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Abstract

Medical image harmonization aims to reduce the differences in appearance caused
by scanner hardware variations to allow for consistent and reliable comparisons
across devices. Harmonization based on paired images from different devices has
limited applicability in real-world clinical settings. On the other hand, unpaired
harmonization typically does not guarantee anatomy consistency, which is problem-
atic because anatomical information preservation is paramount. The Schrédinger
bridge framework has achieved state-of-the-art style transfer performance with
natural images by matching distributions of unpaired images, but this approach
can also introduce anatomy changes when applied to medical images. We show
that such changes occur because the Schrodinger bridge uses the square of the
Euclidean distance between images as the transport cost in an entropy-regularized
optimal transport problem. Such a transport cost is not appropriate for measuring
anatomical distances, as medical images with the same anatomy need not have a
small Euclidean distance between them. In this paper, we propose a latent metric
Schrddinger bridge (LMSB) framework to improve the anatomical consistency for
the harmonization of medical images. We develop an invertible network that maps
medical images into a latent Euclidean metric space where the distances among
images with the same anatomy are minimized using the pullback latent metric.
Within this latent space, we train a Schrodinger bridge to match distributions. We
show that the proposed LMSB is superior to the direct application of a Schrodinger
bridge to harmonize optical coherence tomography (OCT) images.

1 Introduction

Optical coherence tomography (OCT) (Huang et al., 1991) is a medical image modality that uses low-
coherence interferometry to visualize micro structures in biological tissue. Its current primary clinical
uses are for retina and cornea health monitoring and disease diagnosis (Petzold et al., 2010; Saidha
et al., 2015; Rothman et al., 2019), but different hardware configurations and scanning settings cause
image variations in the forms of contrast, speckle, and noise (Wei et al., 2023). For example, Zeiss
Cirrus OCT quickly scans the retina in exchange for low contrast and signal-to-noise ratio (SNR),
whereas Heidelberg Spectralis OCT slowly scans the retina (via multiple image acquisitions) in
exchange for superior contrast and SNR (via averaging of the multiple acquisitions). This type
of domain shift caused by different scanners or acquisition parameters creates a challenge in the
development and deployment of robust and generalizable medical image analysis methods (Guan and
Liu, 2021), affecting multi-center studies and longitudinal analyses where imaging data are pooled
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from different sources. To address domain shift, medical image harmonization, which seeks to map
images from one domain to another (i.e., from Cirrus to Spectralis) while preserving the underlying
anatomy, has emerged as an important preprocessing strategy (Mirzaalian et al., 2016; Zhu et al.,
2017; Liu et al., 2017; Huang et al., 2018; Wrobel et al., 2020; Park et al., 2020; Zuo et al., 2021a,b;
Tian et al., 2022; Cackowski et al., 2023; Zuo et al., 2023, 2024).

Harmonization as a Coupling Problem Harmonization between two datasets can be formulated as
a coupling problem. Let (Q;, F;, P;) with ¢ € {1,2} be two probability spaces, where the {2;’s are two
sets, the F; C 2%°s are two o-algebras on their respective sets, and the P;’s, map the F;’s to [0, 1], are
probability measures. A coupling between these two probability spaces is the new probability space
(90,17]:0,13P0,1)9 where QO,I = Qg x Qq, and P()’l : ]:0’1 — [0, 1] such that prOjO#P()}l =P
and proj, 41 = P1. Here, proj, : Q0,1 — $ and proj; : Qo1 — (2 are defined as the
projection maps, and # indicates the pushforward of the probability measure. A naive coupling is the
independent coupling P 1 = Py ® P;, which means that given an image from one probability space,
we arbitrarily sample an image from the other probability space as the harmonization result. This
is obviously not a good coupling for preserving anatomy, which is undesirable because preserving
anatomical information is critical for consistent analyses. To find a good coupling, additional
constraints or assumptions must be applied. Generative adversarial networks (GANs) (Goodfellow
et al., 2020) find a deterministic coupling by adversarial training without further constraints, and thus
do not preserve anatomy. Both the optimal transport (OT) (Monge, 1781; Kantorovich, 1942; Villani,
2008) and Schrodinger bridge (SB) (Schrodinger, 1931, 1932; Léonard, 2014) approaches find an
optimal coupling assuming a transport cost and a reference path measure, respectively. However,
some commonly assumed transport cost and reference path measure for OTs and SBs are not correct
for medical image harmonization because images with the same anatomy but different contrast do
not necessarily have small Euclidean distance.

Main Contributions In this paper, we propose a new method for OCT image harmonization that
explicitly reduces anatomical shifts. This method, named anatomy-guided latent metric Schrodinger
bridge (LMSB), follows from two key contributions. First, we provide a full analysis of the anatomy
shift issue of applying SBs directly to harmonization and show several theoretical solutions to address
this issue. Second, we implement our theory by training an invertible neural network (INN) that
maps OCT images to a latent Euclidean metric space via anatomy guidance. We call the pullback
metric as the latent metric which minimizes the distances among OCT images with the same anatomy.
We then train a SB to map between distributions in this learned latent Euclidean metric space. The
whole training process does not require any paired training data. We demonstrate LMSB on the
harmonization of OCT images and show that it achieves better performance in anatomy preservation
than conventional SBs and other baseline methods.

2 Related Work

Medical Image Harmonization Traditional medical image harmonization methods can be divided
into supervised and unsupervised methods. Although supervised harmonization methods yield good
results (Tian et al., 2022; Zuo et al., 2023), the paired images they require for training are not widely
available. Unsupervised harmonization methods such as CycleGAN (Zhu et al., 2017), UNIT (Liu
et al., 2017), MUNIT (Huang et al., 2018), and CUT (Park et al., 2020) do not require paired data,
but they generally suffer from anatomical changes during the harmonization process.

Optimal Transport OT (Monge, 1781; Kantorovich, 1942; Villani, 2008) is a method to find
an optimal coupling that minimizes an overall transport cost. For discrete measures, OT can be
solved exactly, but it is computationally expensive. A landmark paper by (Cuturi, 2013) shows
that an entropy-regularized version of OT can be solved more efficiently using the Sinkhorn algo-
rithm (Sinkhorn, 1967). Deep learning approaches such as Wasserstein GANs (Arjovsky et al., 2017)
have been established for solving OT in its Kantorovich duality form (Kantorovich, 1940). However,
they are difficult to train and some constraints are difficult to implement. For example, when the
transport cost is the Euclidean distance, a bounded Lipshitz continuity condition needs to be satisfied
in the Kantorovich duality form (Kantorovich, 1940). But this condition can only be approximated
with either spectral normalization (Miyato et al., 2018), weight clipping (Arjovsky et al., 2017), or
a penalty on the gradient (Gulrajani et al., 2017). This also makes it hard to generalize to different
transport costs using a deep learning framework.



Diffusion Schrodinger Bridge SB can be solved by iterative projection fitting (IPF) (Kullback,
1968; Riischendorf and Thomsen, 1993; Riischendorf, 1995), which projects to the path measure
that satisfies the initial distribution and the final distribution iteratively. However, IPF is com-
putationally expensive because of the high-dimensional nature of the path measure. Diffusion
SB (DSB) (De Bortoli et al., 2021) uses a novel implementation of IPF which takes advantage of
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) by breaking down
the path measure and optimizing over smaller pieces of a Markov chain through time reversal of the
stochastic process (Anderson, 1982). A dual form of IPF called iterative Markovian fitting (IMF)
was applied to DSB (Shi et al., 2023; Peluchetti, 2023) and has demonstrated improved performance.
Compared with IPF, IMF projects the path measure into Markov measure and reciprocal class iter-
atively, while preserving the initial and final distribution. Due to its state-of-the-art performance,
DSB (De Bortoli et al., 2021; Shi et al., 2023) has found many applications in natural images, such as
image restoration by image-to-image SB (I?SB) (Liu et al., 2023), and style transfer by dual diffusion
implicit bridge (DDIB) (Su et al., 2023). However, DSB still introduces anatomical shifts when
directly applied to medical images.

3 Latent Metric Schrodinger Bridge

We introduce the dynamic SB used in DSB, and show that it is equivalent to the solution of a static SB
and the solution of an entropy-regularized OT. We make the observation that the assumption behind
this entropy-regularized OT is not correct for medical image harmonization to preserve anatomy. We
then propose the LMSB framework for harmonization, which improves anatomical consistency.

Dynamic Schrodinger Bridge ~We assume that Qy = €; = R in the coupling problem setup
in Sec. 1. Let Q = C([0, 1], R%) be all continuous R%-valued paths on the unit time interval [0, 1].
We construct a probability space (€2, F, P) by adding the o-algebra 7 C 2% and the path measure
P:F —[0,1]. P(£) is the set of all path measures, II( Py, P;) C P() the subset of path measures
with their marginal densities at t = 0 and ¢ = 1 being P, and P}, respectively, and M(Q2) C P(Q?)
the subset of path measures that are Markovian. The dynamic SB problem (Schrddinger, 1931, 1932;
Léonard, 2014) finds the optimal path measure PS8 € TI( Py, P;) with respect to a reference path
measure ) € M () by minimizing their Kullback—Leibler (KL) divergence,

P3® = argmin D (P || Q), M
Pell(Py,Py)

where @) € M(2) is a Markov path measure of a random process X; described by the forward
stochastic differential equation (SDE), dX; = fi(X;)dt + g:dWy, where Xy ~ Py without loss of
generality, f : [0,1] x R™ — R" and ¢ : [0, 1] — R are the drift and diffusion coefficients, and W}
is the standard Wiener process.

Static Schrodinger Bridge A connection between the dynamic and static SB problems was
established by (Follmer, 1988). The static SB problem finds the optimal joint law POS: Battimest =0
and ¢t = 1 by,

PSS = argmin Dk (P || Qo) 2
Py, €T(Py,Py)

where T'(Py, Py) is the set of joint laws at times ¢ = 0 and ¢ = 1 with their marginals being P,
and P, respectively, and (o ; is the joint law of () at times ¢t = 0 and ¢ = 1. It can be shown
that the solution P** to Eq. 1 can be decomposed into a mixture of bridges as P58 = PF8Q)q 1.
where POS: B is the solution to Eq. 2; conversely if Pgﬁ is the solution to Eq. 2, the mixture of bridges
PS8 = PSBQ)o,, is the solution to Eq. 1. Here, the mixture of bridges PS® = P8 Q)0 ; is a short
notation for PSB(-) = [L,. pn Q0,1 (-|z0, ©1) P33 (do, dzy), where Qo1 is the diffusion bridge of
() conditioned on the initial condition x( at ¢ = 0 and the final condition z; at t = 1. Therefore, the
solutions to Eq. 1 and Eq. 2 are equivalent.

Entropy-Regularized Optimal Transport Reference path measure () is associated with a random
process X; without drift, i.e., dX; = g;dW; where f; = 0, then Eq. 2 can be derived as,

POE = arg min / HZCl — LC0||2P()71(d.’E()7 d{El) — 202H(_P(]’1), (3)
R™ xR™

Py €T (Poy,Pr)
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Figure 1: Local view of the anatomy and contrast geometry. The smooth map f : U — V induces
a local linear map df between the tangent space 7),U and the tangent space Tf(,)V. The tangent

vectors 8%1 and df (8%1) point to the direction where the anatomy changes. The tangent vectors 9%2

and df (0—?2) point to the direction where the contrast changes. The blue dashed lines show the same
target contrast, and they are parallel to the anatomy change direction. The green arrows connect
the black points to the blue points with the shortest distance. The red dash lines are parallel to the
contrast change direction, and the red arrows show the anatomy shift amount. (a) Anatomy shift is
introduced if we use the Euclidean metric in the image intensity coordinate system. (b) Solution #1:
find a f that flattens the metric, which eliminates the anatomy shift. However, this is not always
possible for an open neighborhood of p for an arbitrary metric. (c) Solution #2: find a f that shrinks
the distance along the contrast direction, which reduces the anatomy shift. (d) Solution #3: find a f
that stretches the distance along the anatomy direction, which also effectively reduces anatomy shift.

where 02 = fol gidt, and H is the entropy of the joint law P, ;. We observe that the first term in
Eq. 3 is the same objective as the OT formulation. Therefore, a SB with a non-drift Brownian motion
as the reference path measure, is equivalent to an entropy-regularized OT problem, with the transport
cost being the square of Euclidean distances. However, using this transport cost is not suitable for
medical image harmonization where preserving anatomy is essential.

Issues of Euclidean Metric and Potential Solutions We illustrate the issue of using a Euclidean
metric in the image intensity coordinate system between two images in R? as an example. Suppose
Vp € R?, there is an open neighborhood U C R2, such that p € U and there is a coordinate system
¢ : U — R? where &; and &, are the anatomy coordinate and contrast coordinate, respectively. At
the same time, there is another coordinate system on U which uses the image intensity value from
each pixel (in this case two pixels) as a coordinate, which we denote as ¢’ : U — R2. It is unlikely
that £ and £’ are the same. Now if we equip U with the metric tensor g’ = 5i/j/d§i/ ® dgjl, ie., an
Euclidean metric on the coordinate system £’, then the tangent vectors a% and a% are orthogonal,

but 8%1 and 6%2 might not be. This is illustrated in Fig. 1(a), where 8%1 and a% are not orthogonal
under this metric. Because £; and &5 are the anatomy coordinate and contrast coordinate, 8%1 points

to the direction where anatomy changes, and 8%2 points to the direction where contrast changes. If

we try to find the closest point in the target contrast space (blue dashed line), we can do an orthogonal
projection as shown by the green arrow, and the blue point is the solution with the shortest distance.
However, it introduces an anatomy shift as indicated by the red dashed line and the red arrow.

To eliminate the anatomy shift, we need 8%1 and 0%2 to be orthogonal. It is sufficient to achieve

this by choosing g = §,;;d¢* ® d&? as the metric tensor, and we can find a smooth map f whose
pushforward metric of ¢ is Euclidean metric on the new coordinate system, as shown in Fig. 1(b). This
is ideal because the anatomy shift is totally eliminated. However, such map may not exist to flatten
the metric on an open neighborhood of p, unless the Riemann curvature tensor of this metric space
vanishes (Lee, 2019), which depends on how the metric tensor g is defined in the open neighborhood
of p. Alternatively, there are ways to reduce the anatomy shift. One way is to find a map f that maps
images into a latent Euclidean metric space, whose pullback metric shrinks the distances along the
contrast direction. As shown in Fig. 1(c), the target contrast moves closer to the black point, which
reduces the anatomy shift. Another way is to find a map f that maps images into a latent Euclidean
metric space, whose pullback metric stretches the distances along the anatomy direction. As shown
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Figure 2: Global view of the anatomy and contrast geometry. (a) Diffusion Schrodinger Bridge
Matching (DSBM): Solid lines indicate the same anatomy and dashed lines indicate the same contrast.
Directly applying DSBM between Contrast #1 and #2 results in a shift in anatomy, as shown by the
green arrows. (b) Latent Metric Schrodinger Bridge (LMSB): A Latent Contrast space is constructed.
An invertible f is trained to map both contrasts to the Latent Contrast, as shown by the orange arrows.
Applying DSBM to anatomies within the Latent Contrast reduces anatomical shift. The right panel of
OCT images show examples of the same anatomy in Contrast #1 (bottom) and #2 (top), as well as the
anatomy within the Latent Contrast.

Contrast #1

in Fig. 1(d), in this case, although the target contrast space does not get closer, the anatomy shift is
still effectively reduced, by comparing the red arrow with the tangent vector df (8%1).

In practice, medical images live in a higher dimension space. It is almost impossible to decouple the
coordinates into an anatomy component and a contrast component if we use the intensity values in each
pixel as the coordinate system for medical images. Therefore, if we directly apply SBs for medical
image harmonization, or equivalently entropy-regularized OTs with the square of Euclidean distances
as the transport cost, it is very likely that they shift the anatomy. Therefore, it is not a good idea to
use the square of Euclidean distances as the transport cost in the OT formulation. A potential solution
is to use an alternative transport cost, such as local normalized cross correlation (LNCC), which is
often used in medical image registration to evaluate the alignment of anatomical structures (Chen
et al., 2025). The LNCC compresses the distances along the contrast direction, as shown by df (8%2)
in Fig. 1(c), and thus effectively reduces anatomical shift even if it exists. However, an OT problem
with an arbitrary transport cost is difficult to solve using deep learning frameworks, and thus is not
practically useful. Another alternative method is to find a coordinate transformation of a metric space
whose pushforward metric is the Euclidean metric, and then do the OT in the new coordinate system.
However, this is generally not possible because an arbitrary metric space is generally not equivalent to
the Euclidean metric globally or even locally in an open neighborhood, unless the Riemann curvature
tensor of this metric space vanishes (Lee, 2019). However, it still inspires our proposed method
LMSB, which tries to find a coordinate transformation to compress the distance along the contrast
direction, which we explain in the following section.

Latent Metric Schrodinger Bridge The core idea of the LMSB is to find an invertible map f
that maps the images into a latent Euclidean metric space, where the distances among the images
with the same anatomy are minimized using the pullback latent metric. Then, we use the DSB
matching (DSBM) to match the distribution in the new coordinate system to minimize the anatomical
shift. The difference between DSBM and LMSB is shown in Fig. 2. The solid lines indicate the same
anatomy. The dashed lines indicate the same contrast.

Invertible Neural Network We build a deep learning based invertible network f using the idea of
affine coupling that is implemented in normalizing flow (Dinh et al., 2015; Rezende and Mohamed,
2015; Dinh et al., 2017; Kingma and Dhariwal, 2018; Stimper et al., 2023). The structure of the
invertible network is shown in Fig. 3. The network first splits the input images w into two parts
w = [we, wg] through a checkerboard decomposition. Then the affine coupling layers map them
to [2¢, 25| = [we + fo(wz + f1(we)), wz + f1(we)]. In the end, [z, 2z] are merged to get the final
output z = [z, zz]. The affine coupling layers f; and f5 use two U-Nets (Ronneberger et al., 2015)
with the same structure but different weights. Both the split and merge operations are invertible. For
the affine coupling layers, it can be inverted by [w., wz] = [zc — f2(22), 2z — f1(2c — f2(22))]-
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Figure 3: Structure of the invertible neural network f. The input w is split into two parts [w., w¢]
through a checkerboard decomposition, and goes through two affine coupling layers f; and f> to
generate [z, zz], and merges together to produce the output z.

Figure 4: (a) Cirrus OCT B-scan. (b) Spectralis OCT B-scan. (¢) Segmentation label map of (a).
(d) Segmentation label map of (b). (a, ¢) and (b, d) are used as constructed paired images (w, z) for
training Eq. 6. After training, the invertible map takes (a) and (b) to (e) and (f), respectively.

Training Objective To train the invertible map f, we first assume that we have paired images
{(us, v;) }7_, with the same anatomy but different contrasts, so that we can minimize the following
training objective,

argmin B, £ (w) = £(0)]] @

where (u,v)’s are randomly sampled from the paired images {(u;, v;)}?_,. However, in practice,
we only have unpaired images {u;};; and {v;};?, and we do not want a less general method that
requires paired images. To solve the issue, we note the training objective in Eq. 4 is bounded by,

Euo[I£() = F@)I] < Buz [1f(@) = 2] +Eoz [170) - 1] )

where we add a latent variable z of the same dimension to each image pair (u, v), we use the triangle
inequality || f(u) — f(v)|| < [|f(uw) — || + || f(v) — z]||, and we marginalize the unrelated random
variables. Therefore, if we find a common z for images with the same anatomy but different contrasts,
we can train the invertible map f by an alternative training objective,

argminlE,, , [Hf(u)) - z||], (6)
!

where (w, z)’s are randomly sampled from a constructed paired dataset {(w;, z;)}727"2, in which

w’s are from {u; };2, U {v;};2,, and z is constructed for each w. There are many choices for z when
building the paired dataset {(w;, z;)}/27™*. A sufficient condition for Eq. 5 to hold is that z has
the same anatomy as w within a latent contrast, so that images with the same anatomy but different
contrasts all map close to the same z. We call the space of z the Latent Contrast space, as shown in
Fig. 2(b). A straightforward design is to use a segmentation label map of w as z, where we assign
an unique intensity to different pixel labels. Examples of paired w’s and z’s are shown in Fig. 4.
Intuitively, the invertible map f brings both Cirrus and Spectralis B-scans closer to a common latent
contrast while preserving the anatomy using segmentation label maps so that the anatomy shift, i.e.,
segmentation change, is reduced during harmonization.



4 Experiments

Dataset The OCT dataset consists of 388 Cirrus volumes and 338 Spectralis volumes. The 388
Cirrus volumes come from 194 subjects (388 eyes in total). The 338 Spectralis volumes come from
165 subjects (269 eyes in total). Note that there are repeated scans on the same eye for Spectralis.
Training and testing splits are done by subject: 352 Cirrus volumes from 176 subjects (352 eyes) and
307 Spectralis volumes from 156 subjects (252 eyes) for training and 36 Cirrus volumes from 18
subjects (36 eyes) and 31 Spectralis volumes from 9 subjects (17 eyes) for testing. Our experiments
are in 2D and operate on B-scans independently. Because each Cirrus volume contains 128 B-scans
and each Spectralis OCT volume contains 49 B-scans over the same field of view 6 x 6 mm?2, the
Cirrus volumes have denser B-scan sampling. Therefore, to reduce anatomical redundancy across
individual Cirrus volume B-scans, we extract every third B-scan. Specifically, in the training dataset,
we extract 15, 000 B-scans in the training dataset and 1, 500 B-scans in the testing dataset for both
Cirrus and Spectralis, resulting in 30, 000 training B-scans and 3, 000 testing B-scans with no subject
data leakage between train and test splits.

The original size of Cirrus B-scans is 1024 x 512 (axial x lateral) and the original size of Spectralis
B-scans is 496 x 1024 (axial x lateral). The axial resolution of Cirrus B-scans is 2 ym/pizel, and
the axial resolution of Spectralis B-scans is 4 ym /pixel. Both B-scans cover a 6 mm lateral scanning
range. We crop the Cirrus B-scans axially to 512 x 512 and resize them to 128 x 512, and we crop
the Spectralis B-scans axially to 256 x 1024 and resize them to 128 x 512, such that they have the
same image size, digital resolution, and field of view.

Network Training We trained the invertible neural network f with 15,000 Cirrus and 15, 000
Spectralis OCT B-scans in the training set. We constructed a paired dataset {(w;,z;)}oo0™ b

generating a segmentation label map z for each B-scan w using a deep learning based retinal OCT
segmentation algorithm (He et al., 2019, 2021, 2023). Examples of these paired images are shown in
Fig. 4, where a Cirrus OCT B-scan and its segmentation label map is shown in Fig. 4(a) and Fig. 4(c),
respectively, and a Spectralis OCT B-scan and its segmentation label map is shown in Fig. 4(b) and
Fig. 4(d), respectively. We then trained f using this constructed paired dataset by optimizing the
training objective in Eq. 6. There are two training strategies we used to make the invertible network
more robust. First, we augmented the paired dataset by adding Gaussian noise to w, with the paired 2
being unchanged. Second, we constrained the space of the invertible map to volume preserving maps,
i.e., Jacobian determinant of f is 1 everywhere. We note that this constraint was imposed by our
network structure in Fig. 3. Training results are shown in Fig. 4(e) and Fig. 4(f) for the Cirrus and
Spectralis OCT B-scans, respectively. Both the Cirrus and Spectralis OCT B-scans are not perfectly
mapped to the segmentation label maps, and some detailed anatomical structures such as vessel and
shadows are preserved. This is a desirable property because perfectly mapping into the segmentation
label map will result in poor invertibiliy. Without the use of the noise augmentation and volume
preserving map, we will not get this property because the network will overfit on the training data.

We trained both a DSB in the original image domain, which we denote as DSBM, and in the latent
contrast space which we denote as LMSB. We adapted the implementation in DSBM (Shi et al.,
2023) for both methods and use the exact same parameters for a fair comparison. Specifically, we
ran 30 steps of IMF in total to solve DSBM and LMSB. For the first IMF step, we used independent
coupling as the intial coupling, and we ran 10, 000 iterations both forward and backward. For the
remaining IMF steps, we ran 2, 500 iterations both forward and backward, and we cached simulation
trajectories every 1, 250 iterations. We set the number of diffusion steps to 100. We let the diffusion
coefficient be constant at each diffusion step and choose o2 = 0.1. After training, we compared their
performance with two sampling strategies: 1) stochastic differential equation (SDE); and 2) ordinary
differential equation (ODE). The difference between SDE and ODE is that SDE preserves the path
measure of a stochastic process, but ODE only preserves the marginal density of the path measure.
Furthermore, ODE is deterministic and invertible, which is desirable in many applications, but SDE
is stochastic and not invertible.

We also trained a dual diffusion implicit bridge (DDIB) (Su et al., 2023) as another method for
comparison. To map between two distributions using a DDIB, we trained two independent de-
noising diffusion probabilistic models (DDPMs) (Ho et al., 2020) on both Cirrus and Spectralis
training sets with 1,000 diffusion steps. After training, we use the denoising diffusion implicit
model (DDIM) (Song et al., 2021a) sampling strategy to convert an image from one domain to a
latent Gaussian noise, and then to an image in another domain. DDIM can also be categorized as an



Table 1: Mean MAE (Std. Dev.) comparison (N = 1, 500) across nine retinal boundaries for both
Spectralis to Cirrus and Cirrus to Spectralis harmonization. Bold numbers indicate the best result in
that row for that subtask. Asterisks indicate statistical significance (i.e., paired t-test comparing 1*
and 2™ best results from the other two methods gave p-value < 0.05). Key: ILM: internal limiting
membrane; RNFL: retinal nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer;
INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external
limiting membrane; IS: inner segment; OS: outer segment; RPE: retinal pigment epithelium complex;
BM: Bruch’s membrane; AVG: Average.

Spectralis to Cirrus Cirrus to Spectralis
DDIB DSBM LMSB DDIB DSBM LMSB
ODE SDE ODE SDE ODE ODE SDE ODE SDE ODE

0.82 0.47 0.50 027  0.26* 1.29 0.64 0.61 029  0.23*
(0.79) (0.23) (0.36) (0.28) (0.32) (2.35) (1.01) (0.85) (0.48) (0.52)

RNFL 1.19 0.73* 0.75 0.89 0.88 1.64 0.71 0.69 0.78 0.73
-GCL (0.95) (0.29) (0.34) (0.46) (0.45) (241) (1.98) (2.33) (0.51) (0.54)

IPL 096 075 071 062 054* 122 066 061 055 047
ANL  (0.74)  (0.32) (0.33) (0.33) (0.34) (1.91) (1.91) (2.15) (0.59) (0.56)

INL 090 052 047 045 039° 106 052 046 043 034
COPL  (0.72) (0.22) (0.23) (0.24) (0.27) (1.56) (1.59) (1.85) (0.74) (0.68)

OPL 0.96 0.66 0.64 0.52 048 1.09 0.60 0.54 0.50 0417
-ONL (0.72) (0.26) (0.26) (0.26) (0.29) (1.29) (1.29) (1.44) (0.89) (0.84)

071 0.29*  0.29 0.30 0.31 0.83 0.35 0.33 0.33  0.30*
(0.74) (0.16) (0.19) (0.17) (0.22) (0.99) (0.81) (0.84) (1.12) (1.11)

IS 070 026 025 027 026 08 032 030 030 0.7
0S  (0.75) (0.14) (0.17) (0.15) (0.22) (0.94) (0.67) (0.68) (1.20) (1.20)

oS 081 034 035 031* 031 08 034 033 030 028"
RPE  (0.74) (0.12) (0.15) (0.16) (0.27) (0.94) (0.65) (0.62) (1.25) (1.20)

093 045 044 043 041* 093 040 038 042 039
0.75)  (0.15) (0.18) (0.23) (0.33) (0.93) (0.61) (0.58) (1.17) (1.12)

ILM

ELM

BM

0.89 0.50 0.49 045 043 1.08 0.51 0.47 043  0.38*

AVG (0.65) (0.13) (0.17) (0.18) (0.21) (1.37) (l1.16) (1.24) (0.86) (0.84)

ODE sampling strategy. In practice, we do not go through all 1, 000 diffusion steps, but stop early at
500 steps for a balance between sampling quality and harmonization quality (Wei et al., 2026).

Anatomy Consistency Comparison = We compared the performance of our proposed LMSB with
the DSBM and the DDIB by evaluating the anatomical consistency before and after harmonization.
To do so, we ran all the methods on the testing dataset that contains 1,500 Cirrus B-scans and
1,500 Spectralis OCT B-scans to generate Cirrus B-scans from Spectralis B-scans and vice versa
as two harmonization tasks. We then applied the deep learning based retinal OCT segmentation
method (He et al., 2019, 2021, 2023) to identify nine retinal boundaries. We computed the mean
absolute error (MAE) for these boundary locations before and after harmonization. The results are
summarized in Table 1. We see that LMSB ODE achieves the best performance in preserving anatomy
during harmonization.

MAE evaluation may be subject to segmentation bias or errors. Therefore, we computed the
LNCC between the OCT images before and after harmonization to evaluate structural similarity,
which is shown in Table 2. Higher LNCC means higher structural similarity. We see that for both
harmonization subtasks, LMSB outperforms DSBM with either SDE or ODE as sampling strategies,
and outperforms DDIB with ODE sampling strategy. Moreover, when comparing between SDE and
ODE sampling strategies, we find that ODE sampling preserves the anatomy much better than SDE.
We believe this is due to the speckle in OCT images, which is preserved better by ODE.



Table 2: Mean LNCC (Std. Dev.) comparison (N = 1, 500) on both Spectralis to Cirrus and Cirrus to
Spectralis harmonization. Bold numbers indicate the best result in that row for that subtask. Asterisks
indicate statistical significance (i.e., paired t-test comparing 1 and 2" best results gave p-value
< 0.05).

Spectralis to Cirrus Cirrus to Spectralis
DDIB DSBM LMSB DDIB DSBM LMSB
ODE SDE ODE SDE ODE ODE SDE ODE SDE ODE

0.65 0.16 0.63 0.17  0.66*  0.63 0.16 0.67 0.16  0.69*

LNCC 008) (0.01) (0.05) (0.02) (0.05) (0.05 (0.02) (0.04) (0.02) (0.03)

We also show a qualitative comparison in Fig. 5. The bottom rows show enlarged images of the region
indicated by the yellow rectangle in the top two rows. The red solid lines and the yellow dashed lines
show the retinal boundary segmentation on the original image and the harmonized image, respectively.
The yellow arrows show locations where segmentation on the harmonized anatomy disagrees with
the original segmentation. We see that for LMSB, the yellow dashed lines are closer to the red solid
lines, which mean LMSB preserves the anatomy better than DSBM and DDIB during harmonization.

5 Discussion

There are potential limitations in the LMSB approach. First, the theory shows that LMSB can
reduce anatomical changes during harmonization, but may not totally eliminate them (Solution #1) as
discussed in Fig. 1. This is because not all metric spaces are isomorphic to Euclidean metric spaces.
A potential solution is to find a coordinate transform that flattens the metric as much as possible,
which we have not explored.

Second, the method constructs a reference anatomy with a latent contrast by using the segmentation
label map, but it is not clear whether this latent contrast space is optimal. Specifically, as discussed
in Fig. 1, we can either compress the distance along the contrast direction (Solution #2) or stretch
the distance along the anatomy direction (Solution #3) to reduce the anatomical shift. We chose
to compress the distance along the contrast direction, but we have not explored how to stretch the
distance along the anatomy direction. For example, the segmentation label map used in this paper
assigns unique numbers to different retinal layers, and the number is increasing from the top layer to
the bottom layer. This is not necessarily optimal. To further stretch the distance along the anatomy
direction, we can change the segmentation label maps such that the label number differences between
adjacent retinal layers become larger, which effectively stretches the distance along the anatomy
direction. It remains to be investigated whether this helps further improve the performance of LMSB.

Third, a different segmentation bias for Cirrus and Spectralis retinal OCT images may affect the
LMSB performance when constructing the latent contrast space because it violates the assumption
in Eq. 5, i.e., the latent variable z should be the same for an image pair with the same anatomy but
different contrast. Note that a consistent segmentation bias for both Cirrus and Spectralis, on the
other hand, does not affect the LMSB performance.

Fourth, we have not evaluated the LMSB performance using real paired B-scans because individual
B-scans are not well aligned even for paired OCT volumes due to the difficulty of optical alignment
during acquisition. Moreover, registering two OCT volumes is not straightforward (Chen et al., 2014;
Reaungamornrat et al., 2018). This is because deformable registration is required due to different
geometrical distortions between Cirrus and Spectralis, and highly anisotropic digital resolutions and
field strength variations further complicate the registration process. There are work that demonstrated
improved OCT volume interpolation along the slow axis using deformable registration and generative
models (Wei et al., 2025), which may benefit OCT volume registration but it remains to be investigated.
Further developments on registering two OCT volumes and evaluations on real paired B-scans should
be conducted in the future.

Fifth, we have only demonstrated the LMSB performance using retinal OCT images, which have a
relatively simple anatomical structure. Theoretically, LMSB can generalize to other imaging modali-
ties because the training of LMSB only requires unpaired datasets and corresponding segmentation



@) Spectralis to Cirrus

DSBM SDE MAE: 0.53 LNCC: 0.15 LMSB SDE MAE: 0.31 LNCC: 0.17

Original Spectralis

LMSB ODE MAE: 0.31 LNCC: 0.68

Original Spectralis DDIB ODE DSBM SDE DSBM ODE LMSB SDE LMSB ODE

(b) Cirrus to Spectralis

Original Cirrus DSBM SDE MAE: 0.44 LNCC: 0.16 LMSB SDE MAE: 0.33 LNCC: 0.

DDIB ODE MAE: 0.50 LNCC: 0.68 LMSB ODE MAE: 0.26 LNCC: 0.71

DDIB ODE DSBM SDE DSBM ODE LMSB SDE LMSB ODE

Figure 5: Qualitative comparison between DDIB, DSBM, and LMSB for (a) Spectralis to Cirrus
harmonization and (b) Cirrus to Spectralis harmonization. The bottom rows show enlarged images of
the region indicated by the yellow rectangle in the top two rows. The red solid lines show the retinal
boundary segmentation on the original anatomy. The yellow dashed lines show the retinal boundary
segmentation on the harmonized anatomy by different methods. The yellow arrows show locations
where segmentation on the harmonized anatomy disagrees with the original segmentation.

label maps. However, it may require different preprocessing steps for other imaging modalities. The
segmentation label map may require more careful design when the anatomy becomes more complex.
Further experiments involving more complex anatomies and other imaging modalities should be
studied in the future.

6 Conclusion

In this paper, we proposed an anatomy-guided latent metric Schrodinger bridge (LMSB) framework
to improve the anatomical consistency for medical image harmonization. We trained an invertible
network that maps OCT images into a latent Euclidean metric space where the distances among
medical images with the same anatomy are minimized using the pullback latent metric. A diffusion
Schrodinger bridge is then trained to match the distribution in this learned latent Euclidean metric
space. We demonstrated our method on OCT image. We showed that the proposed LMSB method
achieves a better harmonization performance while preserving the anatomy than directly applying the
Schrodinger bridge and other unsupervised harmonization methods.
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A Proof of Volume Preservation

In this section, we provide a proof that the invertible neural network (INN) f that we constructed is
volume-preserving. We note that the determinant of the induced local linear map df can be derived

as,
det(df) = det (lg ?;2) det (;}':11 i%) —1, )

where id is the identity map, f1 and fo are maps in the affine coupling layers in the INN, df7 and df>
are the induced local linear maps from f; and fo, and we abuse the use of the notations id, df; and
df2 to be the corresponding matrix representations. Because the determinant of df is 1 everywhere,
the invertible map f is volume-preserving.

B Ablation Study

For the INN, we constrained the invertible map to be volume-preserving and we augmented the input
images by adding Gaussian noise during network training. To demonstrate the importance of the
volume preservation and the data augmentation, we conducted the following ablation studies. The
first ablation implements the INN without volume preservation, but with data augmentation, which
we denote as w/o Volume Preservation. This is done by adding a scaling operation to each affine
coupling layer. The second ablation implements the INN without data augmentation, but with volume
preservation, which we denote as w/o Data Augmentation. We denote LMSB-INN (Ours) as the
implementation of the INN with both volume preservation and data augmentation.

B.1 Comparison of INN Outputs

The INN training results of these ablation experiments are summarized in Table 3. We calculated
the root mean square error (RMSE) between the outputs of the INNs and the segmentation label
maps. We also calculated the local normalized cross correlation (LNCC) between the outputs of
the INNs and the original input images. Lower RMSEs indicate that the INN outputs are closer
to the segmentation label maps. Higher LNCCs indicate that the INN outputs have more structure
similarity to the original input images. From Table 3, we see that without volume preservation,
the INN produces results that are almost identical to the segmentation label maps, but have a low
structural similarity to the original input images. This will lead to a poor invertibility of the INN,
which we will demonstrate later. The volume preservation constraint helps improve the structural
similarity between the INN outputs and the original input images. Moreover, with both volume
preservation and data augmentation, the INN maps images to a neighborhood of the segmentation
label map, and the INN outputs have the highest structural similarity with the original input images.
Furthermore, by comparing the INN results between Spectralis and Cirrus, we see that INN produces
noiser outputs with a higher structure similarity when using Cirrus B-scans as input.

We show some qualitative results in Fig. 6. Column 1 shows the input images to the INNs, including
two Spectralis B-scans in Rows 1-2 and two Cirrus B-scans in Rows 3—4. Columns 2—4 show the
output images of the INNs trained from w/o Volume Preservation, w/o Data Augmentation, and
LMSB-INN (Ours), respectively. Column 2 shows almost identical results to the segmentation label
maps that we constructed for the input images. This means that without volume preservation, the
trained INN maps images with the same anatomy but different contrasts to almost the same output,
i.e., the segmentation label map. The results in Column 3 shows more different output images
between using Cirrus B-scans and Spectralis B-scans as input. The INN outputs are much noiser
when using the Cirrus B-scans as inputs than using the Spectralis B-scans as input. This improves
the invertibility of the INN. However, there are still a lot of detailed anatomical structures missing
from the results in Column 3, for example, vessels and shadows. This is because the segmentation
label maps that we constructed only contain the segmentation of different retinal layers, and do not
include segmentation of vessels and shadows. Therefore, the constructed segmentation label maps
are not perfect anatomical representations of the input images. This issue is alleviated by adding
Gaussian noise to the input images as data augmentation, because it reduces the detailed anatomical
structures from the original input images and makes the corresponding segmentation label maps more
representative. We can see the results of LMSB-INN (Ours) with both volume preservation and data
augmentation from Column 4, where the detailed anatomical structures of the vessels and shadows
are well preserved for both the Cirrus and Spectralis input images.
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Table 3: Mean RMSE (Std. Dev.) and mean LNCC (Std. Dev.) comparison (N = 1, 500) on the
results of the INNs trained from w/o Volume Preservation, w/o Data Augmentation, and LMSB-
INN (Ours), respectively. Examples of the INN output images are shown in Fig. 6. The RMSEs were
calculated between the outputs of the INNs and the target segmentation label maps. Lower RMSEs
indicate that the INN outputs are closer to the segmentation label maps. The LNCCs were calculated
between the outputs of the INNs and the original input images. Higher LNCCs indicate that the INN
outputs have more structural similarity as the original input images.

w/o Volume w/o Data LMSB-INN

Preservation Augmentation (Ours)
Spectralis RMSE 0.013 (0.002)  0.029 (0.005)  0.056 (0.006)
LNCC 0.205(0.012) 0.412 (0.066)  0.540 (0.080)
Cirrus RMSE 0.014 (0.008) 0.063 (0.010) 0.078 (0.007)
LNCC 0.102 (0.011) 0.596 (0.011)  0.794 (0.020)

w/o Volume Preservation w/o Data Augmentation LMSB-INN (Ours)

Figure 6: INN outputs. Column 1 shows the input images to the INNSs, including two Spectralis
B-scans in Rows 1-2 and two Cirrus B-scans in Rows 3—4. Columns 2—4 show the output images of
the INNs trained from w/o Volume Preservation, w/o Data Augmentation, and LMSB-INN (Ours),
respectively.

B.2 Comparison of INN Invertibility

To test the invertibility of the INNs, we added small Gaussian noise with a standard deviation of
0.05 to the INN output images, and then applied the inverse of the INN to obtain the corresponding
reconstructed images. The reconstruction results are summarized in Table 4. We calculate the RMSE
and the LNCC between the reconstructed images and the original input images. Lower RMSEs and
higher LNCCs indicate a better invertibility of the INNs. From Table 4, we see that without volume
preservation, the RMSEs are big and the LNCCs are small, which indicates a poor invertibility.
The volume preservation constraint helps improve the invertibility. Moreover, with both volume
preservation and data augmentation, the reconstructed images achieve the lowest RMSE and the
highest LNCC. Furthermore, the RMSEs for the LMSB-INN (Ours) are 0.05, which is identical to
the standard deviation of the added Gaussian noise. This suggests that a well regularized invertibility
is achieved when using both volume preservation and data augmentation.

We also show some qualitative results in Fig. 7. Column 1 shows the input images to the INN, the
same as Column 1 in Fig. 6. Columns 2—4 show the reconstructed images of the INNs trained from
w/o Volume Preservation, w/o Data Augmentation, and LMSB-INN (Ours), respectively. From the
results in Column 2, we see that the reconstruction results are very different from the original input
images in Column 1. Here, Column 2 uses the same colorbar as Column 1 for consistent comparison.
This indicates that without volume preservation, the invertibility INN is diminished, where a small
error in the latent space leads to a big error in the image space. The results in Columns 3—4 show a
better invertibility. This is because with volume preservation, the INN establishes a bijection between
a neighborhood in the image space and a neighborhood in the latent space with the same volume size,
which makes the invertibility of the INN more robust. Comparing the results in Columns 3-4, we see
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Table 4: Mean RMSE (Std. Dev.) and mean LNCC (Std. Dev.) comparison (N = 1,500) on
the invertibility of the INNs trained from w/o Volume Preservation, w/o Data Augmentation, and
LMSB-INN (Ours), respectively. We added small Gaussian noise with a standard deviation of 0.05
to the INN output images, and then applied the inverse of the INNs to obtain the corresponding
reconstructed images. Examples of the reconstructed images are shown in Fig. 7. Both the RMSEs
and LNCCs were calculated between the reconstructed images and the original input images. Lower
RMSEs and higher LNCCs indicate a better invertibility of the INNs. Bold numbers indicate the best
result in that row. Asterisks indicate statistical significance (i.e., paired t-test comparing 1** and 2™
best results gave p-value < 0.05).

w/o Volume w/o Data LMSB-INN
Preservation = Augmentation (Ours)
Spectralis RMSE 44.420 (1.138)  0.106 (0.011)  0.050* (0.000)
LNCC  0.029 (0.002)  0.289 (0.061)  0.418* (0.057)
Gi RMSE 44.680 (1.241)  0.070 (0.007)  0.050* (0.000)
irrus

LNCC  0.026 (0.001)  0.496 (0.031)  0.618* (0.047)

w/o Data Augmentation LMSB-INN (Ours)

Figure 7: INN invertibility. Column 1 shows the input images to the INNs, the same as Column
1 in Fig. 6. We added small Gaussian noise with a standard deviation of 0.05 to the INN output
images that are shown in Columns 2—4 in Fig. 6, and then applied the inverse of the INNs to obtain
the corresponding reconstructed images. Columns 2—4 show the reconstructed images of the INNs
trained from w/o Volume Preservation, w/o Data Augmentation, and LMSB-INN (Ours), respectively.

that the invertibility is further improved with data augmentation. This is because by adding Gaussian
noise to the input images as data augmentation, it provides the information where the neighborhood
should be centered.

B.3 Comparison of Anatomy Preservation

We evaluate the anatomy preservation of LMSB harmonization using the INNs trained from w/o
Volume Preservation, w/o Data Augmentation, and LMSB-INN (Ours), respectively. For each INN,
we trained a LMSB using the same training parameters as we described in Network Training. The
harmonization results are summarized in Table 5. We calculated the LNCCs between harmonized
and original images. Higher LNCCs indicate a better preservation of the anatomical structure. From
Table 5, we see that without volume preservation, the harmonization results are poor. The volume
preservation helps improve the anatomy preservation. Moreover, with both volume preservation and
data augmentation, the harmonized images achieve the highest LNCC, for both Spectralis to Cirrus
and Cirrus to Spectralis harmonization, and for both SDE and ODE sampling strategies.

We also show some qualitative results in Fig. 8. Column 1 shows the original input images before
harmonization, the same as Column 1 in Fig. 6. Rows 1-2 show two examples of Spectralis to Cirrus
harmonization, and Rows 3—4 show two examples of Cirrus to Spectralis harmonization. From the
results in Column 2, we see that without volume preservation, the poor invertibility leads to a bad
harmonization performance. Here, Column 2 uses the same colorbar as Column 1 for consistent
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Table 5: Mean LNCC (Std. Dev.) comparison (N = 1, 500) on the LMSB harmonization results using
the INNs trained from w/o Volume Preservation, w/o Data Augmentation, and LMSB-INN (Ours),
respectively. Examples of the harmonized images are shown in Fig. 8. The LNCCs were calculated
between the harmonized images and the original input images. Higher LNCCs indicate a better
preservation of the anatomical structure. Bold numbers indicate the best result in that row. Asterisks
indicate statistical significance (i.e., paired t-test comparing 1 and 2™ best results gave p-value
< 0.05).

w/o Volume w/o Data LMSB-INN
Preservation Augmentation (Ours)

SDE ODE SDE ODE SDE ODE

Spectralis  0.045 0.234 0.147 0.518 0.165  0.662*
to Cirrus  (0.004) (0.063) (0.013) (0.042) (0.016) (0.052)

Cirrus to 0.037 0.239 0.139 0.510 0.164  0.692*
Spectralis (0.011) (0.083) (0.014) (0.044) (0.019) (0.030)

LNCC

w/o Volume Preservation w/o Data Augmentation LMSB-INN (Ours)

Figure 8: Anatomy preservation of LMSB harmonization with the ODE sampling strategy. Column 1
shows the original input images before harmonization, the same as Column 1 in Fig. 6. Rows 1-2
show two examples of Spectralis to Cirrus harmonization, and Rows 3—4 show two examples of Cirrus
to Spectralis harmonization. We trained a LMSB for each INN that was trained from w/o Volume
Preservation, w/o Data Augmentation, and LMSB-INN (Ours). We used the same training parameters
for LMSB, which we described in Network Training. Columns 2—4 show the harmonized images of
the LMSBs trained from w/o Volume Preservation, w/o Data Augmentation, and LMSB-INN (Ours),
respectively.

comparison. From the results in Column 3, we see that without data augmentation, although most
retinal layer structures are preserved before and after harmonization, the detailed anatomical structures
that are not in the segmentation label maps are changed, such as vessels and shadows. The results of
LMSB with both volume preservation and data augmentation are shown in Column 4, where we see
that not only the retinal layers but also the vessels, shadows, and choroids are well preserved before
and after harmonization.

C Additional Qualitative Results

We demonstrate the harmonization quality of our proposed method LMSB with ODE sampling
on several examples, with Spectralis to Cirrus harmonization in Fig. 9 and Cirrus to Spectralis
harmonization in Fig. 10. From these qualitative results, we see that the retinal anatomy before
and after harmonization is well preserved, including anatomical structures such as retinal layers,
vessels, shadows, and choroids. We note that some of these structures, such as vessels, shadows, and
choroids, do not appear in the segmentation label maps that were used to train the INN. Moreover,
from the Cirrus to Spectralis harmonization results in Fig. 10, we see that many anatomical structures
such as vessels, shadows, and choroids that are difficult to visualize in the original Cirrus B-scan
become clearer in the harmonized B-scan with the Spectralis contrast. This suggests that the proposed
harmonization method, LMSB, may benefit downstream tasks such as vessel segmentation.

18



Spectralis to Cirrus

Original Harmonized

* v H e e et L

S ey T s e SR S

T TR A

Figure 9: Random examples of Spectralis to Cirrus harmonization by LMSB using the ODE sampling
strategy. The left column shows the original Spectralis OCT B-scans. The right column shows the
synthetic Cirrus OCT B-scans that are harmonized from the left column.
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Figure 10: Random exmaples of Cirrus to Spectralis harmonization by LMSB using the ODE
sampling strategy. The left column shows the original Cirrus OCT B-scans. The right column shows
the synthetic Spectralis OCT B-scans that are harmonized from the left column.
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Table 6: FID comparison for both Spectralis to Cirrus and Cirrus to Spectralis harmonization. Before
harmonization, the FID between the 1, 500 Cirrus B-scans and the 1, 500 Spectralis B-scans in the
testing dataset is 140.53. After harmonization, the FIDs were calculated between the 1, 500 synthetic
B-scans and the 1, 500 original B-scans with the target contrast. Bold numbers indicate the best result
for that subtask.

Spectralis to Cirrus Cirrus to Spectralis
DDIB DSBM LMSB DDIB DSBM LMSB
ODE SDE ODE SDE ODE ODE SDE ODE SDE ODE
FID 4848 1848 2426 17.24 2534 5097 3499 3139 41.72 3297

D Additional Quantitative Results

D.1 Domain Consistency Comparison

To measure the domain consistency, we calculated Fréchet inception distance (FID) before and
after harmonization with respect to the testing dataset. Before harmonization, the FID between
the 1,500 Cirrus B-scans and the 1,500 Spectralis B-scans in the testing dataset is 140.53. We
conducted both Spectralis to Cirrus harmonization and Cirrus to Spectralis harmonization. After
harmonization, the FIDs were calculated between the 1, 500 synthetic B-scans and the 1, 500 original
B-scans with the target contrast. The FID results are shown in Table 6. We found that FID improves
after harmonization with respect to the target contrast for all the harmonization methods. Moreover,
by comparing the FIDs of different methods after harmonization, we can see that both DSBM and
LMSB have better FID than DDIB. LMSB has slightly larger FID than DSBM, which is expected
because the LMSB does not directly apply harmonization between two original data domains.

D.2 Reducing Inter-Device Measurement Bias

To evaluate the impact of the LMSB on this inter-device bias, we performed a downstream segmenta-
tion and retinal layer thickness measurement on 115 pairs of Cirrus and Spectralis volumes collected
from 59 subjects and 115 eyes, which is separate from the training and testing dataset used in this
paper. These 115 pairs of scans were completed contemporaneously. The retinal layer thickness
measurements from these two devices disagree in general, which is an important clinical issue in
OCT imaging when comparing the measurements from different devices on monitoring a subject that
is scanned on different machines during the time course of the study.

We conducted the following harmonization experiments using LMSB with ODE sampling strategy
on the paired OCT dataset: 1) Spectralis to Cirrus harmonization; and 2) Cirrus to Spectralis
harmonization. In the first experiment, we harmonize the 115 Spectralis volumes to the Cirrus
scanner. We computed the retinal layer thickness measurement differences between synthetic Cirrus
(synC) volumes and corresponding original Cirrus (orgC) volumes, and we compared them with the
differences between original Spectralis (orgS) volumes and original Cirrus (orgC) volumes. The
retinal layer thickness measurements were done by first applying a deep learning segmentation
algorithm and then computing the average layer thickness in a 5 x 5 mm? square centered on the
fovea. The second experiment is similar to the first with the exception that we harmonize the 115
Cirrus volumes to the Spectralis scanner. We report difference in thickness measurements between
the synthetic Spectralis (synS) volumes and corresponding original Spectralis (orgS) volumes, as well
as the differences between original Cirrus (orgC) volumes and original Spectralis (orgS) volumes.
The results are shown in Table 7, with the mean and the standard deviation of the signed difference of
the retinal layer thickness measurement.

For both results, we see that harmonization helps reduce the inter-device bias for all retinal layers
including the most important retinal layer GCIPL. Moreover, paired t-tests show statistical significance
(p-value < 0.05) for most cases. We need to highlight that the proposed method was originally
developed such that the thickness measurements from original volumes and harmonized volumes are
consistent. However, from the results in Table 1, we see that we still do not obtain the exact anatomy
consistency with the proposed method. From these additional experiments on the paired dataset, we
see that this remaining anatomy inconsistency actually helps reduce the inter-device bias.
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Table 7: Mean difference (Std. Dev.) comparison (N = 115) in units of um for thickness measure-
ments across eight retinal layers before and after harmonization for both Spectralis to Cirrus and
Cirrus to Spectralis harmonization. Before harmonization, the thickness measurement differences
were derived from the two original OCT volumes. After harmonization, the thickness measurement
differences were derived from the synthetic and corresponding original OCT volumes. Bold numbers
indicate reduced inter-device thickness measurement bias in that row for that subtask. Asterisks indi-
cate statistical significance (i.e., paired t-test comparing before and after harmonization gave p-value
< 0.05). Key: RNFL.: retinal nerve fiber layer; GCIPL: ganglion cell and inner plexiform layer;
INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; IS: inner segment;
OS: outer segment; RPE: retinal pigment epithelium complex; orgC: original Cirrus; orgS: original
Spectralis; synC: synthetic Cirrus; synS: synthetic Spectralis.

Spectralis to Cirrus

Cirrus to Spectralis

orgS — orgC  synC — orgC  orgC — orgS synS — orgS
RNFL 9.66 (2.70) 5.44* (5.35) —9.66(2.70) —3.23* (3.37)
GCIPL —-4.75(1.31) —1.89* (2.26) 4.75 (1.31) 2.66" (1.92)
INL —-2.64(1.19) -1.79* (1.92) 2.64 (1.19) 1.09* (1.57)
OPL 0.63 (0.66) —0.16" (1.38) —0.63 (0.66) 0.26* (0.75)
ONL —4.20(1.68) —2.33* (2.64) 4.20 (1.68) 0.48* (2.35)
IS —0.31(0.41) —0.06" (1.04) 0.31(0.41) 0.24 (0.48)
oS 1.16 (1.04) —0.18* (1.27) —1.16(1.04) 0.38* (0.81)
RPE 1.64 (1.23) —0.27* (0.98) —1.64(1.23) 0.74* (1.26)

E Computational Resources

The proposed model LMSB requires only a single GPU with 48 GB of memory for training and 15
GB for evaluation when the batch size is 16. However, in practice we used several different GPUs
in parallel to train and test different models with different hyperparameters. To train all the models
including the proposed model, comparison models and ablation models, we used seven GPUs in total,
including four NVIDIA A40 (48 GB), two NVIDIA RTX A6000 (48 GB), and one QUADRO RTX
8000 (48 GB).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1 for the claims about the paper’s main contributions. See Section 3
and Section 4 for the theory and the experiments that support the claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5 for a complete discussion on the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 3 and Appendix A for the assumptions and the proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 3 for the description of the network architecture and Section 4 for
the details of the experiments.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Our data cannot be shared due to patient privacy issues, but our code is
available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 4 for details of the dataset, preprocessing, training and testing.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4, Appendix B and Appendix D for the error bars and the statistical
significance when comparing different methods. We use the standard deviations as the error
bars and the paired t-tests for evaluating the statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix E for the computational resources used to conduct the experi-
ments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We preserve anonymity.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The sources of the data used in this paper are credited as co-authors.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: All the risks were disclosed to the subjects during data collection, but not
reported here, and approved by the local IRB. The associated IRBs are IRB00237681 and
NA_00031163.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Latent Metric Schrödinger Bridge
	Experiments
	Discussion
	Conclusion
	Proof of Volume Preservation
	Ablation Study
	Comparison of INN Outputs
	Comparison of INN Invertibility
	Comparison of Anatomy Preservation

	Additional Qualitative Results
	Additional Quantitative Results
	Domain Consistency Comparison
	Reducing Inter-Device Measurement Bias

	Computational Resources

