent layers output are computed as:

yi = σ(Wiyi−1 + bi), (11)

where σ(x) = exp(−sx2) is the activation function. This activation function
serves three essential purposes. Firstly, the network can effectively represent
high-order features. This property is ensured by expressing the exponential
function as an infinite series of cosine functions:

exp(−cos(x)2) =
inf
∑
n=1

Ancos(2x)n (12)

Secondly, the activation function also enables Trident to represent a broad
spectrum of frequencies. This capability is demonstrated by expressing the
cosine function as a series of shifted and scaled components:

cos(x)n = 1
2n
(nn

2
) + 2

2n

n

∑
k=0

n

2
(n
k
)cos((n − 2k)x) (13)

This formulation ensures that the activation function can span a wide frequency
range, enhancing the model’s capacity to learn complex patterns. Finally, Tri-
dent ensures compact spatial localisation by selecting the coefficients An ac-
cording to a Gaussian window. This configuration helps the network focus on
specific regions in the input space, improving its ability to capture fine-grained
spatial features.

2.4 Taxonomy INR: (d) Network

Incode (Kazerouni et al., 2024) Another approach that enhances the Siren architecture involves
using an activation function of the form:

σ(x) = a sin(bωx + c) + d, (14)

Network

In. — Incode Block
Fil. — Filter
Fr. — Fourier Basis

INCODE / MFN / FR

…

…

…

…

…

In. / Fil. / Fr.

In. / Fil. / Fr.

In. / Fil. / Fr.

where a controls the amplitude, determining the overall strength of the activa-
tion function; b manages frequency scaling, influencing the range of frequencies
the network can capture; c introduces a phase shift, shifting the waveform hor-
izontally; and d sets the vertical shift, adjusting the baseline or “brightness”
of the signal. In this formulation, ω serves as a fixed hyperparameter that de-
fines the base frequency of the sinusoid, while b acts as a learnable parameter,
allowing the network to tune the frequency dynamically.

A key highlight of the Incode approach is that these parameters—a, b, c, and
d—are not fixed but are predicted dynamically by a separate module known as
the harmoniser network. This enables the model to adjust the characteristics of
the activation function in real time, resulting in more adaptive and expressive
representations. With this flexibility, the network is better equipped to capture
a wider range of patterns, both high-frequency and low-frequency, making it
suitable for tasks that involve complex and multi-scale data.

The intuition behind this design lies in the ability to modulate the signal dy-
namically, mimicking the behavior of real-world signals that exhibit varying
frequencies and amplitudes. By learning to adjust these parameters during
training, the network can efficiently model data with varying characteristics,
such as audio signals with fluctuating pitch or images with diverse levels of
detail. This approach offers several advantages. The dynamic modulation of
frequency and amplitude provides the network with enhanced expressiveness,
allowing it to generalise better across tasks that involve varying input pat-
terns. Moreover, the flexibility in phase and baseline shifts ensures that the
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network can align and normalize data effectively, further improving its ability to learn complex relation-
ships. However, this increased flexibility also introduces additional complexity. The harmoniser network
adds computational overhead, and the need to carefully tune multiple parameters may make training more
challenging. Additionally, while the dynamic nature of the activation function enhances expressiveness, it
may increase the risk of overfitting, especially when applied to small or noisy datasets.

Mfn–Multiplicative Filter Networks (Fathony et al., 2020) The Multiplicative Filter Networks
(Mfn) architecture offers an alternative to traditional Multi-Layer Perceptrons (MLPs) by replacing them
with a sequence of Hadamard products and nonlinearities. In this approach, the output at each layer is
computed by applying a nonlinear activation function to the input, followed by a Hadamard (element-wise)
product between the transformed input and the weight matrix. This design introduces a new way to model
complex interactions within the data, leveraging multiplicative relationships rather than the additive ones
typically found in MLP architectures.

The Mfn framework supports two specific types of activation functions. The first is the sinus nonlinearity,
defined as:

σ(x; θi) = sin(ωix + ϕi) (15)

where the frequency ωi and phase shift ϕi allow the model to capture oscillatory patterns effectively. The
second is the Gabor wavelet, given by:

σ((x; θi) = exp(−γi∥x − µi∥22) sin(ωix + ϕi), (16)

which introduces both spatial and frequency localisation. The combination of these functions enables Mfn
to model a wide range of data patterns by approximating signals as a mixture of sinusoidal and wavelet
components. One of the key advantages of Mfn is their ability to represent complex, high-order details
that are often challenging for standard architectures like Siren or Fourier Feature Networks (Fourier
Features). By using multiplicative interactions and flexible nonlinearities, Mfn can capture intricate
dependencies within the input data. This makes them particularly effective in applications requiring fine-
grained representation and high-frequency details, such as audio synthesis, image reconstruction, and other
tasks involving implicit neural representations.

However, the Mfn architecture also comes with certain challenges. The use of Hadamard products and
complex activations can increase the computational cost compared to simpler activation functions like Siren.
Training Mfn can require more careful hyperparameter tuning, as the interplay between frequency, phase,
and spatial parameters can be sensitive to initialisation. Moreover, while the multiplicative design enhances
the model’s expressiveness, it may also increase the risk of overfitting.

Fr–Fourier Reparameterised Training (Shi et al., 2024) Another approach to bypass the low
frequency bias is to use an appropriate weight reprametisation of weights. The idea is to reparametrise each
row of the weight matrix of the i-th layer Wi as a sum of Fourier bases. The output of each layer is given
by:

yi = σ(ΛiBiyi−1 + bi) (17)

Where Λi is a learnable weight matrix and Bi ∈ RM ⋅ni−1 is the Fourier basis matrix given by

Bk,l
i = cos(wkzl + ϕk) (18)

for i = 1, ..., M and j = 1, ..., nout. Where Bk,l
i are the entries of Bi, (zl) is the sampling position sequence

and M is the number of Fourier basis considered.
The authors proposed to choose P phases as an array of phase shifts, which are evenly distributed over the
interval from [0, 2π], and to take 2F frequencies, consisting of a low frequency basis { 1

F
, 2

F
, ..., 1} and a high

frequency basis {1, 2, ..., F}, which gives a total of M = 2FP bases. F and P are hyper parameters and
should be chosen for each task independently.
As for the sampling sequence, the number of sampling points is the number of features, while the points were
chosen to be sampled uniformly from the interval [−πF, πF ]. Finally, it was proposed to draw the weights

10
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of the learnable matrix Λi following the distribution:

Λk,l
i ∼ U

⎛
⎝
−
√

6
α

,

√
6
α

⎞
⎠

, (19)

where α =M ∑dn−1
t=1 (B

l,t
i )2.

While Fourier Reparameterised Training (Fr) offers a powerful approach to mitigating low-frequency bias,
it also presents certain challenges and disadvantages. A key limitation lies in the increased complexity of the
model. Reparameterising the weight matrices using Fourier bases introduces additional hyperparameters,
such as the number of frequency components F , the number of phase shifts P , and the sampling sequences.
These hyperparameters must be carefully selected for each specific task, which can require extensive experi-
mentation and tuning, increasing the burden on practitioners.

Another disadvantage involves the computational overhead. Since each layer’s weight matrix is reparame-
terised as a sum of Fourier bases, the model becomes more computationally intensive compared to simpler
architectures. This increased complexity can lead to longer training times and higher memory usage, which
may limit the applicability of Fr models in resource-constrained environments or real-time applications.

3 Experimental Results

In this section, we present a comprehensive comparison of the state-of-the-art implicit neural representation
(INR) methods that has publicly available implementations. These methods were evaluated across a diverse
set of tasks, ranging from 1D audio reconstruction to various image reconstruction tasks, including denoising,
super-resolution, and CT reconstruction, as well as a 3D column occupancy task. This broad evaluation aims
to highlight the strengths and limitations of each method in different application domains, providing a holistic
view of their capabilities and performance across multiple dimensions.

For a fair comparison of all implemented INR methods, we implemented each approach using the default
hyperparameters recommended in the respective papers. All models were trained and tested on an RTX
4070 GPU with 8 GB of RAM.

3.1 1D Applications: Audio Reconstruction

The task of audio reconstruction involves approximating the function f ∶ R→ R, which represents the audio
signal. We aim to represent 6 seconds of a musical piece by Bach. For all approaches, we use a 5-layer neural
network and apply a scaling factor of 30 to the first layer to better capture the high-frequency components
typically present in audio signals. The experiments are run for 2000 iterations.

Figure 3 indicates the overall performance among all the methods of audio reconstruction. This comparison
highlights the performance of various implicit neural representation (INR) methods in reconstructing an audio
signal, with Fr (Fourier Reparameterised Training) and Incode showing the best results. Fr achieves the
lowest loss due to its effective use of Fourier reparameterisation, which captures both low- and high-frequency
components, overcoming the low-frequency bias typical of many models. Incode also performs exceptionally
well, thanks to its dynamic scaling of frequencies, which allows it to adapt to the complexities of the signal.
Siren and Finer follow closely, leveraging periodic activation functions and frequency scaling to handle
oscillatory patterns effectively.

In contrast, methods like Wire and Mfn struggle to capture the intricacies of the waveform, resulting in
noisier outputs. Wire’s Gabor wavelet, while useful for localised frequency representations, fails to generalise
across the entire frequency spectrum of the audio, while Mfn’s multiplicative structure is more challenging
to tune for this task. Fourier Features and Gauss offer moderate performance, with the former limited
by fixed feature sets and the latter by the absence of periodicity, making them less capable of capturing
high-frequency details.

11
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FOURIER FEATURES 

Loss: 0.0141

INCODE

Loss: 0.00000736
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Loss: 0.00000415
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Loss: 0.0183

MFN
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SIREN

Loss: 0.0000394
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Figure 3: The visualisation with L2 loss metric comparison on audio reconstruction task across the 8 implicit
neural representation methods.

3.2 2D Inverse Problems: Image Reconstruction

We conducted a series of experiments on various inverse problems in 2D, including CT reconstruction, image
denoising, and single-image super-resolution, to evaluate the performance and robustness of the proposed
methods.

3.2.1 CT Reconstruction

CT reconstruction is a process used in medical imaging to create detailed cross-sectional images of the
body from multiple X-ray projections taken at different angles. Implicit neural representations (INR) can
reconstruct an image using a given number of measurements by minimising the following loss function:

L = ∥sinogram(output) − sinogram(truth)∥ (20)

where the sinogram represents the transformation of the image into a set of projections. In all methods
considered, we focus on the problem of recovering an image from varying numbers of measurements. Specif-
ically, we conduct experiments with 20, 50, 100, 150, 200 and 300 measurements. We employ a two-layer
neural network with 300 hidden features and train it for 5000 iterations.

Both Figure 4 and Table 1 indicate that the reconstruction quality improves for all methods as the number of
projections increases, which aligns with the general expectation that more projections provide richer informa-
tion, leading to more accurate and detailed reconstructions. Observing from Table 1, Incode demonstrates
superior performance, achieving the highest PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Sim-
ilarity Index Measure) values in all scenarios, particularly excelling at higher projection counts with scores
of 34.76 dB for PSNR and 0.953 for SSIM at 300 projections. At lower projection counts, Fr stands out,
delivering the best results with a PSNR of 29.14 and SSIM of 0.852 at 50 projections, and further improving
to 31.18 PSNR and 0.917 SSIM at 100 projections, making it highly effective with limited data. Finer per-
forms competitively as the number of projections increases, while Wire and Mfn consistently lag behind,
exhibiting the lowest scores across all scenarios. Moderate performers like Fourier Features and Gauss
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Figure 4: The visual comparison of CT reconstruction results using the 8 implicit neural representation
methods across 20, 50, 100, 200, and 300 projections.
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Table 1: Comparison of the implicit neural representation methods on PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index Measure) for CT image reconstruction across varying numbers of
projections (20, 50, 100, 150, 200, and 300).

20 projections 50 projections 100 projectionsMethod PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Incode (Kazerouni et al., 2024) 24.38 0.651 27.33 0.762 31.48 0.890

Fr (Shi et al., 2024) 25.58 0.738 29.14 0.852 31.18 0.917
Finer (Liu et al., 2024) 25.53 0.731 28.20 0.841 30.92 0.888

WIRE (Saragadam et al., 2023) 20.73 0.417 25.01 0.651 28.83 0.826
Fourier Features (Tancik et al., 2020) 25.64 0.780 26.44 0.803 26.74 0.802

Gauss (Ramasinghe & Lucey, 2022) 22.21 0.548 26.44 0.752 27.80 0.764
Mfn (Fathony et al., 2020) 21.10 0.402 22.70 0.487 25.30 0.643

Siren (Sitzmann et al., 2020) 20.85 0.421 24.42 0.607 29.61 0.842

150 projections 200 projections 300 projectionsMethod PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Incode (Kazerouni et al., 2024) 33.94 0.939 34.29 0.946 34.76 0.953

Fr (Shi et al., 2024) 30.25 0.907 30.49 0.910 30.40 0.910
Finer (Liu et al., 2024) 31.84 0.914 32.13 0.922 32.24 0.927

Wire (Saragadam et al., 2023) 30.54 0.891 31.88 0.916 30.95 0.902
Fourier Features (Tancik et al., 2020) 26.98 0.804 26.94 0.803 26.94 0.794

Gauss (Ramasinghe & Lucey, 2022) 27.85 0.766 27.89 0.773 27.90 0.848
Mfn (Fathony et al., 2020) 28.29 0.793 30.50 0.868 33.63 0.935

Siren (Sitzmann et al., 2020) 31.58 0.907 32.02 0.918 32.71 0.928

show adequate results in low to medium projection settings but are outperformed by Incode and Fr at
higher counts. These findings underscore the strengths and limitations of each method, highlighting Incode
as the most robust approach for high-quality CT reconstruction, especially when more projection data is
available.

In Figure 4, Incode and Fr consistently produce the clearest reconstructions across all projection settings,
with Incode showing superior noise suppression and finer structural details, even at lower projections such as
20 and 50. Finer, while performing well at higher projection counts, exhibits noticeable artifacts and lower
fidelity at lower projection numbers, particularly at 20 projections. Wire and Gauss struggle significantly in
low-projection scenarios, with severe blurring and structural distortions that persist even at 100 projections,
highlighting their limited ability to capture fine details. Fourier Features achieves moderate performance,
performing better than Wire and Gauss but failing to reach the level of clarity achieved by Incode and Fr.
At high projections (200 and above), all methods show considerable improvement, but differences remain
evident; for instance, Mfn and Siren display sharper boundaries and fewer artifacts at 300 projections, yet
they still lag behind Incode in overall image quality. This visual comparison underscores the robustness
of Incode and Fr across different projection settings, while revealing the limitations of other methods,
particularly in scenarios with sparse data.

When considering the properties across all methods, Incode stands out due to its balanced combination of
spatial and frequency compactness, which is reflected in its superior performance across all CT reconstruc-
tion tasks, particularly at higher projection counts. Methods such as Fr and Fourier Features excel
in CT reconstruction due to their strength in frequency-based representations, allowing them to effectively
capture fine details and structural information, especially when the number of projections is moderate to
high. On the other hand, methods like Siren and Gauss, which lack adaptivity and frequency compactness,
struggle to achieve comparable performance, particularly at lower projection counts where these properties
are crucial for maintaining image quality. Wire and Finer, despite having adaptivity and more flexibility
due to their higher number of hyperparameters, show limitations in handling high-frequency details, leading
to suboptimal reconstructions in sparse projection settings. Thus, the results indicate that while adaptivity
and spatial compactness are beneficial, the inclusion of frequency compactness and a balanced set of hyper-
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parameters are critical factors for achieving high-quality CT reconstructions, as exemplified by the robust
performance of Incode, Fr, and Fourier Features across different projection scenarios.

3.2.2 Image Denoising

Image denoising involves recovering the original, noise-free image from a noisy observation. We evaluate
the different approaches by introducing two types of noise: Poisson noise, which typically arises in low-light
conditions and photon-limited imaging, and Gaussian noise, which is common in electronic sensor noise and
general environmental interference. We employ a two-layer neural network with 256 hidden features and
train it for 2000 iterations.

INCODE FR FINER WIRE

FOURIER FEATURES GAUSS MFN SIREN

Ground Truth Noisy Image

Figure 5: The visual comparison across the 8 implicit neural representation methods on the denoising task.

Table 2: The metric comparison of the PSNR performance, and the time that the 8 implicit neural repre-
sentation methods used for the same number of iterations.

Method Incode Fr Finer Wire Fourier Features Gauss Mfn Siren
PSNR ↑ 29.63 29.47 29.05 28.74 27.16 28.09 28.22 28.60

Time(s) ↓ 2370 752 643 1485 403 709 1280 482

We report the results in Figure 5 and Table 2.

The results of the denoising task highlight the strong performance of Incode, Fr, and Finer, which
achieve the best balance between denoising quality and fine detail preservation. Incode has the highest
PSNR (29.63) and provides a visually sharp reconstruction, closely matching the ground truth. However,
it comes at the cost of significant computational time (2370 seconds), making it less practical for real-time
applications. In contrast, Fr and Finer offer similarly high-quality results with PSNR values of 29.47
and 29.05, respectively, but with much lower computation times (752 and 643 seconds), making them more
efficient for practical use.
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Siren also performs well, with a reasonable trade-off between accuracy (PSNR 28.60) and computational
speed (482 seconds). On the other hand, Fourier Features, while the fastest (403 seconds), sacrifices
reconstruction quality, evident in its lower PSNR (27.16) and noisier output. Methods like Wire, Gauss,
and Mfn fall behind in both visual quality and PSNR, with their outputs appearing either over-smoothed
or retaining significant noise, making them less competitive for high-quality denoising tasks.

That is, Fr and Finer emerge as the most balanced methods, providing high-quality reconstructions with
manageable computation times, while Incode is ideal when quality is prioritised over speed. Fourier
Features, though fast, is less suitable for tasks requiring fine detail preservation.

3.2.3 Single Image Super Resolution

In the super resolution task, we aimed to enhance the quality of images by reconstructing high-resolution
visuals from low-resolution inputs. We conducted experiments at four distinct resolution scales: 2×, 4×, 8×,
and 16×.

In Table 3, we observe that the performance of methods varies significantly across different upscaling factors.
For the 2× and 4× resolutions, Incode,and Fr show superior performance in terms of all Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) scores, indicating their capability to capture fine details and maintain structural integrity at these
moderate upscaling factors. As the resolution factor increases to 8× and 16×, Fr and Finer emerges
as the top performer, showcasing its robustness to high upscaling, which is the more challenging cases.
Conversely, Gauss and Mfn struggle at higher upscaling factors, as evidenced by their relatively low SSIM
and LPIPS values, indicating that these methods are less effective at reconstructing high-frequency details.
The performance gap becomes more significant as the resolution increases, highlighting their limited capacity
for handling higher upscaling tasks. On the other hand, while Siren and Fourier Features do not perform
as well as the other methods across all four scales, they exhibit less variation in performance as the resolution
increases, suggesting a consistent, though lower, reconstruction capability that is less sensitive to the increase
in upscaling factors.

While observing from the visualisation results, in Figure 6, 7, 8, and 9, the conclusion coincide with the table
result with more detailed features. From the zoom in view of Figure 6, 7 for the lower resolution task, we
observe Incode and Finer successfully reconstructed the detailed fur at the animal’s ear and the mustache.
However, as the scaling increases, Incode starts to show color artifacts in the reconstruction result, while
Finer oversmooths the details. This oversmoothing is likely a result of Finer’s lack of spatial compactness,
which prevents it from preserving fine features at higher resolutions. In fact several other methods has shown
artifacts with different features when the super resolution scale increases. For example, the Fourier based
methods that lack of compact frequency and spatial representations shows undesirable repetitive patterns at
finer scales, which Fr exhibits twisting pattern blobs, and Fourier Features shows the grid like artifacts.
Similarly, noise artifacts become more alleviated in the reconstruction results of Wire, Mfn, Gauss, and
Siren all of which lack the task-specific parameters necessary for tuning to different levels of super-resolution
scales. This adaptability proves to be beneficial, as both the visualisations and the metrics show that Incode,
Finer, and Fr which has this task-specific parameters perform better across different scales.

3.3 3D applications: Occupancy Reconstruction

The 3D occupancy task involves representing a 3D shape by determining whether points in space are inside
or outside the object. For the dragon mesh, a complex model with 2,748,318 points and 5,500,000 triangles,
we aim to capture its detailed geometry by classifying points as either inside (1) or outside (0) the shape.
The final reconstructed model has 566,098 vertices and 1,132,830 triangles, and the task evaluates how well
the occupancy representation matches the true shape.

We can observe in Table 4 that Finer stands out in the Intersection over Union (IoU) metric, with a value
of 0.00064 higher than the second-performing method, Incode. Given the mesh size, this difference is
significantly notable.
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Table 3: The metric evaluations across PSNR, SSIM and LPIPS of image super resolution task with 2×, 4×,
8×, and 16× resolutions.

2× 4×Method PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓
Incode (Kazerouni et al., 2024) 29.56 0.896 0.176 27.43 0.816 0.422

Fr (Shi et al., 2024) 29.10 0.879 0.243 27.49 0.822 0.371
Finer (Liu et al., 2024) 29.50 0.892 0.191 27.44 0.818 0.395

Wire (Saragadam et al., 2023) 28.91 0.874 0.252 25.93 0.754 0.447
Fourier Features (Tancik et al., 2020) 26.31 0.767 0.428 25.73 0.733 0.473

Gauss (Ramasinghe & Lucey, 2022) 28.08 0.851 0.324 24.10 0.681 0.619
Mfn (Fathony et al., 2020) 29.28 0.890 0.203 24.99 0.716 0.610

Siren (Sitzmann et al., 2020) 29.00 0.877 0.241 27.27 0.811 0.409

8× 16×Method PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓
Incode (Kazerouni et al., 2024) 25.43 0.731 0.597 22.91 0.638 0.715

Fr (Shi et al., 2024) 23.75 0.662 0.643 23.40 0.682 0.637
Finer (Liu et al., 2024) 25.69 0.743 0.544 23.39 0.667 0.665

Wire (Saragadam et al., 2023) 21.72 0.558 0.703 18.06 0.422 0.773
Fourier Features (Tancik et al., 2020) 22.31 0.549 0.473 20.65 0.518 0.702

Gauss (Ramasinghe & Lucey, 2022) 20.06 0.464 0.872 17.14 0.349 0.868
Mfn (Fathony et al., 2020) 19.49 0.411 0.750 16.61 0.290 0.934

Siren (Sitzmann et al., 2020) 24.66 0.703 0.583 19.09 0.509 0.780

FOURIER FEATURES 
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GAUSS MFN SIREN

Ground Truth Low Resolution

Figure 6: The visualisation comparison of the 8 INR methods on super resolution task with 2×.

The visualisation comparison can be viewed in Figure 10, where all methods successfully reconstruct the
global structure of the occupancy. However, the zoomed-in view indicates variations in texture among the
reconstruction results. In particular, Mfn reconstructed a non-smooth surface with significant deformation
in the local structure. It is worth noting that Mfn, along with Fr and Fourier Features, which are the
only 3 methods lacking frequency compactness, performed the worst among all 8 compared methods. This
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Figure 7: The visualisation comparison of the 8 INR methods on super resolution task with 4×.
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Figure 8: The visualisation comparison of the 8 INR methods on super resolution task with 8×.

highlights the importance of frequency compactness when reconstructing finely detailed surfaces in the 3D
occupancy task.
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Figure 9: The visualisation comparison of the 8 INR methods on super resolution task with 16×.

Table 4: 3D Occupancy Metrics

Method Incode Fr Finer Wire Fourier Features Gauss Mfn Siren
IoU ↑ 0.99564 0.99136 0.99628 0.99454 0.99424 0.99510 0.97540 0.99552

4 Discussion & Future Work

The results from the experiments highlight that different INR methods vary in performance based on the
tasks they are applied to, such as image denoising, super-resolution, and audio reconstruction. Incode
consistently stands out as a top performer across several tasks, with high PSNR scores and superior ability
to capture fine details, especially in challenging tasks like CT image reconstruction and super-resolution.
However, Incode comes with a drawback of significantly high computational cost, making it less feasible for
real-time applications where efficiency is crucial. This is a clear trade-off between quality and time efficiency
that practitioners need to consider.

Fr (Fourier Reparameterised Training) also demonstrates excellent performance, particularly due to its
ability to handle a broad spectrum of frequencies through Fourier reparameterisation, addressing the low-
frequency bias inherent in many models. It strikes a good balance between accuracy and computational
efficiency, offering a viable alternative to Incode for many tasks, especially when real-time performance is a
concern. Finer is another high-performing model, with its dynamic scaling feature allowing it to adapt to
varying frequency distributions. This makes it highly effective across multiple applications, though like Fr,
it requires careful tuning of hyperparameters. Siren, while effective in capturing high-frequency oscillatory
patterns, falls slightly behind in tasks that require broader frequency adaptability, though its relatively fast
training time makes it suitable for practical implementations. Lower-performing methods like Wire, Gauss,
and Mfn struggle with both accuracy and generalisation. These methods show limitations in handling
complex high-frequency information or fine detail preservation, particularly in tasks like super-resolution or
denoising where these features are critical.
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Figure 10: The visualisation comparison of the 8 INR methods on 3d shape representation task.

For applications where computational efficiency is less critical and the highest reconstruction quality is
needed, Incode would be the preferred choice. However, for real-time applications or cases where a balance
between quality and speed is crucial, Fr and Finer offer strong alternatives with their adaptable frequency
handling and more manageable computation times. Siren can be a good option when tasks require periodic
signal reconstruction but with less variability in frequency content. One area where INR methods still face
challenges is scalability, particularly in handling extremely high-resolution or highly detailed tasks. Future
work could explore more efficient frequency encoding mechanisms that reduce the computational overhead
without sacrificing quality. Additionally, optimising activation functions to be more adaptive to task-specific
requirements could improve generalisation across diverse datasets and applications. Enhancing the dynamic
adaptability of models like Finer could allow for more robust performance across tasks that involve varying
levels of detail, potentially improving their usability in real-world scenarios.

Finally, focusing on methods that efficiently integrate both spatial and frequency compactness while reducing
computational demands should be a priority for future research. Such advancements would make INR models
more accessible for real-time applications while maintaining high fidelity in complex tasks like image and
audio synthesis.
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