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ABSTRACT

Spatiotemporal data mining plays a crucial role in real-world scenarios such as
air quality monitoring and intelligent traffic management. However, real-world
spatiotemporal data collected in such scenarios is often incomplete due to sensor
failures or transmission loss. Spatiotemporal imputation aims to fill in the missing
values based on the observed values and their underlying spatiotemporal depen-
dence. Previous dominant imputation models relied on autoregressive methods,
which suffered from error accumulation. To overcome this limitation, emerging
generative models like diffusion probabilistic models (DPM) can be employed for
imputing missing values. These models are conditioned on observations to avoid
relying solely on inaccurate historical imputation methods. However, applying
diffusion models to spatiotemporal imputation presents challenges, particularly in
extracting and utilizing conditional information from observed data. In this paper,
we propose a novel framework for utilizing diffusion models for spatiotempo-
ral imputation, by formulating imputation as inpainting problem. We first train
an unconditional diffusion model for predicting the whole spatiotemporal data.
To condition the generative process, we follow the scheme proposed by RePaint
(Lugmayr et al., 2022), only alter reverse diffusion iterations by sampling the
unobserved regions using the observed data information. To model spatial depen-
dencies, we utilize a GNN-based backbone for DPM. We compare our model with
state-of-the-art baselines in various missing patterns of two real-world spatiotem-
poral benchmark datasets.

1 INTRODUCTION

Spatiotemporal data is a type of data with intrinsic spatial and temporal patterns, which is widely
applied in the real world for tasks such as air quality monitoring (Cao et al., 2018; Yi et al., 2016),
traffic status forecasting (Li et al., 2018; Wu et al., 2019), weather prediction (Zhou et al., 2021) and
so on. However, due to the sensor failures and transmission loss (Yi et al., 2016), the incompleteness
in spatiotemporal data is a common problem, characterized by the randomness of missing value’s
positions and the diversity of missing patterns, which results in incorrect analysis of spatiotemporal
patterns and further interference on downstream tasks. In recent years, extensive research (Cao et al.,
2018; Cini et al., 2022; Fortuin et al., 2020) has dived into spatiotemporal imputation, with the goal
of exploiting spatiotemporal dependencies from available observed data to impute missing values.

In the early studies, spatiotemporal imputation was commonly performed using statistical (Ansley
& Kohn, 1984) and traditional machine learning techniques (Nelwamondo et al., 2007; Beretta &
Santaniello, 2016) which involved imputing data either along the temporal or spatial dimension. But
these methods impute missing values based on strong assumptions, such as the temporal smooth-
ness and the similarity between time series and ignore the complexity of spatiotemporal correlations.
With the advancements in deep learning, researchers have explored the utilization of recurrent neu-
ral networks (RNNs) for imputing missing values, as evidenced by studies such as (Cao et al., 2018;
Cini et al., 2022). RNNs possess the ability to recursively update their hidden state, allowing for the
recursive imputation of missing values. Although these approaches effectively capture spatiotem-
poral relationships with existing observations, they are prone to error accumulation, resulting in
performance degradation.
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In recent times, diffusion probabilistic models (DPM) (Sohl-Dickstein et al., 2015; Song et al., 2020;
Ho et al., 2020) have gained attention as powerful generative models with remarkable performance
across multiple tasks. Researchers have started employing these models for imputing missing values
in multivariate time series. These methods initiate the imputation process by generating random
samples from a Gaussian noise distribution and subsequently convert this noise into estimates for
the missing values (Tashiro et al., 2021). By leveraging the flexibility of diffusion models in terms of
neural network architecture, they can effectively overcome the error accumulation issue encountered
in RNN-based methods. i.e., utilize attention mechanisms. Nevertheless, the application of diffusion
models in spatiotemporal imputation encounters challenges in effectively construction of conditional
information that captures spatiotemporal correlations. This motivates us to seek for an alternative
approach to solve data imputation.

Contribution. This paper presents a novel imputation framework that addresses the imputation
problem by treating it as an inpainting problem. We first train an unconditional diffusion model that
predicts the whole spatiotemporal data. To condition the generative process, we consider missing
values as masks in image inpainting and apply scheme proposed by RePaint (Lugmayr et al., 2022)
for imputation. To model spatial dependecies, we leverages a GNN-based backbone for DPM. To
this end, our proposed approach enhances generalization capabilities across different patterns of
missing values.

2 PRELIMINARIES

2.1 SPATIOTEMPORAL DATA IMPUTATION

We can formulate spatiotemporal data as sequences of weighted directed graphs, where we observe
a graph Gt with Nt nodes at each time step t. A graph is a couple Gt = (Xt,Wt), where Xt ∈
RNt×d is the node-attribute matrix whose i-th row contains the d-dimensional node-attribute vector
xi
t ∈ Rd associated with the i-th node; entry wi,j

t of the adjacency matrix Wt ∈ RNt×Nt denotes
the scalar weight of the edge (if any) connecting the i-the node and j-th node. While this problem
setting can be easily extended to more general classes of graphs with dynamic edge setting, we
focus on problems where the topology of the graph is fixed and does not change over time (e.g
traffic network), i.e., at each time step Wt = W and Nt = N .

To model the presence of missing values, we consider, at each step t, a binary mask Mt ∈
{0, 1}Nt×d where each row mi

t indicates which of the corresponding node attributes of xi
t are avail-

able in Xt. It follows that, mi,j
t = 0 implies xi,j

t is missing; conversely, if mi,j
t = 1, then xi,j

t

stores the actual sensor reading. We denote by X̃t the the complete node-attribute matrix without
any missing data.

The objective of spatio-temporal data imputation is to impute missing values in a sequence of input
data. More formally, given a sequence G[t:t+T ] of length T , we tries to minimize the missing data
reconstruction error defined as:

L
(
X̂[t:t+T ], X̃[t:t+T ],M[t:t+T ]

)
=

t+T∑
h=t

Nt∑
i=1

⟨mi
h, ℓ(x̂

i
h, x̃

i
h)⟩

⟨mi
h,m

i
h⟩

(1)

where x̂i
h is the reconstructed x̃i

h, ℓ(·, ·) is an element-wise error function (e.g. absolute or squared
error) and ⟨·, ·⟩ indicates standard dot product.

2.2 DENOISING DIFFUSION PROBABILISTIC MODELS

Diffusion models have gained significant popularity in recent years, owing to their ability to generate
data similar to the training data. In the 2020s, several seminal papers were published, showcasing the
capabilities of diffusion models. These models have outperformed GANs (Goodfellow et al., 2014)
in image synthesis, making them a preferred choice for many applications. Recently, diffusion
models have been implemented in OpenAI’s image generation model, DALL-E 2 (Ramesh et al.,
2022).

Fundamentally, diffusion models are generative models that operate by progressively adding Gaus-
sian noise to the training data (forward process) and then learning to recover the original data by
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reversing this noising process (reverse process). The forward process is defined by the following
Markov chain. To prevent confusion of notation on time series, we use k = 0, · · · ,K for denoising
steps:

q(x1:K |x0) :=

K∏
k=1

q(xk|xk−1) where q(xk|xk−1) := N (
√

1− βkxk−1, βkI) (2)

and βt is a small positive constant that represents a noise level.

On the other hand, the reverse process denoises xK to recover x0, and is defined by the following
Markov chain:

pθ(x0:K) := p(xK)

K∏
k=1

pθ(xk−1|xk),xK ∼ N (0, I) (3)

pθ(xk−1|xk) := N (xk−1;µθ(xk, k),σθ(xk, k)I) (4)

is then optimized by maximizing the evidence lower bound defined as Eq[
pθ(x0:K)
q(x1:K |x0)

]. After training,
sampling from the diffusion model consists of sampling xK ∼ p(xK) and running the reverse
diffusion chain to go from k = K to k = 0.

The diffusion model can generate data by passing randomly sampled noise through the learned
denoising process. After training, diffusion models can produce high-quality synthetic data, making
them valuable for various applications.

3 METHODOLOGY

In this section, we introduce a new approach for imputing missing values in spatiotemporal data
using diffusion models. Before delving into the details of our proposed methodology, we’ll provide
an overview of how existing diffusion models have previously tackled spatiotemporal imputation
problems.

CSDI (Tashiro et al., 2021) utilizes score-based diffusion model conditioned on observed data to
impute missing values. Specifically, they formulate conditional diffusion model as follows:

pθ(X
ta
t,0:K |Xco

t,0) = p(Xta
t,K)

K∏
k=1

pθ(X
ta
t,k−1 |Xta

t,k,X
co
t,0), Xta

t,K ∼ N (0, I) (5)

pθ(X
ta
t,k−1 |Xta

t,k,X
co
t,0) = N (Xta

t,k−1;µθ(X
ta
t,k, k |Xco

t,0),σθ(X
ta
t,k, k |Xco

t,0)I) (6)

where Xta
t,k is generated missing values and Xco

0 is an observed data at time step t, respectively.

However, this modeling approach has certain limitations. Firstly, it is challenging to extract mean-
ingful information from observed data, especially when dealing with time correlation dependencies.
This is because the global conditional representation encapsulates all details concerning these depen-
dencies. Moreover, accommodating various missing patterns becomes complex due to the variable
positions of Xco and Xta.

To this end, we introduce a new framework to impute missing values in spatiotemporal data, by
formulating the problem as inpainting problem. Consider imputation as inpainting problem has
following advantages. First of all, we do not need to train an conditional diffusion model and do
not care about how to extract appropriate conditional information from an observed data. Instead,
we can use a powerful unconditional diffusion model trained on various time series data, which
produces accurate predictions on any missing patterns.

Our methodology for imputing missing values in spatiotemporal data using diffusion models can be
divided into two steps, as shown in Figure 1:

3.1 TRAINING AN GNN-BASED UNCONDITIONAL DIFFUSION MODEL

The first stage of our process involves training an unconditional diffusion model. Unlike the con-
ventional approach, where the model is conditioned on observed data, we allow our model to learn
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freely from the inherent distribution and dynamics of the data. This results in a more robust model
that can capture intricate patterns and relationships within the dataset.

Additionally, to utilize spatial dependencies, we adopt Graph Neural Network as backbone of our
diffusion model instead of standard UNet architecture. Given input graph Gt = (Xt,W), our
diffusion model can be formulated as follows:

pθ(Xt,0:K) = p(Xt,K)

K∏
k=1

pθ(Xt,k−1 |Xt,k) (7)

pθ(Xt,k−1 |Xt,k) = N (Xt,k−1;µθ(Xt,k,W, t), σ2
kI) (8)

Following (Ho et al., 2020), we also define µθ(Xt,k,W, t) as follows:

µθ(Xt,k,W, t) =
1

√
αt

(
Xt,k − βt√

1− ᾱt
ϵθ(Xt,k,W, t)

)
(9)

where we parametrize ϵθ(Xt,k,W, t) as L-layer GNN. Specifically, we utilize graph attention net-
works (GAT) as our backbone network. Finally, our training objective can be written as follows:

L(θ) = Eϵ,t,Xt,0

[
∥ϵ− ϵθ(Xt,k,W, t)∥2

]
(10)

3.2 IMPUTATION AS INPAINTING

Upon the successful training of the unconditional diffusion model, we employ the inpainting ap-
proach for missing value imputation. Among various inpainting approaches, We follow the scheme
of Repaint (Lugmayr et al., 2022), due to its simplicity and effectiveness. For every reverse step, we
alter the known region Mt ⊙ Xt,k as long as we keep the correct properties of the corresponding
distribution as follows:

Xknown
t,k−1 ∼ N (

√
ᾱtXt,0, (1− α̂t)I) (11)

Xunknown
t,k−1 ∼ N (µθ(Xt,k,W, k), σ2

kI) (12)

Xt,k−1 = Mt ⊙Xknown
t,k−1 + (1−Mt)⊙Xunknown

t,k−1 (13)

In other words, we sample Xknown
t,k−1 using the known pixels of given image and only sample Xknown

t,k−1

from the pretrained diffusion model. These are then combined to the new sample Xt−1 using the
mask operation.

After conditioning on the known region, we apply resampling technique as proposed in RePaint to
improve the reverse process itself for inpainting. In resampling, we diffuse the output Xt,k−1 back
to Xt,k by sampling from the forward process, Xt,k ∼ N (

√
1− βtXt,k−1, βtI). Although this

operation scales back the output and adds noise, it eventually leads to a new Xunknown
t,k which is more

harmonized with Xknown
t,k .

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Datasets. Our experimental evaluation is conducted on two real-world datasets: METR-LA and
PEMS-BAY. The METR-LA (Li et al., 2018) consists of traffic speed data collected from 207 sensors
along the highway in Los Angeles County (Jagadish et al., 2014) over a duration of 4 months.
Similarly, PEMS-BAY (Li et al., 2018) includes traffic speed data collected from 325 sensors on
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Figure 1: Overview of our proposed method. (Step 1): Train unconditional diffusion model to
generate time series data. (Step 2): For each denoising step, we sample the known region from
observed data and the unknown region from the DDPM output.

highways in the San Francisco Bay Area over a period of 6 months. Both traffic datasets are sampled
every 5 minutes. For the incorporation of geographic information, we construct the adjacency matrix
based on the geographic distances between monitoring stations or sensors, following previous works
(Li et al., 2018). Specifically, we utilize a thresholded Gaussian kernel (Shuman et al., 2013) to
generate the adjacency matrix for all two datasets.

Imputation Scenario. We use the artificially injected missing strategy provided by (Cini et al.,
2022) for evaluation, which includes two missing patterns: (1) Block Missing: based on randomly
masking 5% of the observed data, mask observations ranging from 1 to 4 hours for each sensor with
0.15% probability; (2) Point missing: randomly mask 25% of observations.

Baselines. In order to compare the previous work and our proposed method, we consider a range of
classic models and state-of-the-art techniques for spatiotemporal imputation. The baselines encom-
pass statistical methods such as MEAN and KNN, a low-rank matrix factorization method known as
MF, deep autoregressive methods including BRITS (Cao et al., 2018) and GRIN (Cini et al., 2022),
as well as deep generative methods like rGAIN (Miao et al., 2021) and CSDI (Tashiro et al., 2021).

4.2 EXPERIMENT RESULTS

In our evaluation, we employ the mean absolute error (MAE) and mean squared error (MSE) as
metrics to quantify the efficacy of spatiotemporal imputation.

Our proposed model outperforms traditional methods and achieves comparable performance to state-
of-the-art (SOTA) models, despite being an unconditioned generative model. Despite high expecta-
tions from the powerful performance of diffusion, it did not function as anticipated. The likely cause
of this inadequate performance may be attributed to the unconditional generative model’s difficulty
in capturing the intricate distribution of time series data. The numerical results derived from these
experiments are presented in Table 1.

4.3 ABLATION STUDIES

Furthermore, we initiate ablation studies to scrutinize the influence of the selected backbone on the
parametrization of diffusion models. These findings are showcased in Table 2. From our analyses,
it appears that the deployment of a GNN architecture yields greater effectiveness in contrast to the
elementary usage of a UNet architecture for the purpose of spatiotemporal data imputation.

5



Published as a conference paper at ICLR 2023

This discernment provides an implication that the GNN architecture skillfully capitalizes on spatial
dependencies, thereby bringing about an enhancement in the quality of imputation. The exploitation
of such dependencies allows for a more accurate representation of the data’s inherent structures,
contributing to the model’s ability to handle complex patterns and associations in spatiotemporal
data. This further emphasizes the importance of suitable architecture choice for such intricate data
processing tasks.

Table 1: Performance of all methods on benchmark datasets. Experiment is conducted with 3 dif-
ferent random seeds, mean and one standard deviation is reported.

Category Method
METR-LA PEMS-BAY

Block Missing Point Missing Block Missing Point Missing

MAE MSE MAE MSE MAE MSE MAE MSE

Heuristic
Mean 7.48±0.00 139.54±0.00 7.56±0.00 142.22±0.00 5.46±0.00 87.56±0.00 5.42±0.00 86.59±0.00
KNN 7.79±0.00 124.61±0.00 7.88±0.00 129.29±0.00 4.30±0.00 49.90±0.00 4.30±0.00 49.80±0.00
MF 5.46±0.02 109.61±0.78 5.56±0.03 113.46±1.08 3.28±0.01 50.14±0.13 3.29±0.01 51.39±0.64

Learning
based

rGAIN 2.90±0.01 21.67±0.15 2.83±0.01 20.03±0.09 2.18±0.01 13.96±0.20 1.88±0.02 10.37±0.20
BRITS 2.34±0.01 17.00±0.14 2.34±0.00 16.46±0.05 1.70±0.01 10.50±0.07 1.47±0.00 7.94±0.03
GRIN 2.03±0.00 13.26±0.05 1.91±0.00 10.41±0.03 1.14±0.01 6.60±0.10 0.67±0.00 1.55±0.01

Diffusion
based

CSDI 1.98±0.00 12.62±0.60 1.79±0.00 8.96±0.08 0.86±0.00 4.39±0.02 0.57±0.00 1.12±0.03
Ours 3.67±0.00 40.63±0.00 2.53±0.00 14.86±0.00 2.02±0.00 11.25±0.00 1.42±0.00 8.19±0.00

Table 2: Ablation studies on the choice of backbone for our diffusion models.

Method
METR-LA PEMS-BAY

Block Missing Point Missing Block Missing Point Missing

MAE MSE MAE MSE MAE MSE MAE MSE

Ours (UNet) 4.58±0.01 56.89±0.02 3.16±0.00 28.53±0.00 2.08±0.00 13.11±0.01 1.86±0.00 12.10±0.01
Ours (GNN) 3.67±0.00 40.63±0.00 2.53±0.00 14.86±0.00 2.02±0.00 11.25±0.00 1.42±0.00 8.19±0.00

5 RELATED WORKS

5.1 SPATIO-TEMPORAL DATA IMPUTATION

In recent years, there has been significant research on spatiotemporal data imputation using deep
learning methods. Most of these approaches focus on multivariate time series and utilize recurrent
neural networks (RNNs) as the core for modeling temporal relationships (Cao et al., 2018; Cini
et al., 2022; Yoon et al., 2018; Che et al., 2018). The RNN-based approach for imputation was
initially introduced by GRU-D (Che et al., 2018) and has since been widely adopted in deep autore-
gressive imputation methods. Among the RNN-based methods, BRITS (Cao et al., 2018) imputes
missing values based on the hidden state using a bidirectional RNN and considers the correlation
between features. GRIN (Cini et al., 2022) extends BRITS by incorporating graph neural networks
to leverage the inductive bias of historical spatial patterns for imputation.

In the CSDI framework (Tashiro et al., 2021), which is based on a diffusion model, deep generative
models are utilized for imputing missing data in multivariate time series. CSDI leverages score-
based diffusion models conditioned on observed data and incorporate a two-dimensional attention
mechanism to capture temporal and feature correlations. One challenge faced by CSDI is that dur-
ing training, it takes the concatenation of observed values and noisy information as input. This
can increase the difficulty of the attention mechanism’s learning process. Different from existing
diffusion model-based imputation methods, our proposed method treats the imputation problem as
an inpainting problem, which is commonly used in image generation tasks. By treating the impu-
tation problem as an inpainting problem, we aim to leverage techniques commonly used in image
generation to handle missing data in multivariate time series.

5.2 IMAGE INPAINTING WITH DIFFUSION MODELS

In the domain of image processing, inpainting is a technique employed to substitute missing or
corrupted sections of images. The objective of this process is to accomplish a plausible and visu-
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ally coherent substitution, utilizing information from the surrounding areas of the image. Various
methodologies can be utilized for this purpose, encompassing deep learning approaches (Yu et al.,
2019; Xiong et al., 2019; Liu et al., 2018) as well as diffusion-based processes (Lugmayr et al.,
2022; Zhang et al., 2023).

The study by Lugmayr et al. Lugmayr et al. (2022) introduces RePaint, a novel approach to free-
form inpainting utilizing DDPM, which exhibits effectiveness even for extreme masks. This method
leverages a pre-trained unconditional DDPM as the generative prior and modifies the reverse diffu-
sion iterations by sampling the unmasked regions using the provided image data.

In parallel, the research conducted by Zhang et al. Zhang et al. (2023) presents a new algorithm
known as COPAINT, designed for coherent image inpainting using DDIM. Adopting a Bayesian
framework, COPAINT simultaneously modifies both the revealed and hidden regions, while approx-
imating the posterior distribution in a manner that enables the error to gradually diminish through
the denoising steps. The experimental findings indicate that COPAINT surpasses existing diffusion-
based methods in terms of both objective and subjective metrics.

6 CONCLUSION AND FUTURE WORK

We present a novel framework to impute missing values in spatiotemporal data using diffusion mod-
els by reformulating imputation problem as inpainting problem. While our approach is easy to im-
plement and show comparative performance, it does not reach performance of using an conditional
diffusion model. One of the main weaknesses of our model is a lack of consideration on temporal
dependencies. There are diffusion models which consider temporal correlations such as DiffWave
(Kong et al., 2021), which is also a backbone architecture of the (Tashiro et al., 2021). It might be
powerful if we integrate GNN and Diffwave to build a diffusion model that can capture both spatial
and temporal dependencies.
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A IMPLEMENTATION DETAILS

In this subsection, we describe the implementation details of our method. For UNet-Based diffusion
model, we utilize implementation from (Ho et al., 2020) and its Pytorch version1. For GNN-based
diffusion model, we modify implementation from (Jang et al., 2023) on fully-supervised setting
since we train an unconditional diffusion models. For GNN architecture, we use GCN (Kipf &
Welling, 2016) architecture. To impute missing values, we utilize codebase from (Lugmayr et al.,
2022).

For both models, we train diffusion models for 100,000 epochs with batch size of 32, using one RTX
3090 NVIDIA GPU. We follow default setting of original implementations for other hyperparamters
such as learning rate, weight decay, and hidden dimension sizes. We check that after 50,000 steps,
loss is converged. During imputation stage, we set the diffusion step K = 50, which is the same
with the setting of (Tashiro et al., 2021).

1https://github.com/lucidrains/denoising-diffusion-pytorch
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