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ABSTRACT

Multivariate time series forecasting (MTSF) plays a vital role in numerous real-
world applications, yet existing models remain constrained by their reliance on a
limited historical context. This limitation prevents them from effectively capturing
global periodic patterns that often span cycles significantly longer than the input
horizon—despite such patterns carrying strong predictive signals. Naı̈ve solutions,
such as extending the historical window, lead to severe drawbacks, including over-
fitting, prohibitive computational costs, and redundant information processing. To
address these challenges, we introduce the Global Temporal Retriever (GTR), a
lightweight and plug-and-play module designed to extend any forecasting model’s
temporal awareness beyond the immediate historical context. GTR maintains an
adaptive global temporal embedding of the entire cycle and dynamically retrieves
and aligns relevant global segments with the input sequence. By jointly modeling
local and global dependencies through a 2D convolution and residual fusion, GTR
effectively bridges short-term observations with long-term periodicity without alter-
ing the host model architecture. Extensive experiments on six real-world datasets
demonstrate that GTR consistently delivers state-of-the-art performance across both
short-term and long-term forecasting scenarios, while incurring minimal parameter
and computational overhead. These results highlight GTR as an efficient and
general solution for enhancing global periodicity modeling in MTSF tasks. Code
is available at this repository: https://github.com/macovaseas/GTR.

1 INTRODUCTION

Multivariate time series forecasting (MTSF) is a critical task with widespread applications in numer-
ous domains, including energy grid management (Alvarez et al., 2010), climate modeling (Mudelsee,
2010), macroeconomic planning (Granger & Newbold, 2014) and traffic flow management (Ishak &
Al-Deek, 2002). Accurate forecasting in these areas is essential for resource optimization, strategic
planning, and risk mitigation. In recent years, deep learning-based methods have achieved state-
of-the-art performance in MTSF tasks, with a variety of architectures including MLPs (Das et al.,
2023), RNNs (Lin et al., 2025c), CNNs (Liu et al., 2022a), Transformers (Zhou et al., 2021) and
Mambas (Zhang et al., 2023) demonstrating strong performance.

A fundamental challenge in time series forecasting lies in effectively modeling periodicity. Real-
world time series data often exhibit complex periodic patterns at multiple scales, which can be
broadly categorized into local and global cycles (Wang et al., 2024c). Local periodic patterns, such
as daily fluctuations, are characterized by their high frequency and distinct, repetitive nature, making
them easy for models to capture from a limited historical window. In contrast, global periodic
patterns—like weekly, monthly, or seasonal trends—present a more significant challenge. These
patterns gradually unfold over long time spans, occur less frequently within look-back window, and
are often obscured by non-stationary phenomena such as extreme values, missing data, and noisy
perturbations (Liu et al., 2022b). Despite these difficulties, effectively capturing global periodic
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information is crucial, as the predictive signal from a global cycle can be much stronger than that
from local, adjacent patterns. As illustrated in Figure 1, the correlation between a time segment
and its distant counterpart in the global cycle is often higher than its correlation with its immediate
neighbors. This demonstrates that global dependencies can be more informative for forecasting than
adjacent temporal data, making them essential to harness for achieving high-accuracy predictions.
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Figure 1: Pearson correlation matrix of time series
segments from the Electricity dataset. We divided
the series into several sub-series by the local-cycle
length. The series demonstrates both the local-cycle pat-
tern (e.g., Corr(S12, S13) = 0.94, Corr(S12, S14) =
0.88) and global-cycle pattern (e.g., Corr(S12, S5) =
0.96). Critically, the global-cycle pattern is stronger
than local-cycle pattern (e.g., Corr(S12, S5) >
Corr(S12, S13), Corr(S12, S14)).

To capture complex periodic dynamics,
researchers have explored several strate-
gies. One prominent line of work em-
ploys seasonal-trend decomposition, iso-
lating periodic components from the series
for specialized modeling (Wu et al., 2021;
Zhou et al., 2022a; Zeng et al., 2023; Wang
et al., 2024c; 2025a). Another strategy
operates in the frequency domain, using
tools such as the Fast Fourier Transform
(FFT) (Brigham & Morrow, 1967) to cap-
ture cyclical signals more explicitly (Zhou
et al., 2022b; Xu et al., 2024; Yi et al.,
2024). A third stream focuses on reshaping
data representations; for instance, Times-
Net (Wu et al., 2022) transforms 1D se-
quences into 2D tensors to better capture
both intra-period and inter-period varia-
tions. These approaches have led to notable
progress, but they all share a fundamental
limitation: they operate strictly within a
fixed look-back window. As a result, when
the true cycle length extends far beyond the
observed history, global periodic patterns
remain invisible to the model.

A straightforward remedy is to simply ex-
tend the look-back window, but this ap-
proach quickly proves impractical for sev-
eral interconnected reasons (Tong & Yuan,
2025). First, as the input length grows,
models risk overfitting to spurious noise,
which undermines forecast stability rather
than improving it. Second, longer input windows substantially inflate both computational and memory
costs, often exceeding practical resource budgets. Finally, even with abundant history available,
extracting truly relevant signals from overwhelming amounts of data remains inherently difficult, as
models must distinguish meaningful long-term patterns from redundant or irrelevant information.
Thus, capturing global periodicity requires a more principled solution than brute-force window
extension.

To address this issue, we introduce the Global Temporal Retriever (GTR), a lightweight and plug-and-
play module designed to extend a forecaster’s temporal awareness beyond the immediate historical
context. At its core, GTR maintains an adaptive global temporal embedding that encodes the long-
range periodic structures across the entire cycle. For each input sequence, GTR first identifies its
absolute position within the global cycle and retrieves the corresponding temporal segment from
the learned global embedding. The retrieved segment is then aligned with the local input and fused
through a lightweight 2D convolution, enabling joint modeling of both local-cycle dynamics and
global-cycle dependencies. The resulting enriched representation is finally integrated back into the
forecasting backbone via a residual connection, enhancing predictive power without altering its
original architecture. Extensive experiments demonstrate that combining GTR technique with a
simple MLP backbone achieves state-of-the-art performance on 6 real-world multivariate datasets
by effectively capturing long-cycle dependencies. Importantly, GTR is highly efficient, introducing
negligible parameter and runtime overhead, and can be seamlessly integrated into a wide range of
forecasting backbones.
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The primary contributions of this work are as follows:

• We pinpoint a core limitation in current MTSF methods: fixed look-back windows often
obscure global periodic patterns whose cycles exceed the observed history.

• We present the Global Temporal Retriever (GTR), a lightweight, plug-and-play, model-
agnostic module that uses absolute temporal indexing to retrieve from an adaptive global
cycle embedding and fuses local and global cues via 2D convolution—requiring no changes
to the host forecaster.

• Across six benchmarks and both long- and short-term settings, GTR consistently improves
diverse forecasting backbones and achieves overall state-of-the-art accuracy with minimal
parameter and runtime overhead.

2 RELATED WORK

Multivariate time series forecasting (MTSF) has widespread applications in various domains. In recent
years, deep learning-based methods have achieved great success in MTSF tasks, including RNN-based
methods (Lin et al., 2025c; Bergsma et al., 2023; Wang et al., 2024b), CNN-based methods (Liu
et al., 2022a; Wu et al., 2022; Luo & Wang, 2024), Linear & MLP-based methods (Zeng et al., 2023;
Das et al., 2023; Lin et al., 2024), Transformer-based methods (Nie et al., 2023; Liu et al., 2024b;
Wang et al., 2024d) and Mamba-based methods (Zhang et al., 2023; Wang et al., 2025b; Ma et al.,
2025). Among these methods, explicit periodicity modeling and 2D structural transformation have
rapidly evolved as dominant paradigms, with the former focusing on extracting multi-scale temporal
patterns and the latter leveraging 2D representations to capture complex patterns beyond conventional
sequential modeling.

Modeling Periodicity of Time Series. Modeling temporal periodicity has long been used to boost
forecasting accuracy. Recent methods such as Autoformer (Wu et al., 2021), FEDformer (Zhou et al.,
2022a), DLinear (Zeng et al., 2023), and the TimeMixer family (Wang et al., 2024c; 2025a) perform
seasonal–trend decomposition to better capture periodic components in the original time series. In
parallel, frequency-domain modeling has been increasingly integrated into deep networks: FiLM,
FITS, and FilterNet use FFT-based representations to capture patterns that are hard to express in
the time domain (Zhou et al., 2022b; Xu et al., 2024; Yi et al., 2024; Brigham & Morrow, 1967).
CycleNet further learns recurrent cycles as explicit periodic structures (Lin et al., 2024). These
methods effectively exploit multi-scale periodicity but are often bounded by the observed window or
by assumptions of stationary cycles, limiting mining of information in very long cycles.

2D-Variations of Time Series Modeling. Transforming 1D time series data into a 2D representation
allows models to capture more complex features that are difficult for traditional sequential methods to
extract. TimesNet (Wu et al., 2022) captures the temporal 2D-variations in 2D space by CNN-based
vision backbones for the first time. LightTS (Zhang et al., 2022) leverages two distinct sampling
strategies to structure the 2D time-series data and employs MLPs for efficient feature extraction.
MDCNet (Su et al., 2024) employs multi-scale 2D convolutional networks on variational mode-
decomposed time series components to extract multi-frequency patterns. Times2D (Nematirad
et al., 2025) converts 1D time series into 2D tensors via frequency-domain periodic decomposition
and derivative heatmaps, leveraging 2D convolutions to capture short- and long-term dependencies.
Clustering-enhanced modeling such as DUET introduces dual clustering on temporal and channel
dimensions so as to capture both intra-series patterns and inter-channel dependencies (Qiu et al.,
2025). Despite stronger representations, these approaches infer periodic structure indirectly from the
re-layout of data and still lack a consistent mechanism to align with global cycles.

Retrieval-/Memory-Augmented Forecasting. Retrieval-augmented methods enlarge the effective
context by fetching similar segments from the full history or external repositories and fusing them
into the predictor (Liu et al., 2024a; Han et al., 2025; Ning et al., 2025; Yang et al., 2025b). Such
designs improve generalization and few-shot forecasting by exposing the model to recurring patterns
beyond the current window. However, they rely heavily on similarity search quality and do not by
themselves provide a compact, time-aligned representation of very long cycles, motivating approaches
that directly encode and align global periodicity while remaining backbone-agnostic.
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Figure 2: Overview of the Global Temporal Retriever (GTR): a plug-and-play module compatible
with any MTSF forecaster. GTR operates in three stages: (1) retrieves corresponding segments from
global temporal embedding; (2) aligns them with the input and uses 2D convolution to jointly model
local and global periodicity; (3) fuses the result with the original input via residual connection.

3 METHOD

3.1 PROBLEM STATEMENT AND OVERVIEW

In multivariate time series forecasting, given historical observations X = {x1, . . . , xT } ∈ RT×N ,
where T represents the number of time steps and N represents the number of variables, our target
is predicting the future S time steps Y = {xT+1, . . . , xT+S} ∈ RS×N . Critically, we focus on
scenarios where the global cycle length significantly exceeds the historical input length T — a
common yet challenging setting in real-world time series forecasting.

Method Overview. In this paper, we propose the Global Temporal Retriever (GTR) — a lightweight,
plug-and-play module designed to extend a model’s temporal receptive field beyond the immediate
input window. As illustrated in Figure 2, the proposed method operates in two phases: (1) The GTR
module enhances global cyclic patterns by dynamically retrieving periodic information from the
global temporal embedding, then fusing them with the input series through a linear transformation
and 2D convolution (c.f. Section 3.2). (2) The enhanced representation is subsequently processed by
the backbone model (a multi-layer perceptron in this work, c.f. Section 3.3.) for final forecasting.

3.2 GLOBAL TEMPORAL RETRIEVER

To address the fundamental limitation of lookback window constraints in capturing global periodic
patterns, we propose the Global Temporal Retriever (GTR), a lightweight and plug-and-play module
that enables models to access temporal information beyond the immediate historical context.

The core innovation of GTR lies in maintaining an adaptive global temporal embedding that encodes
the entire cycle pattern of the time series. Specifically, we introduce a global parameter matrix
Q ∈ RL×N , where L denotes the global cycle length and N represents the number of variables.
This parameter is initialized to zero and automatically learns to capture the global periodic patterns
inherent in each variable in the time series during training.

For notational convenience, we consider the univariate case. Given the n-th variable sequence
xn ∈ RT with lookback length T , the GTR module operates through two principled stages to bridge
local observations with global temporal structure:

Cycle Information Alignment. To establish continuity with the global temporal structure, we define
a cycle index vector i ∈ NT

0 that precisely locates each position within the global cycle. For a
sequence starting at absolute time t0, the index vector is computed as:

i =
[
(t0 mod L) + τ

]
mod L for τ = 0, 1, . . . , T − 1. (1)

The cycle index enables positional alignment of the input sequence within the global periodic
range. Using the index vector, we retrieve corresponding temporal references from the global cycle
representation:

qn = Linear(Q[i, n]) ∈ RT , (2)

4



Published as a conference paper at ICLR 2026

where qn represents the retrieved global temporal information corresponding to the current sequence’s
position within the cycle. The linear mapping is utilized to enhance the representational capacity of
the temporal reference. We then stack the original input sequence and the aligned global query to
facilitate interaction between local patterns and global cycle information:

Fn =

[
xn

qn

]
∈ R2×T (3)

Temporal Pattern Extraction. We apply a 2D convolution operation to extract temporal patterns
that span both local and global scales:

hn = C(Fn;κ = (2, 1 + 2⌊P/2⌋)) ∈ RT (4)

where C denotes the convolution operator, and κ is designed with P representing the dominant high-
frequency period length (e.g., daily patterns in hourly data), capturing interactions across the two
temporal scales while preserving the periodic structure. Finally, the extracted features are integrated
with the original sequence through a residual connection with dropout:

zn = xn + Dropout(hn) ∈ RT (5)

The key advantage of GTR is its ability to enable the model to retrieve and utilize periodic information
from the entire cycle, regardless of the lookback window length. This is particularly beneficial for
time series with long-term periodicities (e.g., monthly or yearly patterns) that cannot be captured
within typical short lookback windows.

3.3 BACKBONE AND PROJECTION STRUCTURE

Many state-of-the-art methods in multivariate time series forecasting (MTSF) are built upon Multi-
Layer Perceptrons (MLPs) (Das et al., 2023; Lin et al., 2024), demonstrating strong empirical
performance and robustness. Inspired by these successes, we adopt a lightweight MLP-based
backbone to capture temporal dependencies in the sequence.

Input Projection. Let Z ∈ RT×N be the representation derived from the GTR Technique, we first
project the representation into a higher-dimensional latent space via a linear transformation:

Z = Linear(Z) ∈ RD×N .

Multi-Layer Perceptron. The MLP backbone consists of two linear layers with GeLU activation
functions (Hendrycks & Gimpel, 2023) and a residual connection. Formally:

G1 = GeLU(Linear(Z)) ∈ RD×N ,

G2 = GeLU(Linear(G1)) ∈ RD×N ,

Zout = G2 +Z ∈ RD×N .

Output Projection. The extracted features are then mapped to the forecast horizon via a linear output
layer, applied after a dropout layer for regularization:

Ŷ = Linear(Dropout(Zout)) ∈ RS×N .

3.4 METHOD DETAILS

Instance Normalization. Distribution shift between training and testing data is a prevalent challenge
in time series forecasting (Liu et al., 2022b). Reversible Instance Normalization (RevIN) (Kim et al.,
2021) has been demonstrated to effectively alleviate this issue by applying instance normalization
and denormalization to the inputs and outputs of the model. The module normalizes the input batch
by removing instance-specific mean and variance, and subsequently reverses this operation on the
model outputs. We adopt RevIN to stabilize the non-stationarity of the input time series.
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Seamless Compatibility. GTR preserves input dimensionality while integrating global periodic
patterns, enabling plug-and-play integration with any forecasting backbone without architectural
modifications. It processes raw input series to generate enhanced feature representations, directly fed
into the backbone for end-to-end training.

Complexity Analysis. Reversible instance normalization operates at O(NT ) complexity. Series
embedding requires O(NTd) operations due to projection into the hidden dimension. The GTR
module’s linear mapping dominates with O(NT 2) complexity, while the 2D convolution is negligible
since cycle length P is a small constant. The backbone and predictor exhibit O(Nd2) and O(NSd)
complexity, respectively. The total complexity is O(NT 2 +Nd2 +NTd+NSd), which is linear to
N , and S. When T is significantly smaller than d, the complexity is dominated by the O(Nd2) term.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset. We evaluate the proposed method on six widely used real-world datasets, including the
ETT series (Zhou et al., 2021), PEMS series (Liu et al., 2024b), Electricity, Traffic, Solar-Energy and
Weather datasets (Wu et al., 2021). A detailed description of this part is provided in Appendix A.1.

Evaluation. We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) as the core metrics
for the evaluation. To fairly compare the forecasting performance, we follow the same evaluation
protocol, where the length of the historical horizon is set as T = 96 for all models. We set the
prediction lengths S to {12, 24, 48, 96} for PEMS dataset and {96, 192, 336, 720} for others.

Baselines. To evaluate the performance of the proposed method, we compare it against several
recently well-acknowledged forecasting models, including RAFT (Han et al., 2025), S-Mamba (Wang
et al., 2025b), TQNet (Lin et al., 2025a), TimeXer (Wang et al., 2024d), CycleNet (Lin et al.,
2024), SOFTS (Han et al., 2024), TimeMixer (Wang et al., 2024c), iTransformer (Liu et al., 2024b),
PatchTST (Nie et al., 2023) and DLinear (Zeng et al., 2023).

Implementation Details. All experiments are implemented in PyTorch (Paszke et al., 2019) and
conducted on a single NVIDIA RTX 3090 24GB GPU. We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate selected from {1e-3, 3e-3, 5e-4}. The hidden dim for MLP backbone D is
set to 512. For additional details on hyperparameters and settings, please refer to the Appendix A.3.

4.2 EXPERIMENTS RESULTS

4.2.1 LONG-TERM FORECASTING

Table 1: Long-term forecasting results. The look-back length T is fixed at 96. All results are averaged
across four different forecasting horizons S ∈ {96, 192, 336, 720}. The best results are highlighted
in bold, while the second-best results are underlined. Count row counts the number of times each
model ranks in the top 2. See Table 7 in Appendix C.1 for the full results.

Model GTR
(Ours)

RAFT
(2025)

S-Mamba
(2025b)

TQNet
(2025a)

TimeXer
(2024d)

CycleNet
(2024)

SOFTS
(2024)

TimeMixer
(2024c)

iTransformer
(2024b)

PatchTST
(2023)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.439 0.434 0.428 0.433 0.455 0.450 0.441 0.434 0.437 0.437 0.457 0.441 0.449 0.443 0.447 0.440 0.454 0.448 0.469 0.455 0.456 0.452

ETTh2 0.372 0.400 0.382 0.410 0.381 0.405 0.378 0.402 0.368 0.396 0.388 0.409 0.373 0.400 0.365 0.395 0.383 0.407 0.387 0.407 0.559 0.515

ETTm1 0.367 0.389 0.381 0.400 0.398 0.405 0.377 0.393 0.382 0.397 0.379 0.396 0.393 0.402 0.381 0.396 0.407 0.410 0.387 0.400 0.403 0.407

ETTm2 0.268 0.315 0.281 0.330 0.288 0.332 0.277 0.323 0.274 0.322 0.266 0.314 0.287 0.330 0.275 0.323 0.288 0.332 0.281 0.326 0.350 0.401

Electricity 0.166 0.260 0.175 0.272 0.170 0.265 0.164 0.259 0.171 0.270 0.168 0.259 0.174 0.264 0.182 0.273 0.178 0.270 0.205 0.290 0.212 0.300

Solar 0.194 0.245 0.301 0.303 0.240 0.273 0.198 0.256 0.237 0.302 0.210 0.261 0.229 0.256 0.216 0.280 0.233 0.262 0.270 0.307 0.330 0.401

Traffic 0.470 0.280 0.414 0.284 0.414 0.276 0.445 0.276 0.466 0.287 0.472 0.301 0.409 0.267 0.485 0.298 0.428 0.282 0.481 0.300 0.625 0.383

Weather 0.239 0.268 0.270 0.309 0.251 0.276 0.242 0.269 0.241 0.271 0.243 0.271 0.255 0.278 0.240 0.272 0.258 0.278 0.259 0.273 0.265 0.317

Count 5 5 2 1 0 1 3 4 2 1 1 2 1 1 2 1 0 0 0 0 0 0

Results. Table 1 shows GTR outperforms other models in long-term forecasting across various
datasets. Across 16 prediction tasks, GTR achieved top-2 performance in 10 of them. Due to the
traffic dataset’s strong spatiotemporal dependencies and temporal lag effects, GTR exhibits higher
MSE than S-Mamba, SOFTS and iTransformer, as these models better capture critical inter-variable
relationships. GTR is good at handling complex high-dimensional time series. For example, on the
challenging Solar-Energy dataset, it exceeds the CycleNet by 8.2% in MSE and 6.5% in MAE.
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4.2.2 SHORT-TERM FORECASTING

Table 2: Short-term forecasting results. The look-back length T is fixed at 96. All results are averaged
across four different forecasting horizons S ∈ {12, 24, 48, 96}. The best results are highlighted in
bold, while the second-best results are underlined. Count row counts the number of times each model
ranks in the top 2. See Table 7 in Appendix C.1 for the full results.

Model GTR
(Ours)

RAFT
(2025)

S-Mamba
(2025b)

TQNet
(2025a)

TimeXer
(2024d)

CycleNet
(2024)

SOFTS
(2024)

TimeMixer
(2024c)

iTransformer
(2024b)

PatchTST
(2023)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03 0.087 0.189 0.144 0.230 0.122 0.228 0.097 0.203 0.112 0.214 0.118 0.226 0.104 0.210 0.154 0.278 0.113 0.222 0.180 0.291 0.278 0.375

PEMS04 0.087 0.189 0.104 0.210 0.103 0.211 0.091 0.197 0.105 0.209 0.119 0.232 0.102 0.208 0.156 0.282 0.111 0.221 0.195 0.307 0.295 0.388

PEMS07 0.076 0.169 0.094 0.193 0.089 0.188 0.075 0.171 0.085 0.182 0.113 0.214 0.086 0.184 0.143 0.259 0.101 0.204 0.211 0.303 0.329 0.396

PEMS08 0.142 0.222 0.151 0.234 0.148 0.224 0.142 0.230 0.175 0.250 0.150 0.246 0.138 0.220 0.253 0.336 0.150 0.226 0.280 0.321 0.379 0.416

Count 4 4 0 0 0 0 4 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Results. Table 2 shows GTR outperforms state-of-the-art models across all metrics. Across 8
prediction tasks, GTR achieved top-2 performance in all of them. Compared to iTransformer, GTR
reduces MSE by 18.7% and MAE by 12.1% on average across all datasets and horizons; compared
to S-Mamba, it achieves 15.7% MSE and 9.6% MAE reductions, with the most significant gains
observed in PEMS03, achieving 28.7% MSE and 20.6% MAE reduction.

4.3 ABLATION STUDIES AND ANALYSIS

Effectiveness of GTR. To evaluate this, we conducted comprehensive ablation studies across three
highly periodic benchmark datasets. Table 3 systematically quantifies both the intrinsic contribution
of GTR within our framework and its cross-model generalization capability when integrated into
diverse state-of-the-art architectures.

Table 3: Ablation studies of the GTR technique. Left: Generalization performance of GTR technique
on different models. Right: Ablation study revealing the effectiveness of the GTR technique. The
look-back length is fixed at 96 for all the experiments.

Model iTransformer (2024b) PatchTST (2023) DLinear (2023) MLP-Layer (Ours)

Setup Original + GTR Tech. Improve ↑ Original + GTR Tech. Improve ↑ Original + GTR Tech. Improve ↑ Original + GTR Tech. Improve ↑
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.150 0.241 0.136 0.231 10.2% 4.3% 0.164 0.254 0.135 0.233 21.4% 9.0% 0.195 0.277 0.141 0.240 38.2% 15.4% 0.165 0.252 0.134 0.229 23.1% 10.0%

192 0.164 0.255 0.155 0.250 5.8% 2.0% 0.174 0.265 0.153 0.249 13.7% 6.4% 0.194 0.279 0.159 0.257 22.0% 8.5% 0.173 0.260 0.152 0.245 13.8% 6.1%
336 0.178 0.272 0.166 0.263 7.2% 3.4% 0.193 0.285 0.172 0.270 12.2% 5.5% 0.207 0.295 0.173 0.274 19.6% 7.6% 0.190 0.277 0.171 0.264 11.1% 4.9%
720 0.210 0.300 0.192 0.288 9.3% 4.1% 0.232 0.320 0.211 0.306 9.9% 4.5% 0.244 0.330 0.206 0.305 18.4% 8.1% 0.230 0.312 0.208 0.300 10.5% 4.0%

Avg 0.175 0.267 0.162 0.258 8.0% 3.5% 0.191 0.281 0.167 0.264 14.3% 6.4% 0.210 0.295 0.169 0.269 24.2% 9.6% 0.190 0.276 0.166 0.260 14.4% 6.1%

PE
M

S0
3 12 0.106 0.219 0.067 0.172 58.2% 27.3% 0.072 0.179 0.058 0.160 24.1% 11.8% 0.105 0.221 0.072 0.180 45.8% 22.8% 0.071 0.177 0.057 0.156 24.5% 13.4%

24 0.090 0.199 0.074 0.178 21.6% 11.8% 0.102 0.213 0.073 0.178 39.7% 19.6% 0.183 0.299 0.104 0.214 75.9% 39.7% 0.103 0.212 0.070 0.172 47.1% 23.2%
48 0.199 0.304 0.113 0.215 76.1% 41.3% 0.155 0.263 0.101 0.207 53.4% 16.0% 0.315 0.407 0.155 0.258 103.2% 57.7% 0.158 0.265 0.094 0.198 68.1% 33.8%
96 0.242 0.348 0.141 0.238 71.6% 46.2% 0.204 0.305 0.131 0.236 55.7% 29.2% 0.455 0.508 0.199 0.295 128.6% 72.2% 0.208 0.309 0.127 0.228 63.7% 27.5%

Avg 0.159 0.268 0.098 0.200 62.2% 34.0% 0.133 0.240 0.090 0.195 47.7% 23.0% 0.265 0.359 0.132 0.236 100.7% 52.1% 0.135 0.241 0.087 0.189 55.1% 27.5%

PE
M

S0
4 12 0.081 0.189 0.067 0.168 20.8% 12.5% 0.087 0.195 0.069 0.171 26.0% 14.0% 0.114 0.228 0.083 0.192 37.3% 18.7% 0.086 0.193 0.065 0.164 32.3% 17.7%

24 0.097 0.207 0.078 0.181 24.3% 14.3% 0.119 0.231 0.081 0.187 46.9% 19.1% 0.187 0.298 0.113 0.225 65.4% 32.4% 0.119 0.229 0.075 0.177 58.6% 29.3%
48 0.128 0.241 0.092 0.198 39.1% 21.7% 0.172 0.279 0.101 0.211 70.2% 32.3% 0.319 0.402 0.157 0.226 103.1% 77.8% 0.174 0.283 0.093 0.197 87.1% 43.6%
96 0.176 0.284 0.113 0.221 55.7% 28.5% 0.221 0.323 0.136 0.249 62.5% 29.7% 0.424 0.481 0.193 0.298 119.6% 61.4% 0.224 0.328 0.114 0.219 96.5% 49.8%

Avg 0.120 0.230 0.087 0.192 37.9% 19.8% 0.150 0.257 0.096 0.204 56.2% 30.0% 0.261 0.352 0.136 0.235 91.9% 49.8% 0.151 0.258 0.087 0.189 73.5% 36.5%

Key findings are twofold. First, GTR significantly enhances our MLP backbone, reducing average
MSE by 14.4% (Electricity), 55.1% (PEMS03), and 73.5% (PEMS04). Second, GTR consistently
improves all evaluated models across all datasets and prediction horizons, with particularly pro-
nounced gains in traffic forecasting. For instance, on PEMS04, GTR reduces MSE by 91.9% for
DLinear and 56.2% for PatchTST, underscoring its robustness in complex temporal contexts. While
the GTR module itself is designed with a channel-independent architecture, when integrated with
the iTransformer, which is specifically built to capture relationships between different variables, the
GTR module still delivered significant improvements, reducing MSE by 62.2% on PEMS03 and
37.9% on PEMS04. These improvements are achieved through trivial integration during training,
demonstrating GTR’s capability with diverse architectures.

Influence of look-back length. Figure 3 demonstrates GTR’s performance across varying look-back
window lengths on four benchmark datasets. Two critical observations emerge: First, GTR exhibits
consistent performance improvement as the look-back length increases, demonstrating effective
utilization of additional temporal context. More significantly, GTR substantially outperforms all
baseline methods across all window lengths, with the largest gains occurring at the shortest input
horizons. Notably, on Electricity and Solar-Energy datasets, baseline models experience exponential
error growth as window length decreases, while GTR maintains remarkable stability with only
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Figure 3: Influence of look-back length. Forecasting horizons are fixed at 336 for Electricity and
Solar-Energy, and 96 for PEMS03 and PEMS04. GTR consistently outperforms other models across
varying look-back lengths, particularly at the shortest window length.

marginal performance degradation. This resilience in ultra-short input scenarios directly validates our
core innovation—by establishing temporal continuity beyond the immediate observation window,
GTR successfully leverages global periodic information that remains inaccessible to baseline methods
when cycle lengths exceed the input horizon. The consistent superiority across all window lengths
confirms that GTR effectively bridges local pattern extraction with global temporal structure, making
it particularly valuable for practical applications where historical data may be severely limited.

Table 4: Efficiency comparison between GTR and
other models on the Electricity dataset with look-
back length T = 96 and forecast horizon S = 720.
Training Time denotes the average time required
per epoch for the model.

Model Parameters MACs Training Time(s)

Informer (2021) 12.53M 3.97G 70.1
Autoformer (2021) 12.22M 4.41G 107.7
FEDformer (2022a) 17.98M 4.41G 238.7

DLinear (2023) 139.6K 44.91M 18.1
PatchTST (2023) 10.74M 25.87G 129.5

iTransformer (2024b) 5.15M 1.65G 35.1

GTR Tech. 40.1K 4.50M -
+ MLP-Layer 0.98M 306.91M 22.3

Model Efficiency. The proposed GTR tech-
nique operates as an efficient plug-and-play
module with minimal computational overhead.
As shown in Table 4, the GTR technique
alone consumes merely 40.1K parameters and
4.50M MACs. When integrated with a pure
MLP backbone for complete forecasting capa-
bility, the combined system maintains remark-
able efficiency with just 0.98M parameters and
306.91M MACs, representing only 19.0% of
iTransformer’s parameter count while achiev-
ing comparable or superior prediction accuracy
as demonstrated in our main results. With a
training time of 22.3 seconds per epoch, the
combined system is surpassed only by DLinear
(18.1s), highlighting its strong efficiency while
maintaining superior modeling capability. This makes GTR Technique particularly suitable for
resource-constrained forecasting applications while maintaining the capacity to capture both short-
term patterns and long-range dependencies.

Correlation Alignment. To further investigate how the GTR module models global temporal
dependencies, we conducted a visualization experiment using the Pearson correlation coefficient to
analyze multivariate correlations. As shown in Figure 4, we selected test sequences from 4 different
datasets. The visualization compares input and GTR-enhanced output against the ground-truth
correlation computed across the entire dataset. The results clearly demonstrate that, after applying the
GTR module, the learned multivariate correlations align significantly more closely with the global
temporal structure. This improvement is particularly meaningful in real-world scenarios, where time
series may be distorted by non-stationary disturbances. The GTR module enhances the model’s
robustness to such perturbations, enabling more reliable and structure-preserving representations
even under imperfect input conditions.

5 LIMITATIONS AND FUTURE WORK

While our proposed GTR module offers a flexible, plug-and-play solution for enhancing long-
term time series forecasting through explicit periodic pattern modeling, it exhibits several inherent
limitations stemming from its architectural assumptions and computational design.
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Figure 4: Visualization for multivariate correlation analysis on 4 datasets. The visualization is
implemented based on the Pearson Correlation Coefficient. The Ground Truth denotes the correlation
computed across the entire dataset. The two columns on the left denote the correlation between the
variables before and after the GTR module, respectively. It shows that the model drives the learned
multivariate correlations closer to the global correlation structures through the GTR module.

Fixed Cycle-Length Assumption. GTR assumes a single, fixed cycle length for the entire input
sequence. This assumption may result in suboptimal performance on datasets with time-varying
periodicity, such as physiological signals whose dominant frequencies shift over time. Moreover,
GTR enforces a shared cycle length across all input channels, which is ill-suited for multivariate
time series in which different variables may exhibit heterogeneous periodic patterns. Although this
limitation could be mitigated through channel-specific modeling or preprocessing, such solutions
introduce additional architectural complexity or data-handling overhead. GTR further assumes that
time series simultaneously exhibit both local and global periodic structures. Consequently, it may
underperform on time series characterized by a single dominant periodicity.

Challenges in Modeling Long-Range Cycles: Although GTR can theoretically accommodate long
cycles by adjusting the cycle-length parameter, its practical applicability is often constrained by data
scarcity. Accurately learning yearly or multi-year periodic patterns typically requires decades of
continuous, high-quality historical data—a condition rarely satisfied in real-world settings. Moreover,
when the base cycle length P becomes large, the width of the 2D convolution kernel increases
linearly with P . Consequently, the convolution operation incurs a computational complexity of
O(NTP ), where T denotes the sequence length. For large-scale time series and ultra-long cycles,
such complexity becomes computationally prohibitive. Additionally, the number of kernel parameters
also scales linearly with P , increasing memory overhead and exacerbating the risk of overfitting in
data-scarce scenarios. Future work may investigate hierarchical or memory-augmented mechanisms
to better extrapolate long-range periodic structures from limited observations.

Scalability with Long Input Sequences. GTR preserves the input sequence length and employs a
linear projection layer with size T × T . This results in a computational complexity of O(NT 2) for
the linear operation. When T is large, the quadratic complexity becomes prohibitive, as the number
of operations scales with the square of the sequence length. Although the GTR module is designed
for short look-back windows, it becomes inefficient for long sequences.

These limitations highlight specific scenarios where the GTR module may not be the optimal solution.
They also motivate future research into developing adaptive cycle modeling, handling cross-channel
periodic heterogeneity, and improving the efficient learning of extreme long-horizon periodicity.

6 CONCLUSION

In this work, we address the challenge that existing multivariate time series forecasting (MTSF)
models are limited by their historical context, which prevents them from effectively capturing
global periodic patterns. To overcome this, we introduce the Global Temporal Retriever (GTR), a
lightweight and plug-and-play module that allows any forecasting model to access and utilize temporal
information from the entire cycle. Extensive experiments on six real-world datasets demonstrate that
GTR consistently delivers state-of-the-art performance in both short-term and long-term forecasting
scenarios, highlighting GTR as an efficient and general solution for MTSF tasks.
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mentation details are included in the Appendix, including dataset descriptions, metrics, model, and
experiment configurations. The code has been made public.

9 ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D Program of China (Grant No.
2023YFF0725001), in part by the National Natural Science Foundation of China (Grant No.
92370204), in part by the Guangdong Basic and Applied Basic Research Foundation (Grant No.
2023B1515120057), in part by the Key-Area Special Project of Guangdong Provincial Ordinary
Universities (Grant No. 2024ZDZX1007), and in part by the Red Bird MPhil Program at the Hong
Kong University of Science and Technology (Guangzhou).

REFERENCES

Francisco Martinez Alvarez, Alicia Troncoso, Jose C Riquelme, and Jesus S Aguilar Ruiz. Energy
time series forecasting based on pattern sequence similarity. IEEE Transactions on Knowledge
and Data Engineering, 23(8):1230–1243, 2010.

Shane Bergsma, Tim Zeyl, and Lei Guo. Sutranets: Sub-series autoregressive networks for long-
sequence, probabilistic forecasting. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=sC4RbbVKbu.

E. O. Brigham and R. E. Morrow. The fast fourier transform. IEEE Spectrum, 4(12):63–70, 1967.
doi: 10.1109/MSPEC.1967.5217220.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tiDE: Time-series dense encoder. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=pCbC3aQB5W.

Clive William John Granger and Paul Newbold. Forecasting economic time series. Academic press,
2014.

Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. SOFTS: Efficient multivariate time series
forecasting with series-core fusion. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=89AUi5L1uA.

Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, and Jinsung Yoon. Retrieval augmented
time series forecasting. In Forty-second International Conference on Machine Learning, 2025.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https:
//arxiv.org/abs/1606.08415.

Sherif Ishak and Haitham Al-Deek. Performance evaluation of short-term time-series traffic prediction
model. Journal of transportation engineering, 128(6):490–498, 2002.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

10

https://openreview.net/forum?id=sC4RbbVKbu
https://openreview.net/forum?id=pCbC3aQB5W
https://openreview.net/forum?id=89AUi5L1uA
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415


Published as a conference paper at ICLR 2026

Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
Enhancing time series forecasting through modeling periodic patterns. In Thirty-eighth Conference
on Neural Information Processing Systems, 2024.

Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query network
for efficient multivariate time series forecasting. In Forty-second International Conference on
Machine Learning, 2025a.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and CL Philip Chen. Sparsetsf: Lightweight
and robust time series forecasting via sparse modeling. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2025b. doi: 10.1109/TPAMI.2025.3602445.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Segrnn:
Segment recurrent neural network for long-term time series forecasting. IEEE Internet of Things
Journal, 2025c.

Jingwei Liu, Ling Yang, Hongyan Li, and Shenda Hong. Retrieval-augmented diffusion models
for time series forecasting. Advances in Neural Information Processing Systems, 37:2766–2786,
2024a.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in Neural
Information Processing Systems, 35:5816–5828, 2022a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:
9881–9893, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=JePfAI8fah.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The twelfth international conference on learning representations, pp. 1–43,
2024.

Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, and Xinghao Chen. Timepro: Efficient multivariate
long-term time series forecasting with variable- and time-aware hyper-state. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
forum?id=s69Ei2VrIW.

Henrik Madsen. Time series analysis. Chapman and Hall/CRC, 2007.

Manfred Mudelsee. Climate time series analysis. Atmospheric and, 397, 2010.

Reza Nematirad, Anil Pahwa, and Balasubramaniam Natarajan. Times2d: Multi-period decomposi-
tion and derivative mapping for general time series forecasting. In AAAI, pp. 19651–19658, 2025.
URL https://doi.org/10.1609/aaai.v39i18.34164.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Jbdc0vTOcol.

Kanghui Ning, Zijie Pan, Yu Liu, Yushan Jiang, James Y Zhang, Kashif Rasul, Anderson Schneider,
Lintao Ma, Yuriy Nevmyvaka, and Dongjin Song. Ts-rag: Retrieval-augmented generation based
time series foundation models are stronger zero-shot forecaster. arXiv preprint arXiv:2503.07649,
2025.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

11

https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=s69Ei2VrIW
https://openreview.net/forum?id=s69Ei2VrIW
https://doi.org/10.1609/aaai.v39i18.34164
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol


Published as a conference paper at ICLR 2026

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang. Duet: Dual clustering
enhanced multivariate time series forecasting. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 1, pp. 1185–1196, 2025.

Zezhi Shao, Zhao Zhang, Fei Wang, Wei Wei, and Yongjun Xu. Spatial-temporal identity: A simple
yet effective baseline for multivariate time series forecasting. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pp. 4454–4458, 2022.

Jing Su, Dirui Xie, Yuanzhi Duan, Yue Zhou, Xiaofang Hu, and Shukai Duan. Mdcnet: Long-term
time series forecasting with mode decomposition and 2d convolution. Knowledge-Based Systems,
299:111986, 2024.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Suxin Tong and Jingling Yuan. Efficiently enhancing long-term series forecasting via ultra-long
lookback windows. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 20912–20920, 2025.

Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, and Jianxin Liao.
Rethinking the power of timestamps for robust time series forecasting: A global-local fusion
perspective. In Thirty-eighth Conference on Neural Information Processing Systems, 2024a.

Shiyu Wang, Zhixuan Chu, Yinbo Sun, Yu Liu, Yuliang Guo, Yang Chen, Huiyang Jian, Lintao Ma,
Xingyu Lu, and Jun Zhou. Multiscale representation enhanced temporal flow fusion model for
long-term workload forecasting. In Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management, CIKM ’24, pp. 4948–4956. ACM, October 2024b. doi:
10.1145/3627673.3680072. URL http://dx.doi.org/10.1145/3627673.3680072.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations (ICLR), 2024c.

Shiyu Wang, Jiawei LI, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. In The Thirteenth International Conference on Learning Representations, 2025a. URL
https://openreview.net/forum?id=1CLzLXSFNn.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Yunzhong Qiu, Haoran Zhang, Jianmin Wang,
and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with
exogenous variables. Advances in Neural Information Processing Systems, 2024d.

Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and
Yifei Zhang. Is mamba effective for time series forecasting? Neurocomputing, 619:129178,
2025b. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2024.129178. URL https:
//www.sciencedirect.com/science/article/pii/S0925231224019490.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: Modeling time series with $10k$ parameters.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=bWcnvZ3qMb.

Runze Yang, Longbing Cao, Jianxun Li, and Jie Yang. Variational hierarchical n-beats model for
long-term time-series forecasting. IEEE Transactions on Neural Networks and Learning Systems,
36(10):19398–19410, 2025a. doi: 10.1109/TNNLS.2025.3571039.

12

http://dx.doi.org/10.1145/3627673.3680072
https://openreview.net/forum?id=1CLzLXSFNn
https://www.sciencedirect.com/science/article/pii/S0925231224019490
https://www.sciencedirect.com/science/article/pii/S0925231224019490
https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=bWcnvZ3qMb


Published as a conference paper at ICLR 2026

Silin Yang, Dong Wang, Haoqi Zheng, and Ruochun Jin. Timerag: Boosting llm time series forecast-
ing via retrieval-augmented generation. In ICASSP 2025-2025 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025b.

Kun Yi, Jingru Fei, Qi Zhang, Hui He, Shufeng Hao, Defu Lian, and Wei Fan. Filternet: Harnessing
frequency filters for time series forecasting. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
ugL2D9idAD.

Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitalizing
multivariate time series forecasting: Learnable decomposition with inter-series dependencies and
intra-series variations modeling. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=87CYNyCGOo.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Michael Zhang, Khaled Kamal Saab, Michael Poli, Tri Dao, Karan Goel, and Christopher Re.
Effectively modeling time series with simple discrete state spaces. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=2EpjkjzdCAa.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures, 2022.
URL https://arxiv.org/abs/2207.01186.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Pengfei Zhou, Yunlong Liu, Junli Liang, Qi Song, and Xiangyang Li. Crosslinear: Plug-and-play
cross-correlation embedding for time series forecasting with exogenous variables. In Proceedings
of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2, 2025. doi:
10.1145/3711896.3736899.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference on
machine learning, pp. 27268–27286. PMLR, 2022a.

Tian Zhou, Ziqing Ma, xue wang, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, and Rong Jin.
FiLM: Frequency improved legendre memory model for long-term time series forecasting. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
zTQdHSQUQWc.

13

https://openreview.net/forum?id=ugL2D9idAD
https://openreview.net/forum?id=ugL2D9idAD
https://openreview.net/forum?id=87CYNyCGOo
https://openreview.net/forum?id=2EpjkjzdCAa
https://openreview.net/forum?id=2EpjkjzdCAa
https://arxiv.org/abs/2207.01186
https://openreview.net/forum?id=zTQdHSQUQWc
https://openreview.net/forum?id=zTQdHSQUQWc


Published as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 DATASETS DETAILS

We conduct extensive experiments on five widely-used time series datasets for long-term forecasting
and PEMS datasets for short-term forecasting. We report the statistics in Table 5. Detailed descriptions
of these datasets are as follows:

(1) ETT (Electricity Transformer Temperature) dataset (Zhou et al., 2021) encompasses temper-
ature and power load data from electricity transformers in two regions of China, spanning
from 2016 to 2018. This dataset has two granularity levels: ETTh (hourly) and ETTm (15
minutes).

(2) Weather dataset (Wu et al., 2022) captures 21 distinct meteorological indicators in Germany,
meticulously recorded at 10-minute intervals throughout 2020. Key indicators in this dataset
include air temperature, visibility, among others, offering a comprehensive view of the
weather dynamics.

(3) Electricity dataset (Wu et al., 2022) features hourly electricity consumption records in
kilowatt-hours (kWh) for 321 clients. Sourced from the UCL Machine Learning Repository,
this dataset covers the period from 2012 to 2014, providing valuable insights into consumer
electricity usage patterns.

(4) Traffic dataset (Wu et al., 2022) includes data on hourly road occupancy rates, gathered by
862 detectors across the freeways of the San Francisco Bay area. This dataset, covering the
years 2015 to 2016, offers a detailed snapshot of traffic flow and congestion.

(5) Solar-Energy dataset (Lin et al., 2024) contains solar power production data recorded every
10 minutes throughout 2006 from 137 photovoltaic (PV) plants in Alabama.

(6) PEMS dataset (Liu et al., 2022a) comprises four public traffic network datasets (PEMS03,
PEMS04, PEMS07, and PEMS08), constructed from the Caltrans Performance Measurement
System (PeMS) across four districts in California. The data is aggregated into 5-minute
intervals, resulting in 12 data points per hour and 288 data points per day.

Table 5: Dataset detailed descriptions. “Dataset Size” denotes the total number of time points in
(Train, Validation, Test) split respectively. “Prediction Length” denotes the future time points to be
predicted. “Frequency” denotes the sampling interval of time points.

Tasks Dataset Dim Prediction Length Dataset Size Frequency
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min

ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min

Long-term ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 15 min

Forecasting Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min

PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5 min

Short-term PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5 min

Forecasting PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5 min

PEMS08 170 {12, 24, 48, 96} (10690, 3548, 265) 5 min
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A.2 METRIC DETAILS

Regarding metrics, we utilize the mean square error (MSE) and mean absolute error (MAE) for
long-term forecasting. The calculations of these metrics are:

MSE =
1

T

T∑
i=1

(ŷi − yi)
2 , MAE =

1

T

T∑
i=1

|ŷi − yi|

A.3 EXPERIMENT DETAILS

All experiments are implemented in PyTorch (Paszke et al., 2019) and conducted on a single NVIDIA
RTX 3090 24GB GPU. We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate
selected from {1e-3, 3e-3, 5e-4}. The hidden dim for MLP backbone is set to 512. The dominant
high-frequency period length P is set to 24 for all datasets. Table 6 provides detailed hyperparam-
eter settings for each dataset. During data preprocessing, we set the timestamp (t0) of the initial
observation in the entire dataset to 0 as the reference point. In main experiment, for all baseline
methods, we adopted the hyperparameter settings from their respective original publications. For
the ablation experiment of the GTR module in Table 3, the baseline methods utilized their original
hyperparameter settings as specified in their respective publications for an input length of T=96. The
GTR module was then directly integrated, and the entire model was trained end-to-end without any
further hyperparameter optimization.

Table 6: Hyperparameter settings for different datasets. “lr” denotes the learning rate. “Cycle len”
denotes the length of global cycle.

Tasks Dataset Cycle len (L) lr Batchsize Epochs Use revin

ETTm1 96 1e-3 256 30 True
ETTm2 96 1e-3 256 30 True
ETTh1 24 1e-3 256 30 True

Long-term ETTh2 24 1e-3 256 30 True
Forecasting Weather 144 1e-3 64 30 True

Traffic 168 3e-3 16 30 True
Electricity 168 3e-3 32 30 True
Solar-Energy 144 3e-3 64 30 False

PEMS03 288 3e-3 32 30 False
Short-term PEMS04 288 3e-3 32 30 False
Forecasting PEMS07 288 3e-3 32 30 False

PEMS08 288 3e-3 32 30 True

The hyperparameter L, which denotes the global cycle length of the entire dataset, is established via
two primary methods. The first relies on domain-specific knowledge of intrinsic periodic patterns and
the sampling intervals of data, as suggested by prior work (Wu et al., 2022; Lin et al., 2024). The
selected L values are summarized in Table 6.

Alternatively, L can be estimated using computational techniques, most notably the autocorrelation
function (ACF) (Madsen, 2007). The ACF measures the linear dependence between a time series and
a lagged version of itself. For a discrete time series yt of length T with sample mean ȳ, the sample
autocorrelation rk at lag k is formally defined as the ratio of the sample autocovariance γk to the
sample variance γ0:

rk =
γk
γ0

=

∑T−k
t=1 (yt − ȳ)(yt+k − ȳ)∑T

t=1(yt − ȳ)2

In this context, a significant peak in the ACF plot at a specific lag k suggests a strong periodic
component, justifying the selection of L = k.
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B MORE DETAILS OF GTR

Algorithm 1 Overall Pseudocode of GTR

Require: Historical look-back input X ∈ RT×N , starting absolute position t0.
Ensure: Forecasting output Y ∈ RS×N

1: Initialize learnable parameters Q ∈ RL×N ← 0
2: if Instance Normalization is applied then
3: µ, σ ← Mean(X),STD(X)

4: X ← X−µ√
σ2+ϵ

5: end if
6: // GTR part.
7: i ∈ NT

0 ←
[
(t0 mod L) + τ

]
mod L for τ = 0, 1, . . . , T − 1.

8: Q̄ ∈ RT×N ← Linear(Q[i, :])

9: F ∈ R2×T×N ←
[
X
Q̄

]
10: H ∈ RT×N ← Conv2D(F )
11: Z ∈ RT×N ←H +X
12: // Host model part.
13: Z ∈ RD×N ← Linear(Z)
14: Z ∈ RD×N ← Multi-Layer Perceptron(Z) +Z
15: Ȳ ∈ RC×H ← Linear(Dropout(Z))
16: if Instance Normalization is applied then
17: Y ← Ȳ ×

√
σ2 + ϵ+ µ

18: end if

The GTR framework processes temporal sequences through a structured pipeline that integrates cyclic
pattern modeling with residual learning (Algorithm 1). Initially, optional instance normalization
standardizes the input X ∈ RT×N using per-sequence statistics µ and σ. The core innovation lies in
the cyclic indexing mechanism: a learnable embedding matrix Q ∈ RL×N is dynamically indexed
via i =

[
(t0 mod L)+τ

]
mod L for τ = 0, . . . , T−1, generating position-aware queries Q̄ through

a linear transformation. This indexed query is concatenated with the normalized input along the
channel dimension to form F ∈ R2×T×N , which is processed by a 2D convolutional layer to extract
spatiotemporal features H . A residual connection Z = H + X preserves input integrity while
enhancing representational capacity. The resulting features Z are then projected to the host model’s
input dimension, enabling seamless transition to downstream forecasting components.

Critically, GTR is designed as a plug-and-play module that requires no architectural modifications to
the host model. As delineated in the pseudocode, the separation between the GTR part and Host model
part ensures compatibility with any forecasting architecture (e.g., Transformers, RNNs, or MLPs).
The host model receives Z as a direct replacement for its original input, eliminating the need for
re-engineering existing layers or attention mechanisms. During training, all components—including
Q, the convolutional layer, and host model parameters—are jointly optimized end-to-end, allowing
GTR to adaptively refine cyclic representations while the host model leverages these enriched features.
This integration strategy significantly boosts forecasting accuracy by injecting explicit periodicity
awareness without compromising the host model’s inductive biases or increasing inference complexity,
as evidenced by our empirical results across diverse benchmarks.

C MORE EXPERIMENT RESULTS

C.1 FULL FORECASTING RESULTS

The full multivariate forecasting results are provided in this section due to the space limitation of
the main text. We extensively evaluate competitive counterparts on challenging forecasting tasks.
Table 7 contains the detailed results of all prediction lengths of the 12 well-acknowledged forecasting
benchmarks. GTR achieves comprehensive state-of-the-art in real-world forecasting applications.
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Table 7: Full multivariate time series forecasting results for all prediction horizons. The look-back
length T is fixed at 96. The best results are highlighted in bold, while the second-best results are
underlined. Avg means the average results from all four prediction lengths.

Model GTR
(Ours)

RAFT
(2025)

S-Mamba
(2025b)

TQNet
(2025a)

TimeXer
(2024d)

CycleNet
(2024)

SOFTS
(2024)

TimeMixer
(2024c)

iTransformer
(2024b)

PatchTST
(2023)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.367 0.391 0.376 0.401 0.386 0.405 0.371 0.393 0.382 0.403 0.375 0.395 0.381 0.399 0.375 0.400 0.386 0.405 0.414 0.419 0.386 0.400
192 0.420 0.421 0.417 0.424 0.443 0.437 0.428 0.426 0.429 0.435 0.436 0.428 0.435 0.431 0.429 0.421 0.441 0.436 0.460 0.445 0.437 0.432
336 0.476 0.447 0.454 0.441 0.489 0.468 0.476 0.446 0.468 0.448 0.496 0.455 0.480 0.452 0.484 0.458 0.487 0.458 0.501 0.466 0.481 0.459
720 0.493 0.476 0.465 0.465 0.502 0.489 0.487 0.470 0.469 0.461 0.520 0.484 0.499 0.488 0.498 0.482 0.503 0.491 0.500 0.488 0.519 0.516

Avg 0.439 0.434 0.428 0.433 0.455 0.450 0.441 0.434 0.437 0.437 0.457 0.441 0.449 0.443 0.447 0.440 0.454 0.448 0.469 0.455 0.456 0.452

E
T

T
h2

96 0.290 0.342 0.289 0.342 0.296 0.348 0.295 0.343 0.286 0.338 0.298 0.344 0.297 0.347 0.289 0.341 0.297 0.349 0.302 0.348 0.333 0.387
192 0.362 0.389 0.382 0.400 0.376 0.396 0.367 0.393 0.363 0.389 0.372 0.396 0.373 0.394 0.372 0.392 0.380 0.400 0.388 0.400 0.477 0.476
336 0.414 0.429 0.424 0.439 0.424 0.431 0.417 0.427 0.414 0.423 0.431 0.439 0.410 0.426 0.386 0.414 0.428 0.432 0.426 0.433 0.594 0.541
720 0.423 0.442 0.433 0.457 0.426 0.444 0.433 0.446 0.408 0.432 0.450 0.458 0.411 0.433 0.412 0.434 0.427 0.445 0.431 0.446 0.831 0.657

Avg 0.372 0.400 0.382 0.410 0.381 0.405 0.378 0.402 0.368 0.396 0.388 0.409 0.373 0.400 0.365 0.395 0.383 0.407 0.387 0.407 0.559 0.515

E
T

T
m

1

96 0.305 0.349 0.325 0.369 0.333 0.368 0.311 0.353 0.318 0.356 0.319 0.360 0.325 0.361 0.320 0.357 0.334 0.368 0.329 0.367 0.345 0.372
192 0.349 0.375 0.364 0.388 0.376 0.390 0.356 0.378 0.362 0.383 0.360 0.381 0.375 0.389 0.361 0.381 0.377 0.391 0.367 0.385 0.380 0.389
336 0.380 0.398 0.391 0.407 0.408 0.413 0.390 0.401 0.395 0.407 0.389 0.403 0.405 0.412 0.390 0.404 0.426 0.420 0.399 0.410 0.413 0.413
720 0.435 0.436 0.444 0.438 0.475 0.448 0.452 0.440 0.452 0.441 0.447 0.441 0.466 0.447 0.454 0.441 0.491 0.459 0.454 0.439 0.474 0.453

Avg 0.367 0.389 0.381 0.400 0.398 0.405 0.377 0.393 0.382 0.397 0.379 0.396 0.393 0.402 0.381 0.396 0.407 0.410 0.387 0.400 0.403 0.407

E
T

T
m

2

96 0.168 0.249 0.176 0.264 0.179 0.263 0.173 0.256 0.171 0.256 0.163 0.246 0.180 0.261 0.175 0.258 0.180 0.264 0.175 0.259 0.193 0.292
192 0.232 0.292 0.241 0.306 0.250 0.309 0.238 0.298 0.237 0.299 0.229 0.290 0.246 0.306 0.237 0.299 0.250 0.309 0.241 0.302 0.284 0.362
336 0.287 0.330 0.302 0.345 0.312 0.349 0.301 0.340 0.296 0.338 0.284 0.327 0.319 0.352 0.298 0.340 0.311 0.348 0.305 0.343 0.369 0.427
720 0.386 0.390 0.404 0.405 0.411 0.406 0.397 0.396 0.392 0.394 0.389 0.391 0.405 0.401 0.391 0.396 0.412 0.407 0.402 0.400 0.554 0.522

Avg 0.268 0.315 0.281 0.330 0.288 0.332 0.277 0.323 0.274 0.322 0.266 0.314 0.287 0.330 0.275 0.323 0.288 0.332 0.281 0.326 0.350 0.401

E
le

ct
ri

ci
ty 96 0.134 0.229 0.152 0.257 0.139 0.235 0.134 0.229 0.140 0.242 0.136 0.229 0.143 0.233 0.153 0.247 0.148 0.240 0.181 0.270 0.197 0.282

192 0.152 0.245 0.156 0.257 0.159 0.255 0.154 0.247 0.157 0.256 0.152 0.244 0.158 0.248 0.166 0.256 0.162 0.253 0.188 0.274 0.196 0.285
336 0.171 0.264 0.171 0.272 0.176 0.272 0.169 0.264 0.176 0.275 0.170 0.264 0.178 0.269 0.185 0.277 0.178 0.269 0.204 0.293 0.209 0.301
720 0.208 0.300 0.221 0.300 0.204 0.298 0.201 0.294 0.211 0.306 0.212 0.299 0.218 0.305 0.225 0.310 0.225 0.317 0.246 0.324 0.245 0.333

Avg 0.166 0.260 0.175 0.272 0.170 0.265 0.164 0.259 0.171 0.270 0.168 0.259 0.174 0.264 0.182 0.273 0.178 0.270 0.205 0.290 0.212 0.300

So
la

r-
E

ne
rg

y 96 0.176 0.235 0.278 0.278 0.205 0.244 0.173 0.233 0.215 0.295 0.190 0.247 0.200 0.230 0.189 0.259 0.203 0.237 0.234 0.286 0.290 0.378
192 0.193 0.244 0.297 0.297 0.237 0.270 0.199 0.257 0.236 0.301 0.210 0.266 0.229 0.253 0.222 0.283 0.233 0.261 0.267 0.310 0.320 0.398
336 0.201 0.250 0.311 0.311 0.258 0.288 0.211 0.263 0.252 0.307 0.217 0.266 0.243 0.269 0.231 0.292 0.248 0.273 0.290 0.315 0.353 0.415
720 0.205 0.251 0.318 0.325 0.260 0.288 0.209 0.270 0.244 0.305 0.223 0.266 0.245 0.272 0.223 0.285 0.249 0.275 0.289 0.317 0.356 0.413

Avg 0.194 0.245 0.301 0.303 0.240 0.273 0.198 0.256 0.237 0.302 0.210 0.261 0.229 0.256 0.216 0.280 0.233 0.262 0.270 0.307 0.330 0.401

Tr
af

fic

96 0.440 0.263 0.388 0.265 0.382 0.261 0.413 0.261 0.428 0.271 0.458 0.296 0.376 0.251 0.462 0.285 0.395 0.268 0.462 0.290 0.650 0.396
192 0.454 0.274 0.400 0.278 0.396 0.267 0.432 0.271 0.448 0.282 0.457 0.294 0.398 0.261 0.473 0.296 0.417 0.276 0.466 0.290 0.598 0.370
336 0.472 0.282 0.411 0.287 0.417 0.276 0.450 0.277 0.473 0.289 0.470 0.299 0.415 0.269 0.498 0.296 0.433 0.283 0.482 0.300 0.605 0.373
720 0.514 0.301 0.456 0.305 0.460 0.300 0.486 0.295 0.516 0.307 0.502 0.314 0.447 0.287 0.506 0.313 0.467 0.302 0.514 0.320 0.645 0.394

Avg 0.470 0.280 0.414 0.284 0.414 0.276 0.445 0.276 0.466 0.287 0.472 0.301 0.409 0.267 0.485 0.298 0.428 0.282 0.481 0.300 0.625 0.383

W
ea

th
er

96 0.154 0.200 0.185 0.241 0.165 0.210 0.157 0.200 0.157 0.205 0.158 0.203 0.166 0.208 0.163 0.209 0.174 0.214 0.177 0.210 0.196 0.255
192 0.202 0.244 0.237 0.287 0.214 0.252 0.206 0.245 0.204 0.247 0.207 0.247 0.217 0.253 0.208 0.250 0.221 0.254 0.225 0.250 0.237 0.296
336 0.259 0.287 0.290 0.327 0.274 0.297 0.262 0.287 0.261 0.290 0.262 0.289 0.282 0.300 0.251 0.287 0.278 0.296 0.278 0.290 0.283 0.335
720 0.341 0.342 0.367 0.380 0.350 0.345 0.344 0.342 0.340 0.341 0.344 0.344 0.356 0.351 0.339 0.341 0.358 0.349 0.354 0.340 0.345 0.381

Avg 0.239 0.268 0.270 0.309 0.251 0.276 0.242 0.269 0.241 0.271 0.243 0.271 0.255 0.278 0.240 0.272 0.258 0.278 0.259 0.273 0.265 0.317

PE
M

S0
3 12 0.057 0.156 0.071 0.175 0.065 0.169 0.060 0.161 0.070 0.173 0.066 0.172 0.064 0.165 0.091 0.215 0.071 0.174 0.099 0.216 0.122 0.243

24 0.070 0.172 0.099 0.201 0.087 0.196 0.077 0.182 0.092 0.194 0.089 0.201 0.083 0.188 0.115 0.242 0.093 0.201 0.142 0.259 0.201 0.317
48 0.094 0.198 0.153 0.243 0.133 0.243 0.104 0.215 0.129 0.229 0.136 0.247 0.114 0.223 0.173 0.302 0.125 0.236 0.211 0.319 0.333 0.425
96 0.127 0.228 0.253 0.301 0.201 0.305 0.148 0.253 0.157 0.261 0.182 0.282 0.156 0.264 0.238 0.355 0.164 0.275 0.269 0.370 0.457 0.515

Avg 0.087 0.189 0.144 0.230 0.122 0.228 0.097 0.203 0.112 0.214 0.118 0.226 0.104 0.210 0.154 0.278 0.113 0.222 0.180 0.291 0.278 0.375

PE
M

S0
4 12 0.065 0.164 0.077 0.179 0.076 0.180 0.067 0.166 0.074 0.178 0.078 0.186 0.074 0.176 0.103 0.228 0.078 0.183 0.105 0.224 0.148 0.272

24 0.075 0.177 0.091 0.195 0.084 0.193 0.077 0.181 0.087 0.195 0.099 0.212 0.088 0.194 0.122 0.249 0.095 0.205 0.153 0.275 0.224 0.340
48 0.093 0.197 0.111 0.218 0.115 0.224 0.097 0.206 0.110 0.214 0.133 0.248 0.110 0.219 0.167 0.298 0.120 0.233 0.229 0.339 0.355 0.437
96 0.114 0.219 0.137 0.247 0.137 0.248 0.123 0.233 0.148 0.251 0.167 0.281 0.135 0.244 0.231 0.353 0.150 0.262 0.291 0.389 0.452 0.504

Avg 0.087 0.189 0.104 0.210 0.103 0.211 0.091 0.197 0.105 0.209 0.119 0.232 0.102 0.208 0.156 0.282 0.111 0.221 0.195 0.307 0.295 0.388

PE
M

S0
7 12 0.051 0.142 0.062 0.159 0.063 0.159 0.051 0.143 0.057 0.152 0.062 0.162 0.057 0.152 0.086 0.205 0.067 0.165 0.095 0.207 0.115 0.242

24 0.063 0.156 0.078 0.178 0.081 0.183 0.063 0.159 0.079 0.179 0.086 0.192 0.073 0.173 0.111 0.235 0.088 0.190 0.150 0.262 0.210 0.329
48 0.082 0.178 0.102 0.203 0.093 0.192 0.081 0.179 0.099 0.191 0.128 0.234 0.096 0.195 0.161 0.281 0.110 0.215 0.253 0.340 0.398 0.458
96 0.110 0.202 0.135 0.231 0.117 0.217 0.103 0.203 0.107 0.205 0.176 0.268 0.120 0.218 0.215 0.315 0.139 0.245 0.346 0.404 0.594 0.553

Avg 0.076 0.169 0.094 0.193 0.089 0.188 0.075 0.171 0.085 0.182 0.113 0.214 0.086 0.184 0.143 0.259 0.101 0.204 0.211 0.303 0.329 0.396

PE
M

S0
8 12 0.071 0.168 0.078 0.181 0.076 0.178 0.071 0.170 0.075 0.176 0.082 0.185 0.074 0.171 0.089 0.201 0.079 0.182 0.168 0.232 0.154 0.276

24 0.095 0.192 0.102 0.205 0.104 0.209 0.096 0.196 0.102 0.201 0.117 0.226 0.104 0.201 0.166 0.283 0.115 0.219 0.224 0.281 0.248 0.353
48 0.148 0.234 0.148 0.244 0.167 0.228 0.149 0.244 0.158 0.248 0.169 0.268 0.164 0.253 0.270 0.369 0.186 0.235 0.321 0.354 0.440 0.470
96 0.256 0.293 0.277 0.307 0.245 0.280 0.253 0.309 0.366 0.377 0.233 0.306 0.211 0.253 0.486 0.493 0.221 0.267 0.408 0.417 0.674 0.565

Avg 0.142 0.222 0.151 0.234 0.148 0.224 0.142 0.230 0.175 0.250 0.150 0.246 0.138 0.220 0.253 0.336 0.150 0.226 0.280 0.321 0.379 0.416

1st Count 32 36 5 2 1 0 7 2 2 3 4 5 5 8 4 2 0 1 0 0 0 0

C.2 MORE ABLATION RESULTS

To further validate the architectural decisions of the Global Temporal Retriever (GTR) and assess the
robustness of its components, we conducted a comprehensive ablation study focusing on two key
aspects: the impact of Reversible Instance Normalization (RevIN) (Kim et al., 2021) and the design
of the temporal pattern extraction module. The experimental results are summarized in Table 8.

C.2.1 IMPACT OF REVERSIBLE INSTANCE NORMALIZATION

We first investigate the contribution of Reversible Instance Normalization (RevIN) to the model’s
performance. RevIN is designed to mitigate the distribution shift problem in time series forecasting
by normalizing the input and denormalizing the output.

As observed in the left part of Table 8, the standard GTR (w. RevIN) significantly outperforms the
version without RevIN (w/o RevIN) on the majority of datasets, particularly the ETT series and
Weather datasets. For example, on the ETTh2 dataset (prediction horizon 720), removing RevIN
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Table 8: Ablation results of RevIN and Model Variants. The best results in each comparison group
are highlighted in bold.

Model GTR
w. RevIN

GTR
w/o. RevIN

Original
2D Conv.

Variant 1
Concat

Variant 2
Inception

Variant 3
1D Conv.

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.367 0.391 0.380 0.402 0.367 0.391 0.369 0.393 0.371 0.395 0.369 0.392
192 0.420 0.421 0.433 0.437 0.420 0.421 0.423 0.423 0.423 0.422 0.427 0.423
336 0.476 0.447 0.480 0.464 0.476 0.447 0.472 0.448 0.481 0.451 0.479 0.448
720 0.493 0.476 0.540 0.529 0.493 0.476 0.490 0.473 0.507 0.476 0.513 0.487

E
T

T
h2

96 0.290 0.342 0.315 0.363 0.290 0.342 0.293 0.344 0.291 0.341 0.297 0.346
192 0.362 0.389 0.422 0.430 0.362 0.389 0.375 0.394 0.369 0.391 0.372 0.393
336 0.414 0.429 0.567 0.518 0.414 0.429 0.416 0.428 0.422 0.433 0.420 0.431
720 0.423 0.442 0.872 0.649 0.423 0.442 0.452 0.455 0.424 0.443 0.424 0.442

E
T

T
m

1 96 0.305 0.349 0.315 0.358 0.305 0.349 0.306 0.351 0.313 0.358 0.307 0.351
192 0.349 0.375 0.356 0.389 0.349 0.375 0.350 0.376 0.352 0.377 0.355 0.378
336 0.380 0.398 0.378 0.403 0.380 0.398 0.377 0.397 0.379 0.398 0.382 0.398
720 0.435 0.436 0.442 0.451 0.435 0.436 0.434 0.435 0.442 0.436 0.433 0.434

E
T

T
m

2 96 0.168 0.249 0.190 0.285 0.168 0.249 0.169 0.250 0.167 0.251 0.168 0.251
192 0.232 0.292 0.285 0.355 0.232 0.292 0.237 0.295 0.235 0.295 0.233 0.293
336 0.287 0.330 0.526 0.474 0.287 0.330 0.290 0.333 0.291 0.332 0.289 0.333
720 0.386 0.390 0.798 0.610 0.386 0.390 0.390 0.392 0.390 0.391 0.389 0.392

E
le

ct
ri

ci
ty 96 0.134 0.229 0.132 0.230 0.134 0.229 0.136 0.228 0.135 0.229 0.135 0.229

192 0.152 0.245 0.151 0.248 0.152 0.245 0.154 0.247 0.153 0.246 0.154 0.248
336 0.171 0.264 0.167 0.267 0.171 0.264 0.172 0.263 0.169 0.264 0.170 0.264
720 0.208 0.300 0.208 0.305 0.208 0.300 0.209 0.300 0.207 0.298 0.209 0.300

So
la

r 96 0.181 0.237 0.176 0.235 0.176 0.235 0.182 0.234 0.180 0.237 0.181 0.237
192 0.196 0.245 0.193 0.244 0.193 0.244 0.192 0.245 0.195 0.243 0.196 0.245
336 0.210 0.259 0.201 0.250 0.201 0.250 0.207 0.256 0.205 0.252 0.210 0.259
720 0.232 0.277 0.205 0.251 0.205 0.251 0.212 0.266 0.212 0.255 0.232 0.277

W
ea

th
er 96 0.154 0.200 0.157 0.220 0.154 0.200 0.156 0.201 0.156 0.201 0.156 0.201

192 0.202 0.244 0.208 0.269 0.202 0.244 0.203 0.245 0.203 0.245 0.205 0.246
336 0.259 0.287 0.263 0.318 0.259 0.287 0.262 0.288 0.261 0.288 0.261 0.288
720 0.341 0.342 0.357 0.382 0.341 0.342 0.343 0.343 0.343 0.342 0.340 0.341

1st Count 20 23 9 4 19 18 4 6 3 3 2 2

results in a catastrophic increase in MSE from 0.423 to 0.872. This confirms that RevIN is crucial for
handling data with significant non-stationarity and distribution shifts.

Notably, the Electricity and Solar datasets exhibit a deviation from this trend, where the exclusion
of RevIN yields superior performance. This phenomenon can be attributed to the prevalence of
continuous zero-value segments (e.g., zero power generation at night), which may bias the mean
statistics estimated by RevIN. Despite these specific instances, we retain RevIN as the default
configuration to ensure general robustness across diverse forecasting scenarios.

C.2.2 ANALYSIS OF EXTRACTION VARIANTS

The core of the GTR module is the extraction of temporal patterns by fusing the local observation
xn ∈ RT and the retrieved global context qn ∈ RT . Our proposed method utilizes a lightweight 2D
convolution. To verify the optimality of this design, we compare it against three distinct variants:

Variant 1 (Point-wise Fusion): This variant assesses whether temporal convolution is necessary.
We concatenate xn and qn along the feature dimension and apply a linear projection point-wise at
each time step. This removes the receptive field, relying solely on the immediate alignment of local
and global values:

hn = Linear(Concat(xn,qn)) (6)

Variant 2 (Inception Module): To test whether multi-scale temporal patterns enhance the effec-
tiveness of the feature fusion process, we replace the original single-kernel convolution with an
Inception block (Szegedy et al., 2015). The Inception operator applies several parallel convolutions
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with different kernel widths and aggregates their outputs through a 1× 1 fusion layer. Formally, we
denote the entire multi-branch operation as:

hn = Inception(Fn),

where Fn ∈ R2×T is the stacked local and global features (same as in Equation 3), and Inception(·)
represents the multi-scale convolutional extraction followed by channel-wise fusion.

Variant 3 (1D Convolution): This variant treats the local observation and global context as two
separate channels of a 1D sequence. It applies a 1D convolution over the time dimension:

hn = Conv1din=2, out=1(Fn). (7)

The right side of Table 8 presents the comparison among these variants. The results demonstrate that
our Original 2D Convolution strategy yields the most consistent and superior performance, achieving
the best MSE in 19 out of 40 cases and the best MAE in 18 cases.

• Necessity of Convolution: The inferior performance of Variant 1 (Concat) compared to the
Original model (e.g., ETTh2 horizon 720 MSE 0.423 vs. 0.452) highlights the importance
of the receptive field provided by convolution operations to capture temporal dependencies.

• Efficiency vs. Complexity: Surprisingly, the multi-scale Variant 2 (Inception) does not
outperform the simpler single-kernel 2D convolution. While theoretically more powerful,
the increased parameter count may lead to overfitting on shorter sequences, or it suggests
that the dominant periodicity is well-captured by a single, optimally sized kernel.

• Structure Bias: The Original 2D Conv outperforms Variant 3 (1D Conv). We hypothesize
that the 2D convolution kernel enforces a stronger structural prior for aligning the local and
global rows compared to treating them as abstract channels, thereby learning a more robust
fusion of the retrieved global information.

In conclusion, the ablation studies confirm that the GTR module with 2D convolution and RevIN
represents the most effective and robust configuration for multivariate time series forecasting.

C.2.3 CAPABILITY WITH INTER-CHANNEL MODELING

Despite its strong performance across various datasets, the channel-independent architecture of
GTR presents a challenge in domains where data exhibits strong spatio-temporal dependencies. For
instance, the Traffic dataset exhibits significant inter-variable dependencies, as road network flows are
highly correlated. Models that effectively capture these relationships typically outperform channel-
independent approaches on such datasets (Liu et al., 2024b; Wang et al., 2024d). To demonstrate
GTR’s adaptability and its ability to integrate with inter-channel modeling, we introduce a novel
Global Token Aggregation (GTA) module.

The GTA (Global Token Aggregation) module is designed to distill the most salient inter-channel
relationships into a single, comprehensive global representation. This is achieved by first transforming
the input embedding tensor Q̄ ∈ RT×N — where T is the sequence length and N is the number
of channels — into a global token g. This global token is computed via channel-wise weighted
aggregation, where the weights are derived from a softmax over the channel dimension. The resulting
global context is then broadcast and fused back with the original channels to guide each channel’s
prediction with unified global awareness.

Formally, given the input global representation Q̄ ∈ RT×N , the process proceeds as follows:

1. Channel Aggregation: Compute channel-wise attention weights using softmax along
the channel dimension (dimension 1, assuming 0-indexed axes). Then, aggregate across
channels to obtain a global token g ∈ RT×1:

weight = Softmax(Q̄) ∈ RT×N

g =

N∑
n=1

Q̄:,n · weight:,n ∈ RT×1

Here, Q̄:,n denotes the n-th channel across all time steps, and the weighted sum produces a
single global token per time step.
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2. Re-broadcast and Fusion: The global token g is broadcast across all N channels to form a
global guidance tensor, which is then fused (e.g., via addition or concatenation — though
your formula suggests replacement) with the original representation:

Qfused = g · 11×N ∈ RT×N

where 11×N is a row vector of ones, and broadcasting replicates g across the channel
dimension.

By injecting this globally aggregated token into each channel, the GTA module enables each channel’s
prediction to be informed by the collective dynamics of all channels, thereby capturing inter-variable
dependencies in a parameter-efficient manner.

The integration of the GTA module significantly boosts GTR’s performance on the challenging traffic
dataset, as shown in Table 9. The aggregated token provides the necessary inter-channel context,
resulting in a substantial reduction in both Mean Squared Error (MSE) across all prediction horizons.

Table 9: Performance Comparison on the Traffic Dataset.

Setup GTR + GTA module Improvement (%)↑
T S MSE MAE MSE MAE MSE ↓ MAE ↓
96 96 0.440 0.264 0.399 0.265 9.3% -0.4%
96 192 0.459 0.275 0.418 0.273 8.8% 0.7%
96 336 0.473 0.283 0.431 0.279 8.8% 1.4%
96 720 0.515 0.302 0.462 0.298 10.4% 1.3%

This remarkable improvement confirms that while GTR is designed as a channel-independent model,
its core architecture is highly adaptable. When augmented with a mechanism to incorporate inter-
variable dependencies, it can achieve state-of-the-art performance on challenging datasets where such
relationships are critical.

C.3 ERROR BAR ANALYSIS

To further evaluate the robustness of our method, we conducted a comprehensive error bar analysis by
evaluating GTR across multiple random seeds on diverse benchmark datasets. For each dataset, we
report the standard deviation of MSE and MAE over 5 independent runs with different initialization
seeds. As shown in Table 10 and Figure 5, GTR exhibits remarkably low variance (mostly below
0.001) across all datasets and forecasting horizons. This strongly indicates the robustness of GTR.

2024 2025 2026 2027
Random Seed

0.14

0.16

0.18
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ECL PEMS08 Weather Solar

2024 2025 2026 2027
Random Seed

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
AE

ECL PEMS08 Weather Solar

Figure 5: Performance of GTR under different random seeds on several datasets. The look-back
length T and forecasting horizon S are fixed at 96.
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Table 10: Full results of different models with the look-back length T=96. The reported results
with standard deviation of GTR are averaged from 5 runs (with different random seeds of {2025,
2026, 2027, 2028, 2029}). The best results are highlighted in bold, while the second-best results are
underlined.

Model TimeMixer
(2024c)

iTransformer
(2024b)

CycleNet
(2024)

TimeXer
(2024d)

GTR
(Ours)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.375 0.400 0.386 0.405 0.375 0.395 0.382 0.403 0.367 ± 0.002 0.391 ± 0.001
192 0.429 0.421 0.441 0.436 0.436 0.428 0.429 0.435 0.420 ± 0.002 0.421 ± 0.001
336 0.484 0.458 0.487 0.458 0.496 0.455 0.468 0.448 0.476 ± 0.006 0.447 ± 0.001
720 0.498 0.482 0.503 0.491 0.520 0.484 0.469 0.461 0.493 ± 0.021 0.476 ± 0.011

Avg 0.447 0.440 0.454 0.448 0.457 0.441 0.437 0.437 0.439 ± 0.007 0.434 ± 0.003

E
T

T
h2

96 0.289 0.341 0.297 0.349 0.298 0.344 0.286 0.338 0.290 ± 0.002 0.342 ± 0.001
192 0.372 0.392 0.380 0.400 0.372 0.396 0.363 0.389 0.362 ± 0.002 0.389 ± 0.001
336 0.386 0.414 0.428 0.432 0.431 0.439 0.414 0.423 0.414 ± 0.003 0.429 ± 0.002
720 0.412 0.434 0.427 0.445 0.450 0.458 0.408 0.432 0.423 ± 0.008 0.442 ± 0.004

Avg 0.365 0.395 0.383 0.407 0.388 0.409 0.368 0.396 0.372 ± 0.003 0.400 ± 0.002

E
T

T
m

1

96 0.320 0.357 0.334 0.368 0.319 0.360 0.318 0.356 0.305 ± 0.001 0.349 ± 0.001
192 0.361 0.381 0.377 0.391 0.360 0.381 0.362 0.383 0.349 ± 0.001 0.375 ± 0.001
336 0.390 0.404 0.426 0.420 0.389 0.403 0.395 0.407 0.380 ± 0.001 0.398 ± 0.001
720 0.454 0.441 0.491 0.459 0.447 0.441 0.452 0.441 0.435 ± 0.001 0.436 ± 0.001

Avg 0.381 0.396 0.407 0.410 0.379 0.396 0.382 0.397 0.367 ± 0.001 0.389 ± 0.001

E
T

T
m

2

96 0.175 0.258 0.180 0.264 0.163 0.246 0.171 0.256 0.168 ± 0.001 0.249 ± 0.001
192 0.237 0.299 0.250 0.309 0.229 0.290 0.237 0.299 0.232 ± 0.001 0.292 ± 0.001
336 0.298 0.340 0.311 0.348 0.284 0.327 0.296 0.338 0.287 ± 0.001 0.330 ± 0.001
720 0.391 0.396 0.412 0.407 0.389 0.391 0.392 0.394 0.386 ± 0.001 0.390 ± 0.001

Avg 0.275 0.323 0.288 0.332 0.266 0.314 0.274 0.322 0.268 ± 0.001 0.315 ± 0.001

E
le

ct
ri

ci
ty 96 0.153 0.247 0.148 0.240 0.136 0.229 0.140 0.242 0.134 ± 0.001 0.229 ± 0.001

192 0.166 0.256 0.162 0.253 0.152 0.244 0.157 0.256 0.152 ± 0.001 0.245 ± 0.001
336 0.185 0.277 0.178 0.269 0.170 0.264 0.176 0.275 0.171 ± 0.001 0.264 ± 0.001
720 0.225 0.310 0.225 0.317 0.212 0.299 0.211 0.306 0.208 ± 0.001 0.300 ± 0.001

Avg 0.182 0.273 0.178 0.270 0.168 0.259 0.171 0.270 0.166 ± 0.001 0.260 ± 0.001

So
la

r-
E

ne
rg

y 96 0.189 0.259 0.203 0.237 0.190 0.247 0.215 0.295 0.176 ± 0.004 0.235 ± 0.008
192 0.222 0.283 0.233 0.261 0.210 0.266 0.236 0.301 0.193 ± 0.004 0.244 ± 0.007
336 0.231 0.292 0.248 0.273 0.217 0.266 0.252 0.307 0.201 ± 0.004 0.250 ± 0.008
720 0.223 0.285 0.249 0.275 0.223 0.266 0.244 0.305 0.205 ± 0.004 0.251 ± 0.003

Avg 0.216 0.280 0.233 0.262 0.210 0.261 0.237 0.302 0.194 ± 0.004 0.245 ± 0.006

W
ea

th
er

96 0.163 0.209 0.174 0.214 0.158 0.203 0.157 0.205 0.154 ± 0.001 0.200 ± 0.001
192 0.208 0.250 0.221 0.254 0.207 0.247 0.204 0.247 0.202 ± 0.001 0.244 ± 0.001
336 0.251 0.287 0.278 0.296 0.262 0.289 0.261 0.290 0.259 ± 0.001 0.287 ± 0.001
720 0.339 0.341 0.358 0.349 0.344 0.344 0.340 0.341 0.341 ± 0.001 0.342 ± 0.001

Avg 0.240 0.272 0.258 0.278 0.243 0.271 0.241 0.271 0.239 ± 0.001 0.268 ± 0.001

C.4 FULL RESULTS WITH LONGER LOOK-BACK WINDOW

With the recent development of model light weighting techniques, particularly the adoption of
channel-independent strategies (first applied in DLinear (Zeng et al., 2023) and PatchTST (Nie
et al., 2023)), more models have started to experiment with longer look-back windows in pursuit of
higher predictive accuracy. For instance, DLinear and PatchTST default to using look-back windows
of T = 336, while RAFT (Han et al., 2025) and SparseTSF (Lin et al., 2025b) default to using
T = 720. To explore GTR’s performance with longer look-back windows, we compared GTR with
these advanced models using their respective default, longer look-back windows in Table 11.

It can be seen that GTR maintains a significant performance advantage even when compared against
state-of-the-art baselines utilizing extended historical contexts. Specifically, GTR achieves the best
MSE performance in 19 out of 32 metrics under the T = 336 setting and 15 out of 32 metrics under
the T = 720 setting, consistently surpassing strong competitors like PatchTST, SparseTSF, and
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Table 11: Full results of different models with longer look-back lengths T ∈ {336, 720}. The best
results are highlighted in bold and the second best are underlined.

Lookback T = 336 T = 720

Model DLinear
(2023)

PatchTST
(2023)

CycleNet
(2024)

GTR
(Ours)

RAFT
(2025)

SparseTSF
(2025b)

CycleNet
(2024)

GTR
(Ours)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.374 0.398 0.385 0.405 0.374 0.396 0.369 0.395 0.367 0.397 0.362 0.388 0.379 0.403 0.368 0.400
192 0.430 0.440 0.414 0.421 0.406 0.415 0.409 0.420 0.411 0.427 0.403 0.411 0.416 0.425 0.409 0.424
336 0.442 0.445 0.440 0.440 0.431 0.430 0.432 0.434 0.436 0.442 0.434 0.428 0.447 0.445 0.443 0.449
720 0.497 0.507 0.456 0.470 0.450 0.464 0.451 0.463 0.467 0.478 0.426 0.447 0.477 0.483 0.464 0.476

Avg 0.436 0.448 0.424 0.434 0.415 0.426 0.415 0.428 0.420 0.436 0.406 0.419 0.430 0.439 0.421 0.437

E
T

T
h2

96 0.281 0.347 0.275 0.337 0.279 0.341 0.274 0.341 0.276 0.344 0.294 0.346 0.271 0.337 0.275 0.343
192 0.367 0.404 0.338 0.379 0.342 0.385 0.340 0.385 0.347 0.393 0.339 0.377 0.332 0.380 0.340 0.388
336 0.438 0.454 0.365 0.398 0.371 0.413 0.363 0.409 0.376 0.425 0.359 0.397 0.362 0.408 0.377 0.416
720 0.598 0.549 0.391 0.429 0.426 0.451 0.405 0.439 0.436 0.473 0.383 0.424 0.415 0.449 0.406 0.442

Avg 0.421 0.439 0.342 0.386 0.355 0.398 0.345 0.393 0.359 0.409 0.344 0.386 0.345 0.394 0.349 0.397

E
T

T
m

1

96 0.307 0.350 0.291 0.343 0.299 0.348 0.283 0.337 0.302 0.349 0.312 0.354 0.307 0.353 0.290 0.345
192 0.340 0.373 0.334 0.370 0.334 0.367 0.323 0.365 0.329 0.367 0.347 0.376 0.337 0.371 0.328 0.371
336 0.377 0.397 0.367 0.392 0.368 0.386 0.355 0.384 0.355 0.383 0.367 0.386 0.364 0.387 0.357 0.388
720 0.433 0.433 0.422 0.426 0.417 0.414 0.420 0.422 0.406 0.413 0.419 0.413 0.410 0.411 0.417 0.420

Avg 0.364 0.388 0.354 0.383 0.355 0.379 0.345 0.377 0.348 0.378 0.361 0.382 0.355 0.381 0.348 0.381

E
T

T
m

2

96 0.165 0.257 0.164 0.254 0.159 0.247 0.161 0.252 0.164 0.256 0.163 0.252 0.159 0.249 0.169 0.258
192 0.227 0.307 0.221 0.293 0.214 0.286 0.221 0.292 0.219 0.296 0.217 0.290 0.214 0.289 0.220 0.295
336 0.304 0.362 0.276 0.328 0.269 0.322 0.278 0.326 0.275 0.336 0.270 0.327 0.268 0.326 0.270 0.328
720 0.431 0.441 0.366 0.383 0.363 0.382 0.359 0.388 0.359 0.392 0.352 0.379 0.353 0.384 0.355 0.389

Avg 0.282 0.342 0.257 0.315 0.251 0.309 0.254 0.314 0.254 0.320 0.251 0.312 0.249 0.312 0.253 0.317

E
le

ct
ri

ci
ty 96 0.140 0.237 0.131 0.225 0.128 0.223 0.127 0.222 0.133 0.232 0.138 0.233 0.128 0.223 0.128 0.226

192 0.153 0.250 0.148 0.240 0.144 0.237 0.147 0.242 0.149 0.247 0.151 0.244 0.143 0.237 0.146 0.244
336 0.169 0.267 0.165 0.259 0.160 0.254 0.165 0.260 0.161 0.259 0.166 0.260 0.159 0.254 0.162 0.261
720 0.203 0.299 0.202 0.291 0.198 0.287 0.199 0.292 0.197 0.297 0.205 0.293 0.197 0.287 0.197 0.295

Avg 0.166 0.263 0.162 0.254 0.158 0.250 0.159 0.254 0.160 0.259 0.165 0.258 0.157 0.250 0.158 0.256

So
la

r-
E

ne
rg

y 96 0.222 0.292 0.190 0.278 0.200 0.250 0.180 0.237 0.192 0.251 0.195 0.243 0.194 0.255 0.178 0.242
192 0.249 0.313 0.206 0.252 0.221 0.261 0.196 0.254 0.247 0.323 0.215 0.254 0.205 0.251 0.198 0.260
336 0.268 0.327 0.217 0.254 0.236 0.272 0.201 0.257 0.240 0.300 0.232 0.262 0.218 0.257 0.202 0.264
720 0.271 0.326 0.219 0.255 0.245 0.277 0.205 0.258 0.246 0.311 0.237 0.263 0.239 0.278 0.209 0.269

Avg 0.253 0.315 0.208 0.260 0.226 0.265 0.196 0.252 0.231 0.296 0.220 0.256 0.214 0.260 0.197 0.259

W
ea

th
er

96 0.174 0.235 0.155 0.204 0.167 0.221 0.147 0.199 0.165 0.222 0.169 0.223 0.164 0.220 0.146 0.200
192 0.219 0.281 0.195 0.242 0.212 0.258 0.192 0.240 0.211 0.264 0.214 0.262 0.209 0.258 0.192 0.244
336 0.264 0.317 0.249 0.283 0.260 0.293 0.243 0.281 0.260 0.302 0.257 0.293 0.255 0.292 0.243 0.283
720 0.324 0.363 0.321 0.334 0.328 0.339 0.324 0.337 0.327 0.355 0.321 0.340 0.320 0.338 0.317 0.336
Avg 0.245 0.299 0.230 0.266 0.242 0.278 0.227 0.264 0.241 0.286 0.240 0.280 0.237 0.277 0.225 0.266

1st Count 0 0 4 9 13 13 19 13 5 3 9 13 11 13 15 7

RAFT. Notably, on the Solar-Energy dataset with T = 336, GTR reduces MSE by 13.2% compared
to the CycleNet, and on Weather with T = 720, it outperforms RAFT by 6.7% in MSE.

Crucially, although the architectural design of GTR primarily targets scenarios with restricted
historical contexts (Figure 3), it exhibits remarkable adaptability when scaled to extended horizons.
As evidenced by the results, GTR does not merely function as a remedial solution for short inputs but
continues to deliver competitive, state-of-the-art performance under long look-back settings. This
confirms that GTR’s mechanism for explicit global cycle retrieval is robust and effective.

C.5 COMPARISON WITH TIMESTAMP-BASED APPROACHES

Distinct from methods that learn periodicity directly from historical data, another prevalent paradigm
in long-term forecasting leverages explicit timestamp information (e.g., time-of-day, day-of-week)
to model global temporal dependencies (Wang et al., 2024a; Yang et al., 2025a). These approaches
typically operate as modular plugins, designed to augment existing backbones by injecting global
guidance derived from calendar features. Specifically, they model timestamps to capture global
contexts and adaptively fuse these signals with local observations.

To comprehensively evaluate the effectiveness of our proposed GTR module, we conducted a
comparative study using GLAFF (Wang et al., 2024a) as a representative baseline. We integrated
both our proposed GTR module and the GLAFF module into two distinct backbones, DLinear (Zeng
et al., 2023) and iTransformer (Liu et al., 2024b), and evaluated their performance on the Electricity
and Weather datasets. The detailed results are presented in Table 12.
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Table 12: Ablation study of GTR and GLAFF modules with the look-back length T = 96. All
results in this table are reproduced using the official GLAFF implementation. We compare the
performance (MSE, MAE) and efficiency (Training Time, Memory Cost) across four prediction
horizons (T ∈ {96, 192, 336, 720}) on Electricity and Weather datasets. The best performance in
each setting is highlighted in bold.

Model Horizon Modules Electricity Weather
GTR GLAFF MSE MAE Time(s) Mem(MB) MSE MAE Time(s) Mem(MB)

D
L

in
ea

r

96 ✓ × 0.2073 0.2948 52.04 0.31 0.1974 0.2572 26.08 0.12
× ✓ 0.1653 0.2602 23.85 4.85 0.2070 0.2653 38.89 4.36

192 ✓ × 0.2042 0.2939 46.64 0.38 0.2410 0.2963 30.78 0.19
× ✓ 0.1851 0.2747 32.47 4.92 0.2530 0.3069 39.17 4.43

336 ✓ × 0.2197 0.3117 36.72 0.49 0.2871 0.3347 15.94 0.30
× ✓ 0.2179 0.3053 22.35 5.03 0.2955 0.3397 37.35 4.54

720 ✓ × 0.2569 0.3448 19.09 0.77 0.3554 0.3887 8.68 0.58
× ✓ 0.2904 0.3553 19.13 5.31 0.4542 0.4180 27.99 4.82

iT
ra

ns
fo

rm
er

96 ✓ × 0.1476 0.2411 86.33 48.72 0.1731 0.2168 61.77 48.53
× ✓ 0.1504 0.2434 45.34 53.26 0.2028 0.2410 78.12 52.77

192 ✓ × 0.1680 0.2610 74.71 48.91 0.2204 0.2615 55.42 48.72
× ✓ 0.1922 0.2685 36.50 53.45 0.2476 0.2797 54.04 52.96

336 ✓ × 0.1838 0.2781 36.83 49.19 0.2829 0.3061 29.95 49.00
× ✓ 0.2343 0.2968 34.68 53.73 0.3398 0.3322 51.46 53.24

720 ✓ × 0.2178 0.3047 34.97 49.95 0.3711 0.3614 27.25 49.75
× ✓ 0.5529 0.4208 103.07 54.00 0.6578 0.4316 51.02 54.00

Prediction Accuracy and Robustness. As shown in Table 12, the GTR module demonstrates superior
performance and robustness compared to the timestamp-based GLAFF, particularly in long-term
forecasting scenarios. While timestamp-based methods can capture explicit cyclic patterns in shorter
horizons (e.g., DLinear on Electricity at T = 96), they struggle to generalize to longer prediction
windows due to the potential overfitting of rigid calendar features. Notably, at the prediction horizon
of T = 720, the performance of GLAFF degrades significantly on both datasets (e.g., on iTransformer,
the MSE on Electricity spikes to 0.5529). In contrast, GTR maintains stable and accurate predictions
(MSE 0.2178), indicating that learning periodicity directly from time-series data—rather than relying
on external timestamps—yields better robustness for long-term modeling.

Computational Efficiency. Beyond prediction accuracy, GTR exhibits a significant advantage in
computational efficiency. Timestamp-based approaches like GLAFF typically require additional em-
bedding layers and complex attention or mixing mechanisms to process high-dimensional timestamp
features, leading to increased memory usage and training time. GTR incurs negligible memory over-
head compared to the backbone models (e.g., ∼0.3 MB vs. ∼4.8 MB on DLinear). This lightweight
characteristic makes GTR a more practical solution for real-world deployments where computational
resources are constrained, achieving a better trade-off between performance and cost.

C.6 VISUALIZATION RESULTS

To provide a clear and comprehensive comparison among different models, we present supplementary
prediction visualizations on the PEMS datasets in the accompanying figures (6; 7; 8; 9;). Among all
evaluated models, GTR consistently demonstrates the highest precision in capturing future traffic
series variations and exhibits superior overall forecasting performance.

Furthermore, we conduct a direct visual comparison between GTR and its underlying MLP backbone
model. The results reveal a striking improvement: GTR significantly enhances the fitting accuracy
of the original MLP, effectively mitigating its tendency to oversmooth temporal dynamics and miss
subtle yet critical traffic patterns. Notably, across multiple visualization scenarios, the input sequences
exhibit little to no pronounced periodicity—yet GTR is still able to accurately capture and forecast
the underlying future trends. This highlights GTR’s robustness in modeling complex, non-stationary
traffic dynamics even in the absence of strong periodic patterns, further underscoring the effectiveness
of its architectural design in learning global temporal representations.
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GTR (Ours) MLP CycleNet

iTransformer TimeMixer DLinear

Figure 6: Visualization of input-96-predict-96 results on the PEMS03 dataset.

GTR (Ours) MLP CycleNet

iTransformer TimeMixer DLinear

Figure 7: Visualization of input-96-predict-96 results on the PEMS04 dataset.
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GTR (Ours) MLP CycleNet

iTransformer TimeMixer DLinear

Figure 8: Visualization of input-96-predict-96 results on the PEMS07 dataset.

GTR (Ours) MLP CycleNet

iTransformer TimeMixer DLinear

Figure 9: Visualization of input-96-predict-96 results on the PEMS08 dataset.
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D THEORETICAL ANALYSIS

In this section, we provide a rigorous theoretical analysis of the GTR module. We demonstrate
that GTR reduces the estimation error of multivariate correlations by leveraging global temporal
information, using a Bayesian estimation framework with strict mathematical derivation.

D.1 PROBLEM SETUP AND ASSUMPTIONS

Consider two variables n and m in a multivariate time series. Let Yn and Ym represent the ground-
truth periodic patterns of these variables, which are zero-mean random variables with variance σ2

Y
and correlation ρ = E[YnYm]/σ2

Y .

We make the following assumptions:

1. Observation Error: The observed segment xn = Yn+ηn, where ηn ∼ N (0, σ2
η) represents

the error term caused by non-stationary phenomena.
2. Global Embedding Error: The global temporal embedding Qn = Yn + εn, where

εn ∼ N (0, σ2
ε) is independent embedding error.

3. Independence: All error terms ηn, ηm, εn, εm are mutually independent.

D.2 GTR AS A BAYESIAN ESTIMATOR

During the inference stage of GTR, the operation of combining observed segments xn and global
embeddings Qn is a pure linear combination:

zn =
σ2
εxn + σ2

ηQn

σ2
η + σ2

ε

(8)

This formulation corresponds to the posterior mean estimator in a Bayesian framework, where:

• xn represents the likelihood of observing Yn

• Qn represents the prior information about Yn

• The weights σ2
ε and σ2

η are proportional to the inverse of the noise variances

D.3 THEORETICAL RESULT

Theorem D.1. Given the above assumptions, if σ2
ε < σ2

η , then:

|corr(zn, zm)− ρ| < |corr(xn, xm)− ρ| (9)

where corr(xn, xm) is the correlation of raw observations, and corr(zn, zm) is the correlation after
GTR module processing.

Proof. First, we compute the correlation of raw observations:

E[xnxm] = E[(Yn + ηn)(Ym + ηm)]

= E[YnYm] + E[Ynηm] + E[ηnYm] + E[ηnηm]

= ρσ2
Y + 0 + 0 + σ2

η

= ρσ2
Y + σ2

η

Var(xn) = E[x2
n]− (E[xn])

2

= E[(Yn + ηn)
2]

= E[Y 2
n ] + E[η2n]

= σ2
Y + σ2

η
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Therefore:

corr(xn, xm) =
E[xnxm]√

Var(xn)Var(xm)
=

ρσ2
Y + σ2

η

σ2
Y + σ2

η

(10)

The estimation error for raw observations is:

|corr(xn, xm)− ρ| =

∣∣∣∣∣ρσ2
Y + σ2

η

σ2
Y + σ2

η

− ρ

∣∣∣∣∣
=

∣∣∣∣∣ρσ2
Y + σ2

η − ρσ2
Y − ρσ2

η

σ2
Y + σ2

η

∣∣∣∣∣
=

∣∣∣∣∣σ2
η(1− ρ)

σ2
Y + σ2

η

∣∣∣∣∣
Next, we compute the correlation after GTR processing. First, the expectation:

E[znzm] = E

[
(σ2

εxn + σ2
ηQn)(σ

2
εxm + σ2

ηQm)

(σ2
η + σ2

ε)
2

]

=
1

(σ2
η + σ2

ε)
2

[
σ4
εE[xnxm] + σ2

εσ
2
ηE[xnQm] + σ2

ησ
2
εE[Qnxm] + σ4

ηE[QnQm]
]

Calculate each term:

E[xnxm] = ρσ2
Y + σ2

η

E[xnQm] = E[(Yn + ηn)(Ym + εm)] = ρσ2
Y

E[Qnxm] = E[(Yn + εn)(Ym + ηm)] = ρσ2
Y

E[QnQm] = E[(Yn + εn)(Ym + εm)] = ρσ2
Y + σ2

ε

Substituting these values:

E[znzm] =
1

(σ2
η + σ2

ε)
2

[
σ4
ε(ρσ

2
Y + σ2

η) + σ2
εσ

2
η(ρσ

2
Y ) + σ2

ησ
2
ε(ρσ

2
Y ) + σ4

η(ρσ
2
Y + σ2

ε)
]

=
1

(σ2
η + σ2

ε)
2

[
ρσ2

Y (σ
4
ε + 2σ2

εσ
2
η + σ4

η) + σ4
εσ

2
η + σ4

ησ
2
ε

]
=

1

(σ2
η + σ2

ε)
2

[
ρσ2

Y (σ
2
η + σ2

ε)
2 + σ2

εσ
2
η(σ

2
η + σ2

ε)
]

= ρσ2
Y +

σ2
εσ

2
η

σ2
η + σ2

ε

Now calculate the variance:

Var(zn) = E[z2n]− (E[zn])2

= E

(σ2
εxn + σ2

ηQn

σ2
η + σ2

ε

)2


=
1

(σ2
η + σ2

ε)
2

[
σ4
εE[x2

n] + 2σ2
εσ

2
ηE[xnQn] + σ4

ηE[Q2
n]
]

Calculate each term:

E[x2
n] = σ2

Y + σ2
η

E[Q2
n] = σ2

Y + σ2
ε

E[xnQn] = E[(Yn + ηn)(Yn + εn)] = σ2
Y
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Substituting these values:

Var(zn) =
1

(σ2
η + σ2

ε)
2

[
σ4
ε(σ

2
Y + σ2

η) + 2σ2
εσ

2
ησ

2
Y + σ4

η(σ
2
Y + σ2

ε)
]

=
1

(σ2
η + σ2

ε)
2

[
σ2
Y (σ

4
ε + 2σ2

εσ
2
η + σ4

η) + σ4
εσ

2
η + σ4

ησ
2
ε

]
=

1

(σ2
η + σ2

ε)
2

[
σ2
Y (σ

2
η + σ2

ε)
2 + σ2

εσ
2
η(σ

2
η + σ2

ε)
]

= σ2
Y +

σ2
εσ

2
η

σ2
η + σ2

ε

Therefore, the correlation after GTR processing is:

corr(zn, zm) =
E[znzm]√

Var(zn)Var(zm)

=
ρσ2

Y +
σ2
εσ

2
η

σ2
η+σ2

ε

σ2
Y +

σ2
εσ

2
η

σ2
η+σ2

ε

The estimation error for GTR-processed data is:

|corr(zn, zm)− ρ| =

∣∣∣∣∣∣∣
ρσ2

Y +
σ2
εσ

2
η

σ2
η+σ2

ε

σ2
Y +

σ2
εσ

2
η

σ2
η+σ2

ε

− ρ

∣∣∣∣∣∣∣
=

∣∣∣∣∣ρσ2
Y (σ

2
η + σ2

ε) + σ2
εσ

2
η − ρσ2

Y (σ
2
η + σ2

ε)− ρσ2
εσ

2
η

σ2
Y (σ

2
η + σ2

ε) + σ2
εσ

2
η

∣∣∣∣∣
=

∣∣∣∣∣ σ2
εσ

2
η(1− ρ)

σ2
Y (σ

2
η + σ2

ε) + σ2
εσ

2
η

∣∣∣∣∣
Now, we compare the two errors:

|corr(zn, zm)− ρ|
|corr(xn, xm)− ρ|

=

σ2
εσ

2
η|1−ρ|

σ2
Y (σ2

η+σ2
ε)+σ2

εσ
2
η

σ2
η|1−ρ|
σ2
Y +σ2

η

=
σ2
ε(σ

2
Y + σ2

η)

σ2
Y (σ

2
η + σ2

ε) + σ2
εσ

2
η

We need to show this ratio is less than 1 when σ2
ε < σ2

η:

σ2
ε(σ

2
Y + σ2

η) < σ2
Y (σ

2
η + σ2

ε) + σ2
εσ

2
η

σ2
εσ

2
Y + σ2

εσ
2
η < σ2

Y σ
2
η + σ2

Y σ
2
ε + σ2

εσ
2
η

0 < σ2
Y σ

2
η

Since σ2
Y > 0 and σ2

η > 0, the inequality holds. Therefore:

|corr(zn, zm)− ρ| < |corr(xn, xm)− ρ| (11)

This completes the proof.

GTR fuses global information sources to produce more accurate correlation estimates. As shown in
Figure 4, GTR systematically reduces the error in correlation estimation between variables, confirming
GTR’s ability to better capture global temporal dependencies.
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E EXTENDED RELATED WORK

MTSF Plugins. Recent advancements in MTSF have shifted towards ”Plug-and-Play” paradigms,
which decompose complex modeling tasks into modular components that can be seamlessly integrated
into various backbone architectures.

A primary focus of these modules is enhancing multi-correlation and inter-variable dependencies
modeling. For example, to address computational efficiency in high-dimensional data, SOFTS (Han
et al., 2024) incorporates the STAR module, which aggregates global information into a core repre-
sentation and redistributes it to individual series to model channel interactions with linear complexity.
CrossLinear (Zhou et al., 2025) was proposed as a lightweight embedding module designed to
capture time-invariant dependencies between target and exogenous variables within linear predictors.
TQNet (Lin et al., 2025a) utilizes TQ techniques to learns more robust multivariate correlations.

The effective utilization of timestamp information is critical for capturing the inherent seasonality
and cyclic dynamics underlying time series data. While early approaches predominantly relied
on handcrafted features to encode calendar timestamps, GLAFF (Wang et al., 2024a) advances
learnable representations by adaptively balancing global and local temporal information to facilitate
seamless integration with arbitrary forecasting backbones. Furthermore, VH-NBEATS (Yang et al.,
2025a) introduces a hierarchical timestamp basis block that explicitly leverages multi-scale calendar
information to capture complex hierarchical temporal effects.

Accurately capturing periodic patterns and cyclic dynamics is fundamental for long-term forecasting,
yet standard models often struggle to disentangle these from complex trends without specialized
mechanisms. To address this, CycleNet (Lin et al., 2024) introduces RCF technique that explicitly
models inherent periodicities using learnable recurrent cycles, thereby allowing simple backbones to
focus efficiently on predicting residual dynamics. STiD (Shao et al., 2022) identifies spatial–temporal
indistinguishability as a key challenge in MTSF and introduces a simple MLP-based model aug-
mented with spatial and temporal identity embeddings to achieve strong performance. Addressing
the limitations of fixed decomposition kernels, Leddam (Yu et al., 2024) proposes a learnable decom-
position strategy coupled with a dual attention module to adaptively separate complex intra-series
variations from inter-series dependencies. Furthermore, SparseTSF (Lin et al., 2025b) utilizes a Cross-
Period Sparse Forecasting technique that decouples trend and periodicity through downsampling,
functioning as a structural regularization mechanism to reduce model complexity while robustly
capturing cross-period trends.

Despite these methodological strides, a critical gap remains in the current landscape of plug-and-play
modules. Existing approaches lack a dedicated mechanism to address the fundamental informa-
tion bottleneck caused by restricted historical contexts. Specifically, when the look-back window
is shorter than the inherent cycle length, standard models—even when augmented with current
plugins—struggle to capture global periodic dynamics due to the absence of complete cycle observa-
tions. Our proposed GTR provides an efficient and universal solution that empowers host models to
dynamically retrieve and leverage global temporal patterns beyond their immediate receptive field.

F USES OF LLMS

This work was completed without the use of any LLMs or AI-assisted writing tools.
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