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ABSTRACT

This paper is motivated by recent research in the d-dimensional stochastic linear
bandit literature, which has revealed an unsettling discrepancy: algorithms like
Thompson sampling and Greedy demonstrate promising empirical performance,
yet this contrasts with their pessimistic theoretical regret bounds. The challenge
arises from the fact that while these algorithms may perform poorly in certain
problem instances, they generally excel in typical instances. To address this, we
propose a new data-driven technique that tracks the geometric properties of the
uncertainty ellipsoid around the main problem parameter. This methodology en-
ables us to formulate a data-driven frequentist regret bound, which incorporates
the geometric information, for a broad class of base algorithms, including Greedy,
OFUL, and Thompson sampling. This result allows us to identify and “course-
correct” problem instances in which the base algorithms perform poorly. The
course-corrected algorithms achieve the minimax optimal regret of order Õ(d

√
T )

for a T -period decision-making scenario, effectively maintaining the desirable at-
tributes of the base algorithms, including their empirical efficacy. We present
simulation results to validate our findings using synthetic and real data.

1 INTRODUCTION

Multi-armed bandits (MABs) provide a framework for studying the exploration-exploitation trade-
off in sequential decision-making, where a decision-maker selects actions and observes uncertain
rewards. This extends to contextual bandits with features or covariates, as shown in numerous
applications (Langford & Zhang, 2008; Li et al., 2010; Tewari & Murphy, 2017; Zhou et al., 2020;
Villar et al., 2015; Bastani & Bayati, 2020; Cohen et al., 2020). This paper focuses on a well-
studied class of models that captures both MABs and contextual bandits as special cases while
being amenable to theoretical analysis: the stochastic linear bandit (LB) problem. In this model,
the problem parameter θ⋆ represents an unknown vector in Rd, while the actions, also vectors in
Rd, yield noisy rewards with a mean equal to the inner product of θ⋆ and the chosen action. The
objective of a policy is to maximize the cumulative reward based on the observed data up to the
decision time. The policy’s performance is measured by the cumulative regret, which quantifies the
difference between the total expected rewards achieved by the policy and the maximum achievable
expected reward.

Achieving this objective necessitates striking a balance between exploration and exploitation. In the
context of LB, this entails selecting actions that aid in estimating the true parameter θ⋆ accurately
while obtaining optimal rewards. Various algorithms based on the optimism principle have been
developed to address this challenge, wherein the optimal action is chosen based on the upper con-
fidence bound (UCB) (Lai & Robbins, 1985; Auer, 2002; Dani et al., 2008; Rusmevichientong &
Tsitsiklis, 2010). Another popular strategy is Thompson sampling (TS), a Bayesian heuristic intro-
duced by Thompson (1933) that employs randomization to select actions according to the posterior
distribution of reward functions. Additionally, the Greedy policy that selects the myopically best
action is shown to be effective in contextual bandits (Kannan et al., 2018; Raghavan et al., 2018;
Hao et al., 2020; Bastani et al., 2021).
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In the linear bandit setting, two regret types are considered. Bayesian regret treats parameter θ⋆ as
a random variable with a prior distribution, averaging regret over noise, algorithm randomness, and
parameter randomness, measuring expected performance across parameter realizations. Russo &
Van Roy (2014) and Dong & Van Roy (2018) establish an Õ(d

√
T ) upper bound for the Bayesian

regret of the Thompson Sampling (TS) heuristic, referred to as LinTS, matching the minimax opti-
mal bound by Dani et al. (2008). Here, Õ denotes asymptotic order up to polylogarithmic factors.
Frequentist regret assumes fixed unknown parameter θ⋆, averaging only over noise and algorithm
randomness. The OFUL algorithm (Abbasi-Yadkori et al., 2011) achieves an optimal Õ(d

√
T )

frequentist regret bound. However, TS-Freq, a frequentist LinTS variant with inflated posterior vari-
ance, only achieves Õ(d

√
dT ) (Agrawal & Goyal, 2013; Abeille et al., 2017), suboptimal by factor√

d. Hamidi & Bayati (2020a) confirms this inflation is necessary and LinTS’s frequentist regret
cannot be improved. The Greedy algorithm lacks theoretical guarantees for linear bandit problems
(Lattimore & Szepesvari, 2017), suggesting both LinTS and Greedy may perform suboptimally.

Despite the theoretical gaps, LinTS demonstrates strong empirical performance (Russo et al., 2018),
suggesting posterior distribution inflation may be unnecessary in most scenarios. Similarly, the
Greedy algorithm performs well in typical cases (Bietti et al., 2021). While optimism-based al-
gorithms are computationally expensive (generally NP-hard (Dani et al., 2008; Russo & Van Roy,
2014; Agrawal, 2019)), LinTS and Greedy maintain computational efficiency. This disparity be-
tween theoretical, computational, and empirical performance prompts two questions: Can we iden-
tify problematic instances for LinTS and Greedy in a data-driven way and apply ”course-correction”
to ensure competitive frequentist regret bounds? Can this be achieved while preserving their empir-
ical performance and computational efficiency? In this paper, we provide positive answers to both
questions. Specifically, we make the following contributions.

1. We develop a real-time geometric analysis technique for the d-dimensional confidence ellipsoid
surrounding θ⋆. This method is crucial for maximizing the use of historical data, advancing be-
yond methods that capture only limited information from the confidence ellipsoid, such as a single
numerical value. Consequently, this facilitates a more precise “course-correction”.

2. We introduce a comprehensive family of algorithms, termed POFUL (encompassing OFUL,
LinTS, TS-Freq, and Greedy as specific instances), and derive a general, data-driven frequentist
regret bound for them. This bound is efficiently computable using data observed from previous
decision epochs.

3. We introduce course-corrected variants of LinTS and Greedy that achieve minimax optimal fre-
quentist regret. These adaptations maintain most of the desirable characteristics of the original
algorithms.

1.1 OTHER RELATED LITERATURE

Our work is closely related to three main research streams: methodological foundations of lin-
ear bandits, bandit algorithms utilizing spectral properties, and data-driven exploration techniques.
While these works share some similarities with our approach, we highlight the key differences and
the unique aspects of our methodology.

From a methodological perspective, our regret analysis builds upon the foundations laid by Abbasi-
Yadkori et al. (2011), Agrawal & Goyal (2013), and Abeille et al. (2017). However, a key distin-
guishing factor is that our approach does not rely on optimistic samples, which is a departure from
previous methods. This means that the algorithms we study do not always choose actions that are
expected to perform better than the true optimal action. By allowing non-optimistic samples, we
avoid the need to inflate the posterior distribution, a requirement in the works of Agrawal & Goyal
(2013) and Abeille et al. (2017).

Our use of spectral information in bandit algorithms bears some resemblance to the study of Spec-
tral Bandits (Valko et al., 2014; Kocák et al., 2014; Kocák et al., 2020; Kocák & Garivier, 2020).
These works represent arm rewards as smooth functions on a graph, leveraging low-rank structures
to improve algorithmic performance and obtain regret guarantees independent of the number of ac-
tions. In contrast, our approach exploits the spectral properties of the action covariance matrix,
which is distinct from graph spectral analysis. Moreover, our research tackles the broader context of
stochastic linear bandits without assuming any low-rank structure.
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Our work also shares conceptual similarities with research on exploration strategies (Russo &
Van Roy, 2016; Kirschner & Krause, 2018) and data-driven exploration reduction (Bastani et al.,
2021; Pacchiano et al., 2020; Hamidi & Bayati, 2020a;b). However, our methodology and data uti-
lization differ significantly. For instance, Bastani et al. (2021) focuses on the minimum eigenvalue
of the covariance matrix, a single-parameter summary of the observed data, while Hamidi & Bayati
(2020b) uses information from one-dimensional reward confidence intervals. The work of Hamidi
& Bayati (2020a) is more closely related to ours, as it employs spectral information to improve the
performance of Thompson Sampling in linear bandits. They use a single summary statistic called
the thinness coefficient to decide whether to inflate the posterior. In contrast, our approach leverages
the full geometric details of the d-dimensional confidence ellipsoid, harnessing richer geometric
information.

2 SETUP AND PRELIMINARIES

Notations. We use ∥ · ∥ to denote the Euclidean 2-norm. For a symmetric positive definite matrix
A and a vector x of proper dimension, we let ∥x∥A :=

√
x⊤Ax be the weighted 2-norm (or the

A-norm). We let ⟨·, ·⟩ denote the inner product in Euclidean space such that ⟨x, y⟩ = x⊤y. For a
d-dimensional matrix V , we let λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λd(V ) be the eigenvalues of V arranged
in decreasing order. We let Bd denote the unit ball in Rd, and Sd−1 = {x ∈ Rd : ∥x∥ = 1} denote
the unit hypersphere in Rd. For an interger N ≥ 1, we let [N ] denote the set {1, 2, . . . , N}. We use
theO(·) notation to suppress problem-dependent constants, and the Õ(·) notation further suppresses
polylog factors.

Problem formulation and assumptions. We consider the stochastic linear bandit problem. Let
θ⋆ ∈ Rd be a fixed but unknown parameter. At each time t ∈ [T ], a policy π selects action xt from
a set of action Xt ⊂ Rd according to the past observations and receives a reward rt = ⟨xt, θ

⋆⟩+ εt,
where εt is mean-zero noise with a distribution specified in Assumption 3 below. We measure the
performance of π with the cumulative expected regret R(T ) =

∑T
t=1⟨x⋆

t , θ
⋆⟩ − ⟨xt, θ

⋆⟩ , where
x⋆
t is the best action at time t, i.e., x⋆

t = argmaxx∈Xt
⟨x, θ⋆⟩ . Let Ft be a σ-algebra generated by

the history (x1, r1, . . . , xt, rt) and the prior knowledge, F0. Therefore, {Ft}t≥0 forms a filteration
such that each Ft encodes all the information up to the end of period t.

We make the following assumptions that are standard in the relevant literature.
Assumption 1 (Bounded parameter). The unknown parameter θ⋆ is bounded as ∥θ⋆∥ ≤ S, where
S > 0 is known.
Assumption 2 (Bounded action sets). The action sets {Xt} are uniformly bounded and closed
subsets of Rd, such that ∥x∥ ≤ Xt for all x ∈ Xt and all t ∈ [T ], where Xt’s are known and
supt≥1 {Xt} <∞.

Assumption 3 (Subgaussian reward noise). The noise sequence {εt}t≥1 is conditionally mean-
zero and R-subgaussian, where R is known. Formally, for all real valued λ, E

[
eλεt |Ft

]
≤

exp
(
λ2R2/2

)
. This condition implies that E [εt|Ft] = 0 for all t ≥ 1.

2.1 REGULARIZED LEAST SQUARE AND CONFIDENCE ELLIPSOID

In this subsection, we review the useful frequentist tools developed by Abbasi-Yadkori et al. (2011)
for estimating the unknown parameter θ∗ in linear bandit (LB) problems.

Consider an arbitrary sequence of actions (x1, . . . , xt) and their corresponding rewards (r1, . . . , rt).
In LB problems, the parameter θ∗ is typically estimated using the regularized least squares (RLS)
estimator. Let λreg be a fixed regularization parameter. The sample covariance matrix Vt and the
RLS estimate θ̂t are defined as follows:

Vt = λregId +

t∑
s=1

xsx
⊤
s , θ̂t = V −1

t

t∑
s=1

xsrs. (1)

The following proposition from Abbasi-Yadkori et al. (2011) establishes that the RLS estimate θ̂t
concentrates around the true parameter θ∗ with high probability.
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Proposition 1 (Theorem 2 in Abbasi-Yadkori et al. (2011)). Let δ ∈ (0, 1) be a fixed confidence
level. Then, with probability at least 1− δ, it holds for all x ∈ Rd that

∥θ̂t − θ⋆∥Vt
≤ βRLS

t,δ,λreg
, |⟨x, θ̂t − θ⋆⟩| ≤ ∥x∥V −1

t
βRLS
t,δ,λreg

where the confidence bound βRLS
t,δ,λreg

is defined as

βRLS
t,δ,λreg

= R

√
2 log(λreg + t)d/2λ

−d/2
reg δ−1 +

√
λregS. (2)

Proposition 1 enables us to construct the following sequence of confidence ellipsoids.
Definition 1. Fix δ ∈ (0, 1). We define the RLS confidence ellipsoid as

ERLS
t,δ,λreg

= {θ ∈ Rd : ∥θ − θ̂t∥Vt
≤ βRLS

t,δ,λreg
} .

The next proposition, known as the elliptical potential lemma, plays a central role in bounding
the regret. This proposition provides the key element in the work of Abbasi-Yadkori et al. (2011),
showing that the cumulative prediction error incurred by the action sequence used to estimate θ∗ is
small.
Proposition 2 (Lemma 11 in Abbasi-Yadkori et al. (2011)). If λreg > 1, for an arbitrary sequence
(x1, . . . , xt), it holds that

∑t
s=1 ∥xs∥2V −1

s
≤ 2 log det(Vt+1)

det(λregI)
≤ 2d log(1 + t

λreg
) .

3 POFUL ALGORITHMS

In this section, we introduce POFUL (Pivot OFUL), a generalized framework of OFUL. This frame-
work enables a unified analysis of frequentist regret for common algorithms.

At a high level, POFUL is designed to encompass the exploration mechanism of OFUL and LinTS.
POFUL takes as input a sequence of inflation parameters {ιt}t∈[T ], feasible (randomized) pivots
{θ̃t}t∈[T ] and optimism parameters {τt}t∈[T ]. The inflation parameters are used to construct confi-
dence ellipsoids that contain {θ̃t}t∈[T ] with high probability. This is formalized in the next defini-
tion.
Definition 2. Fix δ ∈ (0, 1) and δ′ = δ/2T . Given the inflation parameters {ιt}t∈[T ], we call
random variables {θ̃t}t∈[T ] feasible pivots if for all t ∈ [T ], P[θ̃t ∈ EPV T

t,δ′,λreg
|Ft] ≥ 1− δ′, where we

define the “pivot ellipsoid” as EPV T
t,δ,λreg

:= {θ ∈ Rd : ∥θ − θ̂t∥Vt ≤ ιtβ
RLS
t,δ,λreg

}.

At each time t, POFUL chooses the action that maximizes the optimistic reward

x̃t = argmax
x∈Xt

⟨x, θ̃t⟩+ τt∥x∥V −1
t

βRLS
t,δ′,λreg

, (3)

as shown in a pseudocode representation in Algorithm 1 and illustrated in Figure 1a.

Recall OFUL encourages exploration by introducing the uncertainty term τt∥x∥V −1
t

βRLS
t,δ′,λreg

in the
reward, while LinTS explores through random sampling within the confidence ellipsoid. We let
POFUL select an arbitrary pivot (which can be random) from EPV T

t,δ′,λreg
and maximize the optimistic

reward to encompass arbitrary exploration mechanisms within EPV T
t,δ′,λreg

.

We demonstrate that POFUL encompasses OFUL, LinTS, TS-Freq, and Greedy as special cases, as
illustrated in Figure 1b.
Example 1 (OFUL). For stochastic linear bandit problems, OFUL chooses actions by solving the
optimization problem maxx∈Xt ⟨x, θ̂t⟩ + ∥x∥V −1

t
βRLS
t,δ′,λreg

. Therefore, OFUL is a specially case of

POFUL where ιt = 0, τt = 1 and θ̃t = θ̂t, the center of the confidence ellipsoid, for all t ∈ [T ].

Before describing how TS can be derived as an instance of POFUL, we introduce a definition.
Definition 3. Let δ ∈ (0, 1). We define DSA(δ) as a distribution satisfying Pη∼DSA(δ) [∥η∥ ≤ 1] ≥
1− δ.
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Algorithm 1 POFUL

Require: T , δ, λreg, {ιt}t∈[T ], {τt}t∈[T ]

Initialize V0 ← λregId, θ̂1 ← 0, δ′ ← δ/2T
for t = 0, 1, . . . , T do

Sample a feasible pivot θ̃t with respect to ιt according to Definition 2
x̃t ← argmaxx∈Xt

⟨x, θ̃t⟩+ τt∥x∥V −1
t

βRLS
t,δ′,λreg

Observe reward rt
Vt+1 ← Vt + x̃tx̃

⊤
t

θ̂t+1 ← V −1
t+1

∑t
s=1 x̃srs.

end for

Example 2 (TS). Linear Thompson Sampling (LinTS) algorithm is a generic randomized algorithm
that samples from a distribution constructed from the RLS estimate at each step. At time t, LinTS
samples as θ̃t = θ̂t+ ιTS

t βRLS
t,δ′,λreg

V
−1/2
t ηt, where δ′ = δ/2T , ιTS

t is inflation parameter controlling
the scale of the sampling range, and ηt is a random sample from a normalized sampling distribution
DSA(δ′) that concentrates with high probability. LinTS is a special case of POFUL where ιt = ιTS

t ,
τt = 0 and θ̃t = θ̂t + ιTS

t βRLS
t,δ′,λreg

V
−1/2
t ηt. Setting ιt = Õ(1) corresponds to the original LinTS

algorithm, while setting ιt = Õ(
√
d) corresponds to the frequentist variant of LinTS studied in

Agrawal & Goyal (2013); Abeille et al. (2017), namely TS-Freq. This means TS-Freq inflates the
posterior by a factor of order

√
d.

Example 3 (Greedy). Greedy is a special case of POFUL with ιt = τt = 0, θ̃t = θ̂t, ∀t.

4 FREQUENTIST REGRET ANALYSIS OF POFUL

In this section, we present the frequentist regret analysis of POFUL algorithms. Proofs appear in
Appendix C. We first introduce high-probability concentration events.

Definition 4. Fix δ ∈ (0, 1) and δ′ = δ/2T . We define βPV T
t,δ′,λreg

:= ιtβ
RLS
t,δ′,λreg

, Ât := {∀s ≤ t :

∥θ̂t − θ⋆∥Vt
≤ βRLS

t,δ′,λreg
}, Ãt := {∀s ≤ t : ∥θ̃t − θ̂t∥Vt

≤ βPV T
t,δ′,λreg

}, and At := Ât ∩ Ãt.

Proposition 3. Under Assumptions 1, 2 and 3 , we have P [AT ] ≥ 1− δ.

4.1 AN DATA-DRIVEN REGRET BOUND FOR POFUL

In the following, we condition on the event AT which holds with probability 1 − δ. The following
proposition bounds the instantaneous regret of POFUL.

Proposition 4. Suppose θ⋆ ∈ ERLS
t,δ′,λreg

and θ̃t ∈ EPV T
t,δ′,λreg

, it holds that

⟨x⋆
t , θ

⋆⟩ − ⟨x̃t, θ
⋆⟩ ≤ (1 + ιt − τt)∥x⋆

t ∥V −1
t

βRLS
t,δ′,λreg

+ (1 + ιt + τt)∥x̃t∥V −1
t

βRLS
t,δ′,λreg

. (4)

O

θ̂t

EPV T
t,δ′,λreg

θ̃t

Parameter
space: Rd

Reward
space: R

POFUL

2ιt∥x∥V −1
t
βRLS
t,δ′,λreg

⟨θ̃t, x⟩ 2τt∥x∥V −1
t
βRLS
t,δ′,λreg

⟨θ̂t, x⟩

(a)

OFUL
⟨θ̂t, x⟩

TS⟨θ̃t, x⟩

⟨θ̂t, x⟩ Greedy⟨θ̃t, x⟩=⟨θ̂t, x⟩

(b)

Figure 1: (a) POFUL algorithms illustration for general ιt and τt. (b) Special cases: OFUL (ιt = 0,
τt = 1), TS (τt = 0), and Greedy (ιt = τt = 0).
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Note that this upper bound is different from what’s used in the optimism-based methods (Abbasi-
Yadkori et al., 2011; Agrawal & Goyal, 2013; Abeille et al., 2017), we reproduce their upper bound
and discuss the relationship of our method and theirs in Appendix D.

On the right-hand side of equation 4, since the oracle optimal action sequence {x⋆
t }t∈[T ] is unknown

to the algorithm and is different from the action sequence {x̃t}t∈[T ] played by POFUL, one cannot
apply Proposition 2 to bound the summation

∑T
t=1 ∥x̃t∥2V −1

t

and get an upperbound of the regret.

To address this, the key point to connect {x̃t}t∈[T ] and {x⋆
t }t∈[T ] with V −1

t -norm. This motivates
the following definition.

Definition 5. For each t ≥ 1, let x̃t and x⋆
t respectively denote the action chosen by POFUL and

the optimal action. We define the uncertainty ratio at time t as αt := ∥x⋆
t ∥V −1

t
/∥x̃t∥V −1

t
. We also

define the (instantaneous) regret proxy at time t as µt := αt(1 + ιt − τt) + 1 + ιt + τt.

Note that ⟨x, θ̂t − θ⋆⟩ ≤ ∥x∥V −1
t

βRLS
t,δ′,λreg

holds with high probability, we have that ∥x∥V −1
t

essen-
tially determines the length of the confidence interval of the reward ⟨x, θ⋆⟩. Hence, αt serves as the
ratio of uncertainty degrees of the reward obtained by the optimal action x⋆

t and the chosen action
x̃t.

The intuition behind the definition for µt is constructing a regret upper bound similar to that of
OFUL. Specifically, Proposition 4 indicates ⟨x⋆

t , θ
⋆⟩ − ⟨x̃t, θ

⋆⟩ ≤ µt∥x̃t∥V −1
t

βRLS
t,δ′,λreg

, and we can
check that the instantaneous regret of OFUL satisfies ⟨x⋆

t , θ
⋆⟩ − ⟨x̃t, θ

⋆⟩ ≤ 2∥x̃t∥V −1
t

βRLS
t,δ′,λreg

. In
this sense, µt is a proxy of the instantaneous regret incurred by POFUL at time t. Moreover, OFUL
can be regarded as a POFUL algorithm whose µt is fixed at 2, and we could extend the definition of
αt to OFUL by solving µt = αt(1 + ιt − τt) + 1 + ιt + τt and set αt = 1 for all t ∈ [T ] for OFUL
(recall that in OFUL, ιt = 0 and τt = 1 for all t ∈ [T ]).

The following Theorem connects {µt}t∈[T ] and R(T ). It provides an oracle but general frequentist
regret upper bound for all POFUL algorithms.

Theorem 1 (Oracle frequentist regret bound for POFUL). Fix δ ∈ (0, 1) and let δ′ = δ/2T . Under
Assumptions 1, 2 and 3, with probability 1− δ, POFUL achieves a regret of

R(T ) ≤

√√√√2d

(
T∑

t=1

µ2
t

)
log

(
1 +

T

λreg

)
βRLS
T,δ′,λreg

. (5)

Remark 1. We call Theorem 1 an oracle regret bound as {µt}t∈[T ] for general POFUL depends
on the unknown system parameter θ⋆. In general, they cannot be calculated by the decision-maker.
Nevertheless, note that ιt and τt are chosen by the decision-maker, when we have computable upper
bounds {α̂t}t∈[T ] for {αt}t∈[T ], using µ2

t ≤ 2α2
t (1+ ιt− τt)

2+2(1+ ιt+ τt)
2, we could calculate

upper bounds for {µt}t∈[T ] as well. Consequently, Theorem 1 instantly turns into a data-driven
regret bound for POFUL and could be utilized later for course correction, which will be the aim
of the next section. When we additionally know that 1 + ιt − τt is non-negative, we would use the
equality µt = αt(1 + ιt − τt) + 1 + ιt + τt directly for the bound.

Remark 2. In the Discussion section of Abeille et al. (2017), the authors introduce a concept similar
to the reciprocal of our αt. They suggest that the necessity of proving LinTS samples are optimistic
could be bypassed if for some α > 0 LinTS samples θ̃t such that ∥x⋆(θ̃t)∥V −1

t
≥ α∥x⋆(θ⋆t )∥V −1

t

with constant probability, where x⋆(θ̃t) and x⋆(θ⋆t ) represent the optimal actions corresponding to
θ̃t and θ⋆t , respectively. They pose this as an open question regarding the possibility of relaxing the
requirement of inflating the posterior. In the following section, we provide a positive answer to this
question by studying the reciprocal of their α using geometric arguments. This investigation offers
an explanation for the empirical success of LinTS without the need for posterior inflation.

5 A DATA-DRIVEN APPROACH

In this section, we present the main contribution of this work which provides a data-driven approach
to calibrating POFUL. Note that ιt and τt are parameters of POFUL that can be controlled by
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a decision-maker, the essential point is to find a computable, non-trivial upper bound α̂t for the
uncertainty ratio αt, which turns into an upper bound µ̂t for the regret proxy µt that’s deeply related
to the frequentist regret of POFUL.

We focus on scenarios where τt = 0 for all t ∈ [T ]. These include LinTS and variants such as
TS-Freq, as well as Greedy - standard algorithms still lacking theoretical regret guarantees. Below,
we construct upper bounds {α̂t}t∈[T ] for the continuous-action scenario. Bounds for discrete-action
scenarios appear in Appendix E.

5.1 CONTINUOUS ACTION SPACE

Our strategy capitalizes on geometric insights related to the properties of the confidence ellipsoids,
providing upper bounds that can be computed efficiently. For the sake of a better illustration, we
consider Xt = Sd−1 for all t ∈ [T ] for this scenario, where Sd−1 =

{
x ∈ Rd : ∥x∥ = 1

}
is the

unit hypersphere in Rd. This is a standard example of continuous action space, and is the same as
the setting considered in Abeille et al. (2017). We remark that for this specific setting, the problem
is still hard. This is because we don’t have a closed-form solution for the set of potentially optimal
actions.

In this setting, the optimal action x⋆
t (θ) := argmaxx∈Xt

⟨x, θ⟩ takes the form x⋆
t (θ) = θ/∥θ∥. To

upper bound αt, we consider respectively the smallest and largest value of ∥x⋆
t (θ)∥V −1

t
for θ in the

confidence ellipsoids of θ, namely, ERLS
t,δ′,λreg

and EPV T
t,δ′,λreg

. Specifically, we have

αt ≤
supθ∈ERLS

t,δ′,λreg
∥x⋆

t (θ)∥V −1
t

infθ∈EPV T
t,δ′,λreg

∥x⋆
t (θ)∥V −1

t

. (6)

As is illustrated in Figure 2, the set of potentially optimal actions Ct is the projection of the confi-
dence ellipsoid Et onto Sd−1. It’s hard to get a closed-form expression for Ct, so we cannot directly
calculate the range of V −1

t -norm of actions in Ct. Nevertheless, when POFUL has implemented suf-
ficient exploration so that Et is small enough, Ct concentrates accordingly to a small cap on Sd−1.
Therefore, it is possible to estimate the range of the Vt-norm by employing geometric reasoning.
Subsequently, this estimated range will be utilized to ascertain the range of the V −1

t -norm.

(a) (b)

Figure 2: Illustration of potentially optimal actions set Ct in R2. (a): Ct is Et’s projection onto Sd−1.
(b): As more data is collected, Et shrinks (colors show exploration levels). Potentially optimal
actions point in similar directions, determining their Vt-norm. This suggests their Vt-norm range
could be estimated geometrically.

The main theorem (proved in Section A) derives an upper bound for αt based on this idea.

Theorem 2. Suppose Xt = Sd−1 for all t ∈ [T ]. Define mt = (∥θ̂t∥2Vt
− (βRLS

t,δ′,λreg
)2)/(∥θ̂t∥ +

βRLS
t,δ′,λreg

/λd(Vt))
2, Mt = ∥θ̂t∥2V 2

t
/(∥θ̂t∥2Vt

− (βPV T
t,δ′,λreg

)2). Let k ∈ [d] be the integer that satisfies

7
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λk(V ) ≤Mt ≤ λk+1(V ). Define βPV T
t,δ′,λreg

:= ιtβ
RLS
t,δ′,λreg

and

Φt =

{
(λ−1

1 (Vt) + λ−1
d (Vt)−mtλ

−1
1 (Vt)λ

−1
d (Vt))

1
2 , if ∥θ̂t∥Vt

≥ βRLS
t,δ′,λreg

λ
− 1

2

d (Vt), if ∥θ̂t∥Vt
< βRLS

t,δ′,λreg

,

Ψt =

{
(λ−1

k (Vt) + λ−1
k+1(Vt)−Mtλ

−1
k (Vt)λ

−1
k+1(Vt))

1
2 , if ∥θ̂t∥Vt

≥ βPV T
t,δ′,λreg

λ
− 1

2
1 (Vt), if ∥θ̂t∥Vt

< βPV T
t,δ′,λreg

.

Then for all t ∈ [T ], conditioned on Ât ∩ Ãt, it holds for all s ≤ t that αs ≤ α̂s := Φs/Ψs.

To better understand what Theorem 2 implies, we discuss some special cases in Appendix F and
provide empirical validations for them.

6 A META-ALGORITHM FOR COURSE-CORRECTION

This section demonstrates how the data-driven regret bound can enhance standard bandit algorithms.
We propose a meta-algorithm that creates course-corrected variants of base algorithms, achieving
minimax-optimal frequentist regret guarantees while preserving most original characteristics, in-
cluding computational efficiency and typically low regret.

We take LinTS as an example of the base algorithm, and propose the algorithm Linear Thompson
Sampling with Maximum Regret (Proxy) (TS-MR). The idea is to measure the performance of
LinTS using µ̂t and avoid bad LinTS actions by switching to OFUL actions. Specifically, at each
time t, TS-MR calculates the upper bound µ̂t and compares it with a preset threshold µ. If µ̂t > µ,
LinTS might be problematic and TS-MR takes an OFUL action to ensure a low instantaneous regret;
if µ̂t ≤ µ, TS-MR takes the LinTS action. We remark that setting ιt = 0 for all t ∈ [T ] yields the
corresponding Greedy-MR algorithm. The pseudocode is presented in Algorithm 2 in Appendix G.
Remark 3. Computing µ̂t primarily requires SVD decomposition of the sample covariance matrix
Vt. Since Vt = λregId +

∑t
s=1 xsx

⊤
s is updated via rank-one matrices, its SVD can be efficiently

updated (Gandhi & Rajgor, 2017), preventing computational bottlenecks.

By design, course-corrected algorithms ensure that µt ≤ max{µ, 2} for all t ∈ [T ]. Substituting
this upper bound into Theorem 1 establishes that these algorithms achieve optimal frequentist regret,
up to a constant factor.

Corollary 1. TS-MR and Greedy-MR achieve a frequentist regret of Õ(max{µ, 2}d
√
T ).

In high-risk settings where LinTS and Greedy may fail, a small µ ensures TS-MR and Greedy-
MR select more OFUL actions, promoting sufficient exploration. Conversely, in low-risk settings
where the original algorithms perform well, a large µ favors TS and greedy actions, minimizing
unnecessary exploration and reducing computational cost. In Appendix H, we show how µ impacts
the fraction of OFUL actions in TS-MR and Greedy-MR and their performance. Results indicate that
course-corrected algorithms maintain robustness across a range of moderate µ values, suggesting
that the precise selection of µ is unlikely to present a significant practical concern.

7 SIMULATIONS

We aim to compare TS-MR, Greedy-MR, and key baseline algorithms, via simulation.

7.1 SYNTHETIC DATASETS

We conduct simulations on three representative synthetic examples. We average simulation results
over 100 independent runs for each of the examples. The results are shown in Figure 3.

Example 1. Stochastic linear bandit with uniformly and independently distributed actions.
We fix d = 50, and sample θ⋆ ∼ Unif({θ ∈ Rd|∥θ∥ = 10}) on a sphere with fixed norm. At
each time t, we generate 100 i.i.d. random actions sampled from Unif(Sd−1) to form Xt. This is a

8
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basic example of standard stochastic linear bandit problems without any extra structure. We set the
threshold µ = 8 for TS-MR and Greedy-MR. TS-Freq shows pessimistic regret due to the inflation
of the posterior, while other algorithms in general perform well.

Example 2. Contextual bandits embedded in the linear bandit problem (Abbasi-Yadkori,
2013). We fix d = 50, and sample θ⋆ ∼ Unif({θ ∈ Rd|∥θ∥ = 70}). At each time t, we first
generate a random vector ut ∼ N (0, I5) and let xt,i ∈ R50 be the vector whose i-th block of size
5 is a copy of ut, and other components are 0. Then Xt = {xt,i}i∈[10] is an action set of size 10,
sharing the same feature ut in different blocks. This problem is equivalent to a 10-armed contextual
bandit. We set µ = 12 for TS-MR and Greedy-MR. In this setting, Greedy performs suboptimally
due to a lack of exploration for some arms. Nevertheless, Greedy-MR outperforms both Greedy and
OFUL by adaptively choosing OFUL actions only when it detects large regret proxy µ̂t.

Example 3. Prior mean mismatch (Hamidi & Bayati, 2020a). This is an example in which
LinTS is shown to incur linear Bayesian regret. We sample θ⋆ ∼ N (m13d, I3d) and fix the action
set Xt = {0, xa, xb} for all t ∈ [T ], where xa = −

∑d
i=1 ei/

√
3d, xb =

∑3d
i=11 ei

√
3d −∑d

i=1 ei/
√
3d. It is shown in Hamidi & Bayati (2020a) that, when LinTS takes a wrong prior mean

as input, it has a large probability to choose x̃2 = 0, conditioned on x̃1 = xa. Note that choosing the
zero action brings no information update to LinTS, it suffers a linear Bayesian regret when trying
to escape from the zero action. We let m = 10 and set d = 10, so the problem is a 30-dimensional
linear bandit. We set µ = 12 for TS-MR and Greedy-MR. We see both LinTS and Greedy incur
linear regrets as expected, while TS-MR and Greedy-MR, switch to OFUL adaptively to tackle this
hard problem and achieve sublinear regret.

(a) example 1 (b) example 2 (c) example 3

(d) example 1 (e) example 2 (f) example 3

Figure 3: Simulation results on synthetic data. (a) - (c): Cumulative regret of TS-MR and Greedy-
MR versus baseline algorithms. Shaded regions show ±2 SE of mean regret. (d) - (f): Fraction of
OFUL actions in TS-MR and Greedy-MR.

7.2 REAL-WORLD DATASETS

We explore the performance of standard POFUL algorithms and the proposed TS-MR and Greedy-
MR algorithms on real-world datasets. We use three classification datasets from OPENML: Car-
diotocography, JapaneseVowels, and Segment, representing healthcare, pattern recognition, and
computer vision domains. Following Bietti et al. (2021); Bastani et al. (2021), we convert these
classification tasks to contextual bandit problems and embed them into linear bandit problems as in
Example 2, Section 7.1. Each class becomes an action where the decision-maker receives a binary
reward (1 for correct classification, 0 otherwise) plus Gaussian noise.
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We plot the cumulative regret (averaged over 100 runs) for all algorithms. Figure 4 shows that for all
real-world datasets: OFUL and TS-Freq perform poorly due to their conservative exploration; LinTS
and Greedy are achieving empirical success even though they don’t have theoretical guarantees;
TS-MR and Greedy-MR retain the desirable empirical performance of LinTS and Greedy, while
enjoying the minimax optimal frequentist regret bound.

(a) Cardiotocography dataset (b) JapaneseVowels dataset (c) Segment dataset

(d) Cardiotocography dataset (e) JapaneseVowels dataset (f) Segment dataset

Figure 4: Simulation results on real-world datasets. (a) - (c): Cumulative regret of all algorithms.
Shaded regions show the ±2 SE of the mean regret. (d) - (f): Fraction of OFUL actions of TS-MR
and Greedy-MR.

Remark 4. Simulation results in Figures 3 and 4 show OFUL actions are primarily used in the early
stages. This indicates: (1) Greedy-MR and TS-MR implement OFUL actions only when necessary,
maintaining a low OFUL fraction throughout most of the time horizon, substantially reducing com-
putational cost; and (2) limited course-corrected exploration at the beginning efficiently remedies
TS and Greedy in problematic instances.

8 CONCLUSION

In this work, we propose a data-driven framework to analyze the frequentist regret of POFUL, a fam-
ily of algorithms that includes OFUL, LinTS, TS-Freq, and Greedy as special cases. Our approach
allows for the computation of a data-driven frequentist regret bound for POFUL during implemen-
tation, which subsequently informs the course-correction of the algorithm. Our technique conducts
a novel real-time geometric analysis of the d-dimensional confidence ellipsoid to fully leverage the
historical information and might be of independent interest. As applications, we propose TS-MR
and Greedy-MR algorithms that enjoy provable minimax optimal frequentist regret and demon-
strate their ability to adaptively switch to OFUL when necessary in hard problems where LinTS and
Greedy fail. We hope this work provides a steady step towards bridging the gap between theoretical
guarantees and empirical performance of bandit algorithms such as LinTS and Greedy.

10
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A SKETCH OF THE PROOF

In this section, we present the proof of Theorem 2. In the remaining part of this section, we use a
general confidence ellipsoid Et :=

{
θ ∈ Rd : ∥θ − θ̂t∥Vt ≤ βt

}
to represent ERLS

t,δ′,λreg
and EPV T

t,δ′,λreg
,

since the proof works for both of them.

First note that, when ∥θ̂t∥Vt
< βt, the bound in Theorem 2 becomes

αt ≤ λ
− 1

2

d (Vt)/λ
− 1

2
1 (Vt) =

√
λ1(Vt)/λd(Vt).

This bound holds trivially using the fact that λ1(Vt) ≤ ∥x∥2Vt
≤ λd(Vt). This is the case when the

data is insufficient and the confidence interval is too large to get a non-trivial upper bound for αt.

In the following, without loss of generality we assume ∥θ̂t∥2Vt
≥ β2

t . The proof decomposes into
three steps. In the first two steps, as is illustrated in R2 in Figure 5, we cut out a special hypersurface
Ht within Et and show that for all θ ∈ Ht, the corresponding optimal action x⋆(θ) has Vt-norm
bounded from above and below. Note that the set of optimal actions for θ ∈ Ht coincides with
that for θ ∈ Et, we get upper and lower bounds for Vt-norm of all potential actions in the ellipsoid.
Next, we show that upper and lower bounds for the Vt-norm can be converted into upper and lower
bounds for the V −1

t -norm by solving a linear programming problem. Hence, we get an upper bound
for αt by calculating the ratio of the upper bound to the lower bound. We sketch the proof below
and postpone the detailed proof for all lemmas in this section to Appendix B.

Figure 5: Illustration of Step 1 and 2 in R2. Orange dashed rays: rays starting from the origin
might have different numbers of intersections with Et, indicating whether the corresponding ac-
tion lies in the projection of Et onto Sd−1. Blue dashed curve: the ellipsoid with fixed Vt-norm
{θ : ∥θ∥Vt = ϕt}. The intersection of this ellipsoid and Et has the same projection as Et onto Sd−1.

In the following, we let ϕt :=
√
∥θ̂t∥2Vt

− β2
t , which is well-defined since we assume ∥θ̂t∥Vt

≥ βt.
In geometry, one can show that for a ray starting from the origin and intersecting Et only at one
point, ϕt is the Vt-norm of the intersection point.

Step 1. Upper Bounding the Vt-norm of actions. Our first lemma investigates such intersection
and provides an upper bound for the Vt-norm for the optimal actions corresponding to any θ ∈ Et.
The proof is based on investigating the condition for a ray paralleling an action x ∈ Sd−1 to intersect
with Et, which means x is in the projection of Et onto Sd−1 and might become the optimal action
x⋆(θ).

Lemma 1. For any θ ∈ Et, we have ∥x⋆(θ)∥Vt
≤ ∥θ̂t∥V 2

t
/ϕt.
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Step 2. Lower Bounding the Vt-norm of actions. In order to lower bound the Vt-norm, we define
the hypersurfaceHt := Et ∩ {θ : ∥θ∥Vt

= ϕt}, i.e., the intersection of the interior of the confidence
ellipsoid Et and the ellipsoid {θ : ∥θ∥Vt

= ϕt}. Ht consists of θ ∈ Et whose Vt-norm is ϕt. One
can checkHt is non-empty since ϕtθ̂t/∥θ̂t∥Vt

∈ Et, and the projection ofHt onto Sd−1 is the same
as that of Et by convexity. Hence, it suffices to only consider θ ∈ Ht as the corresponding set of
optimal actions coincides. A lower bound for the Vt-norm is given by the following lemma.
Lemma 2. For any θ ∈ Et, we have

∥x⋆(θ)∥Vt
≥ ϕt

∥θ̂t∥+ βt/λd(Vt)
.

The proof is directly using the fact that for any θ ∈ Ht, we have ∥θ∥ ≤ ∥θ̂t∥ + βt/λd(Vt) and
∥θ∥Vt

= ϕt. Also recall x⋆(θ) = θ/∥θ∥ and hence ∥x⋆(θ)∥Vt
= ∥θ∥Vt

/∥θ∥.

Step 3. Bounding the V −1
t -norm of actions The following lemma determines the range of action

x’s V −1
t -norm based on its Vt-norm range. It turns out that the two ranges can be related using

the spectral information of the sample covariance matrix Vt, which is related to the shape of the
confidence ellipsoid.
Lemma 3. Let {λ1, λ2, . . . , λNV

} be the set of distinct eigenvalues of V such that λ1 > λ2 > · · · >
λNV

> 0. Let x ∈ Bd satisfies 0 < m ≤ ∥x∥2V ≤M . We have

1

λk
+

1

λk+1
− M

λkλk+1
≤ ∥x∥2V −1 ≤

1

λ1
+

1

λd
− m

λ1λd
, (7)

where k is such that λk = maxi∈[Nv]{λi ≥M}.

The proof involves expressing the V - and V −1-norms as weighted sums of V ’s eigenvalues, then
solving a linear programming (LP) problem constrained by the norm ranges.

By inserting the upper and lower bounds of the Vt-norm from Lemmas 1 and 2 into Lemma 3, we
finalize the proof of Theorem 2.

B PROOF OF LEMMAS FOR THEOREM 2

B.1 PROOF OF LEMMA 1

Proof. Let θ = tx where x is any unit vector in Rd and t ∈ R+ is a scalar. Consider the equation that
characterizes the intersection {tx : t ∈ R+}∩Et, namely (tx− θ̂t)

⊤Vt(tx− θ̂t) ≤ β2
t . Equivalently,

we have t2∥x∥2Vt
− 2tx⊤Vtθ̂t + ϕ2

t ≤ 0. This quadratic inequality of t has at least one solution if
the discriminant is non-negative, i.e. 4(x⊤Vtθ̂)

2 ≥ 4∥x∥2Vt
ϕ2
t . Then by direct computation,

∥x∥Vt ≤

√
(x⊤Vtθ̂t)2

ϕt
≤

√
x⊤x

√
(θ̂t)⊤V ⊤

t Vtθ̂t

ϕt
=
∥θ̂t∥V 2

t

ϕt
.

Note that θ ∈ Et if and only if θ is on a ray starting from the origin and intersects Et at one or more
points. Namely, θ = tx for some x that satisfies 4(x⊤Vtθ̂)

2 ≥ 4∥x∥2Vt
ϕ2
t , we conclude the proof.

B.2 PROOF OF LEMMA 2

Proof. Note that for any θ ∈ Ht ⊂ Et, it holds that ∥θ∥ ≤ ∥θ̂t∥ + βt/λd(Vt). Also, by the
construction ofHt, we have ∥θ∥Vt = ϕt. Then by direct computation, we have

∥x⋆(θ)∥Vt =
∥θ∥Vt

∥θ∥
≥ ϕt

∥θ̂t∥+ βt/λd(Vt)
.
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To prove the same result for any θ ∈ Et, we only need to show there exists θ′ ∈ Ht such that
x⋆(θ) = x⋆(θ′). To see this, let x = θ/∥θ∥ and consider the intersection {tx : t ∈ R+} ∩ Et, which
is non-empty by our choice of θ. Similar to the proof of Lemma 1, the discriminant is non-negative,
i.e. 4(x⊤Vtθ̂)

2 ≥ 4∥x∥2Vt
ϕ2
t .

Now consider the intersection {tx : t ∈ R} ∩ ∂Et, where we let ∂Et :={
θ ∈ Rd : ∥θ − θ̂t∥Vt = βt(δ)

}
be the border of the ellisoid. The intersection points are charac-

terized by the solution to

t2∥x∥2Vt
− 2tx⊤Vtθ̂t + ϕ2

t = 0. (8)

If 4(x⊤Vtθ̂)
2 = 4∥x∥2Vt

ϕ2
t and there is only one intersection point, namely θ itself, we have

0 = t2∥x∥2Vt
− 2tx⊤Vtθ̂t + ϕ2

t = t2∥x∥2Vt
− 2t∥x∥Vt

ϕt + ϕ2
t = (∥tx∥Vt

− ϕt)
2.

Therefore, we have ∥θ∥Vt
= ∥tx∥Vt

= ϕt, i.e. θ ∈ Ht.

If 4(x⊤Vtθ̂)
2 > 4∥x∥2Vt

ϕ2
t , it follows that x⊤Vtθ̂ > ∥x∥Vtϕt. This inference is valid given that

x⊤Vtθ̂ > 0, which can be verified using Equation equation 8 and noting that t > 0. Consider the
solutions to equation 8

t1 =
x⊤Vtθ̂t −

√
(x⊤Vtθ̂)2 − ∥x∥2Vt

ϕ2
t

∥x∥2Vt

, t2 =
x⊤Vtθ̂t +

√
(x⊤Vtθ̂)2 − ∥x∥2Vt

ϕ2
t

∥x∥2Vt

.

We only need to show ∥t1x∥Vt < ϕt < ∥t2x∥Vt , then by the continuity of ∥ · ∥Vt and the convexity
of Et, there exists t′ ∈ (t1, t2) such that ∥t′x∥Vt = ϕt. Then θ′ := t′x ∈ Ht is the desired point. By
direct computation,

∥t1x∥Vt
=

x⊤Vtθ̂t −
√
(x⊤Vtθ̂)2 − ∥x∥2Vt

ϕ2
t

∥x∥Vt

.

We only need to prove

x⊤Vtθ̂t − ∥x∥Vt
ϕt ≤

√
(x⊤Vtθ̂)2 − ∥x∥2Vt

ϕ2
t

Note that

(x⊤Vtθ̂t − ∥x∥Vt
ϕt)

2 = (x⊤Vtθ̂)
2 − 2x⊤Vtθ̂ϕt∥x∥Vt

+ ∥x∥2Vt
ϕ2
t

≤ (x⊤Vtθ̂)
2 − 2∥x∥2Vt

ϕ2
t + ∥x∥2Vt

ϕ2
t

= (x⊤Vtθ̂)
2 − ∥x∥2Vt

ϕ2
t

where we have used the fact that x⊤Vtθ̂ > ∥x∥Vt
ϕt in the ineuqlity. Taking square root for both

sides yields the desired result, and hence ∥t1x∥Vt
< ϕt. Similarly, one can show ϕt < ∥t2x∥Vt

.
This concludes the proof.

B.3 PROOF OF LEMMA 3

Proof. Let {λ1, λ2, . . . , λNV
} be the set of distinct eigenvalues of V . By the spectral theorem, V

can be decomposed as V = UΛU⊤, where the columns of U consist of orthonormal eigenvec-
tors of V , denoted by {u11, . . . , u1n1

, u21, . . . , u2n2
, . . . , uNV 1, . . . , uNV nNV

}, where n1, . . . , nNV

are the algebraic multiplicity of the eigenvalues respectively. Since V is a symmetric matrix, the
eigenvectors for a basis of Rd and we have

∑NV

i=1 ni = d. We can write x as a linear combina-
tion x =

∑NV

i=1

∑ni

j=1 wijuij , where
∑NV

i=1

∑ni

j=1 w
2
ij = 1. Define ai :=

∑ni

j=1 w
2
ij , by direct

computation, we have
∑NV

i=1 ai = 1 and ∥x∥2V =
∑NV

i=1 λiai and ∥x∥2V −1 =
∑NV

i=1 λ
−1
i ai .
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Now we study the range of ∥x∥2V −1 when ∥x∥2V is bounded as m ≤ ∥x∥2V ≤ M . First, let’s focus
on maximizing ∥x∥2V −1 , it suffices to solve the LP problem

maximize
NV∑
i=1

aiλ
−1
i s.t. ∀i, ai ≥ 0,

NV∑
i=1

ai = 1,

NV∑
i=1

aiλi ≥ m,

NV∑
i=1

aiλi ≤M.

The Lagrangian is given by

L =

NV∑
i=1

aiλ
−1
i + µ(1−

NV∑
i=1

ai) + η(

NV∑
i=1

aiλi −m) + γ(M −
NV∑
i=1

aiλi) +

NV∑
i=1

κiai.

The KKT conditions are given by
∇aiL = λ−1

i − µ+ ηλi − γλi + κi = 0,∀i,
ai ≥ 0,∀i,

∑NV

i=1 ai = 1,
∑NV

i=1 aiλi ≥ m,
∑NV

i=1 aiλi ≤M,

η ≥ 0, γ ≥ 0, κi ≥ 0,∀i,
η(
∑NV

i=1 aiλi −m) = 0, γ(M −
∑NV

i=1 aiλi) = 0, κiai = 0,∀i.

(9)

To satisfy the first condition above, κi’s can only be zero for at most two indices. Hence, ai can only
be non-zero for at most two distinct eigenvalues, denoted by λi and λj , where i < j and λi > λj .
Namely, the solution to equation 9 lies in the subspace spanned by the eigenvectors corresponding
to λi and λj .

Let y = ∥x∥2V , we have aiλi + ajλj = y and aiλ
−1
i + ajλ

−1
j = ∥x∥2V −1 . Note that

∑NV

i=1 ai =

ai + aj = 1, by direct computation, the closed form of ∥x∥2V −1 is given by ∥x∥2V −1 = 1
λi

+ 1
λj
−

y
λiλj

=: f(y, λi, λj).

Clearly, we have 
∂f
∂y = − 1

λiλj
< 0,

∂f
∂λi

= ( y
λj
− 1) 1

λ2
i
> 0,

∂f
∂λj

= ( y
λi
− 1) 1

λ2
j
< 0.

Then the maximum of ∥x∥2V −1 is obtained when λi = λ1, λj = λNV
, y = m. Therefore, the solu-

tion to the LP problem is any unit vector x⋆
max that lies in the subspace spanned by the eigenvectors

corresponding to λ1 and λNV
. Moreover, we have

∥x⋆
max∥2V −1 =

1

λ1
+

1

λNV

− m

λ1λNV

.

Similarly, by investigating the KKT conditions for the LP problem that minimize
∑NV

i=1 aiλ
−1
i ,

the minimum of ∥x∥2V −1 is obtained when λi = λk, λj = λk+1, y = M , where k is such that
λk = maxi∈[Nv ]{λi ≥ M}, and hence λk+1 = mini∈[Nv]{λi < M}. The solution vector is any
unit vector x⋆

min that lies in the subspace spanned by the eigenvectors corresponding to λk and λk+1,
and we have

∥x⋆
min∥2V −1 =

1

λk
+

1

λk+1
− M

λkλk+1
.

This concludes the proof.
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C OTHER PROOFS

C.1 PROOF OF PROPOSITION 3

Proof. By Proposition 1, we have

P
[
ÂT

]
= P

[
∩Tt=1

{
∥θ̂t − θ⋆t ∥Vt ≥ βRLS

t,δ′,λreg

}]
≥ 1−

T∑
t=1

P
[
∥θ̂t − θ⋆t ∥Vt ≥ βRLS

t,δ′,λreg

]
≥ 1− δ

2
.

Similarly, by Definition 2, we have

P
[
ÃT

]
= P

[
∩Tt=1

{
θ̃t /∈ EPV T

t,δ′,λreg
|Ft

}]
≥ 1−

T∑
t=1

P
[
θ̃t /∈ EPV T

t,δ′,λreg
|Ft

]
≥ 1− δ

2
.

Combining the two inequalities above, we have P [AT ] ≥ 1− δ.

C.2 PROOF OF PROPOSITION 4

Proof. Since θ⋆ ∈ ERLS
t,δ′,λreg

and θ̃t ∈ EPV T
t,δ′,λreg

, it holds that

∥θ⋆ − θ̂t∥Vt
≤ βRLS

t,δ′,λreg
, ∥θ̃t − θ̂t∥Vt

≤ βPV T
t,δ′,λreg

= ιtβ
RLS
t,δ′,λreg

. (10)

We have

⟨x⋆
t , θ

⋆⟩ − ⟨x̃t, θ
⋆⟩ =

(
⟨x⋆

t , θ
⋆⟩ − ⟨x⋆

t , θ̃t⟩
)
+
(
⟨x⋆

t , θ̃t⟩ − ⟨x̃t, θ̃t⟩
)

+
(
⟨x̃t, θ̃t⟩ − ⟨x̃t, θ̂t⟩

)
+
(
⟨x̃t, θ̂t⟩ − ⟨x̃t, θ

⋆⟩
)
.

To bound the second term on the right hand side, recall by Equation equation 3 the POFUL action
x̃t satisfies

⟨x⋆
t , θ̃t⟩+ τt∥x⋆

t ∥V −1
t

βRLS
t,δ′,λreg

≤ ⟨x̃t, θ̃t⟩+ τt∥x̃t∥V −1
t

βRLS
t,δ′,λreg

.

Rearranging the ineuqlity, we obtain ⟨x⋆
t , θ̃t⟩− ⟨x̃t, θ̃t⟩ ≤ τt∥x̃t∥V −1

t
βRLS
t,δ′,λreg

− τt∥x⋆
t ∥V −1

t
βRLS
t,δ′,λreg

.

The other three terms are bounded similarly using the Cauchy-Schwarz inequality, the triangle in-
equality of the V −1

t -norm, and the concentration condition equation 10. As a result, we have

⟨x⋆
t , θ

⋆⟩ − ⟨x⋆
t , θ̃t⟩ ≤ (1 + ιt)∥x⋆

t ∥V −1
t

βRLS
t,δ′,λreg

,

⟨x̃t, θ̃t⟩ − ⟨x̃t, θ̂t⟩ ≤ ιt∥x̃t∥V −1
t

βRLS
t,δ′,λreg

,

⟨x̃t, θ̂t⟩ − ⟨x̃t, θ
⋆⟩ ≤ ∥x̃t∥V −1

t
βRLS
t,δ′,λreg

.

Combining all terms above, we have

⟨x⋆
t , θ

⋆⟩ − ⟨x̃t, θ
⋆⟩ ≤ (1 + ιt − τt)∥x⋆

t ∥V −1
t

βRLS
t,δ′,λreg

+ (1 + ιt + τt)∥x̃t∥V −1
t

βRLS
t,δ′,λreg

.
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C.3 PROOF OF THEOREM 1

Proof. We formally prove Theorem 1 for completeness. The proof techniques are developed in
previous papers (Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013; Abeille et al., 2017).

Throughout the proof, we condition on the event AT , which holds with probability 1− δ by Propo-
sition 3. Applying Proposition 4, we obtain

R(T ) ≤
T∑

t=1

(⟨x⋆
t , θ

⋆⟩ − ⟨x̃t, θ
⋆⟩) I{At}

≤
T∑

t=1

(1 + ιt − τt)∥x⋆
t ∥V −1

t
βRLS
t,δ′,λreg

+ (1 + ιt + τt)∥x̃t∥V −1
t

βRLS
t,δ′,λreg

.

Recall ∥x⋆
t ∥V −1

t
= αt∥x̃t∥V −1

t
and µt = αt(1 + ιt − τt) + 1 + ιt + τt, we have

R(T ) ≤
T∑

t=1

µt∥x̃t∥V −1
t

βRLS
t,δ′,λreg

.

Applying the Cauchy-Schwarz inequality and Proposition 2, note that maxt∈[T ] β
RLS
t,δ′,λreg

=

βRLS
T,δ′,λreg

, we obtain

R(T ) ≤

√√√√ T∑
t=1

∥x̃t∥2V −1
t

√√√√ T∑
t=1

µ2
t

(
βRLS
t,δ′,λreg

)2
≤

√
2d log

(
1 +

T

λ

)√√√√ T∑
t=1

µ2
tβ

RLS
T,δ′,λreg

.

This concludes the proof.

D REGRET DECOMPOSITION OF POFUL

To discuss the relationship between our method and those based on optimism (Abbasi-Yadkori et al.,
2011; Agrawal & Goyal, 2013; Abeille et al., 2017), we decompose the regret of POFUL into three
terms, and sketch how they are bounded separately.

Let x⋆
t = argmaxx∈Xt

⟨x, θ⋆⟩ be the optimal action and x̃t be the action chosen by POFUL, the
regret decomposes as

R(T ) =
T∑

t=1

⟨x⋆
t , θ

⋆⟩ − ⟨x̃t, θ
⋆⟩

=

T∑
t=1

⟨x⋆
t , θ

⋆⟩ − ⟨x̃t, θ̃t⟩︸ ︷︷ ︸
RPE(T )

+

T∑
t=1

⟨x̃t, θ̃t⟩ − ⟨x̃t, θ̂t⟩︸ ︷︷ ︸
RPV T (T )

+

T∑
t=1

⟨x̃t, θ̂t⟩ − ⟨x̃t, θ
⋆⟩︸ ︷︷ ︸

RRLS(T )

.

RRLS(T ) is the regret due to the estimation error of the RLS estimator. Note that x̃t’s are the
action sequence used to construct the RLS estimate. By Proposition 2 their cumulative V −1

t -norm
is bounded by 2d log(1 + t/λreg). Hence, the upper bound of RRLS(T ) is essentially determined
by the Vt-distance between θ̂t and θ⋆, which, via the Cauchy-Schwarz inequality, is characterized
by the radius of the confidence ellipsoid ERLS

t,δ′,λreg
. RPV T (T ) corresponds to the regret due to the

exploration of POFUL by choosing the pivot parameter θ̃t rather than using θ̂t as OFUL would.
Similar to RRLS(T ), the upper bound for this term is related to the Vt-distance between θ̃t and
θ̂t, which is controlled by construction and depends on the inflation parameter ιt. As a result, it
can be shown that RRLS(T ) = Õ(d

√
T ) and RPV T (T ) = Õ(d(

∑T
t=1 ι

2
t )

1/2) with probability
1 − δ. Notably, RRLS(T ) = Õ(d

√
T ), matching the known minimax lowerbound. For RPV T (T )

to match this lower bound as well, one way is to set ιt = Õ(1) for all t ∈ [T ]. However, it is known
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that, see for example (Agrawal & Goyal, 2013; Abeille et al., 2017; Hamidi & Bayati, 2020a), such
selection could be problematic for boundingRPE(T ).

RPE(T ) corresponds to the pessimism term. In the Bayesian analysis of LinTS, the expectation
of this term is 0, with respect to θ⋆, as long as θ̃t and θ⋆ are sampled from the same distribution,
which occurs when LinTS has access to the true prior distribution for θ⋆. In the frequentist analysis,
however, we need to control the pessimism term incurred by any random sample θ̃t.

For OFUL, this term is bounded properly with high probability by the optimistic selection of OFUL
actions1. For LinTS, the only known analysis due to Agrawal & Goyal (2013) and Abeille et al.
(2017) gives a bound of order Õ(d

√
dT ) using an optimism-based approach, which is worse than

the Bayesian regret by a factor of
√
d. The key component of their proof is introducing inflation

to the posterior variance by setting ιt = Õ(
√
d) to enforce exploration. For example, Abeille

et al. (2017) demonstrate that by using inflation, LinTS samples optimistic θ̃t with a probability
greater than a constant, which means that the inequality ⟨x⋆

t , θ
⋆⟩ ≤ ⟨x̃t, θ̃t⟩ holds with a constant

probability.

For Greedy, there is no general theoretical guarantee for bounding the pessimism term without im-
posing additional structural assumptions. Our approach to tackle this challenge distinguishes us
from methods based on optimism (Agrawal & Goyal, 2013; Abeille et al., 2017). Interestingly,
Abeille et al. (2017) conjectured that non-optimistic samples may provide beneficial exploration
and help control the growth of regret.

By relaxing the requirement for optimistic samples, we avoid inflating the posterior, which in turn
prevents a

√
d-gap in the regret. Instead, we introduce a measure of the “quality” of POFUL actions

with respect to the regret and develop a computable upper bound for this quality using geometric
information in the data. This approach yields a data-driven regret bound for POFUL that matches
the minimax optimal regret in some settings. Furthermore, it allows for the construction of variants
of LinTS and Greedy with a provable frequentist regret bound that is minimax optimal up to only a
constant factor.

E DISCRETE ACTION SPACE

This section introduces the method for establishing an upper bound on αt in the context of discrete
action spaces. It turns out that the process involves comparing confidence interval lengths across all
potentially optimal actions.

To see this, recall for an arbitrary action x ∈ Xt, by Proposition 1, with high probability its expected
reward is bounded as

Lt(x) := ⟨x, θ̂t⟩ − ιt∥x∥V −1
t

βRLS
t,δ′,λreg

≤ ⟨x, θ⋆⟩ ≤ ⟨x, θ̂t⟩+ ιt∥x∥V −1
t

βRLS
t,δ′,λreg

=: Ut(x).

The confidence interval length is proportional to ∥x∥V −1
t

. Therefore, to characterize the range of
∥x⋆

t ∥V −1
t

, we only need to identify the set of potentially optimal actions and calculate the minimal
V −1
t -norm among all actions in that set.

Note that for an action x ∈ Xt to remain potentially optimal, it cannot be dominated by another
action. I.e., we require Ut(x) ≥ maxy∈Xt

Lt(y). Therefore, define

Ct(β) := {x ∈ Xt : ⟨x, θ̂t⟩+ ∥x∥V −1
t

β ≥ max
y∈Xt

⟨y, θ̂t⟩ − ∥y∥V −1
t

β},

the set of potentially optimal actions is given by Ct(β
RLS
t,δ′,λreg

). Similarly, the set of actions that might
be chosen by POFUL is given by Ct(βPV T

t,δ′,λreg
), where we let βPV T

t,δ′,λreg
:= ιtβ

RLS
t,δ′,λreg

. The inflation
parameter ιt turns out to control the conservativeness when eliminating actions.

1The term is further split into two parts as shown in the first few lines of proof of Proposition 4 in Ap-
pendix C.2, with one term bounded by the optimism and the other term controlled by the Vt distance between
θ⋆ and θ̃t.
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By comparing the range of V −1
t -norm for both sets, an upper bound α̂t for the uncertainty ratio αt

is given by

α̂t :=
supx∈Ct(βRLS

t,δ′,λreg
) ∥x∥V −1

t

infx∈Ct(βPV T
t,δ′,λreg

) ∥x∥V −1
t

. (11)

F EXAMPLE CASES AND EMPIRICAL VALIDATIONS OF THEOREM 2

To better understand what Theorem 2 implies, we discuss some special cases in this section.

Case 1: a pure exploration regime. When the decision-maker doesn’t care about the regret
and adopts a pure exploration algorithm that plays actions in all directions sequentially, we ex-
pect λi(Vt) = O(t) for all i = 1, . . . , d. Then α̂t ≤ C for some constant C > 0. Specifically, if
Vt = DId for some constant D > 0, we have ∥x∥V −1

t
= D−1∥x∥ = D−1 for all x ∈ Sd−1 and

hence α̂t = 1 .

Case 2: linear structures. When the reward takes a linear form in the action, for example, the
stochastic linear bandits we study, it’s observed in practice that the estimate θ̂t tends to align in the
first eigenspace of the uncertainty structure Vt (empirically validated below). To see this, note that in
order to maximize the reward in an online manner, bandit algorithms tend to select actions towards
the confidence ellipsoid centered at θ̂t, hence forcing more exploration along the direction of θ̂t,
especially at the late stage of the algorithm when the ellipsoid is small. The following proposition
states that, as long as the center θ̂t of the confidence ellipsoid Et,δ′,λreg tends to be aligned with
the first eigenspace of Vt, the corresponding uncertainty ratio tends to 1, indicating a regret bound
matching the minimax Õ(d

√
T ) rate by Theorem 1. This provides a plausible explanation for the

empirical success of LinTS and Greedy.

Proposition 5. Suppose limt→∞
∥θ̂t∥2

Vt

∥θ̂t∥2
= λ1(Vt), it holds that limt→∞ α̂t = 1.

Proof. This corresponds to the case where m,M → λ1(Vt) in Lemma 3. Without loss of generality,
we let M > λ2(Vt). Then α̂t = (λ−1

1 (Vt)+λ−1
d (Vt)−mλ−1

1 (Vt)λ
−1
d (Vt))/(λ

−1
k (Vt)+λ−1

k+1(Vt)−
Mλ−1

k (Vt)λ
−1
k+1(Vt))→ λ−1

1 (Vt)/λ
−1
1 (Vt) = 1.

To empirically confirm that Case 2 is not merely theoretical, we examine the condition outlined in

Proposition 5. Our focus is on the ratio ζt :=
∥θ̂t∥2

Vt
/∥θ̂t∥2

λ1(Vt)
. Notably, ∥θ̂t∥2Vt

tends to approximate

λ1∥θ̂t∥2 when θ̂t is proximate to the top eigenspace of Vt. Consequently, this ratio serves as a proxy
of the alignment of θ̂t with the top eigenspace of Vt. Specifically, a ζt value of 1 signifies that θ̂t is
within the top eigenspace.

We resort to Example 1 from Section 7, which epitomizes the general linear bandit problem in its
standard form. The empirical sequence ζt is depicted in Figure 6.

Figure 6 reveals that for every bandit algorithm, the value of ζt is notably high (exceeding 0.9) at the
early stages of implementation and gradually converges towards 1. This observation validates the
behavior outlined in Case 2. Furthermore, the consistency of this phenomenon across all examined
bandit algorithms suggests that such a tendency is likely a characteristic of the online nature of these
algorithms.

It is important to note that the initial sharp decline observed is attributed to the behavior of the reg-
ularized least squares estimator in over-parameterized scenarios, when t is less than the dimension
d.
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Figure 6: Evolution of the alignment proxy ζt in Example 1.

G TS-MR AND GREEDY-MR ALGORITHMS

Algorithm 2 TS-MR (Greedy-MR)

Require: T , δ, {ιt}t∈[T ], µ
Initialize V0 ← λId, θ̂1 ← 0, δ′ ← δ/2T
for t = 1, 2 , . . . , T do

Calculate α̂t using Theorem 2
µ̂t ← α̂t(1 + ιt) + 1 + ιt
if µ̂t ≤ µ then

Sample ηt ∼ DSA(δ′) (defined in Section 3)

θ̃t ← θ̂t + ιtβ
RLS
t,δ′,λreg

V
− 1

2
t ηt

xt ← argmaxx∈Xt
⟨x, θ̃t⟩

else
xt ← argmaxx∈Xt

argmaxθ∈ERLS
t,δ′,λreg

⟨x, θ̃t⟩
end if
Observe reward rt
Vt+1 ← Vt + xtx

⊤
t

θ̂t+1 ← V −1
t+1

∑t
s=1 xsrs.

end for

H INFLUENCE OF µ

In this section, we investigate the influence of µ and discuss strategies for selecting its value. We
vary the value of µ and conduct simulations on Example 2 and the Segment dataset as done in
Section 7. The former represents a scenario where course-correction is necessary (otherwise LinTS
fails), while the latter represents a practical scenario where course-correction is unnecessary. The
results are shown in Figures 7 and 8.

We have the following observations on the influence of µ:

• In general, as µ increases, the fraction of OFUL actions decreases. For a sufficiently small
µ, the algorithms become OFUL (e.g., TS-MR in Figures 7a and 8a). For a large µ, the al-
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(a) example 2, µ = 4 (b) example 2, µ = 8 (c) example 2, µ = 12

(d) example 2, µ = 4 (e) example 2, µ = 8 (f) example 2, µ = 12

Figure 7: Cumulative regret and fraction of OFUL actions of TS-MR and Greedy-MR on example
2. Shaded regions show the ±2 SE of the mean regret.

(a) Segment dataset, µ = 4 (b) Segment dataset, µ = 8 (c) Segment dataset, µ = 12

(d) Segment dataset, µ = 4 (e) Segment dataset, µ = 8 (f) Segment dataset, µ = 12

Figure 8: Cumulative regret and fraction of OFUL actions of TS-MR and Greedy-MR on Segment
datasets. Shaded regions show the ±2 SE of the mean regret.

22



Published as a conference paper at ICLR 2025

gorithms are similar to the original algorithms (e.g., TS-MR and Greedy-MR in Figures 7c
and 8c).

• By optimizing the choice of µ, the performance of the corrected algorithm might outper-
form both OFUL and the base algorithm (e.g., Greedy-MR in Figures 7b and 8b). This
demonstrates that TS/Greedy-MR are not merely naive interpolations between TS/Greedy
and OFUL, and that proper exploration in the initial stage benefits the long-term perfor-
mance of the algorithms.

• As long as µ isn’t too small, the performance of the course-corrected algorithm are rela-
tively robust to the choice of µ. The simulations show µ ∈ [8, 12] is a good initial choice.

Empirical guidelines and heuristics for choosing µ. In practice, we recommend setting µ to a
moderate value, typically within the range [8, 12], as validated by our simulation results. The se-
lection of µ should be guided by heuristics that ensure an appropriate fraction of course-corrected
exploration during the initial stage. A suitable µ value is indicated when the fraction of OFUL
actions is high at the beginning and gradually decreases to and maintains a low level. If the frac-
tion of OFUL actions remains consistently high, increasing µ can help reduce computational costs.
Conversely, if very few OFUL actions are executed during the initial stage, decreasing µ may be ben-
eficial. Finally, we note that since algorithmic performance remains robust across moderate values
of µ, the precise selection of µ is unlikely to be a significant practical concern.
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