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Abstract

Achieving sample efficiency in Reinforcement
Learning (RL) is primarily hinged on the efficient
exploration of the underlying environment, but
it is still unknown what are the best exploration
strategies in different settings. We consider the
reward-free RL problem, which operates in two
phases: an exploration phase, where the agent
gathers exploration trajectories over episodes ir-
respective of any predetermined reward function,
and a subsequent planning phase, where a reward
function is introduced. The agent then utilizes the
episodes from the exploration phase to calculate a
near-optimal policy. Existing algorithms and sam-
ple complexities for reward-free RL are limited
to tabular, linear or very smooth function approx-
imations, leaving the problem largely open for
more general cases. We consider a broad range of
kernel-based function approximations, including
non-smooth kernels, and propose an algorithm
based on adaptive domain partitioning. We show
that our algorithm achieves order-optimal sample
complexity for a large class of common kernels,
which includes Matérn and Neural Tangent ker-
nels.

1. Introduction
Reinforcement Learning (RL) policies using complex func-
tion approximations have been empirically effective in vari-
ous fields including gaming (Silver et al., 2016; Lee et al.,
2018; Vinyals et al., 2019), autonomous driving (Kahn et al.,
2017), microchip design (Mirhoseini et al., 2021), robot
control (Kalashnikov et al., 2018), and algorithm search
(Fawzi et al., 2022). To achieve sample efficiency, these RL
policies must learn the transition model, either directly or in-
directly, necessitating efficient exploration. In the context of
offline RL, the agent learns the optimal policy solely from a
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pre-collected offline dataset, without any further interaction
with the environment. Therefore, the offline dataset should
adequately represent the trajectory produced by the optimal
policy. In real-world RL applications, the reward function
is often crafted by the learner based on domain knowledge.
The learner may have multiple reward functions to select
from or may employ an adaptive algorithm for reward de-
sign. In such situations, it is preferable to have an offline
dataset that encapsulates all potential optimal trajectories
associated with a variety of reward functions. With such a
comprehensive offline dataset, the RL agent can estimate
the corresponding policy for any arbitrary reward function.

To methodically study this problem, we concentrate on the
reward-free RL framework, which includes an exploration
phase and a planning phase (Figure 1). In the exploration
phase, the agent interacts with the environment without any
pre-determined rewards and gathers empirical trajectories
over episodes for the subsequent planning phase. During the
planning phase, the agent uses the offline data accumulated
in the exploration phase to compute the optimal policy for
a given extrinsic reward function r, without further interac-
tions with the environment.

Collect N trajectories
without knowing

the reward.

Exploration

Reward r is revealed;
Design a policy π

for reward r.

Planning

Figure 1. Reward-Free RL framework.

The reward-free RL framework has been progressively ex-
amined under increasingly complex models —tabular→
linear→ kernel-based→ deep learning based— in several
works including (Jin et al., 2020a; Wang et al., 2020; Qiu
et al., 2021). The existing literature adequately addresses
the tabular and linear settings. It however tends to falter,
providing only partial and incomplete results when dealing
with the more intricate kernel-based and deep learning based
settings. The contribution of this paper is to further the liter-
ature by providing order optimal results in the kernel-based
setting, applicable to a broad class of common kernels.

Our main objectives are: (i) Designing algorithms for both
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exploration and planning phases in the reward-free RL
framework with kernel-based modeling. (ii) Improving the
existing results by proving order optimal sample complexi-
ties for a broad class of common kernels.

To touch on the technical importance of our results, we
show in Table 1 the sample complexity in various settings.
The sample complexity refers to the number of exploration
episodes collected in the exploration phase to obtain ϵ-
optimal policies in the planning phase, where a policy is
referred to as ϵ-optimal if its value function is at most ϵ away
from the optimal value function (See Definition 2.1). Here,
S, A and H ∈ N represent the state and action spaces and
the episode length, respectively. In the kernel-based setting,
previous work (Qiu et al., 2021) provided algorithms whose
sample complexities are, up to logarithmic factors, order
optimal with respect to ϵ. However, these results are pri-
marily applicable to very smooth kernels, specifically those
characterized by exponentially decaying eigenvalues. This
limitation effectively excludes significant kernel families,
such as Matérn and Neural Tangent kernels.

For a more nuanced understanding of the existing results,
let {λm > 0}∞m=1 represent the Mercer eigenvalues of ker-
nel k, sequenced in diminishing order, and let {ϕm}∞m=1

denote the corresponding eigenfeatures. For details, refer
to Section 2.3. The kernel k is characterized as having an
exponential eigendecay when its eigenvalues λm diminish
exponentially with respect to m, specifically λm = O(ιm)
for some 0 < ι < 1; an example being the Squared Ex-
ponential kernel. In contrast, the kernel k is described as
having a polynomial eigendecay when its eigenvalues λm

decline at a rate no slower than m−p for some p > 1. This
decay profile is characteristic of numerous kernels, both of
practical importance and theoretical interest, such as the
Matérn family of kernels (Borovitskiy et al., 2020) and the
Neural Tangent (NT) kernel (Arora et al., 2019). Specifi-
cally, for a Matérn kernel with smoothness parameter ν in
a d-dimensional space, p = 2ν+d

d (e.g., see, Yang et al.,
2020a). Similarly, for an NT kernel with s− 1 times differ-
entiable activations, p = 2s−1+d

d (Vakili et al., 2021b).

Leveraging the scaling of the kernel spectrum with the size
of the domain can improve the sample complexity. We focus
on kernels with polynomial eigendecay within a hypercu-
bical domain of side length ρ, where eigenvalues scale as
m−pρα for some α > 0, as detailed in Definition 4.1. This
approach covers a broad spectrum of prevalent kernels, such
as the Matérn family, where α = 2ν. While we employ a
hypercube domain for technical consistency, this assump-
tion is flexible and can extend to other regular, compact
subsets of Rd.

Our contribution lies in devising algorithms for both the ex-
ploration and planning phases of the reward-free RL frame-
work, establishing sample complexities for kernels with

Table 1. Existing results on the sample complexity of reward-free
RL. The sample complexity refers to the number of exploration
episodes collected in the exploration phase to obtain ϵ-optimal
policies in the planning phase. The notation S, A and H denote
the state and action spaces and the episode length respectively.
The parameter d denotes the state action space dimension and α
represents smoothness properties of the kernel. While the existing
results fail to obtain even finite sample complexities in the general
kernel-based setting, we report order optimal sample complexity,
given in the last row of this table.

SETTING SAMPLE COMPLEXITY

TABULAR (MÉNARD ET AL., 2021) O
(

|S|2|A|H3

ϵ2

)
LINEAR Õ

(
d2H5

ϵ2

)
(WAGENMAKER ET AL., 2022)

KERNEL-BASED WITH

EXPONENTIAL EIGENDECAY O
(

H6polylog( 1
ϵ
)

ϵ2

)
(QIU ET AL., 2021)

KERNEL-BASED WITH

POLYNOMIAL EIGENDECAY Õ
(
(H3

ϵ
)2+

2d
α

)
(THIS WORK)

polynomially decaying eigenvalues. We demonstrate that
an Õ

(
(H

3

ϵ )2+
2d
α

)
exploration episodes are sufficient to

guarantee ϵ-optimal policies during planning. When ap-
plied to the Matérn kernel, our sample complexity becomes
Õ
(
(H

3

ϵ )2+
d
ν

)
. This is a significant improvement, con-

trasted with existing work (Qiu et al., 2021), where the sam-
ple complexity becomes unbounded for many parameter val-
ues of the Matérn kernel, such as when ν < d(d+1)

2 . In addi-

tion, our sample complexities match the Ω
(
( 1ϵ )

2+ d
ν

)
lower

bound for the kernel-based bandit problem with Matérn ker-
nel (see, Scarlett et al., 2017, Table I) that can be considered
as a degenerate special case with H = 1, |S| = 1, indicating
that the performance in ϵ cannot be further improved.

We obtain these samples complexities by designing algo-
rithms tailored for the polynomial class of kernels. The
main design ideas include leveraging a hypothetical reward
for the exploration phase proportional to the uncertainty
in kernel-based regression, and an adaptive domain parti-
tioning technique inspired by the recent work of Vakili &
Olkhovskaya (2023). In this method, the algorithm creates
a partitioning of the state-action domain and builds value
function estimates only based on the observations within
the same partition element. See details in Section 3.

In Section 2, we present the episodic Markov Decision
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Process (MDP) setting, formalize reward-free RL frame-
work and our assumptions, and overview the kernel ridge
regression. In Section 4, we present the sample complexity
analysis.

1.1. Literature Review

The reward-free RL framework under the episodic setting
has been studied with tabular model in Jin et al. (2020a);
Zhang et al. (2020); Ménard et al. (2021); Kaufmann et al.
(2021), and with linear model in Wang et al. (2020); Zanette
et al. (2020c); Wagenmaker et al. (2022), with the best
sample complexities reported in Table 1. The problem has
also been studied under the linear mixture model in Zhang
et al. (2021); Chen et al. (2021); Zhang et al. (2023).

The sample complexity of the RL problem on a discounted
MDP setting with an infinite horizon has been consid-
ered under various tabular, linear and kernel-based settings
in (Kearns & Singh, 1998; Azar et al., 2013; Sidford et al.,
2018; Agarwal et al., 2020; Yang & Wang, 2019; Yeh et al.,
2023). These works however assume the existence of a gen-
erative oracle (Kakade, 2003), which provides sample tran-
sitions from any state-action pair of algorithm’s choice. This
assumption simplifies the problem compared to the reward-
free RL framework considered in this work, where the agent
must follow the MDP trajectory within each episode and
cannot arbitrarily inquire transitions from state-action pairs.
Specifically, we design an exploration algorithm based on
uncertainty estimates obtained from the kernel-based model
that adds significant challenges to the analysis and is not
required in the oracle setting.

Our algorithm design is inspired by the domain partitioning
technique used in Vakili & Olkhovskaya (2023), as well as
in Janz et al. (2020) for kernel-based bandits. In compari-
son, Vakili & Olkhovskaya (2023) considered the standard
episodic RL setting, where the reward function is known to
the policy a priori. That is different from the reward-free
RL framework considered in this work and their results do
not apply here.

There is an extensive literature on the analysis of RL policies
which do not rely on a generative model or an exploratory be-
havioral policy. The literature has primarily focused on the
tabular setting (Jin et al., 2018; Auer et al., 2008; Bartlett &
Tewari, 2012). Recent literature has placed a notable empha-
sis on employing function approximation in RL, particularly
within the context of generalized linear settings. This ap-
proach involves representing the value function or transition
model through a linear transformation to a well-defined fea-
ture mapping. Important contributions include the work of
Jin et al. (2020b); Yao et al. (2014), as well as subsequent
studies by Russo (2019); Zanette et al. (2020a;b); Neu &
Pike-Burke (2020); Yang & Wang (2020). Furthermore,
there have been several efforts to extend these techniques to

a kernelized setting, as explored in Yang et al. (2020a); Yang
& Wang (2020); Chowdhury & Gopalan (2019); Yang et al.
(2020b); Domingues et al. (2021). These works are also
inspired by methods originally designed for linear bandits
(Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013), as
well as kernelized bandits (Srinivas et al., 2010; Valko et al.,
2013; Chowdhury & Gopalan, 2017).

2. Problem Formulation
In this section, we present the episodic MDP setting, the
reward-free RL framework, background on kernel methods
and our technical assumptions.

2.1. Episodic MDP

An episodic MDP can be described by the tuple M =
(S,A, H, P, r), where S is the state space, A is the ac-
tion space, the integer H is the length of each episode,
r = {rh}Hh=1 are the reward functions and P = {Ph}Hh=1

are the transition probability distributions.1 We use the no-
tation Z = S × A to denote the state-action space. For
each h ∈ [H], the reward rh : Z → [0, 1] is the reward
function at step h, which is supposed to be deterministic for
simplicity, and Ph(·|s, a) is the unknown transition proba-
bility distribution on S for the next state from state-action
pair (s, a).

s1 s2 · · · sH

a1 aH−1

Figure 2. Illustration of an Episodic MDP with episode of
length H .

A policy π = {πh}Hh=1, at each step h, determines the (pos-
sibly random) action πh : S → A taken by the agent at
state s. At the beginning of each episode, the environment
picks an arbitrary state s1. The agent determines a policy
π = {πh}Hh=1. Then, at each step h ∈ [H], the agent ob-
serves the state sh ∈ S, and picks an action ah = πh(sh).
The new state sh+1 then is drawn from the transition dis-
tribution Ph(·|sh, ah). The episode ends when the agent
receives the final reward rH(sH , aH).

We are interested in maximizing the expected total reward
in the episode, starting at step h, i.e., the value function,
defined as

V π
h (s) = E

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
, ∀s ∈ S, h ∈ [H],

(1)
1We intentionally do not use the standard term transition kernel

for Ph, to avoid confusion with the term kernel in kernel-based
learning.
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where the expectation is taken with respect to the random-
ness in the trajectory {(sh, ah)}Hh=1 obtained by the pol-
icy π. It can be shown that under mild assumptions (e.g.,
continuity of Ph, compactness of Z , and boundedness of
r) there exists an optimal policy π⋆ which attains the maxi-
mum possible value of V π

h (s) at every step and at every
state (e.g., see, Puterman, 2014). We use the notation
V ⋆
h (s) = maxπ V

π
h (s), ∀s ∈ S, h ∈ [H]. By definition

V π⋆

h = V ⋆
h . An ϵ-optimal policy is defined as follows.

Definition 2.1. (ϵ-optimal policy) For ϵ > 0, A policy π is
called ϵ-optimal if it achieves near-optimal values from any
initial state as follows:

V π
1 (s) ≥ V ⋆

1 (s)− ϵ, ∀s ∈ S.

For a value function V , we define the following notation

[PhV ](s, a) := Es′∼Ph(·|s,a)[V (s′)]. (2)

We also define the state-action value function Qπ
h : Z →

[0, H] as follows.

Qπ
h(s, a) = Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s, ah = a

]
, (3)

where the expectation is taken with respect to the random-
ness in the trajectory {(sh, ah)}Hh=1 obtained by the pol-
icy π. The Bellman equation associated with a policy π then
is represented as

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a),

V π
h (s) = max

a
Qπ

h(s, a), V π
H+1 = 0.

where the expectation is taken with respect to the random-
ness in the policy π. We may specify the reward function in
V π, Qπ, V ⋆, Q⋆ notations for clarity, for example, V π(s; r)
and Q⋆(z; r).

2.2. Reward-Free RL Framework

We aim to learn ϵ-optimal policies using as small as pos-
sible number of collected exploration episodes. In par-
ticular, we consider the reward-free RL framework that
consists of two phases: exploration and planning. In
the exploration phase, we collect N exploration episodes
{(sn1 , an1 , sn2 , an2 , · · · , snH)}Nn=1 without any revealed re-
ward function. Then, in the planning phase, reward r is
revealed, and we design a policy for reward r using the tra-
jectories collected in the exploration phase. We refer to N as
the sample complexity of designing ϵ-optimal policy. Under
certain assumptions, the question is: How many exploration
episodes are required to obtain ϵ-optimal policies? We
provide an answer in Theorem 4.5.

2.3. Kernel Ridge Regression

We assume that the unknown transition probability distribu-
tion can be represented using a reproducing kernel Hilbert
space (RKHS). See Assumption 2.2. This is a very gen-
eral assumption, considering that the RKHS of common
kernels can approximate almost all continuous functions on
the compact subsets of Rd (Srinivas et al., 2010). Consider
a positive definite kernel k : Z × Z → R. Let Hk be
the RKHS induced by k, where Hk contains a family of
functions defined on Z . Let ⟨·, ·⟩Hk

: Hk ×Hk → R and
∥ · ∥Hk

: Hk → R denote the inner product and the norm
ofHk, respectively. The reproducing property implies that
for all f ∈ Hk, and z ∈ Z , ⟨f, k(·, z)⟩Hk

= f(z). Without
loss of generality, we assume k(z, z) ≤ 1 for all z. Mercer
theorem implies, under certain mild conditions, k can be
represented using an infinite dimensional feature map:

k(z, z′) =

∞∑
m=1

λmϕm(z)ϕm(z′), (4)

where λm > 0, and
√
λmϕm ∈ Hk form an orthonormal

basis ofHk. In particular, any f ∈ Hk can be represented
using this basis and wights wm ∈ R as

f =

∞∑
m=1

wm

√
λmϕm, (5)

where ∥f∥2Hk
=
∑∞

m=1 w
2
m. A formal statement and the

details are provided in Appendix A. We refer to λm and ϕm

as (Mercer) eigenvalues and eigenfeatures of k, respectively.

Kernel-based models provide powerful predictors and un-
certainty estimators, which can be leveraged to guide the RL
algorithm. In particular, consider a fixed unknown function
f ∈ Hk. Consider a set Zn = {zi}ni=1 ⊂ Z of n inputs.
Assume n noisy observations {Y (zi) = f(zi) + εi}ni=1 are
provided, where εi are independent zero mean noise terms.
Kernel ridge regression provides the following predictor and
uncertainty estimate, respectively (see, e.g., Schölkopf et al.,
2002),

µn,f (z) = k⊤Zn(z)(KZn + τ2In)−1YZn ,

(σn(z))2 = k(z, z)− k⊤Zn(z)(KZn + τ2In)−1kZn(z),
(6)

where kZn(z) = [k(z, z1), . . . , k(z, zn)]⊤ is a n × 1
vector of the kernel values between z and observations,
KZn = [k(zi, zj)]ni,j=1 is the n× n kernel matrix, YZn =

[Y (z1), . . . , Y (Zn)]⊤ is the n × 1 observation vector, In

is the identity matrix of dimensions n, and τ > 0 is a free
regularization parameter. The predictor and uncertainty
estimate could be interpreted as posterior mean and vari-
ance of a surrogate centered Gaussian process (GP) model
with covariance k, and zero mean Gaussian noise with vari-
ance τ2 (e.g., see, Williams & Rasmussen, 2006).
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2.4. Technical Assumption

We assume that the unknwon transition probability distri-
butions Ph(s

′|·, ·) of the MDP belong to the 1-ball of the
RKHS. We use the notation Bk,R = {f : ∥f∥Hk

≤ R} to
denote the R-ball of the RKHS.
Assumption 2.2. We assume

Ph(s
′|·, ·) ∈ Bk,1, ∀h ∈ [H], ∀s′ ∈ S. (7)

This is a mild assumption considering the generality of
RKHSs, that is also supposed to hold in (Qiu et al., 2021;
Yang et al., 2020a). Similar assumptions are made in linear
MDPs which are significantly more restrictive (e.g., see,
Wang et al., 2020; Jin et al., 2020b).

A consequence of Assumption 2.2 is that for any integrable
V : [0, 1]d → [0, H], [PhVh+1] ∈ Bk,H . This is formalized
in the following lemma (See, Yeh et al., 2023, Lemma 3).
Lemma 2.3. Consider any integrable V : [0, 1]d → [0, H].
Under Assumption 2.2, we have

[PhV ] ∈ Bk,H . (8)

3. Algorithm
In this section, we design novel algorithms for both explo-
ration and planning phases in the kernel-based reward-free
RL framework described in Section 2.

The two main ideas in our design are (i) the use of a hy-
pothetical reward in the exploration phase and (ii) domain
partitioning in application of kernel-based confidence inter-
vals.

Hypothetical reward. In the exploration phase, we will
craft a carefully chosen hypothetical reward function that
incentivizes efficient exploration. We choose the term hypo-
thetical reward since it is different from the actual rewards
revealed to the agent later in the planning phase. In other
words, in the exploration phase when the reward is yet not
revealed to the agent, we design a notion of reward for the
agent that encourages an efficient exploration. We use the
uncertainty estimates provided by kernel regression to de-
fine the hypothetical reward and motivate exploration of
uncertain regions in the state-action space. In particular, for
episode n in the exploration phase, we choose hypothetical
reward r̃n = β(δ)σn/H , where σn

h is the posterior stan-
dard deviation of the kernel-based model conditioned on
(possibly some of) past n− 1 previous episodes, and β(δ)
is a 1− δ confidence interval multiplier that is specified in
Theorem 4.5. Using this hypothetical reward incentivizes
the agent to move on the Markovian trajectory towards state-
actions with higher uncertainty.

This is different from a pure and uniform exploration. This is
also different from (Yeh et al., 2023), where the existence of

Figure 3. An example of adaptive domain partitioning on Z =
[0, 1]2. The dots represent a sequence of points. Partitions are
created by dividing every square Z ′ that satisfies the condition
ρ−α
Z′ < N(Z ′) + 1 into four equal smaller squares. Here, ρZ′ and

N(Z ′) denote the side length of a square Z ′ and the number of
dots within Z ′, respectively. In this example, α is set to 3.

a generative oracle was assumed that can provide transition
samples for the state-action pairs of the agent’s choice. The
reward-free RL framework considered in this work is more
sophisticated in the sense that the agent must stay on the
Markovian trajectory and cannot observe arbitrary state-
actions.

Domain partitioning. In both the exploration and plan-
ning phases, we will use domain partitioning to improve
the precision of prediction and analytical guarantees on the
approximations. In particular, we partition the state-action
space into subdomains and only use the observations within
the same subdomain for kernel-based prediction (disregard-
ing the rest of the observations). As shown in Vakili &
Olkhovskaya (2023), this allows a tradeoff between the stan-
dard deviation of the kernel-based model and the confidence
interval width coefficient. An optimal procedure for domain
partitioning leads to an improved performance. An example
of partitioning on a 2-dimensional state-action domain is
shown in Figure 3.

3.1. Exploration Phase

The exploration algorithm simply employs an optimistic
least-squares value iteration (LSVI) with the hypothetical
reward. Optimistic LSVI is a standard policy in episodic
MDPs, which, inspired by the principle of optimism in the
face of uncertainty, computes an upper confidence bound on
state-action value function. For this purpose, kernel ridge
regression is used to form prediction fn

h and uncertainty
estimate σn

h for the [PhVh+1] term in the state-action value
function. Then the upper confidence bound is defined as

Qn
h(·, ·) = Π[0,H] [r̃

n
h(·, ·) + fn

h (·, ·) + β(δ)σn
h(·, ·)] . (9)
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Algorithm 1 Exploration Phase
Input: τ , β(δ), k, S,A, H, P .
For all h ∈ [H], let S1h = {[0, 1]d}.
for Episode n = 1, 2, . . . , N , do

Receive the initial state sn1 .
Set V n

H+1(s) = 0, for all s.
for step h = H, . . . , 1 do

Obtain Qn
h as in (9) based on (11) and (12).

V n
h (·) = maxa∈A Qh(·, a).

end for
for step h = 1, 2, . . . ,H do

Take action anh ← argmaxa∈AQ
n
h(s

n
h, a).

Receive the next state snh+1.
Split any element Z ′ ∈ Sn−1

h , for which ρ−α
Z′ <

|Nn
h (Z ′)| + 1 along the middle of each side, and

obtain Snh .
end for

end for

The notation Π[a,b][·] denotes projection onto interval [a, b].
Since the rewards are assumed to be at most 1, the state-
action value function at step h is also bounded by H , hence
projection to [0, H] interval. In episode n, then πn is the
greedy policy with respect to Qn = {Qn

h}Hh=1. Under As-
sumption 2.2, the estimate fn

h , the parameter β(δ) and the
uncertainty estimate σn

h can all be designed using kernel
ridge regression.

To overcome the suboptimal performance guarantees rooted
in the online confidence intervals in kernel ridge regres-
sion, we use a carefully designed domain partitioning. The
proposed algorithm partitions the state-action space Z into
subdomains and builds kernel ridge regression only based
on the observations within each subdomain. By doing so,
we obtain tighter confidence intervals, ultimately resulting
in tighter performance guarantees.

To formalize this procedure, we consider the state-action
space Z ⊂ [0, 1]d. Let Snh , h ∈ [H], n ∈ [N ] be sets of
hypercubes overlapping only at edges, covering the entire
[0, 1]d. For any hypercube Z ′ ∈ Snh , we use ρZ′ to denote
the length of any of its sides, and Nn

h (Z ′) to denote the
number of observations at step h in Z ′ up to episode n:

Nn
h (Z ′) =

n∑
i=1

1{(sih, aih) ∈ Z ′}. (10)

For all h ∈ [H], we initialize S1h = {[0, 1]d}. At explo-
ration episode n, for each step h, after observing a sample
from [PhV

n
h+1] at (snh, a

n
h), we construct a new cover Snh

as follows. We divide every element Z ′ ∈ Sn−1
h that satis-

fies ρ−α
Z′ < Nn

h (Z ′) + 1, into two equal halves along each
side, generating 2d hypercubes. The parameter α > 0 in
the splitting rule is a constant specified in Definition 4.1.

Subsequently, we define Snh as the set of newly created
hypercubes and the elements of Sn−1

h that were not split.

The construction of the cover sets described above ensures
the number Nn

h (Z ′) of observations within each cover el-
ement Z ′ remains relatively small taking into account the
size of Z ′, while also controlling the total number |Snh | of
cover elements. The key parameter managing this tradeoff
is α, which is carefully chosen to achieve an appropriate
width for the confidence interval, as shown in Section 4.

Our exploration algorithm is derived by adopting the struc-
ture of the optimistic LSVI, as described above, where
the predictor and the uncertainty estimates are designed
based on kernel ridge regression only on cover elements.
In particular, for z ∈ Z , let Zn

h (z) ∈ Snh be the cover
element at step h of episode n containing z. Define
Zn
h (z) = {(sih, aih) ∈ Zn

h (z), i < n} to be the set of past
observations belonging to the same cover element as z. We
then set

fn
h (z) = k⊤Zn

h (z)(z)(KZn
h (z) + τ2I)−1YZn

h (z), (11)

where kZn
h (z) = [k(z, z′)]⊤z′∈Zn

h (z) is the kernel values
between z and all observations z′ in Zn

h (z), KZn
h (z) =

[k(z′, z′′)]z′,z′′∈Zn
h (z) is the kernel matrix for observations

in Zn
h (z). Starting from VH+1 = 0, for h = H, · · · , 1,

we obtain the observation value as follows: YZn
h (z) =

[V n
h+1(s

′
h+1)]

⊤
z′∈Zn

h (z), where s′h+1 is drawn from the tran-
sition distribution Ph(·|z′), denotes the observation values
for the observation points z′ ∈ Zn

h (z). The vectors kZn
h (z)

and YZn
h (z) are Nn−1

h (Zn
h (z)) dimensional column vectors,

and KZn
h (z) and I are Nn−1

h (Zn
h (z)) × Nn−1

h (Zn
h (z)) di-

mensional matrices.

Note that, having the Bellman equation in mind, fn
h is the

(kernel ridge) predictor for [PhV
n
h+1] using some of the past

n − 1 observations {V n
h+1(s

i
h+1)}

n−1
i=1 at points {zih}

n−1
i=1 .

Recall that E
[
V n
h+1(s

i
h+1)

]
= [PhV

n
h+1](z

i
h), where the

expectation is taken with respect to Ph(·|zih). The observa-
tion noise V n

h+1(s
i
h+1) − [PhV

n
h+1](z

i
h) is due to random

transitions and is bounded by H − h ≤ H .

The exploration bonus is determined based on the uncer-
tainty estimate of the kernel ridge regression model on cover
elements defined as

σn
h(z) =√

k(z, z)− k⊤Zn
h (z)(z)(KZn

h (z) + τ2I)−1kZn
h (z)(z).

(12)

The policy then is the greedy policy with respect to Qn
h

given in (9). Specifically, at step h of exploration episode n,
the following action is chosen, after observing snh ,

anh = argmaxa∈AQ
n
h(s

n
h, a). (13)
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A pseudocode is provided in Algorithm 1.

3.2. Planning Phase

In the planning phase, when the reward function r is re-
vealed, a near-optimal policy π is derived using the episodes
of trajectories collected during the exploration phase. Sim-
ilar to the exploration policy, we compute a prediction gh
and a confidence interval width wh for [PhVh+1], and define

Qh(·, ·) = Π[0,H][rh(·, ·) + gh(·, ·) + wn
h(·, ·)]. (14)

The policy π then is obtained as a greedy policy with respect
to Q

πh(·) = argmaxa∈AQh(·, a).

Due to domain partitioning, the confidence interval width
may increase over the exploration episode n for certain
points. To address this specific observation related to the
domain partitioning technique, we take the following steps.
First, we identify the exploration episode that has the small-
est confidence interval for z ∈ Z . Specifically, let us define

wh(z) = min
n≤N

β(δ)σn
h(z). (15)

Also, let nh(z) = argminn≤N β(δ)σn
h(z) be the explo-

ration episode that provides the tightest confidence interval
for point z. Recall that for z ∈ Z , we defined Zn

h (z) ∈ Snh
to be the cover element at step h of episode n containing z,
and Zn

h (z) = {(sih, aih) ∈ Zn
h (z), i < n} as the set of past

observations belonging to the same cover element as z.

Keeping Bellman equation in mind, and starting with
VH+1 = 0, gh is the kernel ridge predictor for [PhVh+1] us-
ing some of the n observations {Vh+1(s

n
h+1)}Nn=1 at points

{zn}Nn=1 in the exploration phase. Specifically, in comput-
ing gh(z), we only use observations that are within the same
subdomain as z in the partition Snh(z)

h at episode nh(z) of
exploration phase

gh(z) = k⊤
Z

nh(z)

h (z)
(z)(K

Z
nh(z)

h (z)
+ τ2I)−1Ỹ

Z
nh(z)

h (z)
,

(16)
where Ỹ

Z
nh(z)

h (z)
= [Vh+1(s

′
h+1)]

⊤
z′∈Z

nh(z)

h (z)
. A pseu-

docode is given in Algorithm 2.

3.3. Computational Complexity

The runtime complexity of our algorithm in the exploration
phase is O(HN4 +H|A|N3), similar to the runtime com-
plexity in Qiu et al. (2021). At each episode n and each
step h, the computation of the kernel ridge regression statis-
tics in each hypercube incurs a cost of O(N3

c + |Ac|N2
c ),

where |Ac| is the number of actions in the hypercube and
Nc is the number of previous observations in the hypercube.

Algorithm 2 Planning Phase
Input: τ , β(δ), k, M(S,A, H, P, r), and exploration
data {(snh, anh)}(h,n)∈[H]×[N ]

for h = H,H − 1, · · · , 1, do
Compute the prediction gh
Let Qh(·, ·) = Π[0,H][gh(·, ·) + rh(·, ·)]
V (·) = maxa∈A Q(·, a).
πh(·) = argmaxa∈AQh(·, a).

end for
Output: {πh}h∈[H].

Summing up over all hypercubes, we bound the computa-
tional complexity withO(n3+|A|n2), where |A| is the total
number of actions. This bound is derived using the simple
arithmetic that the cube of the sum of natural numbers is
larger than the sum of their cubes. Summing up over steps
and episodes, we arrive at the overall runtime complexity of
O(HN4 +H|A|N3). We expect an improved runtime for
our algorithm in practice due to the inequalities used in this
calculation.

The computational complexity of identifying the partition
with the tightest confidence interval in the planning phase
will not exceed that of performing kernel ridge regression
on all partitions —a computation similar to that employed in
the exploration phase. Therefore, the overall computational
complexity remains unaffected by this step.

Sparse approximation methods such as the Nyström method
significantly reduce the computational complexity, while
maintaining the kernel-based confidence intervals and, con-
sequently, the eventual rates (see, e.g., Vakili et al., 2022,
and references therein). These results are generally ap-
plicable to kernel ridge regression and not specific to our
problem.

4. Sample Complexity Analysis
In this section, we present the main result of the paper.
In Theorem 4.5, we establish an Õ

(
(H

3

ϵ )2+
2d
α

)
sample

complexity for the kernel-based reward-free RL problem for
a general class of kernels with polynomial eigendecay that
includes Matérn family and Neural Tangent kernels. The
parameter α captures some smoothness properties of the
kernel that is specified in the next defintion.

Definition 4.1 (Polynomial Eigendecay). Consider the Mer-
cer eigenvalues {λm}∞m=1 of k : Z×Z → R, given in Equa-
tion (4), in a decreasing order, as well as the corresponding
eigenfeatures {ϕm}∞m=1. Assume Z is a d-dimensional hy-
percube with side length ρZ . For some Cp, α > 0, p > 1,
the kernel k is said to have a polynomial eigendecay, if for
all m ∈ N, λm ≤ Cpm

−pραZ . In addition, for some η ≥ 0,
m−pηϕm(z) is uniformly bounded over all m and z. We

7
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use the notation p̃ = p(1− 2η).

The polynomial eigendecay profile encompasses a large
class of common kernels, e.g., the Matérn family of kernels.
For a Matérn kernel with smoothness parameter ν, p =
2ν+d

d and α = 2ν (e.g., see, Yang et al., 2020a). Another
example is the NT kernel (Arora et al., 2019). It has been
shown that the RKHS of the NT kernel, when the activations
are s − 1 times differentiable, is equivalent to the RKHS
of a Matérn kernel with smoothness ν = s − 1

2 (Vakili
et al., 2021b). For instance, the RKHS of an NT kernel with
ReLU activations is equivalent to the RKHS of a Matérn
kernel with ν = 1

2 . In this case, p = 1 + 1
d and α = 1.

The hypercube domain assumption is a technical formality
that can be relaxed to other regular compact subsets of
Rd. The uniform boundedness of m−pηϕm(z) for some
η > 0, also holds for a broad class of kernels, including the
Matérn family, as discussed in (Yang et al., 2020a). Several
works including (Vakili et al., 2021b; Kassraie & Krause,
2022), have employed an averaging technique over subsets
of eigenfeatures, demonstrating that the effective value of η
can be considered as 0 in the case of Matérn and NT kernels.

4.1. Confidence Intervals for State-Action Value
Functions

Confidence intervals are an important building block in the
design and analysis of RL algorithms. For a fixed function f
in the RKHS of a known kernel, 1−δ confidence intervals of
the form |f(z)− µn,f (z)| ≤ β(δ)σn(z) are established in
several works (Srinivas et al., 2010; Chowdhury & Gopalan,
2017; Abbasi-Yadkori, 2013; Vakili et al., 2021a) under
various assumptions. In the RL setting, however, these con-
fidence intervals cannot be directly applied. This is due to
the randomness of the target function itself. Specifically,
in our case, the target function is [PhV

n
h+1], which is not

a fixed function due to the temporal dependence within
an episode. An argument based on the covering number
of the state-action value function class was used in Yang
et al. (2020a) to establish uniform confidence intervals over
all z ∈ Z and all f in a specific function class. Vakili &
Olkhovskaya (2023) proved a variant that offers flexibility
with respect to setting the parameters of the confidence in-
terval. Their approach leads to a more refined confidence
interval, which, with a proper choice of parameters, con-
tributes to the improved results in the RL setting.

We first give a formal definition of the two complexity terms:
maximum information gain and the covering number of
the state-action value function class, which appear in our
confidence intervals.

Definition 4.2 (Maximum Information Gain). In the kernel
ridge regression setting described in Section 2.3, the follow-
ing quantity is referred to as maximum information gain:
Γk,τ (n) = maxZn⊂Z

1
2 log det(I + 1

τ2KZn).

Upper bounds on maximum information gain based on the
spectrum of the kernel are established in (Janz et al., 2020;
Srinivas et al., 2010; Vakili et al., 2021c).

State-action value function class: Let us use Qk,h(R,B)
to denote the class of state-action value functions. In partic-
ular for a set of observations Z, let σh(z) be the uncertainty
estimate obtained from kernel ridge regression as given
in (6). We define

Qk,h(R,B) =
{
Q : Q(z) = Π[0,H] {Q0(z) + βσh(z)} ,

∥Q0∥Hk
≤ R, β ≤ B, |Z| ≤ N

}
. (17)

Definition 4.3 (Covering Set and Number). Consider a
function class F . For ϵ > 0, we define the minimum ϵ-
covering set C(ϵ) as the smallest subset of F that covers it
up to an ϵ error in l∞ norm. That is to say, for all f ∈ F ,
there exists a g ∈ C(ϵ), such that ∥f − g∥l∞ ≤ ϵ. We refer
to the size of C(ϵ) as the ϵ-covering number.

We use the notation Nk,h(ϵ;R,B) to denote the ϵ-covering
number of Qk,h(R,B), appeaing in the confidence interval.

Lemma 4.4 (Confidence Interval; Theorem 1 of (Vakili
& Olkhovskaya, 2023)). Let fn

h and σn
h denote the kernel

ridge predictor and uncertainty estimate of [PhV
n
h+1], using

n observations {V n
h+1(s

i
h+1)}ni=1 at Zn

h = {zih}ni=1 ⊂ Z ,
where sih+1 is the next state drawn from Ph(·|zih). Let

RN = H + H
2λ

√
2(Γk,τ (N) + 1 + log( 2δ )). For ϵ, δ ∈

(0, 1), with probability, at least 1 − δ, we have, ∀(z, h) ∈
Z × [H] and n ∈ [N ],∣∣[PhV

n
h+1](z)− fn

h (z)
∣∣ ≤ βn

h (δ, ϵ)σ
n
h(z) + ϵ,

where βn
h (δ, ϵ) is set to any value satisfying

βn
h (δ, ϵ) ≥ H +

3
√
nϵ

τ
+

H√
2
×√

Γk,τ (n) + logNk,h(ϵ;RN , βn
h (δ, ϵ)) + 1 + log(

2NH

δ
).

4.2. Sample Complexity

With the auxiliary results laid out in the previous section,
we now give a formal presentation of sample complexity.

Theorem 4.5. Consider the reward-free kernel-based RL
problem presented in Section 2. Under Assumption 2.2;
run Algorithm 1 with N exploration episodes. Let π
be the policy obtained in the planning phase according
to Algorithm 2. There exist N = Õ

(
(H

3

ϵ )2+
2d
α

)
and

β(δ) = O(H
√
log(HN

δ )), which guarantee, with proba-
bility at least 1 − δ, we have, V ⋆(s) − V π(s) ≤ ϵ, for all
s ∈ S.

8
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Proof. Here, we present a summary of the steps in the proof.
Details are provided in Appendix B. In the proof, we show
that V ⋆

1 (s; r) − V π
1 (s; r) ≤ H

N

∑N
n=1 V

⋆
1 (s, r̃

n), that cre-
ates a connection between suboptimality in the planning
(the left hand side) and total value in the exploration with
hypothetical rewards (the right hand side). We then use con-
fidence intervals for kernel-based regression over partitions
to bound the right hand side, and eventually obtain

V ⋆
1 (s; r)−V π

1 (s1; r) = O

(
N

−α
2(α+d) log(N)

√
log(

H

δ
)

)
.

From here we can see that with a choice of N =
Õ
(
(H

3

ϵ )2+
2d
α

)
it can be guaranteed that V ⋆

1 (s; r) −
V π
1 (s1; r) ≤ ϵ.

Evaluation of the result. When we instantiate the sam-
ple complexity for the Matérn kernel, we obtain a sample
complexity of Õ

(
(H

3

ϵ )2+
d
ν

)
. This is order optimal in ϵ

given the Ω
(
( 1ϵ )

2+ d
ν

)
sample complexity lower bound for

kernel-based bandits with Matérn kernels (see, Scarlett et al.,
2017, Table I), up to logarithmic factors in ϵ. We note that
kernel-based bandit corresponds to a degenerate case with
H = 1, |S| = 1. Thus, this cannot be further improved.
In addition, our sample complexity in its dependency on
ϵ matches that of the simpler discounted kernel-based RL
problem assuming the existence of a generative oracle that
can provide arbitrary transition samples (see, Yeh et al.,
2023, Table 1).

Regarding the dependency of sample complexity on episode
length H , however, it is still unresolved whether improve-
ments are possible. For comparison, in the oracle set-
ting (Yeh et al., 2023), the sample complexity is proportional
to ( 1

1−γ )
1+3(2+ d

ν ), where γ ∈ (0, 1) is the discount factor
in the discounted MDP setting. Informally interpreting 1

1−γ
as the effective episode length, our results show a similar
dependency on H . Notably, our sample complexity reflects
and improvement by a factor of H .

5. Conclusion
We considered the reward-free RL framework with kernel-
based modeling. We developed algorithms for both explo-
ration and planning phases. Our results shows an order
optimal sample complexity for a general class of common
kernels with polynomially decaying eigenvalues, that in-
cludes Matérn and Neural Tangent kernels. We significantly
improve the state of the art as the existing work does not
apply to this class of kernels (with an unbounded sample
complexity). In addition, the scaling of the sample com-
plexity in ϵ matches that of the lower bound in kernel-based
bandits with Matérn kernel, showing its optimality.

Impact Statement
This paper presents research aimed at advancing the field
of Machine Learning. While there are numerous potential
societal implications associated with RL, we do not believe
any require specific emphasis given the theoretical nature of
the work.
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A. RKHS and Mercer Theorem
Mercer theorem (Mercer, 1909) provides a representation of the kernel in terms of an infinite dimensional feature map (e.g.,
see, Christmann & Steinwart, 2008, Theorem 4.49). Let Z be a compact metric space and µ be a finite Borel measure on
Z (we consider Lebesgue measure in a Euclidean space). Let L2

µ(Z) be the set of square-integrable functions on Z with
respect to µ. We further say a kernel is square-integrable if∫

Z

∫
Z
k2(z, z′) dµ(z)dµ(z′) <∞.

Theorem A.1. (Mercer Theorem) Let Z be a compact metric space and µ be a finite Borel measure on Z . Let k be a
continuous and square-integrable kernel, inducing an integral operator Tk : L2

µ(Z)→ L2
µ(Z) defined by

(Tkf) (·) =
∫
Z
k(·, z′)f(z′) dµ(z′) ,

where f ∈ L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(λm, ϕm)}∞m=1 such that λm > 0, and

Tkϕm = λmϕm, for m ≥ 1. Moreover, the kernel function can be represented as

k (z, z′) =

∞∑
m=1

λmϕm(z)ϕm (z′) ,

where the convergence of the series holds uniformly on Z × Z .

According to the Mercer representation theorem (e.g., see, Christmann & Steinwart, 2008, Theorem 4.51), the RKHS
induced by k can consequently be represented in terms of {(λm, ϕm)}∞m=1.

Theorem A.2. (Mercer Representation Theorem) Let {(λm, ϕm)}∞i=1 be the Mercer eigenvalue-eigenfeature pairs. Then,
the RKHS of k is given by

Hk =

{
f(·) =

∞∑
m=1

wmλ
1
2
mϕm(·) : wm ∈ R, ∥f∥2Hk

:=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {
√
λmϕm}∞m=1 form an orthonormal basis forHk.

B. Detailed Analysis of Sample Complexity
Recall the reward-free kernel-based RL problem formulated in Section 2. In the exploration phase, trajectories are collected
for N episodes based on Algorithm 1. In the exploitation phase, after the reward r is revealed, a policy π is obtained
according to Algorithm 2. We establish an upper bound on V ⋆

1 (s; r) − V π
1 (s; r), where V ⋆

h (s; r) is the optimal value
function with r and V π

h (s; r) is the value function for the policy π. It is then straightforward to obtain the appropriate sample
complexity N which guarantees V ⋆

1 (s; r)− V π
1 (s; r) ≤ ϵ.

Proof Structure. We structure our proof as follows. We first recall some notations, prove an upper bound on the total
number of partition components created by the algorithm in the exploration phase, and introduce two high probability events
based on confidence intervals. We then present two main steps of the proof in Sections B.1 and B.2, respectively. In the first
step, we bound the suboptimality of the policy in the planning phase using the total value function in the exploration phase.
In the second step, we bound the total value function in the exploration phase. The proof of lemmas is given in Appendix C.

Recall the notations V π
h (s; r) and Qπ

h(s; r) for the value function and state-action value function of policy π with reward r.
In contrast, V n

h and Qn
h represent the proxies for value function and state-action value function used in the episode n of

exploration phase (Algorithm 1), and Vh and Qh are those used in the planning phase (Algorithm 2).

Next, we bound the total number of partitions used in the exploration phase by the algorithm. This result is used in several
places in the proof. For step h, let UN

h =
⋃N

n=1 SNh be the union of all cover elements used by the algorithm over all
exploration episodes. The size of UN

h is bounded in the following lemma.
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Lemma B.1 (Lemma 2 in (Janz et al., 2020)). The size of UN
h satisfies

|UN
h | ≤ C1N

d
d+α , (18)

for some constant C1 > 0.

The size of UN
h depends on the dimension of the domain and the parameter α used in the splitting rule of domain partitioning.

Let us define event E as the event that all the kernel-based confidence intervals in the exploration phase hold true; i.e.,
∀z ∈ Z , ∀(h, n) ∈ [H]× [N ], ∣∣[PhV

n
h+1](z)− fn

h (z)
∣∣ ≤ β(δ)σn

h(z), (19)

where fn
h and σn

h are the kernel ridge predictor and uncertainty estimates of [PhV
n
h+1] defined in Equations (11) and (12),

respectively.

Similarly, let us define event Ẽ as the event that all the kernel-based confidence intervals in the planning phase hold true; i.e.,
∀z ∈ Z , ∀(h, n) ∈ [H]× [N ],

|[PhVh+1](z)− gh(z)| ≤ wh, (20)

where gh and wh are defined in Equations (16) and (15), respectively.

Lemma B.2. With a choice of β(δ) = O(H
√
log(HN

δ )) with a sufficiently large implied constant, the events E and Ẽ each

hold with probability at least 1− δ/3: Pr(E) ≥ 1− δ/3 and Pr(Ẽ) ≥ 1− δ/3.

B.1. Suboptimality of the Planning Phase

The goal of this section of the proof is to bound V ⋆
1 (s; r)− V π

1 (s; r) using
∑N

n=1 V
⋆
1 (s; r̃

n). This creates the connection
between the planning and exploration phases. To bound V ⋆

1 (s; r) − V π
1 (s; r), we bound the following two terms in the

following two lemmas: V ⋆
1 (s; r)− V1(s) and V1(s)− V π

1 (s; r).

Lemma B.3. Conditioned on Ẽ , we have
V ⋆
h (s1; r)− Vh(s1) ≤ 0.

Lemma B.4. Conditioned on Ẽ , we have

V1(s1)− V π
1 (s1; r) ≤

H∑
h=1

wh(sh, π(sh)).

Combining Lemmas B.3 and B.4, we obtain the following

V ⋆
1 (s1; r)− V π

1 (s1; r) ≤
H∑

h=1

wh(sh, π(sh)). (21)

By definition of wh, we have wh(z) ≤ β(δ)σn
h(z) for all n ≤ N . Recall definition of r̃n = β(δ)σn/H . We have

H∑
h=1

wh(sh, π(sh)) ≤ HV ⋆
1 (s1; r̃

n) (22)

Summing up over n and dividing by N

H∑
h=1

wh(sh, π(sh)) ≤
H

N

N∑
n=1

V ⋆
1 (s; r̃

n). (23)

14



Reward-Free Kernel-Based RL

From (21) and (23), we can see that

V ⋆
1 (s1; r)− V π

1 (s1; r) ≤
H

N

N∑
n=1

V ⋆
1 (s; r̃

n). (24)

This connect the suboptimality for the planning phase to the total value of the exploration phase.

B.2. Total Value Function in the Exploration Phase

In this section, our goal is to bound
∑N

n=1 V
⋆
1 (s; r̃

n). We first bound V ⋆
h (s; r̃

n)− V n
h (s) in Lemma B.5, and then bound

the
∑N

n=1 V
n
1 (s) in Lemma B.6.

Lemma B.5. Conditioned on E , we have
V ⋆
h (s; r̃

n)− V n
h (s) ≤ 0.

Lemma B.6. Define ζnh = [PhV
n
h+1](s

n
h, a

n
h)− Vh+1(s

n
h+1). Conditioned on E , we have

V n
1 (s) ≤

H∑
h=1

ζnh + (2 +
1

H
)

H∑
h=1

β(δ)σn
h(s

n
h, a

n
h).

Summing both sides over n, we obtain

N∑
n=1

V n
1 (s) ≤

N∑
n=1

H∑
h=1

ζnh + (2 +
1

H
)

N∑
n=1

H∑
h=1

β(δ)σn
h(s

n
h, a

n
h).

Using Lemma B.5, we get

N∑
n=1

V ⋆
1 (s; r̃

n) ≤
N∑

n=1

H∑
h=1

ζnh︸ ︷︷ ︸
Term 1

+(2 +
1

H
)

N∑
n=1

H∑
h=1

β(δ)σn
h(s

n
h, a

n
h)︸ ︷︷ ︸

Term 2

. (25)

We next bound the two terms on the right hand side.

Term 1. By Azuma-Hoeffding inequality with probability at least 1− δ/3,

N∑
n=1

H∑
h=1

ζnh ≤ O

(√
H3N log(

1

δ
)

)
. (26)

Term 2. We bound the total uncertainty in the kernel ridge regression measured by
∑N

n=1 (σ
n
h(z

n
h ))

2

N∑
n=1

(σn
h(z

n
h ))

2
=

∑
Z′∈UN

h

∑
zn
h∈Z′

(σn
h(z

n
h ))

2

≤
∑

Z′∈UN
h

2

log(1 + 1/λ2)
Γk,λ(N

N
h,Z′)

= O

 ∑
Z′∈UN

h

log(N)


= O

(
|UN

h | log(N)
)

= O
(
N

d
d+α log(N)

)
.
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The first inequality is commonly used in kernelized bandits. For example see Srinivas et al. (2010), Lemma 5.4. The third
and fifth lines follow from Equation (33) in Appendix C, and Lemma B.1, respectively.

Therefore, using Cauchy-Schwarz inequality,

N∑
n=1

σn
h(z

n
h ) ≤

√√√√N

N∑
n=1

(σn
h(z

n
h ))

2

≤ O
(
N

d+α/2
d+α

√
log(N)

)
. (27)

Replacing the value for β(δ) and summing over h, we obtain

Term 2 = O

(
H2N

d+α/2
d+α

√
log(

NH

δ
) log(N)

)
. (28)

Combining the bound on two terms, we get

N∑
n=1

V ⋆
1 (s; r̃

n) = O

(
H2N

d+α/2
d+α

√
log(

NH

δ
) log(N)

)
. (29)

B.3. Sample Complexity

From Equations (24) and (29), proven in the previous sections, we have, with probability at least 1− δ

V ⋆
1 (s1; r)− V π

1 (s1; r) = O

(
H3

N
N

d+α/2
d+α

√
log(

NH

δ
) log(N)

)

= O

(
H3N

−α
2(α+d) log(N)

√
log(

H

δ
)

)
. (30)

Then, the choice of

N = Θ

(
H3
√
log(Hδ )

ϵ
)2+

2d
α polylog(

H3
√
log(Hδ )

ϵ
)

 (31)

with a sufficiently large constant, ensures that V ⋆
1 (s1; r)− V π

1 (s1; r) ≤ ϵ; i.e, the policy π obtained in the planning phase is
ϵ-optimal.

C. Proof of Lemmas
In this section we provide the proof of lemmas.

C.1. Proof of Lemma B.2

The lemma is a result of confidence intervals given in Lemma 4.4. We only need to prove that β(δ) given in Theorem 4.5
satisfies the condition on the confidence interval width multiplier given in Lemma 4.4.

Consider a cover element Z ′ ∈ UN
h . Using Lemma 4.4, we have, with probability at least 1 − δ, for all h ∈ [H], n ∈

[N ], z ∈ Z ′, for some ϵnh ∈ (0, 1), ∣∣[PhV
n
h+1](z)− fn

h (z)
∣∣ ≤ βn

h (δ, ϵ
n
h)σ

n
h(z) + ϵnh, (32)

where βn
h (δ, ϵ

n
h) is the smallest value satisfying

βn
h (δ, ϵ

n
h) ≥ H + 1 +

H√
2

√
Γk,τ (N) + logNk,h(ϵnh;RN , βn

h (δ, ϵ
n
h)) + 1 + log(

NH

δ
) +

3
√
Nϵnh
τ

,
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with N = Nn
h,Z′ and ϵnh =

H
√

log(HN
δ )√

Nn
h,Z′

.

We use the following lemma to bound the maximum information gain term.
Lemma C.1 (Lemma 2 in (Vakili & Olkhovskaya, 2023)). Consider a positive definite kernel k : Z × Z → R, with
polynomial eigendecay on a hypercube with side length ρZ . The maximum information gain given in Definition 4.2 satisfies

Γk,τ (T ) = O
(
N

1
p̃ (log(N))1−

1
p̃ ρ

α
p̃

Z

)
.

Therefore,

Γk,τ (N
n
h,Z′) = O

(
(Nn

h,Z′)
1
p̃ (log(Nn

h,Z′))1−
1
p̃ ρ

α
p̃

Z′

)
= O

(
(ρZ′)

−α
p̃ (log(Nn

h,Z′))1−
1
p̃ ρ

α
p̃

Z′

)
= O

(
(log(Nn

h,Z′))1−
1
p̃

)
= O (log(N)) , (33)

where the first line is based on Lemma C.1, and the second line is by the design of partitioning in the exploration algorithm.
Recall that each hypercube is partitioned when ρ−α

Z′ < Nn
h,Z′ + 1, ensuring that Nn

h,Z′ remains at most ρ−α
Z′ .

We use the following lemma to bound the covering number of the space of functions.
Lemma C.2 (Lemma 3 in (Vakili & Olkhovskaya, 2023)). Recall the class of state-action value functions Qk,h(R,B),
where k : Z × Z → R satisfies the polynomial eigendecay on a hypercube with side length ρZ . We have

logNk,h(ϵ;R,B) = O

(
R2ραZ
ϵ2

1
p̃−1

1 + log
R

ϵ
+

B2ραZ
ϵ2

2
p̃−1

1 + log
B

ϵ

)
.

For the covering number, with the choice of ϵnh =
H
√

log(HN
δ )√

Nn
h,Z′

, we have

logNk,h(ϵ
n
h;RN , βn

h (δ, ϵ
n
h))

= O

((
R2

NραZ′

(ϵnh)
2

) 1
p̃−1

(1 + log(
RN

ϵnh
)) +

(
(βn

h (δ, ϵ
n
h))

2ραZ′

(ϵnh)
2

) 2
p̃−1

(1 + log(
βn
h (δ, ϵ

n
h)

ϵnh
))

)

= O

( R2
N

H2 log(HN
δ )

) 1
p̃−1

(1 + log(
RN

ϵnh
)) +

(
(βn

h (δ, ϵ
n
h))

2

H2 log(HN
δ )

) 2
p̃−1

(1 + log(
βn
h (δ, ϵ

n
h)

ϵnh
))

 .

We thus see that the choice of βn
h (δ, ϵ

n
h) = Θ(H

√
log(HN

δ )) satisfies the requirement for confidence interval width on Z ′.
We now use probability union bound over all Z ′ ∈ Un

h to obtain

β(δ) = Θ(H

√
log(

HN |HUn
h |

δ
)) = Θ(H

√
log(

HN

δ
)). (34)

For this value of β(δ), we have with probability at least 1− δ, for all h ∈ [H], n ∈ [N ], z ∈ Z ,∣∣[PhV
n
h+1](z)− fn

h (z)
∣∣ ≤ β(δ)σn

h(z) + ϵnh, (35)

where in the above expression ϵnh is the parameter of the covering number corresponding to Z ′ when z ∈ Z ′. Thus

Pr(E) ≥ 1− δ. Finally since ϵnh =
H
√

log(HN
δ )√

Nn
h,Z′

is always smaller than the first term, we have∣∣[PhV
n
h+1](z)− fn

h (z)
∣∣ ≤ β(δ)σn

h(z). (36)

where β is multiplied with a factor of 2 that does not affect its expression in Equation (34).

The proof of Pr(Ẽ) ≥ 1− δ is similar.
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C.2. Proof of Lemma B.3

This can be proven by induction. For h = H + 1, we have V ⋆
H+1(s; r) = VH+1(s) = 0, for any s ∈ S. Also, conditioned

on Ẽ , we have

Q⋆
h(z; r)−Qh(z) = rh(z) + [PhV

⋆
h+1](z; r)−min{rh(z) + gh(z) + wh(z), H}

= max
{
[PhV

⋆
h+1](z; r)− gh(z)− wh(z), 0

}
= max

{
[PhV

⋆
h+1](z; r)− [PhVh+1](z; r) + [PhVh+1](z; r)− gh(z)− wh(z), 0

}
≤ max

{
[PhV

⋆
h+1](z; r)− [PhVh+1](z; r), 0

}
≤ 0.

The first inequality comes form event Ẽ and the second inequality comes form induction assumption. Then, we have

V ⋆
h (s; r)− Vh(s) = max

a∈A
Q⋆

h(z; r)−max
a∈A

Qh(z)

≤ max
a∈A
{Q⋆

h(z; r)−Qh(z)}

≤ 0.

That completes the proof.

C.3. Proof of Lemma B.4

We prove this by induction. We have VH+1(s) = V π
H+1(s) = 0, for any s ∈ S. Also, conditioned on Ẽ , we have

Vh(sh)− V π
h (sh; r) = rh(sh, πh(sh)) + gh(sh, πh(sh)) + wh(sh, πh(sh))−Qπ

h(sh, πh(sh); r)

≤ rh(sh, πh(sh)) + [PhVh+1](sh, πh(sh)) + 2wh(sh, πh(sh))− rh(sh, πh(sh))− [PhV
π
h+1](sh, πh(sh); r)

= [PhVh+1](sh, πh(sh))− [PhV
π
h+1](sh, πh(sh); r) + 2wh(sh, πh(sh))

= Esh+1∼Ph(·|sh,πh(sh))[Vh+1(sh+1)− V π
h+1(sh+1)] + 2wh(sh, πh(sh))

≤
H∑

h′=h

wh(sh, π(sh)).

The first inequality comes form event Ẽ and the second inequality comes form induction assumption.

C.4. Proof of Lemma B.5

This can be proven by induction. For h = H + 1, we have V ⋆
H+1(s; r̃

n) = V n
H+1(s) = 0, for any s ∈ S . Also, conditioned

on E , we have

Q⋆
h(z; r̃

n)−Qn
h(z) = r̃nh(z) + [PhV

⋆
h+1](z)−min{r̃nh(z) + fn

h (z) + β(δ)σn
h(z), H}

= max
{
[PhV

⋆
h+1](z)− fn

h (z)− β(δ)σn
h(z), 0

}
≤ max

{
[PhV

⋆
h+1](z)− [PhV

n
h+1](z), 0

}
≤ 0.

The first inequality holds under event E , and the second inequality comes from induction assumption.
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C.5. Proof of Lemma B.6

Recall ζnh = [PhV
n
h+1](s

n
h, a

n
h)− Vh+1(s

n
h+1). We have, under event E

V n
h (snh) = Qn

h(s
n
h, a

n
h)

= fn
h (s

n
h, a

n
h) + r̃nh(s

n
h, a

n
h) + β(δ)σn

h(s
n
h, a

n
h)

≤ [PhV
n
h+1](s

n
h, a

n
h) + r̃nh(s

n
h, a

n
h) + 2β(δ)σn

h(s
n
h, a

n
h)

= [PhV
n
h+1](s

n
h, a

n
h) + (2 +

1

H
)β(δ)σn

h(s
n
h, a

n
h)

= ζnh + V n
h+1(s

n
h+1) + (2 +

1

H
)β(δ)σn

h(s
n
h, a

n
h)

The inequality holds under event E . Summing the telescoping series

V n
h (snh)− V n

h+1(s
n
h+1) ≤ ζnh + (2 +

1

H
)β(δ)σn

h(s
n
h, a

n
h)

over h, we get

V n
1 (s) ≤

H∑
h=1

ζnh + (2 +
1

H
)

H∑
h=1

β(δ)σn
h(s

n
h, a

n
h).

Taking summation over n

N∑
n=1

V n
1 (s) ≤

N∑
n=1

H∑
h=1

ζnh + (2 +
1

H
)

N∑
n=1

H∑
h=1

β(δ)σn
h(s

n
h, a

n
h),

that completes the proof.
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