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ABSTRACT

Reward models (RMs) are central to aligning large language models (LLMs) with
human preferences, yet they often overfit to spurious correlations such as response
length or sycophancy. Existing approaches mainly focus on mitigating these arti-
facts, but overlook reinforcing the true causal link from prompt intentions to re-
sponses. We propose CARP (Causal Alignment of Reward Models via Response-
to-Prompt Prediction), a framework that leverages inverse prompt prediction to
measure how well a response addresses the intent embedded in its prompt. A
prompt decoder is trained to estimate the original prompt embedding from a given
response, and the reconstruction error defines a Semantic Alignment Score (SAS),
which we use to adjust preference labels and regularize reward model training. We
show theoretically that SAS isolates the prompt-to-response causal signal while
filtering out spurious cues. Empirically, the prompt decoder selects shorter and
less sycophantic responses with 87.7% accuracy across math, helpfulness, and
safety benchmarks. Incorporating SAS into Bradley–Terry reward model training
on Gemma-2B-it and Gemma-2-9B-it leads to significant improvements in Re-
wardBench evaluation accuracy, demonstrating CARP’s effectiveness in building
more causally aligned reward models.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has become a widely adopted framework
for aligning large language models (LLMs) with human preferences (Christiano et al., 2023). A
central component of this framework is the reward model, which is typically trained on pairwise hu-
man preference data to approximate evaluative judgments of model outputs and guide reinforcement
learning towards outputs better aligned with human expectations(Ouyang et al., 2022).

However, recent work has revealed that reward models are susceptible to reward hacking, where
models exploit imperfections in the learned reward function rather than genuinely aligning with
human intent (Amodei et al., 2016). Reward hacking can arise from unintentional and prompt-
irrelevant human preferences (Wang et al., 2025). For example, a preference for longer or sycophan-
tic responses induces length bias(Stiennon et al., 2022) and sycophancy bias(Perez et al., 2022).

Early work focused on identifying specific spurious attributes and mitigating their impact on reward
models. Shen et al. address length bias by decomposing the reward and suppressing the length-
based bias signal during optimization. Later, causal methods (Pearl, 2009; Yao et al., 2021) were
introduced to handle general unintentional artifacts. Some approaches reduce reward hacking by
eliminating the causal edge from spurious artifacts to reward models; for instance, RRM attenu-
ates this effect via counter-artifact data augmentation (Liu et al., 2025). In contrast, methods like
CROME strengthen the causal edge from context-related intentions by generating augmented train-
ing samples (Srivastava et al., 2025). However, these methods only rely on data augmentation rather
than explicitly quantifying prompt intentions in responses. We instead estimate this signal and use
it to strengthen the causal edge from prompt intention to the reward model.

Estimating how much a given response faithfully reflects the prompt intention is difficult. The in-
tention is a latent and unobservable variable. To capture such hidden factors, representation learning
methods are often employed, such as sparse autoencoders (SAEs)(Makhzani & Frey, 2014) and vari-
ational autoencoders (VAEs)(Kingma & Welling, 2022). It also requires disentangling meaningful
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alignment from incidental correlations and irrelevant attributes. Moreover, leveraging the prompt
intention signal requires an effective mechanism to integrate it into reward model training.

To resolve these challenges, we frame reward model training within a causal graph to separate
prompt-related intentions from context-free artifacts, develop a framework that quantifies how well
a response realizes the latent prompt intention, and utilize it in training reward models. The pipeline
is illustrated in Figure 1. To summarize, the contributions of this paper are three-fold:

• We point out that existing alignment studies lack frameworks to quantify a response’s real-
ization of prompt intention, particularly through causal manners.

• To address this, we construct a causal graph for reward model training, develop a frame-
work (CARP) to quantify the extent of a response’s alignment with prompt intention
through SAS, and reinforce the causal effect of prompt intention in reward model train-
ing.

• We theoretically prove that SAS isolates prompt intention while compressing spurious arti-
facts. On RewardBench (Malik et al., 2025), our SAS-regularized reward model improves
accuracy by 3.6% over the vanilla RM and RRM (Liu et al., 2025) on the 9B model.

• Downstream evaluations in Table 3 and Table 8 show that our model consistently favors
on-topic responses, positioning CARP as a complementary component to nearly all exist-
ing reward hacking mitigation approaches and suggesting potential for further gains when
integrated into a unified framework.

Figure 1: CARP. A prompt decoder is trained on multiple-response-to-one-prompt SFT data to
suppress spurious signals. The resulting Semantic Alignment Score (SAS) is used as an additional
signal in reward model training, incorporated into the loss function to strengthen the causal link
between prompt intent and reward labels. This encourages the reward model to capture human
preferences that are genuinely aligned with the prompt’s intent.

2 SAS-REGULARIZED REWARD MODEL TRAINING

2.1 PROMPT-AWARE CAUSAL ABSTRACTION

Traditional methods typically build a causal graph as (Figure 2a), constructing S and C as effects of
X and Y , focusing on mitigating the causal effect from C to R ((Liu et al., 2025)). In contrast, we
adopt an innovative modeling approach and formulate a DAG G to model the causal relationships
(Figure 2b).

In G, X is the prompt, Y is the response. W ∈ Rdw is the latent human intention embedded within
the prompt, which we assume to be the sufficient statistic that captures all human intentions from the
prompt to generate the response. Z ∈ Rdz is the latent artifact which we assume to be the sufficient
statistic that captures all context-free causal factors that are necessary for generating a response,
aside from W . We assume that W is independent from X and W . R ∈ R is the reward model.

Unlike traditional methods, our objective is to assign higher rewards to responses that are more
aligned with the prompt’s intention. Therefore, in our modeling, we employ anti-causal engineering
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(a) Traditional causal graph of reward model. X
is the prompt. Y is the response. S is the con-
textual signal that depends on X and Y. A is the
context-free artifact that only depends on Y. R is
the reward model.

(b) CARP causal graph of reward model. X is
the prompt. W is the human intention embedded
within the prompt. Z is the context-free artifact
that is independent from W and X. Y is the re-
sponse. R is the reward model. Our work aims to
build and strengthen the edge from W to R.

Figure 2: Causal graphs of Reward model.

to construct representations of latent W and Z, while establishing and strengthening the causal edge
from W to R via data augmentation. This encourages the reward model to preferentially capture
responses aligned with the prompt’s intention, thereby mitigating reward hacking.

Setup Suppose that we have a dataset of N prompts with M responses each. For the ith prompt
and its jth response:

• Prompt embedding: xi ∈ Rdx • Prompt intention: wi = w(xi) ∈ Rdw

• Artifacts: zi,j ∈ Rdz

• Response embedding: yi,j = f(wi) + g(zi,j) ∈ Rd (Assume decomposed additivity)

• Response SAE: Encoder(yi,j) = uij = TopK(Pyi,j), where P ∈ Rk×d

• Prompt Decoder: Decoder(ui,j) = Lui,j + b,where L ∈ Rdx×k

2.2 SEMANTIC ALIGNMENT SCORE (SAS)

Our key intuition is that a decoder should be able to reconstruct the embedding of the prompt from
the response representation if a response faithfully addresses the intent of its prompt. Moreover,
when multiple responses correspond to the same prompt, their shared components are more likely
to capture the underlying intent, while spurious artifacts, such as verbosity or sycophancy, vary
idiosyncratically and cancel out in expectation. We theoretically justified our ideas in Theorem 1
and Theorem 2. In practice, we train a prompt decoder that maps sparse response representations
to their corresponding dense prompt embeddings. The training procedure consists of three stages:
dataset preparation, representation extraction, and supervised decoder fitting.

Data Construction We build a hybrid 20K prompt–response pairs from two SFT corpora:
Smoltalk (Allal et al., 2025) for reasoning and code tasks and AlpacaFarm (Dubois et al., 2024)
for daily dialogues, and augment each prompt with three completions from DeepSeek-V3.1-
Base (DeepSeek-AI et al., 2025), LLaMA3-72B (Grattafiori et al., 2024) and Qwen3-235B-
A22B (Yang et al., 2025). Thus, each prompt has four responses, balancing semantic overlap and
stylistic diversity to support learning invariant causal patterns.

Representation Extraction For each response, we extract a sparse semantic representation using
the a sparse autoencoder (SAE) pretrained on LLaMA-3-8B1 with TopK = 192 activation selection.
This sparse vector serves as the input to the prompt decoder. The target output for the decoder is the
last-token prompt embedding extracted from the 14th hidden layer of LLaMA-3-8B, which we treat
as a stable and informative representation of the prompt’s semantics.

1We used https://huggingface.co/EleutherAI/sae-llama-3-8b-32x
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Prompt Decoder Training Now the training proceeds by minimizing the Mean Squared Error
(MSE) between predicted and target embeddings:

Lpd = argmin
L,b

1

NM

N∑
i=1

M∑
j=1

∥Lui,j + b− xi∥22,

where N is the number of prompts and M is the number of responses per prompt. Given a re-
sponse u and a prompt x,We define the corresponding Semantic Alignment Score (SAS) as the
reconstruction error, so a lower SAS value indicates better alignment:

SAS(u, x) = ∥L̂u+ b̂− x∥22

2.3 THEORETICAL ANALYSIS OF SAS

We show that, with high probability, the output of our prompt decoder depends primarily on w
and x, and is approximately independent from z. This implies that SAS evaluates how well a
response aligns with the prompt’s intent, compressing signals from artifacts. For large N and
M , Theorem 1 states that the decoder parameters approximate the ideal ones that are independent
from artifacts z. Meanwhile, Theorem 2 asserts that given a new sample response, the prompt
decoder prediction is nearly independent from z. Theoretical support is provided below with formal
proofs in Appendix B.
Definition 1 (Ideal Top-K Indices). The ideal case is that the decoder output only contains w and is
independent from z. For a given prompt intention wi and its corresponding signal si = Pf(wi) ∈
Rk, the ideal Top-K indices are defined as:

Jwi
= {j1, j2, . . . , jK} ⊂ {1, 2, . . . , k} (1)

where j1, j2, . . . , jK are the indices corresponding to the K largest absolute values in si = Pf(wi).
That is:

|si,j1 | ≥ |si,j2 | ≥ · · · ≥ |si,jK | ≥ max
t/∈Jwi

|si,t| (2)

Denote IJw
as the coordinate selection matrix corresponding to Jw, IJreal as the real coordinate

selection matrix when choosing Top-K indices from Pyij . Thus, we have:

TopK(Pyij) = IJrealPyij , T opKideal(Pyij) = IJw
Pyij

Definition 2 (Flip Event). Given a prompt i with ideal signal si = Pf(wi) and perturbation ηi,j =
g(zi,j), a flip event occurs when TopK(P (f(wi) + ηi,j)) ̸= Jwi

.

pflip = Pr(TopK(P (f(wi) + ηi,j)) ̸= Jwi
) (3)

Definition 3 (Ideal Population Matrix). The following matrices only depends on w while indepen-
dent form z.

Σ(0)
xu = E

[
x(IJw

s)T
]
, Σ(0)

uu = E
[
(IJw

s)(IJw
s)T

]
L(0) = Σ(0)

xu

(
Σ(0)

uu

)−1
, b(0) = E[x]− L(0)E[IJws]

Theorem 1 (High-Probability Artifacts Suppression in Decoder). Under assumptions (1)–(5) stated
below, if NM ≥ C σ2

ε2 (d+ k + log(1/η)), then with probability at least 1− η, ∃C1, C2 > 0, such
that:

∥L̂− L(0)∥op ≤ C1(ε+ pflip), ||b̂− b(0)||2 ≤ C2(ε+ pflip)

Theorem 2 (Artifacts Suppression in Prediction). Under Assumptions (1)–(5) stated in Appendix B,
given a new sample y = f(w) + g(z), unew = TopK(Py), then for any confidence parameter
η ∈ (0, 1), with probability at least 1− η the following holds:∥∥L̂unew + b̂− (L(0)IJw

Pf(w) + b(0))
∥∥
2

≤ C̃
(
(ε+ pflip) ∥P∥op

Mf√
η

+ σ
√

k + log(1/η)
)
,

(4)

where σ is the sub-Gaussian scale according to assumption 2 in Appendix B, and C̃ > 0 is a constant
depending only on the constants appearing in Assumptions (1)–(5) and on operator norms of L(0)

and PJw .
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2.4 SAS-REGULARIZED DYNAMICS IN REWARD MODEL TRAINING

We extend the Bradley–Terry framework with SAS regularization. Let rc, rr be the reward scores of
the chosen and rejected responses, sc, sr their SAS scores, σ the sigmoid function and k the tuning
parameter. The loss of vanilla RLHF and SAS-based RLHF are as follows:

Lvanila = −
∑
i

log σ(yic − yir), LSAS = −
∑
i

log σ
(
(yic − yir) + k · (sic − sir)

)
(5)

r̂n(x, y) = argmax
r

[−Lvanilla], r̂nSAS(x, y) = argmax
r

[
− LSAS ] (6)

Effect on Parameter Updates Here we analyze the effect of SAS-regularized training process
through gradients in the parameter updates, with detailed derivations provided in Appendix C.1.

Since we have

∂L

∂θ
=

∑
i

[σ(yic − yir)− 1][
∂yic
∂θ

− ∂yir
∂θ

]

∂LSAS

∂θ
=

∑
i

[σ(yic − yir + k(sic − sir))− 1][
∂yic
∂θ

− ∂yir
∂θ

]

SAS modulates gradients: when aligned with preferences, it magnifies updates toward prompt in-
tention; when in conflict, it mitigates them, thus modifying the update steps and reducing artifact
influence.

Causal Nature of SAS According to Proposition 1 in Appendix C.2, we have r̂nSAS(x, y) =
r̂n(x, y)− k · s(x, y).
We evaluate the causal effect of SAS by deriving the ATE on the difference between on-intention
and off-intention responses, where the treatment corresponds to incorporating SAS rather than the
presence of intention itself.:

ATE = E[r̂(x, yon)− r̂(x, yoff )|SAS]− E[r̂(x, yon)− r̂(x, yoff )|vanilla]
= E[r̂nSAS(x, yon)− r̂nSAS(x, yoff )]− E[r̂n(x, yon)− r̂n(x, yoff )]

= kE[−s(x, yon) + s(x, yoff )] ≥ 0

Therefore, although SAS can be regarded as a penalty term for the reward, it induces a positive
shift in the reward difference between on-intention and off-intention responses compared to vanilla.
Consequently, incorporating SAS effectively strengthens the causal effect of prompt intention sig-
nal on the reward model. In Section 2.3, we show that in high probability, the decoder output is
approximately independent from artifact z, so do SAS. Thus, the causal effect introduced by SAS
is independent from z, thereby removing z as a confounder.

Curriculum Learning Schedule To facilitate stable training, we implement a curriculum learning
approach so that keff = k · I(Epoch ≥ 1).

Safety Alignment Considerations Denote δsas = sc − sr. In practice, we apply thresholding for
safety alignment scenarios. Safety-critical cases often exhibit counterintuitive SAS patterns where
safe responses (e.g., refusal to answer harmful queries) may appear ”off-topic” compared to poten-
tially dangerous but directly responsive answers. To handle this, we introduce a safety threshold τ :
δthres

sas = δsas1(δsas ≤ τ). When δsas > τ , the SAS regularization is disabled (δthres
sas = 0), allowing the

loss to revert to standard Bradley–Terry preference learning. This mechanism preserves safety align-
ment by preventing SAS scores from interfering with cases where topical deviation may actually
indicate safer, more appropriate responses. We demonstrated the effectiveness of our thresholding
further in Section 3.2.
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3 EXPERIMENTS

In this section, we first systematically evaluate the overall performance of the prompt decoder trained
using the scheme described in Section 2.2. We then visualize the distribution of the computed SAS
scores on the RLHF training set, and finally present the downstream reward model training results.

3.1 PROMPT DECODER RESULTS

Evaluation Dataset. We construct a 300-sample evaluation set by sampling 100 preference pairs
from each of the following sources: (i) 100 pairs of helpfulness preference from the HH-RLHF-
Helpful-standard (Dong et al., 2024). (ii) 100 pairs from the Reward-Bench-2 (Malik et al., 2025)
math category. (iii) 100 pairs from the Reward-Bench-2 safety category. To evaluate the sensitivity
of the prompt decoder to stylistic artifacts, we create perturbed versions of the chosen responses us-
ing the GPT-4o-mini model. The rewriting prompt is designed to preserve the factual content while
introducing stylistic variations; detailed rewrite instructions are demonstrated in the Appendix D.

To validate Theorem 1, we first train a decoder on a dataset of 20K prompts without augmentation.
As shown in Figure 3a, the decoder already achieves solid performance: selects the human preferred
response over its stylistic rewrite in roughly 80% cases, where selection means having a lower SAS
score, indicating that the decoder has successfully learned to filter out superficial stylistic variations.

To further verify the effectiveness of the one-to-many training paradigm, we compare three settings:
(i) 20K without augmentation, (ii) 20K with four responses per prompt (augmented), and (iii) 80K
unaugmented prompts, which matches the augmented setting in total number of responses. We
evaluate each decoder along two axes: (1) distinguishing chosen from rewritten responses, and (2)
distinguishing chosen from rejected responses. The results are presented in Figure 3a and Figure 3b.

(a) Average accuracy of the prompt decoder
on the chosen-vs-rewrite task across helpful,
math, and safety domains. Augmented training
(20K augmented) yields the best performance,
surpassing both unaugmented 20K and 80K data.

(b) Average accuracy of the prompt decoder on the
chosen-vs-reject task. Performance remains near
random guess (50%) across all training regimes,
indicating that SAS captures a signal orthogonal
to human preference labels.

Figure 3: Average Accuracy Curve of Prompt Decoder

All prompt decoders were trained with a batch size of 128 and a learning rate of 1e−5 for 8 epochs
on a single NVIDIA RTX 4090 GPU. Each decoder matches the size of the encoder used in the
corresponding sparse autoencoder (SAE) mentioned in 2.2. Across all epochs, the augmented 20K
dataset achieves highest accuracy 87.7% and outperforms both the 20K and 80K baselines on the
chosen-vs-rewrite task, indicating that response augmentation offers stronger supervision than sim-
ply increasing data volume. In particular, the decoder consistently fails to distinguish chosen from
rejected responses, with accuracy near 50% regardless of the size of the data set. This highlights
that SAS is a complementary alignment signal rather than leaking human preference supervision,
and thus further filtering out unintentional signal introduced by human labellers.

3.2 REWARD MODEL RESULTS

Training and Evaluation Datasets. We follow the training and evaluation protocol established
in RRM (Liu et al., 2025). For training, we randomly sample a 70K subset from their 700K

6
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Prompt Decoder Chosen vs Rewrite (↑) Chosen vs Reject (→50%)
Helpful Math Safety Overall Helpful Math Safety Overall

20K 73.0 94.0 71.0 79.3 53.0 51.0 41.0 48.3
80K 75.0 98.0 77.0 83.3 56.0 47.0 43.0 48.7
20K augmented 86.0 93.0 84.0 87.7 53.0 47.0 46.0 48.7

Table 1: Accuracy (%) of prompt decoders on the Chosen vs Rewrite and Chosen vs Reject tasks,
evaluated at the best epoch for each model across helpful, math, and safety domains.

Figure 4: Distribution of the difference of Semantic Alignment Scores (SAS) between chosen and
rejected responses on the 70K training pairs.

RLHF dataset (Dong et al., 2024)2, which contains approximately 700K pairwise preference ex-
amples. While RRM uses a pairwise preference reward model (Jiang et al., 2023), we instead adopt
a Bradley–Terry scheme (Bradley & Terry, 1952). For evaluation, we adopt RewardBench (Lambert
et al., 2024), which provides curated test sets across four evaluation dimensions—chat, chat-hard,
safety, and reasoning.

SAS for Reward Model. To compute SAS for the 70K training pairs, we use the prompt de-
coder trained on the 20K augmented dataset at Epoch 3, which achieves the highest accuracy on the
chosen-vs-rewrite task (Table 1) and best reconstructs prompt embeddings from responses.

Once selected, the decoder remains frozen throughout reward model training. For each training pair
(x, y+, y−), we compute SAS scores by encoding the chosen and rejected responses into sparse
vectors via the SAE, and decoding them back into the prompt embedding space. We visualize
the distribution of SAS scores across the training set in Figure 4. While the chosen responses
tend to have slightly lower SAS values than the rejected ones, the overall distributions are closely
aligned. This observation motivates the use of a larger tuning parameter k in the SAS-regularized
loss (Equation 5) to amplify the effect of this fine-grained alignment signal during training.

RM Training. We fine-tune reward models based on Gemma-2-2B-it (Team et al., 2024) and
Gemma-2-9B-it, using the SAS-regularized Bradley–Terry objective. Each model is trained for 2
epochs with a batch size of 256 and a learning rate of 2e−6, optimized using AdamW with cosine
learning rate decay. We set k = 0 during the first epoch to allow the model to learn basic preference
alignment, and apply non-zero SAS regularization only in the second epoch. All training is con-
ducted on an 8×NVIDIA H200 GPU cluster. We experiment with k ∈ {4e3, 1.6e4, 3.2e4, 6.4e4}
and find that the best performance is achieved at k = 3.2e4 for the 2B model and k = 6.4e4 for
the 9B model. For all subsequent reward model training, we set the safety threshold τ = 0.005,
which filters out approximately 7% of extreme cases from the training data, and results are shown in

2https://huggingface.co/datasets/RLHFlow/pair_preference_model_dataset
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Table 2. On RewardBench, the overall accuracy of the 9B model improves from 83.22% to 86.83%.
For both 2B and 9B models, the Chat-Hard category sees a consistent gain of over 4%. Detailed
evaluations for each single scaling value are attached in Appendix D. We obtain the baseline model
simply by setting k = 0. Moreover, we apply RRM’s data permutation framework to the Bradley–
Terry reward model. Details of the training setup are provided in the Appendix D.

(a) Gemma-2B-it (k = 3.2e4)

Model Chat Chat-Hard Safety Reasoning Avg. Weighted Avg.

Vanilla RM 97.77 54.82 83.24 66.18 75.50 72.46
Bradley–Terry RRM 92.19 48.03 49.46 69.11 64.69 63.79
CARP (Ours) 96.93 58.99 79.05 71.56 76.63 74.54

(b) Gemma-9B-it (k = 6.4e4)

Model Chat Chat-Hard Safety Reasoning Avg. Weighted Avg.

Vanilla RM 96.37 63.37 89.73 82.88 83.09 83.22
Bradley–Terry RRM 93.02 59.65 61.22 78.55 73.11 73.10
CARP (Ours) 94.69 68.86 88.24 89.87 85.42 86.83

Table 2: RewardBench accuracy (%) of reward models across four evaluation categories.
CARP (Ours) denotes the SAS-regularized reward model with best-performing k value. Each sub-
table corresponds to a different model scale. The weighted average reflects the overall proportion of
correctly ranked preference pairs across all subsets.

Safety Alignment We conduct an ablation study to assess the impact of the safety threshold τ
when k = 3.2e4. As shown in Table 3, the model with thresholding (τ = 0.005) outperforms the
one without thresholding (τ = 0) on the Safety dimension.

Spurious Correlation Analysis. To further assess the robustness of our SAS-regularized reward
models to spurious alignment signals, we conduct a subtle experiment on the same 300 preference
pairs subsets sampled from RewardBench2 when we evaluate the prompt decoder 3.1. For each
chosen response, we construct three rewrites designed to isolate specific confounding factors:

• Rewrite 1 (Lengthened): We apply a RATE-style rewriting prompt to make the chosen re-
sponse significantly longer, while preserving its factual content, stance, and topicality (Re-
ber et al., 2025).

• Rewrite 2 (Shortened): Starting from Rewrite 1, we apply another RATE-style prompt to
reduce its length, again without altering the original intent or content.

• Rewrite 3 (Lengthened, Off-topic): We generate a longer version of the chosen response
that includes slight topical drift—maintaining politeness and fluency, but deviating from
the core question or user intent.

By comparing the reward scores assigned to Rewrite1 vs Rewrite2, we test whether the
reward model exhibits length bias—i.e., whether longer responses are consistently favored despite
content parity. Meanwhile, comparing Rewrite1 vs Rewrite3 probes the model’s ability to
penalize off-topic responses, even when they are longer or more stylistically polished.

This design ensures that any performance difference arises from the model’s sensitivity to spurious
features such as verbosity or topic coherence. Our results in Table 4 show that SAS-regularized
models remains indifferent to length bias while being more sensitive to topical alignment.

We observe similar trends in the 9B setting 7, where CARP amplifies the distinction between on-
topic and off-topic responses while remaining robust to verbosity.

8
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Model Chat Chat-Hard Safety Reasoning Avg. Weighted Avg.

CARP (τ = 0.005) 96.93 58.99 79.05 71.56 76.63 74.54
CARP (τ = 0) 96.09 62.06 77.97 70.09 76.55 73.94

Table 3: RewardBench accuracy (%) comparison of best CARP 2B-model with and without SAS
thresholding. Using thresholding (k = 3.2e4, τ = 0.005) disables SAS regularization for safety-
critical examples. We observe that removing the threshold (τ = 0) reduces the model safety.

Model (2B) Rewrite1 vs Rewrite2 Rewrite1 vs Rewrite3(↑)
Helpful Math Safety Avg. Helpful Math Safety Avg.

Vanilla RM 43.0 55.0 59.0 52.33 57.0 92.0 90.0 79.67
Bradley–Terry RRM 44.0 74.0 62.0 60.0 53.0 62.0 86.0 72.0
CARP(Ours) 53.0 67.0 46.0 55.33 83.0 95.0 89.0 89.0

Table 4: Accuracy (%) of reward models on the Rewrite1 vs Rewrite2 and Rewrite1 vs Rewrite3
tasks, evaluated at the best epoch for each model across helpful, math, and safety domains.

4 CONCLUSION AND FUTURE DISCUSSION

Reward hacking arises from unintentional, prompt-unrelated biases in preference data. Prior work
has sought to address this issue by reinforcing the causal link between prompt intent and reward
model predictions, but has lacked a principled framework to quantify the extent to which a response
aligns with the prompt. We propose CARP, a framework that introduces the Semantic Alignment
Score (SAS) to measure how well a response reflects latent prompt intentions. We theoretically
show that SAS depends only on prompt-relevant information and suppresses context-independent
artifacts with high probability. Experimental results 5 and 5 show that SAS captures prompt intent
independently of human preference labels. Incorporating SAS into reward model training further
improves performance over both Vanilla RM and RRM. Our framework thus enables reward models
to be more directly guided by prompt semantics, reducing reliance on spurious artifacts and mitigat-
ing reward hacking. Results in in Table 3 and Table 8 show that that CARP improves reward model
behavior in a subtle, orthogonal manner to most existing reward hacking mitigation methods. Rather
than replacing existing methods, CARP offers a principled mechanism for injecting prompt intent
supervision into reward training, opening the door to unified pipelines.

5 RELATED WORK

Reward Hacking The problem of reward hacking has become increasingly prominent with the
growing adoption of RLHF (Amodei et al., 2016; Casper et al., 2023; Kaufmann et al., 2023). Mod-
els are likely to achieve high rewards without fulfilling the intended objectives(Pan et al., 2022;
Weng, 2024). For example, reward models are easily hacked by lengthSinghal et al. (2024), syco-
phancyPerez et al. (2022), concept(Zhou et al., 2024), and demography(Salinas et al., 2023). Recent
works employ model merging (WARP(Ramé et al., 2024a) and WARM(Ramé et al., 2024b)), and
hacking reward decomposition(Chen et al., 2024) to mitigate hacking in online RLHF.

Causal Solutions to Reward Hacking On one hand, some researchers weaken the causal edge
from spurious attributes. RATE employs a “rewrite-twice” strategy to correct the imperfections of
counterfactuals(Reber et al., 2025). RRM trains robust reward models by augmenting the training
distribution with counter-artifact examples(Liu et al., 2025). Causal-Debias explicitly represents
spurious attributes and trains invariant predictors by minimizing the dependence between learned
representations and such attributes(Zhou et al., 2023). On the other hand, others enhance the causal
relationship among intentional causal attributes. CROME applies causal data augmentation by in-
tervening on causally relevant attributes to generate training samples, strengthening their influence
on the reward model(Srivastava et al., 2025).
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REPRODUCIBILITY STATEMENT

All code used for training the response SAE, prompt decoder, and reward models (RM, RRM, and
SAS-regularized RM), as well as for running the experiments, will be made publicly available upon
publication. The full implementations of the data generation pipeline and the training procedures for
SAE, prompt decoder, and reward models will be released on GitHub, and all trained models will
be uploaded to HuggingFace. For publicly available datasets used in our experiments, we provide
detailed preprocessing steps in the supplementary materials. For datasets generated by us, we will
release them on HuggingFace, with rewriting prompts described in the appendix. We also include
the complete set of hyperparameters (e.g., learning rates, batch sizes, and optimization settings) to
facilitate replication. Finally, our evaluation protocols are fully documented in the main text and
appendix, ensuring that all reported results can be reproduced.
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A LLM USAGE STATEMENT

In preparing this manuscript, large language models (LLMs) were used solely as auxiliary tools
for improving the clarity and readability of the text. Specifically, LLMs were employed to correct
grammatical errors, refine phrasing, and polish the language style to ensure that the writing is more
formal and consistent with academic standards.

Importantly, LLMs were not used for research ideation, retrieval or discovery of related work, data
analysis, or generation of scientific content. All conceptual contributions, methodological designs,
experimental implementations, and substantive writing were conducted entirely by the authors. The
authors take full responsibility for the final content of the paper.

B THEORETICAL DERIVATION FOR ARTIFACTS COMPRESSION

Assumption 1 (Conditional Zero-Mean of Artifacts).
E[g(zi,j) | wi] = 0.

Since z is independent from w, the conditional expectation is a constant, which can be generalized
to non-zero case easily.
Assumption 2 (Sub-Gaussian Distribution).

1. There exist a constant σ > 0 such that for every coordinate of pr and every λ ∈ R,

E
[
exp(λ · pTr g(zi,j))

]
≤ exp(σ2λ2/2).

2. There exist constants σx, σy > 0 such that for every unit vectors a ∈ Rdx , b ∈ Rdy , and
every λ ∈ R,

E
[
exp

(
λ a⊤(xi − µx)

)]
≤ exp

(
λ2σ2

x

2

)
,

E
[
exp

(
λ b⊤(uij − µu(xi)

)]
≤ exp

(
λ2σ2

u

2

)
, µu(xi) := E[ui,j | xi].

Assumption 3 (Top-K Margin Condition). For si = Pf(wi) and ideal Top-K indices Jwi
, there

exists δ > 0 such that:
min
j∈Jwi

min
t/∈Jwi

(|si,j | − |si,t|) ≥ δ.

Assumption 4 (Positive Definite Covariance).
λmin(Σuu) ≥ λ0 > 0,

where Σuu = E[uuT ].
Assumption 5 (Bounded Expectation).

∃Mx,Mf ,Mu > 0, s.t. E[||xi||22] ≤ M2
x , E[||f(wi)||22] ≤ M2

f , E[||uij ||22] ≤ M2
u

Lemma 1. If ∥Pηi,j∥∞ < δ/2, then no flip occurs. Moreover, the flip probability satisfies:

pflip ≤ Pr(∥Pηi,j∥∞ ≥ δ/2) ≤ 2k exp

(
− δ2

8σ2

)
Proof of Lemma 1. Let si = Pf(wi) and ∆i,j = Pηi,j . For any j ∈ Jwi and t /∈ Jwi :

|(si +∆i,j)j | − |(si +∆i,j)t| ≥ |si,j | − |∆i,j,j | − |si,t| − |∆i,j,t|
≥ |si,j | − |si,t| − 2∥∆i,j∥∞
≥ δ − 2(δ/2) = 0

Thus the Top-K selection remains unchanged.

By union bound:

Pr(∥Pηi,j∥∞ ≥ δ/2) = Pr

(
max

r=1,...,k
|pTr ηi,j | ≥ δ/2

)
≤

k∑
r=1

Pr(|pTr ηi,j | ≥ δ/2) (7)
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Since pTr ηi,j is sub-Gaussian with parameter σ2, by tail bounds:

Pr(|pTr ηi,j | ≥ δ/2) ≤ 2 exp

(
− (δ/2)2

2σ2

)
= 2 exp

(
− δ2

8σ2

)
(8)

Therefore: pflip ≤ 2k exp(−δ2/8σ2).

Lemma 2 (Population Covariance Decomposition). Denote IJw
as the coordinate selection matrix

corresponding to Jw, and Iflip as the real coordinate selection matrix when flipping.

Σ(0)
xu = E

[
x(IJw

s)T
]
, Σxu = E

[
xuT

]
, Σ(0)

uu = E
[
(IJw

s)(IJw
s)T

]
, Σuu = E

[
uuT

]
The population cross-covariance can be decomposed as:

Σxu = Σ(0)
xu +∆xu, Σuu = Σ(0)

uu +∆uu

with ∥∆xu∥op ≤ Cxpflip, ∥∆uu∥op ≤ Cupflip.

Proof of Lemma 2. Recall the notation for a fixed prompt index i:

yi,j = f(wi) + g(zi,j), vi,j = Pyi,j , ui,j = TopK(vi,j),

and write, for brevity,

si := Pf(wi), ηi,j := g(zi,j), ∆i,j := Pηi,j ,

so that vi,j = si +∆i,j and ui,j = TopK(si +∆i,j).

Step 1 Prove that there exist constants C > 0, such that ||E
[
∆ij | wi, flip

]
||22 ≤ C. Fix a

coordinate r ∈ {1, . . . , k}. Denote ∆ijr := (Pηi,j)r = p⊤r ηi,j . By the sub-Gaussian assumption,

P(|∆ijr| ≥ t) ≤ 2 exp
(
− t2

2σ2

)
, ∀t > 0.

The flip event implies that the Top-K selection has been altered, which by the margin assumption
requires

flip =⇒ |∆ijr| ≥ δ/2 for some r.

Hence, for each coordinate,

E[∆2
ijr | wi, flip] ≤ E[∆2

ijr | |∆ijr| ≥ δ/2].

By the definition of conditional expectation,

E[∆2
ijr | |∆ijr| ≥ δ/2] =

E[∆2
ijr1|∆ijr|≥δ/2]

P(|∆ijr| ≥ δ/2)
.

Using the sub-Gaussian tail bound, the numerator can be bounded by integrating the tail:

E[∆2
ijr1|∆ijr|≥ δ

2
] =

∫ ∞

0

P(∆2
ijr1|∆ijr|≥ δ

2
≥ t) dt =

∫ δ2

4

0

1 dt+

∫ ∞

δ2

4

2 exp
(
− t

2σ2

)
dt ≤ C1σ

2,

where C1 > 0 is a constant depending only on δ and σ. The denominator P(|∆ijr| ≥ δ/2) ≤ 1, so

E[∆2
ijr | |∆ijr| ≥ δ/2] ≤ C1σ

2.

Finally, summing over all k coordinates,

||E
[
∆ij | wi, flip

]
||22 ≤ E[∥∆i,j∥22 | wi, flip] =

k∑
r=1

E[∆2
ijr | wi, flip] ≤ kC1σ

2,

which proves the conclusion with C := kC1σ
2.
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Step 2 Prove the lemma.

Using the law of total expectation:
E[∆ij | wi] = E[∆ij | wi, no-flip]P (no-flip | wi) + E[∆ij | wi, flip]P (flip | wi)

= E[∆ij | wi, no-flip](1− P (flip | wi)) + E[∆ij | wi, flip]P (flip | wi)

= 0

E[∆ij | wi, no-flip] = − P (flip | wi)

1− P (flip | wi)
E[∆ij | wi, flip]

Here we denote ∆̃ = E[∆ij | wi, flip], according to Step 1, ||∆̃||22 ≤ C,

E
[
uij | wi

]
=E

[
uij | wi, no-flip

]
· P (no-flip|wi) + E

[
uij | wi, flip

]
· P (flip|wi)

=(1− P (flip|wi))IJwi
(si + E[∆ij |wi, no-flip]) + P (flip|wi)IJflip(si + E[∆ij |wi, flip])

=IJwi
si + P (flip|wi)(IJflip − IJwi

)(si + ∆̃)

Σxu = E[xiu
T
ij ] = E[xiE[uij |wi]

T ]

∆xu = Σxu − Σ(0)
xu = E[xiP (flip|wi)(si + ∆̃)T (IJflip − IJwi

)T ]

||∆xu||op ≤
√

||E[xi]||22
√
||E[P (flip|wi)(IJflip − IJwi

)(si + ∆̃)]||22

≤ 2
√
||E[xi]||22

√
E[P (flip|wi)]2

√
||E[Pf(wi)]||22 + ||E[∆̃]||22

≤ 2Mxpflip

√
||P ||2opMf + C = Cxpflip

Similarly, ∆uu = Σuu − Σ
(0)
uu ≤ Cupflip

Lemma 3 (High-probability Concentration of Empirical Matrices). Denote the empirical matrix as
follows:

Σ̂xu =
1

NM

N∑
i=1

M∑
j=1

xiu
T
i,j ∈ Rd×k, Σ̂uu =

1

NM

N∑
i=1

M∑
j=1

ui,ju
T
i,j ∈ Rk×k

If NM ≥ C σ2

ε2 (d+ k+ log(1/η)), for some constant C > 0, σ2 > 0, then with probability at least
1− η:

∥Σ̂xu − Σxu∥op ≤ ε and ∥Σ̂uu − Σuu∥op ≤ ε (9)

Proof of Lemma 3. Fix a prompt index i. Define

ui :=
1

M

M∑
j=1

ui,j , µu(xi) := E[ui,j | xi]. Σ̂xu =
1

NM

N∑
i=1

M∑
j=1

xiu
⊤
i,j , Σxu = E[xiu

⊤
i,j ].

Step 1 (Block decomposition). Rewrite

Σ̂xu − Σxu =
1

N

N∑
i=1

Yi, Yi :=
1

M

M∑
j=1

(
xiu

⊤
i,j − E[xiu

⊤
i,j ]

)
.

Conditioning on xi, we decompose

Yi = xi

(
ui − µu(xi)

)⊤︸ ︷︷ ︸
Ai

+
(
xiµu(xi)

⊤ − E[xiu
⊤]
)

︸ ︷︷ ︸
Bi

.

Here, Ai is the average of M independent responses, E[Ai | xi] = 0. Bi depends only on xi, and
E[Bi] = 0. Thus,

E[Yi] = E[E[Yi|xi]] = E[Ai] + E[Bi] = E[E[Ai|xi]] + E[Bi] = 0

{Yi}Ni=1 remain independent mean-zero random matrices.
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Step 2 (Concentration of Ai). Condition on xi. Then

Ai = xi(ui − µu(xi))
⊤.

By Assumption 2, each ui,j − µu(xi) is conditionally σu-sub-Gaussian. By vector Bernstein (or
ε-net argument), for any δ > 0,

Pr
(
∥ui − µu(xi)∥2 ≥ C1σu

√
k+log(1/δ)

M

∣∣∣xi

)
≤ δ.

By union bound over i = 1, . . . , N , with probability at least 1− η/4,

∥ui − µu(xi)∥2 ≤ C1σu

√
k+log(N/η)

M , ∀i.

Thus
∥Ai∥op ≤ ∥xi∥2 · C1σu

√
k+log(N/η)

M . (10)

Step 3 (Bounding Bi). We have

Bi = xiµu(xi)
⊤ − E[xiu

⊤].

Clearly E[Bi] = 0. Using Cauchy–Schwarz inequality,

∥Bi∥op ≤ ∥xi∥2∥µu(xi)∥2 + ∥E[xiu
⊤]∥op.

From E∥xi∥22 ≤ M2
x and E∥µu(xi)∥22 ≤ M2

u , we get

E∥Bi∥2op ≲ M2
xM

2
u .

Thus the variance contribution of Bi is of constant order (not scaled by 1/M ).

Step 4 (Truncation and Bernstein). To apply matrix Bernstein, we need a uniform almost-sure
bound on ∥Yi∥op. Define the truncated version

B
(τ)
i := Bi · 1{∥Bi∥op ≤ τ}, Y

(τ)
i := Ai +B

(τ)
i .

Since ∥Bi∥op is sub-exponential (as quadratic form of sub-Gaussians), for any η > 0 we can choose
τ ≍ MxMu log(N/η)

so that with probability at least 1− η/4 simultaneously for all i,
∥Bi∥op ≤ τ.

On this event, we have
∥Yi∥op ≤ ∥Ai∥op + τ ≤ LA + LB ,

where
LA := C1 max

i
∥xi∥2 · σu

√
k+log(N/η)

M , LB := C2MxMu log(N/η).

Thus we may apply Matrix BernsteinTropp (2011). Define the variance proxy

σ2
Y = max

{∥∥∥ N∑
i=1

E[YiY
⊤
i ]

∥∥∥
op
,
∥∥∥ N∑

i=1

E[Y ⊤
i Yi]

∥∥∥
op

}
.

We estimate

E[AiA
⊤
i ] = O

(∥xi∥22σ2
uk

M

)
, E[BiB

⊤
i ] = O(M2

xM
2
u),

so overall

σ2
Y ≲ N

(M2
xσ

2
uk

M
+M2

xM
2
u

)
.

Now Bernstein inequality yields: for all ε > 0,

Pr

∥∥∥∥∥ 1

N

N∑
i=1

Yi

∥∥∥∥∥
op

≥ ε

 ≤ (d+ k) exp

(
− N2ε2/2

σ2
Y + (LA + LB)Nε/3

)
.
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Conclusion. Combining Steps 1–4 and union bounding over the failure probabilities, we conclude
that with probability at least 1− η,∥∥∥Σ̂xu − Σxu

∥∥∥
op

≲

√
σ2
uM

2
xk

NM
+

M2
xM

2
u

N
+ (LA + LB)

log((d+ k)/η)

N
≤ ε

Similarly, when M,N large enough, we can prove that

∥Σ̂uu − Σuu∥op ≤ ε

Corollary 1. Combining Lemma 2 and Lemma 3 and:

∥Σ̂xu − Σ(0)
xu∥op ≤ ε+ Cxpflip

∥Σ̂uu − Σ(0)
uu∥op ≤ ε+ Cupflip

Lemma 4 (High Probability Concentration of OLS Decoder). Under the conditions of previous
lemmas, NM is large enough, for some constant CL1

> 0, then with probability at least 1− η:

∥L̂− L∗∥op ≤ CL1(ε+ pflip) (11)

where L∗ = ΣxuΣ
−1
uu and CL1

depends on λ0, Cx, Cu.

Proof of Lemma 4. By definition,

L̂− L∗ = Σ̂xuΣ̂
−1
uu − ΣxuΣ

−1
uu .

Adding and subtracting ΣxuΣ̂
−1
uu yields the standard perturbation decomposition:

L̂− L∗ = (Σ̂xu − Σxu)Σ̂
−1
uu +Σxu

(
Σ̂−1

uu − Σ−1
uu

)
. (12)

Step 1 (Bounding the first term) By submultiplicativity of the operator norm,

∥(Σ̂xu − Σxu)Σ̂
−1
uu∥op ≤ ∥Σ̂xu − Σxu∥op · ∥Σ̂−1

uu∥op.

From Corollary 1, we have
∥Σ̂xu − Σxu∥op ≤ ε+ Cxpflip.

Moreover, since λmin(Σuu) ≥ λ0 > 0 and ∥Σ̂uu − Σuu∥op ≤ ε with high probability, a standard
Weyl inequality argument implies

λmin(Σ̂uu) ≥ λ0 − ε ≥ λ0

2
,

for ε sufficiently small. Consequently,

∥Σ̂−1
uu∥op ≤ 2

λ0
.

Step 2 (Bounding the second term) For the inverse perturbation term, we use the standard matrix
identity

Σ̂−1
uu − Σ−1

uu = Σ̂−1
uu

(
Σuu − Σ̂uu

)
Σ−1

uu .

Taking operator norms and applying submultiplicativity yields

∥Σ̂−1
uu − Σ−1

uu∥op ≤ ∥Σ̂−1
uu∥op · ∥Σuu − Σ̂uu∥op · ∥Σ−1

uu∥op.

By assumption ∥Σ−1
uu∥op ≤ 1/λ0, and from the previous bound ∥Σ̂−1

uu∥op ≤ 2/λ0. Using Corol-
lary 1, we also have

∥Σuu − Σ̂uu∥op ≤ ε+ Cupflip.

Hence,

∥Σ̂−1
uu − Σ−1

uu∥op ≤ 2

λ0
· (ε+ Cupflip) ·

1

λ0
=

2

λ2
0

(ε+ Cupflip).
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Step 3 (Combining bounds) Substituting the two bounds back into the decomposition of equa-
tion 12, and using ∥Σxu∥op ≤ Cx (from moment conditions), we obtain

∥L̂− L∗∥op ≤ 2

λ0
(ε+ Cxpflip) +

2Cx

λ2
0

(ε+ Cupflip).

Let CL1
= max( 2

λ0
+ 2Cx

λ2
0
, 2
λ0
Cx + 2Cx

λ2
0
Cu), we have

∥L̂− L∗∥op ≤ CL1
(ε+ pflip)

Lemma 5 (High Probability Concentration of Ideal Decoder). Under the conditions of previous
lemmas, if NM is large enough, for some constant CL2

> 0, then with probability at least 1− η:

∥L∗ − L(0)∥op ≤ C4 pflip, (13)

where L(0) = Σ
(0)
xu

(
Σ

(0)
uu

)−1
, CL2

> 0 is a constant depending only on (λ0, Cx, Cu).

Proof of Lemma 5. We start from the decomposition

L∗ − L(0) = ΣxuΣ
−1
uu − Σ(0)

xu

(
Σ(0)

uu

)−1
(14)

=
(
Σxu − Σ(0)

xu

)(
Σ(0)

uu

)−1
+Σ(0)

xu

(
Σ−1

uu −
(
Σ(0)

uu

)−1
)
. (15)

Step 1 (Bounding the first term) By Lemma 2, we have

∥Σxu − Σ(0)
xu∥op ≤ Cx pflip.

Furthermore, since λmin(Σ
(0)
uu ) ≥ λ0, it follows that

∥(Σ(0)
uu )

−1∥op ≤ 1

λ0
.

Therefore,

∥(Σxu − Σ(0)
xu )(Σ

(0)
uu )

−1∥op ≤ Cx

λ0
pflip. (16)

Step 2 (Bounding the second term) We use the inverse perturbation identity:

Σ−1
uu −

(
Σ(0)

uu

)−1
= Σ−1

uu

(
Σ(0)

uu − Σuu

)
(Σ(0)

uu )
−1.

Hence,

∥Σ−1
uu − (Σ(0)

uu )
−1∥op ≤ ∥Σ−1

uu∥op · ∥Σuu − Σ(0)
uu∥op · ∥(Σ(0)

uu )
−1∥op.

From Lemma 2,
∥Σuu − Σ(0)

uu∥op ≤ Cu pflip.

Moreover, ∥Σ−1
uu∥op ≤ 1/λ0 and ∥(Σ(0)

uu )−1∥op ≤ 1/λ0. Thus,

∥Σ−1
uu − (Σ(0)

uu )
−1∥op ≤ Cu

λ2
0

pflip. (17)

Multiplying by ∥Σ(0)
xu∥op ≤ Cx gives

∥Σ(0)
xu (Σ

−1
uu − (Σ(0)

uu )
−1)∥op ≤ CxCu

λ2
0

pflip. (18)
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Step 3 (Combining Bounds) Combining both terms in equation 15, we obtain

∥L∗ − L(0)∥op ≤
(Cx

λ0
+

CxCu

λ2
0

)
pflip = CL2

pflip

Absorbing constants into CL2 yields the claimed result.

Theorem 1 (High-Probability Artifacts Suppression in Decoder). Under assumptions (1)–(5) stated
below, if NM ≥ C σ2

ε2 (d+ k + log(1/η)), then with probability at least 1− η, ∃C1, C2 > 0, such
that:

∥L̂− L(0)∥op ≤ C1(ε+ pflip), ||b̂− b(0)||2 ≤ C2(ε+ pflip)

Proof of Theorem 1. According to previous lemmas, we have

∥L̂− L(0)∥op = ∥L̂− L∗ + L∗ − L(0)∥op

≤ ∥L̂− L∗∥op + ∥L∗ − L(0)∥op

≤ CL1(ε+ pflip) + CL2pflip

≤ (CL1 + CL2)(ε+ pflip)

= C1(ε+ pflip)

Similarly, ∥b̂− b(0)∥op ≤ C2(ε+ pflip)

Theorem 2 (Artifacts Suppression in Prediction). Under Assumptions (1)–(5) stated in Appendix B,
given a new sample y = f(w) + g(z), unew = TopK(Py), then for any confidence parameter
η ∈ (0, 1), with probability at least 1− η the following holds:∥∥L̂unew + b̂− (L(0)IJw

Pf(w) + b(0))
∥∥
2

≤ C̃
(
(ε+ pflip) ∥P∥op

Mf√
η

+ σ
√

k + log(1/η)
)
,

(4)

where σ is the sub-Gaussian scale according to assumption 2 in Appendix B, and C̃ > 0 is a constant
depending only on the constants appearing in Assumptions (1)–(5) and on operator norms of L(0)

and PJw
.

Proof. Denote the following items:

s := Pf(w), ∆new := Pg(z), vnew := s+∆new, unew =: TopK(vnew), δ := unew − IJw
s

We have unew = IJwPf(w) + δ.

Define the prediction error

E :=
∥∥L̂unew + b̂− (L(0)PJwPf(w) + b(0))

∥∥
2

=
∥∥(L̂− L(0))unew + L(0)δ + (̂b− b(0))

∥∥
2

≤ ∥L̂− L(0)∥op∥unew∥2 + ∥L(0)∥op∥δ∥2 + ∥b̂− b(0)∥2.

From Theorem 1, there exists a constant C1 > 0 such that with high probability

∥L̂− L(0)∥op ≤ C1(ε+ pflip), ∥b̂− b(0)∥2 ≤ C1(ε+ pflip),

Write unew = IJws+ δ. Then

∥unew∥2 ≤ ∥IJws∥2 + ∥δ∥2 ≤ ∥IJw∥op∥P∥op∥f(w)∥2 + ∥δ∥2 = ∥P∥op∥f(w)∥2 + ∥δ∥2
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Step 1 (High-probability control of ∥δ∥2)
δ = unew − IJws

= IJrealP (f(w) + g(z))− IJw
Pf(w)

= (IJreal − IJw
)Pf(w) + IJrealPg(z)

= (IJreal − IJw)Pf(w) + IJreal∆new

• When event no-flipping occurs, δ = IJreal∆new and thus ∥δ∥2 ≤ ∥∆new∥2.

• When event flipping occurs, a conservative bound is ∥δ∥2 ≲ ∥∆new∥2 + ∥s∥2.

By the sub-Gaussian assumption on ∆new (Assumption 2), there is C2 > 0 such that for any η ∈
(0, 1), with probability at least 1− η,

∥∆new∥2 ≤ C2 σ∆

√
k + log(1/η). (19)

Moreover, by Lemma 1 margin assumption the flip probability satisfies the exponential-type bound

pflip ≤ 2k exp

(
− δ2

8σ2

)
Combining the two displays and taking union bounds, we obtain that with probability at least 1− η,

∥δ∥2 ≤ C2 σ∆

√
k + log(1/η) + C3 pflip ∥s∥2,

for some constant C3 > 0 (the second term accounts for the rare flips whose magnitude can scale
with ∥s∥2).

Step 2 (High-probability control of ∥s∥2)
∥s∥2 = Pf(w) ≤ ∥P∥op ∥f(w)∥2.

According to Assumption 5, E[f(w)] ≤ Mf .

By Chebyshev-inequality, for the chosen confidence η ∈ (0, 1),

Pr
(
∥f(w)∥2 ≥ Mf√

η

)
≤ η,

hence with probability at least 1− η,

∥s∥2 ≤ ∥P∥op
Mf√
η
.

Combining this with the previous bound on ∥δ∥2 we get: with probability at least 1− η,

∥δ∥2 ≤ C2 σ
√
k + log(1/η) + C3 pflip ∥P∥op

Mf√
η
. (20)

Conclusion Substitute Step 1, Step 2 and equation 20 into the decomposition for E . There exist
constants C̃ (depending on C1, C2, C3, ∥L(0)∥op) such that, with probability at least 1− η,

E ≤ C1(ε+ pflip)
(
∥∥P∥op∥f(w)∥2 + ∥δ∥2

)
+ ||L(0)||op∥δ∥2 + C1(ε+ pflip)

≤ C1(ε+ pflip)
(
∥∥P∥op

Mf√
η
+ C2 σ

√
k + log(1/η) + C3 pflip ∥P∥op

Mf√
η
)

+ ||L(0)||op(C2 σ
√
k + log(1/η) + C3 pflip ∥P∥op

Mf√
η
) + C1(ε+ pflip)

≤ Mf√
η
∥P∥op

[
C1(ε+ pflip) + C3pflip + C3||L(0)||oppflip

]
+ σ

√
k + log(1/η)

[
C1C2(ε+ pflip) + ||L(0)||opC2

]
+ C1(ε+ pflip)

≤ C̃
(
(ε+ pflip) ∥∥P∥op

Mf√
η

+ σ
√
k + log(1/η)

)
,
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C DERIVATION FOR SAS-INDUCED CAUSAL EFFECT

C.1 GRADIENT PERSPECTIVE

We can also tell the causal effect of SAS by observing the gradient when parameters are updated.
Denote θ as the reward model parameters, r(x, y) as the reward model, x as the prompt, yc as the
chosen response, yr as the rejected responses, sc as the SAS score of chosen response, sr as the
SAS score of rejected response.

Now we derive the gradients. Denote di = k · (sic − sir)

∂LSAS

∂yic
= σ(yic − yir + d)− 1,

∂LSAS

∂yir
= −σ(yicyir + d) + 1

∂LSAS

∂θ
=

∑
i

∂LSAS

∂yic

∂yic
∂θ

+
∂LSAS

∂yir

∂yir
∂θ

=
∑
i

[σ(yic − yir + d)− 1][
∂yic
∂θ

− ∂yir
∂θ

]

∂L

∂θ
=

∑
i

[σ(yic − yir)− 1][
∂yic
∂θ

− ∂yir
∂θ

]

When the human preference are aligned with SAS score, i.e the chosen response is more related to
prompt intention. Then SAS(x, yic) < SAS(x, yir), |σ(yic − yir)− 1| < |σ(yic − yir + d)− 1|,
the reward model trained with SAS score will be updated more aggressively. On contrast, when the
human preference are conflicted with SAS score, SAS(x, yic) > SAS(x, yir), |σ(yic− yir)− 1| >
|σ(yic − yir + d)− 1|, the reward model trained with SAS score will be updated more merely.

This observation fits our goal perfectly. If the human preference are aligned with SAS, indicating
that there is not much unintentional spurious favor in human labels, then we can update more in this
correct direction. Instead, if the human preference are conflicted with SAS, it is possible that there
are some prompt-unrelated artifacts in human label, thus we should slow our steps in this direction.

C.2 ATE PERSPECTIVE

Recall the notations in reward model training:

r̂n(x, y) = argmax
r

∑
i

log σ(ric − rir),

r̂nSAS(x, y) = argmax
r

∑
i

log σ
(
(ric − rir) + k · (sic − sir)

)
Proposition 1. Denote SAS(x, y) as s(x, y). By simple equivalent substitution, we can derive:

r̂n(x, y)− r̂nSAS(x, y) = ks(x, y)

Proof. Let r(x, y) + ks(x, y) = f(x, y), then
r̂nSAS(x, y) + ks(x, y)

= argmax
r+ks

∑
i

[
log σ[(r(xi, yic) + ks(xi, yic))− (r(xi, yir) + ks(xi, yic))]

]
=argmax

f

∑
i

[
log σ[f(xi, yic)− f(xi, yir)]

]
=argmax

r

∑
i

[
log σ[r(xi, yic)− r(xi, yir)]

]
= r̂n(x, y)

Thus, r̂n(x, y)− r̂nSAS(x, y) = ks(x, y).
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D COMPLETE EXPERIMENTAL RESULTS

D.1 PROMPT DECODER EXPERIMENTS

In this section, we provide additional details on the training, evaluation, and SAS output of our
prompt decoders.

Data Augmentation for Prompt Decoder Training To train our prompt decoder with improved
semantic generalization, we augment each prompt with multiple diverse responses drawn from both
human-written and model-generated sources.

The following is our rewriting prompt and a specific result:

Rewriting Prompt

Rewrite the assistant’s answer so that all factual content, stance, and conclusions remain
the same. Do not introduce new factual claims. You may add extra sentences or rephrase for
style, politeness, or verbosity if requested. When adding extra text, ensure it is stylistic (e.g.,
compliments, polite preambles, transitions) and does not alter the factual meaning.

Rewriting Example

Prompt:
Are tacos a Mexican food dish?

Original Chosen Response (SAS= 0.7713):
Tacos are a dish that originated in Mexico, although they’re now widely popular in
other cultures. They’re also called burritos in some places, and there are quite a
few regional variants. Tacos are traditionally served with shredded lettuce, tomato,
onions, and a mild sauce, but they may also be wrapped in a variety of ways and
served with a variety of additional ingredients, such as shredded cheese, guacamole,
or refried beans.

Rewritten Chosen Response (SAS= 0.7767):
Absolutely! Tacos are indeed a delightful dish that originated in Mexico, and their
popularity has truly transcended borders, captivating the hearts and palates of people
around the world. It’s fascinating how they are sometimes referred to as burritos in
certain regions, showcasing the rich diversity of culinary traditions. Traditionally,
tacos are beautifully adorned with shredded lettuce, tomatoes, onions, and a mild
sauce, but their versatility is truly remarkable! They can be wrapped in various ways
and accompanied by an array of scrumptious ingredients like shredded cheese, gua-
camole, or refried beans. It’s no wonder that tacos have become a beloved staple in
so many cultures!

Per-Dimension Evaluation Results The separate accuracy of the prompt decoder on helpfulness,
math, and safety subsets is shown in Figure 5, highlighting domain-specific patterns and strengths.
Apart from MSE loss, we also train the prompt decoder with cosine-similarity loss. The prompt
decoder’s average accuracy is shown in Figure 6, and the separate accuracy in three domains is
shown in Figure 7. Since the prompt decoder trained with MSE loss in Figure 3a outperformed
the one trained with cosine similarity in Figure 6, we adopt the MSE-trained decoder to compute
Semantic Alignment Scores (SAS) for downstream reward model training.

SAS Score Distribution on Reward Model Training Data The distributions of Semantic Align-
ment Scores (SAS) computed on the 70K reward model training set are shown in Figure 8, including
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Figure 5: Accuracy Curve of Prompt Decoder between Rewrite and Reject Groups in Helpful,
Safety, and Mathematical Reasoning Domains

(a) Average accuracy of the prompt decoder
on the chosen-vs-rewrite task across helpful,
math, and safety domains. Augmented training
(20K augmented) yields the best performance,
surpassing both unaugmented 20K and 80K data.

(b) Average accuracy of the prompt decoder on the
chosen-vs-reject task. Performance remains near
random guess (50%) across all training regimes,
indicating that SAS captures a signal orthogonal
to human preference labels.

Figure 6: Average Accuracy Curve of Prompt Decoder

those of the chosen responses, the rejected responses, and their pairwise differences. This further
indicates that the prompt decoder captures a signal that is complementary to human-labeled pref-

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 7: Accuracy Curve of Prompt Decoder between Rewrite and Reject Groups in Helpful,
Safety, and Mathematical Reasoning Domains with Cosine Similarity Loss

erences, rather than simply replicating them, and is thus more robust to unintentionally introduced
human noise.

Figure 8: Distribution of Semantic Alignment Scores (SAS) among chosen responses, rejected re-
sponses and their difference on the 70K training pairs.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.2 REWARD MODEL TRAINING

This section covers implementation details and extended results for our SAS-regularized reward
model training and its baselines.

Our Reproduction of RRM We reimplement the RRM training pipeline based on Liu et al. (2025)
using the same 70K preference dataset as CARP, enabling direct comparison with our CARP frame-
work. While the original RRM employs a pairwise preference modeling objective that directly
predicts preference probability from prompt-response pairs, we adopt the classical Bradley–Terry
formulation, which is more widely used and compatible with our existing reward model setup.

We adopt RRM’s artifact mitigation strategy of prompt–response permutation following Equation 5
in their paper to obtain 14× augmented samples. Training is conducted with batch size 256 and
learning rate 1e−6 for one epoch. To reduce data size, we keep only augmented pairs satisfying
|P̂(A ≻ B)− P∗(A ≻ B)| ≥ 0.2, resulting in a final dataset of 224K examples3.

Our reproduced Bradley-Terry RRM underperforms the original on RewardBench ((see Table 5)),
likely because augmentation from 70K examples fails to capture sufficient variability. The permu-
tation scheme introduces complex reward signals that require the original full 700K dataset to be
effective. However, Bradley–Terry RRM achieves improved robustness in downstream evaluation
as shown in Table 4 and Table 7, indicating that RRM’s artifact invariant augmentation generalizes
in all reward model formulations, but requires a sufficiently large base dataset.

Complete Result Comparison Here we provide the full comparison between Vanilla RM, RRM
(replicated), and CARP models across RewardBench and spurious signal tests for both 2B and 9B
settings in Table 5.

(a) Gemma-2-2B-it

Model Chat Chat-Hard Safety Reasoning Avg. Weighted Avg.

Vanilla RM 97.77 54.82 83.24 66.18 75.50 72.46
RRM (Bradley-Terry) 92.19 48.03 49.46 69.11 64.69 63.79
RRM (Pair Preference) 97.21 49.01 72.71 70.08 72.25 –
CARP (k = 4.0e3) 98.04 54.82 81.62 65.41 74.97 71.73
CARP (k = 1.6e4) 97.21 58.11 79.73 68.83 75.97 73.30
CARP (k = 3.2e4) 96.93 58.99 79.05 71.56 76.63 74.54
CARP (k = 6.4e4) 93.30 62.72 77.43 72.47 76.48 74.70

(b) Gemma-2-9B-it

Model Chat Chat-Hard Safety Reasoning Avg. Weighted Avg.

Vanilla RM 96.37 63.37 89.73 82.88 83.09 83.22
RRM (Bradley-Terry) 93.02 59.65 61.22 78.55 73.11 73.10
RRM (Pair Preference) 96.51 65.57 83.90 90.62 84.15 –
CARP (k = 4.0e3) 96.65 61.40 89.59 83.16 82.70 83.04
CARP (k = 1.6e4) 96.37 62.94 89.32 88.26 84.22 85.63
CARP (k = 3.2e4) 96.09 66.23 89.50 88.40 85.04 86.20
CARP (k = 6.4e4) 94.69 68.86 88.24 89.87 85.42 86.83

Table 5: RewardBench accuracy (%) of reward models across four evaluation categories.
CARP (Ours) denotes the SAS-regularized reward model with best-performing k value. Each sub-
table corresponds to a different model scale. The weighted average reflects the overall proportion of
correctly ranked preference pairs across all subsets. Note: RRM’s weighted average is not reported
in the original paper.

3P∗(A ≻ B) equals 1 if A is preferred, 0 if B is preferred, and 0.5 if tied.
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Spurious Correlation Evaluation We describe the rewriting strategy to construct the evaluation
data sets for spurious correlation testing in Table 6 followed by a specific example of the rewriting
results D.2. The detailed evaluation of spurious correlations of the 9B models is shown in Table 7.

Rewriting Type Rewrite 1 Rewrite 2 Rewrite 3

Rewriting
Instruction

Rewrite the
response to be
longer while
preserving meaning
and style.

Make the previous
response more
concise without
losing core
information.

Expand the
response with
stylistic
elaboration,
allowing mild
topical drift.

Table 6: Rewriting instructions used to construct response variants for robustness testing. Each
instruction targets different attributes such as response length or topicality.

Rewriting Example

Prompt: Why are the Kardashians so famous?

Rewrite 1: The Kardashian family has undeniably emerged as a prominent and influ-
ential cultural phenomenon within contemporary American society. They are most
notably represented by the reality television show Keeping Up with the Kardashians,
which has garnered widespread critical acclaim and achieved record-breaking rat-
ings throughout its various seasons and spin-offs. This show has not only captivated
audiences but has also significantly shaped popular culture and social dynamics. Be-
yond their television presence, the Kardashian family has successfully ventured into
various other fields, with multiple members pursuing thriving careers in fashion, en-
tertainment, social media, and other diverse arenas. Their entrepreneurial spirit and
ability to capitalize on their fame have led to the creation of numerous brands and
products that resonate with fans and consumers alike. Overall, the Kardashian fam-
ily serves as a striking representation of the increasing prevalence of celebrity and
media culture in contemporary American society. Their influence underscores the
importance of images and narratives in modern cultural discourse, illustrating how
celebrity status can shape public perception and societal trends.

Rewrite 2: The Kardashian family has become a significant cultural phenomenon
in contemporary American society, primarily through their reality show Keeping
Up with the Kardashians, which has received critical acclaim and achieved record-
breaking ratings. This show has not only captivated audiences but also shaped pop-
ular culture and social dynamics. Beyond television, the family has successfully
ventured into various fields, with members building thriving careers in fashion, enter-
tainment, and social media. Their entrepreneurial spirit has led to numerous brands
and products that resonate with fans and consumers. Overall, the Kardashian family
exemplifies the rise of celebrity and media culture in modern America, highlighting
how celebrity status can influence public perception and societal trends.
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Rewrite 3: The Kardashian family has undeniably emerged as a prominent and influ-
ential cultural phenomenon within contemporary American society, captivating au-
diences with their unique blend of glamour, drama, and entrepreneurial spirit. Most
notably represented by the reality television show Keeping Up with the Kardashians,
which has garnered widespread critical acclaim and achieved record-breaking rat-
ings across its various seasons, the family’s impact extends far beyond the confines
of the small screen. Each member of the family has carved out a niche for them-
selves, pursuing successful careers in diverse fields such as fashion, entertainment,
and social media, thereby illustrating the multifaceted nature of their influence. This
phenomenon raises intriguing questions about the evolving landscape of celebrity
culture and the ways in which images and narratives shape public perception. More-
over, one might consider how the rise of social media platforms has transformed the
way we engage with celebrities, blurring the lines between public and private life, and
fostering a culture of constant connectivity. It’s fascinating to think about how this
shift has not only affected the Kardashians but also countless other public figures
who navigate the complexities of fame in the digital age. Overall, the Kardashian
family’s prominence serves as a reflection of the increasing prevalence of celebrity
and media culture in contemporary American society, highlighting the significance
of visual storytelling and the narratives we construct around public personas. What
does this say about our collective values and the way we consume media?

Model (9B) Rewrite1 vs Rewrite2 Rewrite1 vs Rewrite3(↑)
Helpful Math Safety Avg. Helpful Math Safety Avg.

Vanilla RM 37.0 66.0 54.0 52.33 73.0 93.0 87.0 84.33
Bradley-Terry RRM 62.0 89.0 80.0 77.0 72.0 91.0 90.0 84.33
CARP 59.0 51.0 51.0 53.67 88.0 92.0 87.0 89.0

Table 7: Accuracy (%) of reward models on the Rewrite1 vs Rewrite2 and Rewrite1 vs Rewrite3
tasks, evaluated at the best epoch for each model across helpful, math, and safety domains.

E FURTHER ABLATION STUDY ON SAFETY ALIGNMENT

We conducted an ablation study as Table 3 to assess the impact of the safety threshold τ when k =
3.2e4. As shown in Table 8, for k = 1.6e4, the model with thresholding (τ = 0.005) outperforms
the one without thresholding (τ = 0) on the Safety dimension.

Model Chat Chat-Hard Safety Reasoning Avg. Weighted Avg.

CARP (τ = 0.005) 97.21 58.11 79.97 68.83 75.97 73.30
CARP (τ = 0) 97.49 58.99 77.84 67.92 75.56 72.56

Table 8: RewardBench accuracy (%) comparison of best CARP 2B-model with and without SAS
thresholding. Using thresholding (k = 1.6e4, τ = 0.005) disables SAS regularization for safety-
critical examples. We observe that removing the threshold (τ = 0) reduces the model safety.
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