
Provable Meta-Learning with Low-Rank Adaptations

Jacob L. Block
UT Austin

jblock@utexas.edu

Sundararajan Srinivasan
UT Austin

sundararajans@utexas.edu

Liam Collins
Snap, Inc.

lcollins2@snapchat.com

Aryan Mokhtari
UT Austin & Google Research

mokhtari@austin.utexas.edu

Sanjay Shakkottai
UT Austin

sanjay.shakkottai@utexas.edu

Abstract

The power of foundation models (FMs) lies in their capacity to learn highly expres-
sive representations that can be adapted to a broad spectrum of tasks. However,
these pretrained models require additional training stages to become effective for
downstream applications. In the multi-task setting, prior works have shown em-
pirically that specific meta-learning approaches for preparing a model for future
adaptation through parameter-efficient fine-tuning (PEFT) can outperform standard
retraining methods, but the mechanism of the benefits of meta-learning has been
largely unexplored. We introduce a framework for generic PEFT-based meta-
learning to learn a model that can easily adapt to unseen tasks. For linear models
using LoRA, we show that standard retraining is provably suboptimal for finding
an adaptable set of parameters and provide strict performance guarantees for our
proposed method. We verify these theoretical insights through experiments on
synthetic data as well as real-data vision and language tasks. We observe significant
performance benefits using a simple implementation of our proposed meta-learning
scheme during retraining relative to the conventional approach.

1 Introduction

Foundation Models (FMs) learn rich representations that are useful for a variety of downstream tasks.
The first stage of FM training is referred to as pretraining, where a combination of massive public,
proprietary, and synthetic sources of data is used to learn a general-purpose model from scratch
[1–4]. However, due to the enormous cost of training state-of-the-art models on such large datasets,
pretraining is largely infeasible for most. Thus, the most popular and viable way to utilize FMs for
specific applications is to adapt an existing pretrained model.

We consider this problem of adapting a pretrained FM to a set of related tasks. We refer to this as
retraining, where given a number of tasks with many samples, our goal is to recover a model that
learns the task structure and can be quickly adapted to future tasks with limited samples. In other
works this has been referred to as pre-finetuning [5] or supervised fine-tuning [6]. After retraining,
we adapt the model to a new task with few samples in what we denote the fine-tuning stage. In this
last stage, we typically employ parameter-efficient fine-tuning (PEFT) methods – training heuristics
which sacrifice learning expressiveness for improved computational efficiency [7, 8]. Ultimately, the
purpose of retraining is to prepare the model for efficient future adaptation, and the effectiveness of a
retraining method is measured by the model’s performance on the fine-tuning task.

Standard approaches to retraining involve fitting the model to the aggregation of the different retraining
tasks. While this seems reasonable and has been empirically successful [9, 10], it does not leverage
knowledge of the downstream fine-tuning procedure to tailor the retrained model to perform well after

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

such adaptation. Rather, it retrains the model to minimize the average loss across the retraining tasks
regardless of the PEFT method to be employed later. Thus, there is no assurance that the recovered
solution is indeed adaptable to future unseen tasks relative to other possible retraining solutions.

Meta-learning is a natural framework to address this issue, as it explicitly aims to learn adaptable
models, typically in low-resource, few-shot settings using gradient-based adaptations [11, 12]. The
success of meta-learning algorithms is largely attributed to their ability to learn useful representations,
as even model-agnostic gradient-based meta-learning algorithms like MAML [11] and Reptile [13]
have been shown to implicitly learn representations in linear settings [14, 15]. Recent works have
shown empirical benefits to retraining using specific PEFT-based meta-learning methods [16–20],
but theoretical guarantees showcasing these gains have not been established.

Contributions. We propose a framework for PEFT-based meta-learning during retraining which
explicitly accounts for the specific PEFT method that will be used for future fine-tuning. While our
framework is general to any PEFT method, we focus on Low-Rank Adaptation (LoRA) [7] for our
theoretical results. Specifically, we consider multiple linear regression tasks where each ground truth
regressor is a rank-k perturbation of a common matrix A∗ ∈ Rd×d, where d is the ambient dimension.
Given a set of T tasks, our goal is to recover A∗ so that we can easily fine-tune to a new, unseen task
by learning a low-rank perturbation using LoRA. With this in mind, we show the following:

• We prove that standard retraining, which does not incorporate any knowledge of the PEFT
method for fine-tuning, fails to recover parameters that are low-rank adaptable, as the recov-
ered model is not low-rank away from A∗ and consequently the test model (Proposition 1).
As a result, applying low-rank adaptations cannot account for the large rank discrepancy
to the test task (Proposition 2). Further, fine-tuning with a very large rank to account for
this discrepancy defeats the purpose of PEFT and results in squared prediction error which
grows as O

(
d min{kT,d}

n

)
with high probability, where n is the number of test samples

(Remark 2). Thus, standard retraining performs worse when given access to more tasks.
• For our meta-learning framework, we guarantee that any minimizer of the meta-learning

loss in the infinite sample case is low-rank adaptable to unseen tasks (Theorem 2). Further,
we show that if there are at least three retraining tasks, the ground truth parameters are
the unique global minima up to orthogonal symmetry (Theorem 3). As a result, LoRA
fine-tuning is effective in adapting to the test task and with high probability achieves squared
prediction error which grows as O

(
kd
n

)
(Corollary 4). In contrast to standard retraining, we

achieve the optimal rate which does not include any dependence on T .
• We prove in the infinite sample case, every second-order stationary point of our meta-

learning loss when applied to two retraining tasks is in fact globally optimal (Theorem 4).
In this case there are no spurious local minima of our meta-learning loss and optimality is
completely determined by second-order information. Thus, local optimization methods like
perturbed gradient descent can efficiently find global minima.

To the author’s knowledge, these are the first results proving that PEFT-based meta-learning outper-
forms standard retraining methods in any setting. Proofs are presented in Appendix B. To verify our
theoretical insights, we compare the performance of the standard retraining and LoRA-based meta-
learning objectives in a synthetic multi-output linear regression setting. We show clear improvements
using LoRA-based meta-learning for all data parameter settings. Then, we apply an implementation
of our general PEFT-based meta-learning framework to a vision task on CIFAR-10 [21] as well as a
natural language experiment using the RoBERTa [22] language model on the ConvAI2 [23] dataset
with two PEFT schemes: LoRA and last layer fine-tuning. In both cases, we observe that PEFT-based
meta-learning outperforms standard retraining.

1.1 Related Work

Meta-learning is a technique for learning models that can be rapidly adapted to unseen tasks by
leveraging access to prior tasks during training. For example, Model-Agnostic Meta-Learning
(MAML) [11] and Reptile [13] are popular methods that aim to find a model that can be adapted to a
new task after a small number of steps of gradient descent on the new task’s loss function.

Prior analyses of gradient-based meta-learning for linear models consider learning a shared feature
subspace across tasks [14, 24, 15]. This reduces to a subspace recovery problem, as each task reveals

2

a linear measurement of this shared space. In contrast, we study tasks that are low-rank perturbations
of a shared arbitrary matrix—a novel setting with distinct challenges. For instance, in our setting just
three retraining tasks suffice to exactly recover the ground-truth parameters (Theorem 3), whereas
subspace-based approaches require the number of tasks to exceed the subspace dimension. These
differences motivate new analytical tools and lead to qualitatively different results.

Many meta-learning approaches specific to FMs for incorporating PEFT-based adaptation have been
proposed. Hong and Jang [17], Bansal et al. [18], and Gheini et al. [19] applied meta-learning with
architecture adaptations that inject task-specific trainable layers within the FM architecture. Hou
et al. [16] combined architecture adaptations with parameter perturbations similar to LoRA. They
considered a complicated loss that updates the adapters and FM weights over different splits of the
data and showed empirical gains over standard retraining and other gradient-based MAML-style
algorithms. Aghajanyan et al. [5] proposed a multi-task objective that trains an FM on different tasks
simultaneously to encourage learning a universally applicable representation. It forces the FM to
learn a shared data representation but allows for task-specific prediction heads. Overall, these works
each proposed a meta-learning or multi-task objective and showed empirical gains over standard
retraining strategies. However, their experimental results motivate a deeper theoretical exploration
of when standard retraining is insufficient relative to meta-learning approaches, how many tasks are
needed to learn a rich representation, and how to best adapt to tasks unseen in the training stage.

Lastly, although we focus on LoRA, different PEFT methods have been proposed, including variants of
LoRA [25–27] and architecture adaptations [28] among others. Further, recent works have analyzed
the theoretical aspects of LoRA in the fine-tuning stage [29, 30], but they explored orthogonal
directions to the analysis of LoRA-based meta-learning during retraining. Extended discussion of
these prior works is in Appendix A.

Notation. We use bold capital letters for matrices and bold lowercase letters for vectors. N (µ,Σ)
refers to the multivariate Gaussian distribution with mean µ and covariance matrix Σ. Id refers to
the d× d identity matrix. ∥·∥F refers to the Frobenius norm. Sd refers to the set of d× d symmetric
matrices, and S+

d is the set of d × d positive semi-definite matrices. Od refers to the set of d × d
orthogonal matrices. [n] refers to the set {1, . . . , n}. For a matrix X ∈ Rm×n, im(X) and ker(X)
refer to the image and kernel of X , while vec(X) ∈ Rmn denotes the column-wise vectorization
of X . For subspaces M ,N , dim(M) refers to the dimension of M and M +N = {x+ y|x ∈
M ,y ∈N}. If M ∩N = {0}, we write the direct sum M ⊕N .

2 Retraining and Fine-Tuning Schemes

We briefly recap the optimization process for standard retraining of an FM across multiple tasks
followed by fine-tuning on a downstream task. We then introduce a general framework for PEFT-based
meta-learning which adjusts the retraining phase to incorporate insights from fine-tuning.

2.1 Standard Retraining Then Fine-Tuning

Consider a collection of T tasks of interest T = {Tt}Tt=1 where each task Tt is drawn from task
distribution D and consists of nt labeled examples Tt = {(xt,j ,yt,j)}nt

j=1. Without loss of generality,
we assume consistent dimensions across tasks, so xt,j ∈ Rdx , yt,j ∈ Rdy for all tasks t and sample
indices j. Let Xt ∈ Rdx×nt and Yt ∈ Rdy×nt denote the concatenation of the respective input
samples and labels from task t, and consider a model Φ(· ;W) : Rdx → Rdy parameterized by
weights W that maps feature vectors to predicted labels. We abuse notation and write Φ(Xt ;W) to
denote the concatenation of Φ(xt,j ;W) for j ∈ [nt]. Typically W = (W1, . . . ,Wm) is a list of
matrices where Wi ∈ Rd×d parameterizes the ith layer of a neural network. We assume each Wi is
square for convenience.

Retraining Phase. Given a loss function L, standard retraining attempts to minimize the aggregated
loss over a collection of training tasks [22, 2]. This amounts to solving

ŴSR = min
W

T∑
t=1

L (Φ(Xt;W),Yt) , (1)

3

where SR stands for Standard Retraining. The above optimization problem seeks a set of universal
parameters that define a unique mapping function capable of translating inputs to outputs across all
tasks involved in the retraining phase. We denote the corresponding model as Φ(· ; ŴSR).

Fine-Tuning Phase. In the subsequent fine-tuning, PEFT is used to refine the model to fit a
downstream task with fewer labeled samples. Formally, consider an unseen task TT+1 drawn from the
same task distribution D. We define PEFT as any method which fits the model to task TT+1 by fixing
W = ŴSR in the original parameterization and fine-tuning the mapping Φ(· ; ŴSR) using additional
parameters θ. For example, θ could parameterize trainable perturbations of ŴSR or new trainable
layers inserted into the architecture of the retrained model [7, 25, 5]. We denote the fine-tuned model
as ΦFT(· ; ŴSR,θ) : Rdx → Rdy and again abuse notation by writing ΦFT(XT+1 ; ŴSR,θ) to denote
the concatenation of ΦFT(xT+1,j ; ŴSR,θ) for each j ∈ [nT+1]. During the fine-tuning stage, the
goal is to find the optimal additional parameters, θ, that minimize the loss for the downstream task
TT+1, solving

min
θ
L(ΦFT(XT+1 ; ŴSR,θ),YT+1). (2)

In particular, when LoRA is used for fine-tuning, the model is adapted to task TT+1 by fixing the ar-
chitecture and the retrained weights ŴSR and only training low-rank perturbations for each of the ma-
trices ŴSR,1, . . . , ŴSR,m. For rank-r adaptations, we parameterize θ = ((Q1,V1), . . . , (Qm,Vm)),
where Qi,Vi ∈ Rd×r are the factors of the low-rank adaptation of the ith matrix in ŴSR. The
fine-tuned model is just the original model where the ith weight matrix Wi is now perturbed to be
Wi +QiV

⊤
i . For Q,V ∈

(
Rd×r

)m
, define the LoRA loss

LLoRA (Q,V ;W) = L
(
Φ
(
XT+1 ;

(
Wi +QiV

⊤
i

)m
i=1

)
,YT+1

)
. (3)

The LoRA fine-tuning optimization problem is then

min
Q,V
LLoRA(Q,V ; ŴSR). (4)

This pipeline seems reasonable as we first fit the model to the aggregation of the retraining tasks
which we hope will promote learning the general structure of the tasks drawn from D. However,
nothing about standard retraining promotes learning an adaptable solution relative to other candidate
solutions that fit the retraining tasks. Next, we introduce a general meta-learning framework which
explicitly incorporates the adaptation mechanism during retraining.

2.2 PEFT-Based Meta-Learning

Since the ultimate goal of retraining is to perform well on an unseen downstream task, we study
a general PEFT-based meta-learning (PEFT-ML) objective that explicitly fits weights and adapter
parameters to the training tasks. Rather than training a single model on the aggregation of the
retraining tasks, we instead incorporate the adapters during the retraining process and learn adapted
models for each task. Let θ(t) be the set of adapter parameters for the tth training task Tt. The
PEFT-ML objective searches for a single set of base weights ŴMeta such that for all t ∈ [T], the tth

adapted model ΦFT(· ; ŴMeta,θ
(t)) minimizes the loss over the training task Tt. More precisely, we

define the proposed PEFT-ML objective as

ŴMeta = min
W

T∑
t=1

Lt(W), (5)

where Lt(W) denotes the optimal loss on task t after fine-tuning:

Lt(W) = min
θ(t)
L
(
ΦFT

(
Xt ;W ,θ(t)

)
,Yt

)
.

When we use LoRA as the adaptation method, we define Q(t),V (t) ∈
(
Rd×r

)m
as the list of factors

of the low-rank adapter Q(t)
i (V

(t)
i)⊤ applied to the ith weight matrix for the tth task. Then the inner

objective Lt(W) reduces to

Lt(W) = min
Q(t),V (t)

LLoRA(Q
(t),V (t) ;W). (6)

4

In this case, we refer to the objective function in (5) as LoRA-ML. This proposed optimization
problem is designed to replace the standard retraining objective in (1). After solving (5) we recover
base parameters ŴMeta that are explicitly designed to be adaptable to downstream tasks drawn from
the same distribution as those seen in retraining. To perform finetuning, we then run the exact same
minimization in (2) but using retrained weights ŴMeta instead of ŴSR.

3 Main Results

To establish our theoretical results, we consider T ≥ 1 multi-output linear regression retraining tasks
{Tt}Tt=1 and one downstream test task TT+1, where the ground-truth regressor for each task is a
low-rank perturbation of a common shared matrix. Precisely, for each t ∈ [T + 1] we assume task Tt
is independently drawn from distribution DA∗ which is associated with some arbitrary fixed matrix
A∗ ∈ Rd×d and intrinsic adaptation rank k ≪ d. Each task Tt ∼ DA∗ is parameterized by the shared
matrix A∗ and a task-specific rank-r matrix R∗

t such that the samples (xt,j ,yt,j) ∈ Rd × Rd from
Tt are related by the noisy linear transformation

yt,j = (A∗ +R∗
t)xt,j + ϵt,j ,

where ϵt,j are independently generated noise terms ϵt,j ∼ N (0, σ2
ϵId). We assume the inputs xt,j

are i.i.d. with zero-mean E [xt,j] = 0 and covariance E
[
xt,jx

⊤
t,j

]
= σ2

xId. Lastly, we generate the
ground truth rank-r adaptations R∗

t as the symmetric outer product of random Gaussian factors U∗
t :

R∗
t = U∗

t U
∗
t
⊤ s.t. vec(U∗

t) ∼ N (0, Idk).

The above generative model defines the input-output relationships for each task as similar linear
models, differing from each other only by a low-rank perturbation R∗

t . We construct the adapters R∗
t

as symmetric for convenience of analysis, but note that the limitations of standard retraining which
we demonstrate in Section 3.1 also hold for general adapters (Appendix C).

Remark 1. For convenience, we require a mild sense of task diversity and assume that any collection
of r ≤ d number of columns chosen from the set of all columns of {U∗

t }T+1
t=1 are linearly independent.

We note that our generative model for each U∗
t ensures this assumption holds with probability 1.

The learner uses the linear model Φ(x;A) = Ax for A ∈ Rd×d and retrains on tasks T1, . . . , TT
with the ultimate goal of efficient adaptation to TT+1 using LoRA. The aim is to recover the parameter
value Â = A∗ in the retraining phase so that the fine-tuned model ΦFT(x; Â,Q,V) = (Â+QV ⊤)x
fits the data distribution of any downstream task also drawn from D for proper rank-k adapter QV ⊤.

We define the finite-sample loss function for task t as

Lnt
t (A) =

1

2nt

nt∑
j=1

∥yt,j −Axt,j∥22 , (7)

and we define L∗
t (A) as the shifted and scaled infinite sample loss:

L∗
t (A) =

1

σ2
x

(
Ex,y [Lnt

t (A)]− σ2
ϵ

2

)
=

1

2

∥∥∥A∗ +U∗
t U

∗
t
⊤ −A

∥∥∥2
F
. (8)

We consider the setting where for the retraining tasks t ≤ T we have large nt, but for the test task
nT+1 is small. This reflects practical scenarios where we have access to large retraining datasets
compared to the low-resource fine-tuning task. Thus, we assume access to the infinite sample loss
functions L∗

t for the retraining tasks t ≤ T . Then, for ease of notation, define n = nT+1 as the
number of test task samples. We ultimately aim to use LoRA to fit the finite-sample test task loss
Ln
T+1 efficiently in n. Given a learned representation Â ∈ Rd×d from retraining, the fine-tuning

problem using LoRA with rank r reduces to

min
Q,V ∈Rd×r

Ln
T+1(Â+QV ⊤) (9)

5

Since QV ⊤ can parameterize any rank-r matrix, (9) is a specific parametrization for what is
commonly known as reduced rank regression [31]. It is clear that to even realize the optimal
regressor A∗ − Â + U∗

T+1U
∗⊤
T+1 for QV ⊤, we need r ≥ rank(A∗ − Â + U∗

T+1U
∗⊤
T+1) . Fur-

ther, results in reduced rank regression and matrix sensing in general reveal the importance of
rank(A∗ +U∗

T+1U
∗⊤
T+1 − Â) in terms of the hardness of minimizing Ln

T+1(Â+QV ⊤).

Lemma 1 (Bunea et al., 2011). Consider Â ∈ Rd×d and let r = rank(A∗ + U∗
T+1U

∗⊤
T+1 − Â).

Let Q∗,V ∗ ∈ Rd×r minimize Ln
T+1(Â + QV ⊤) over all rank-r factors Q,V ∈ Rd×r and let

XT+1 = [xT+1,1, . . . ,xT+1,n] denote the matrix of test task inputs. Denote the matrix of prediction
errors E = (A∗ +U∗

T+1U
∗⊤
T+1)XT+1 − (Â+Q∗V ∗⊤)XT+1. Then ∀γ > 0,

P
(
1

n
∥E∥2F ≤

24(1 + γ)2σ2
ϵ rd

n

∣∣∣∣XT+1

)
≥ 1− e−γ2d (10)

The squared prediction error scales linearly with rd. This matches the information-theoretic lower
bound to learn rd number of parameters and is minimax optimal over all rank-r matrices when the
singular values of XT+1 are uniformly bounded [33]. Thus, a larger rank of A∗ − Â+U∗

T+1U
∗⊤
T+1

inflates the fine-tuning prediction error, as we hope to recover Â = A∗ so that rank(A∗ − Â +
U∗

T+1U
∗⊤
T+1) = k. We next compare the standard retraining (1) and LoRA-ML (6) objectives.

3.1 Negative Results for Standard Retraining then Fine-Tuning

Consider standard retraining then fine-tuning as a candidate for ultimately minimizing (9). The
learner first finds a single matrix ÂSR that minimizes the sum of losses

∑T
t=1 L∗

t :

ÂSR = argmin
A

1

2

T∑
t=1

∥∥∥A∗ +U∗
t U

∗
t
⊤ −A

∥∥∥2
F
. (11)

Then when given test task TT+1, the learner solves minQ,V ∈Rd×r Ln
T+1(ÂSR +QV ⊤). However,

this strategy suffers substantial loss in both the retraining and fine-tuning stages. Notice the loss in
(11) is convex and quadratic in A, so the first-order optimality condition shows that

ÂSR = A∗ +
1

T

T∑
t=1

U∗
t U

∗
t
⊤. (12)

Thus, ÂSR recovers A∗ added to the average of the retraining ground truth adaptations U∗
t U

∗
t
⊤.

However, ÂSR performs poorly on all of the retraining tasks, as standard retraining is unable to
disentangle the common structure A∗ from the task-specific adapters U∗

t U
∗
t
⊤.

Theorem 1. Let U∗ = (U∗
1 , . . . ,U

∗
T). Then,

EU∗

[
T∑

t=1

Lt(ÂSR)

]
= (T − 1)kd(d+ 1) = Ω

(
Tkd2

)
Thus, ÂSR suffers significant loss on the retraining tasks when averaged over the generation process
of ground truth parameters U∗. Further, ÂSR is not low-rank adaptable to the test task. Crucially, the
intrinsic dimension of the test task is rank(A∗ +U∗

T+1U
∗⊤
T+1 − ÂSR) = min{d, k(T + 1)}, so an

adaptation rank of min{d, k(T +1)} is required to even achieve the ground truth test task parameters.

Proposition 1. If test fine-tuning rank r < min{d, k(T + 1)}, then L∗
T+1(Q,V ; ÂSR) > 0 for all

rank-r adapter factors Q,V ∈ Rd×r.

Even though the test task parameters are only rank-k away from A∗, standard retraining fails to
exploit this structure and inflates the necessary rank to min{d, k(T + 1)}. Thus, standard retraining
actually recovers worse representations as the number of tasks T grows. In this case, failing to
fine-tune with large enough rank causes significant loss.

6

Proposition 2. For a large number of retraining tasks T → ∞ and test fine-tuning rank r,
L∗
T+1(Q,V ; ÂSR) = Ω

(
(d− r)k2

)
for all Q,V ∈ Rd×r.

As the number of retraining tasks grows to infinity, the squared error between the test task recovered
parameter and the ground truth is determined by the under-specification of the fine-tuning rank r
relative to the ambient dimension d.

The above propositions show the cost of under-specifying the fine-tuning rank relative to the large
intrinsic dimension of the test task which results from standard retraining. Conversely, applying
the necessarily large fine-tuning rank r = min{d, k(T + 1)} both defeats the purpose of low-rank
adaptation and still incurs large prediction error when fine-tuning with limited samples.

Remark 2. Consider the finite-sample loss (9) using ÂSR adapted with LoRA using rank r =
min{d, k(T + 1)}. This can achieve optimal population risk but suffers in the finite-sample setting.

Using Lemma 1, we can only hope to achieve squared prediction error of order O
(

d min{kT,d}
n

)
when fine-tuning, which is much larger than the optimal rate O

(
kd
n

)
if we had in fact recovered the

ground truth A∗ during retraining.

Thus, standard retraining recovers parameters that cannot be efficiently low-rank adapted to
new tasks. In contrast, our analysis of LoRA-ML for retraining shows much improved performance.

3.2 Results for LoRA-Meta-Learning

Consider applying (6) to this problem instance. We introduce low-rank adapters during the retraining
phase to model the different training tasks and search for a value of A such that for all Tt, the loss L∗

t
after running LoRA on Tt is minimized. This promotes values of A that can be easily adapted to
unseen tasks downstream. We use the LoRA-ML loss but with symmetric low-rank adapters UtU

⊤
t

for the tth task Tt in retraining. We still use asymmetric adapters for fine-tuning on the test task with
loss Ln

T+1. The LoRA-ML loss given access to infinite sample task losses L∗
t is then

LMeta(A) =

T∑
t=1

min
Ut

L∗
t (A+UtU

⊤
t). (13)

Define the concatenation of each Ut as U = (U1, . . . ,UT) ∈
(
Rd×k

)T
. Then minimizing (13) is

equivalent to solving minA,U L∗(A,U) where

L∗(A,U)=
1

2

T∑
t=1

∥∥∥A∗+U∗
t U

∗
t
⊤−A−UtU

⊤
t

∥∥∥2
F
. (14)

We have seen that standard retraining does not recover an optimal solution, but it is unclear what the
global minima of this new objective function are and if they can be easily found. Note that by fixing
A, (14) is T independent symmetric matrix factorization problems, and by fixing U , (14) is a convex
quadratic problem over A. Despite these well-understood sub-problems, joint minimization over
A and U presents challenging variable interactions that complicate the analysis. Nevertheless, we
employ a careful landscape analysis of (14) to address these questions.

3.2.1 Landscape of Global Minima of (14)

We first show that the objective is well-posed, i.e., minimization of L leads to an adaptable solution.

Theorem 2. If L∗(Â, Û) = 0, then Â = A∗ +C where rank(C) ≤ 2k

Any point is a global minimum of (14) if and only if it achieves zero loss. Theorem 2 guarantees that
the values of A that achieve global minimization of (14) are at most rank-2k away from the ground
truth parameter A∗. Then, the remaining intrinsic dimension of the test task is just 3k ≪ d.

Corollary 1. If L∗(Â, Û) = 0, there exists a rank-3k adapter QV ⊤ such that L∗
T+1(Q,V ; Â) = 0.

Since the sufficient LoRA rank for fine-tuning is just 3k, we realize a much improved fine-sample
prediction error.

7

Corollary 2. Let L∗(Â, Û) = 0 and let Q∗,V ∗ ∈ Rd×3k minimize Ln
T+1(Â + QV ⊤) over all

Q,V ∈ Rd×3k. Then, Â+Q∗V ∗⊤ satisfies Lemma 1 with r = 3k.

Thus, retraining with LoRA-ML leads to squared prediction error on the task task which grows
asymptotically as O

(
kd
n

)
. Although the unnecessary factor of T incurred by standard retraining is

avoided when using LoRA-ML, the rate still contains an additional factor of 3 over the ideal case
when r = k since A∗ is not guaranteed to be recovered exactly. However, this minor discrepancy is
mitigated when the number of tasks satisfies T ≥ 3. In this case, exact recovery of the ground truth
parameter A∗ is possible.

Theorem 3. For any number of tasks T ≥ 3 and ambient dimension d ≥ 3k, if L∗(Â, Û) = 0 then
Â = A∗ and UtU

⊤
t = U∗

t U
∗
t
⊤ for all t ∈ [T]

This guarantees that the ground truth parameters are the unique global minimum up to orthogonal
symmetry when there are three or more tasks, as long as the ground truth adaptation rank k is
relatively small compared to the ambient dimension d. This result is surprising, as most theoretical
results for multi-task learning require stricter conditions on the number of tasks T , typically where
T is required to be larger than the effective task dimension [34, 14]. However, we establish this
uniqueness result for the absolute condition T ≥ 3. As a result, we only need a rank-k adaptation to
realize the test task.
Corollary 3. For T ≥ 3, if L∗(Â, Û) = 0, then ∃Q,V ∈ Rd×k such that L∗

T+1(Q,V ; Â) = 0.

We then achieve the desired fine-sample prediction error.

Corollary 4. For T ≥ 3, let L∗(Â, Û) = 0 and let Q∗,V ∗ ∈ Rd×k minimize Ln
T+1(Â+QV ⊤)

over all Q,V ∈ Rd×k. Then, Â+Q∗V ∗⊤ satisfies Lemma 1 with r = k.

Note that the condition T ≥ 3 is necessary to establish Theorem 3, as if there are only two tasks
we can construct ground truth parameters such that the induced loss L∗ has infinite solutions. See
Appendix F.1 for an example.

Summary. These results show that all global minima of the LoRA-ML objective are low-rank
adaptable to the downstream task and achieve finite-sample test task prediction error which grows
as O

(
kd
n

)
. Crucially, this avoids the factor of T incurred by standard retraining. Further, if T ≥ 3,

minimizing the LoRA-ML objective guarantees recovery of the ground truth parameters.

3.2.2 Algorithms for Minimizing (14)

As shown above, minimizing the LoRA-ML objective (14) leads to recovery of the ground truth
parameters, with a small rank-2k error term when T = 2. We prove that this minimization problem
can always be solved by local optimization methods when there are two retraining tasks.

Theorem 4. If T = 2 and the ambient dimension d ≥ 2k, then L∗(Â, Û) = 0 if and only if (Â, Û)
is a second order stationary point (SOSP) of L∗.

When T = 2, local optimization algorithms for finding SOSPs, such as perturbed gradient descent and
cubic-regularized Newton method, can efficiently minimize the meta-learning objective. Surprisingly,
when there are three or more tasks, numerical experiments (see Appendix F.2) show that adversarially
picking U∗

t can result in specific instantiations of (14) with spurious local minima. In the next section,
we perform extensive numerical experiments for various values of T which show that these spurious
minima are almost never found in practice and vanilla gradient descent is sufficient to minimize (14).

4 Experiments

We test our framework across three settings. We first consider synthetic data for linear models
using LoRA fine-tuning to validate our theory in Section 3. Next, we conduct real-data experiments
on vision and language tasks, comparing our general PEFT-ML retraining approach to standard
retraining and Reptile [13], a gradient-based meta-learning method. To highlight the flexibility of our
framework, we consider two different fine-tuning schemes: LoRA and fine-tuning just the last layer.

Synthetic Data. We first test our model on synthetic regression tasks, relaxing the assumptions from
our theoretical results. We consider data yt,j = (A∗ +R∗

t)xt,j + ϵt,j for task t and j ∈ [nt], where

8

Figure 1: Linear model fine-tuning performance varying number of retraining tasks T (left) and
number of fine-tuning samples n (right) for LoRA-ML (ours) and standard retraining (SR).

Table 1: Mean test accuracies and standard errors for PEFT-ML and standard retraining methods
using LoRA-based and last-layer-based fine-tuning for adapting to a subset of CIFAR-10 classes.

LoRA Fine-Tuning
Method Mean Std. Err.

LoRA-ML 86.09 0.35
SR+LoRA 85.29 0.17
Reptile+LoRA 81.30 0.42

Last-Layer Fine-Tuning
Method Mean Std. Err.

Last-Layer-ML 83.90 0.17
SR+Last-Layer 81.16 0.22
Reptile+Last-Layer 72.55 0.39

xt,j , ϵt,j , and R∗
t are generated just as in Section 3. A∗ is constructed by sampling each entry as

an i.i.d. N (0, 1) random variable. We define parameters N,n such that the number of samples per
retraining task nt = N for all t ≤ T , and the number of test task samples nT+1 = n. Setting L to be
the mean squared error loss, we run gradient descent on the standard retraining (1) and the LoRA-ML
(5) objectives. After recovering Â during retraining, we apply the low-rank adaptation QV ⊤ when
fine-tuning to the test task. When T = 2, we use a rank-3k adaptation during fine-tuning to account
for the inexact recovery explained in Theorem 2, and otherwise use a rank-k adaptation.

In each experiment we vary one hyperparameter from a fixed set of values and plot the prediction error
between the recovered model and the ground truth model 1

n

∑
j ∥yT+1,j − (Â+QV ⊤)xT+1,j∥22.

Results are averaged over 5 trials, with the shaded region showing the full range of values. Figure 1
shows that LoRA-ML retraining significantly outperforms standard retraining (SR) for all data
settings. For T > 2, we see that applying gradient descent to the LoRA-ML objective is sufficient to
achieve global minimization and recover an adaptable solution. Thus, even though there may exist
spurious local minimizers, we do not encounter them in practice. Further, the fine-tuning performance
after standard retraining worsens with larger T . This is supported by our theory in Section 3.1 which
shows that as T increases, standard retraining recovers worse solutions that leave a larger intrinsic
dimension for the fine-tuning stage. See Appendix D for hyperparameter details and further ablations.

Vision Experiments. We use CIFAR-10 [21], and define T = 4 binary retraining tasks involving
classification between consecutive class labels. Specifically, task 1 classifies between classes 1 and
2, task 2 between classes 3 and 4, etc. The test task is binary classification between classes 9 and
10. We evaluate our PEFT-ML framework using a model based on the MLP-Mixer architecture [35].
We compare two different adaptation methods: (i) LoRA with rank 1 adapters, and (ii) fine-tuning
only the last layer. For both PEFT strategies, we evaluate three retraining strategies: (a) PEFT-ML
for each PEFT method (LoRA-ML, Last-Layer-ML), (b) standard retraining, and (c) Reptile, a
popular gradient-based meta-learning method. We report mean results along with standard errors
across 5 trials in Table 1. Across both fine-tuning methods, PEFT-ML retraining consistently yields
the best performance. Interestingly, standard retraining outperforms Reptile, as Reptile assumes
gradient-based adaptation which is misaligned with the PEFT methods used to adapt at test-time.

Language Experiments. We test our PEFT-ML framework using the ConvAI2 dataset with the
RoBERTa-base model [22]. ConvAI2 comprises conversations between two personas, where each

9

Table 2: Mean accuracies ± standard error for 10 test tasks using different retraining and fine-tuning
method combinations on ConvAI2.

Algorithm T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Avg

LoRA-ML 57 ± 2 41 ± 4 51 ± 4 50 ± 4 51 ± 4 30 ± 2 66 ± 5 47 ± 4 43 ± 4 38 ± 2 47.4 ± 1.9
SR+LoRA 59 ± 5 31 ± 4 50 ± 7 40 ± 4 24 ± 5 20 ± 2 41 ± 10 36 ± 2 23 ± 5 26 ± 6 35.0 ± 4.1
Reptile+LoRA 45 ± 7 29 ± 5 35 ± 6 36 ± 2 19 ± 6 21 ± 3 28 ± 10 29 ± 7 21 ± 5 21 ± 7 28.4 ± 5.0

Last-Layer-ML 55 ± 2 27 ± 5 51 ± 5 44 ± 2 36± 4 25 ± 4 55 ± 4 43 ± 5 33 ± 4 34 ± 4 40.2 ± 1.5
SR+Last-Layer 41 ± 4 9 ± 5 29 ± 3 36 ± 5 28 ± 8 15 ± 4 31 ± 8 24 ± 5 15 ± 6 17 ± 6 24.5 ± 4.2
Reptile+Last-Layer 35 ± 6 13 ± 4 18 ± 3 29 ± 3 19 ± 9 18 ± 4 15 ± 9 17 ± 5 15 ± 6 16 ± 4 19.4 ± 4.3

Table 3: Mean accuracies (averaged over all test tasks) ± standard error for different retraining
methods at varying LoRA ranks during fine-tuning.

Algorithm Rank 1 Rank 4 Rank 8 Rank 16

LoRA-ML 44.7 ± 0.8 48.6 ± 1.6 47.4 ± 1.9 48.2 ± 1.5
SR+LoRA 36.3 ± 4.1 35.5 ± 4.3 35.0 ± 4.1 37.1 ± 4.1
Reptile+LoRA 26.6 ± 5.8 27.7 ± 5.3 28.4 ± 5.0 27.8 ± 5.9

persona is associated with a list of facts that informs their responses. We model learning the dialogue
continuations of each persona as a different task, where we aim to select the correct continuation
from a set of choices given the conversation history. We retrain with T = 10 tasks and then fine-tune
the model from the best-performing epoch to each of the 10 test tasks. We run 5 trials and report
the mean accuracy and standard error on the held-out data for each test task in Table 2, using the
same setup and method naming conventions as in the vision experiments. PEFT-based meta-learning
performs best for both adaptation methods.

Table 2 reports results where LoRA-ML retraining and all fine-tuning uses a LoRA rank of 8. To
assess robustness to the choice of rank, Table 3 reports performance across different values. LoRA-
ML consistently outperforms the baselines, and while choosing a rank larger than 1 clearly improves
the performance of LoRA-ML, ranks 4, 8, and 16 yield similar results. We note that LoRA-ML
is always retrained with the same rank used for fine-tuning. Additional details for both real-data
experiments are provided in Appendix E.

5 Conclusion

We presented PEFT-ML for retraining an FM on a collection of tasks to prepare the model for
subsequent downstream fine-tuning. We theoretically demonstrated strict performance gaps between
standard retraining and the PEFT-ML objective using LoRA (LoRA-ML). Empirically, retraining
with PEFT-ML outperformed standard retraining for adapting to unseen downstream tasks using
LoRA and last-layer fine-tuning. Future research includes extending our theoretical analysis to more
general adapters and more complex model architectures, such as transformers.

Acknowledgments

This work was supported in part by NSF Grants 2019844, 2107037, and 2112471, ONR Grant
N00014-19-1-2566, the Machine Learning Lab (MLL) at UT Austin, the NSF AI Institute for
Foundations of Machine Learning (IFML), and Qualcomm through the Wireless Networking and
Communications Group (WNCG) Industrial Affiliates Program. We are grateful for computing
support on the Vista GPU Cluster through the Center for Generative AI (CGAI) and the Texas
Advanced Computing Center (TACC) at the University of Texas at Austin.

10

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of the 2019
conference of the North American chapter of the association for computational linguistics:
human language technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[3] Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Hassan Awadalla, Nguyen Bach, et al. Phi-3 technical report: A highly capable language model
locally on your phone. Technical Report MSR-TR-2024-12, Microsoft, 2024.

[4] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proceedings of the 38th International Conference
on Machine Learning, pages 8748–8763. PMLR, 2021.

[5] Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and
Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2021.

[6] Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei
Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models
are affected by supervised fine-tuning data composition. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
177–198, 2024.

[7] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[8] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, 2021.

[9] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark,
and Hannaneh Hajishirzi. Unifiedqa: Crossing format boundaries with a single qa system. In
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1896–1907,
2020.

[10] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[12] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric
and subspace. In International conference on machine learning, pages 2927–2936. PMLR,
2018.

[13] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[14] Liam Collins, Aryan Mokhtari, Sewoong Oh, and Sanjay Shakkottai. MAML and ANIL
provably learn representations. In International conference on machine learning, pages 4238–
4310. PMLR, 2022.

11

[15] Nikunj Saunshi, Yi Zhang, Mikhail Khodak, and Sanjeev Arora. A sample complexity separation
between non-convex and convex meta-learning. In International Conference on Machine
Learning, pages 8512–8521. PMLR, 2020.

[16] Zejiang Hou, Julian Salazar, and George Polovets. Meta-learning the difference: Preparing large
language models for efficient adaptation. Transactions of the Association for Computational
Linguistics, 10:1249–1265, 2022.

[17] SK Hong and Tae Young Jang. AMAL: Meta knowledge-driven few-shot adapter learning. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 10381–10389, 2022.

[18] Trapit Bansal, Salaheddin Alzubi, Tong Wang, Jay-Yoon Lee, and Andrew McCallum. Meta-
adapters: Parameter efficient few-shot fine-tuning through meta-learning. In International
Conference on Automated Machine Learning, pages 19–1. PMLR, 2022.

[19] Mozhdeh Gheini, Xuezhe Ma, and Jonathan May. Know where you’re going: Meta-learning for
parameter-efficient fine-tuning. In Findings of the Association for Computational Linguistics:
ACL 2023, pages 11602–11612, 2023.

[20] Nathan Hu, Eric Mitchell, Christopher D Manning, and Chelsea Finn. Meta-learning online
adaptation of language models. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 4418–4432, 2023.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[23] Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander H. Miller, Kurt Shuster, Jack
Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W.
Black, Alexander I. Rudnicky, Jason Williams, Joelle Pineau, Mikhail S. Burtsev, and Jason
Weston. The second conversational intelligence challenge (ConvAI2). ArXiv, abs/1902.00098,
2019.

[24] Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Statistically and
computationally efficient linear meta-representation learning. Advances in Neural Information
Processing Systems, 34:18487–18500, 2021.

[25] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In
Forty-first International Conference on Machine Learning, 2024.

[26] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
finetuning of quantized LLMs. Advances in neural information processing systems, 36:10088–
10115, 2023.

[27] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2023.

[28] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2790–2799. PMLR, 6 2019.

[29] Uijeong Jang, Jason D Lee, and Ernest K Ryu. LoRA training in the NTK regime has no spurious
local minima. In Proceedings of the 41st International Conference on Machine Learning, pages
21306–21328, 2024.

12

[30] Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

[31] Alan Julian Izenman. Reduced-rank regression for the multivariate linear model. Journal of
Multivariate Analysis, 5(2):248–264, 1975. ISSN 0047-259X. doi: https://doi.org/10.1016/
0047-259X(75)90042-1.

[32] Florentina Bunea, Yiyuan She, and Marten H. Wegkamp. Optimal selection of reduced rank
estimators of high-dimensional matrices. The Annals of Statistics, 39(2):1282–1309, 2011.
ISSN 00905364, 21688966.

[33] Angelika Rohde and Alexandre B. Tsybakov. Estimation of high-dimensional low-rank matrices.
The Annals of Statistics, 39(2):887–930, 2011. ISSN 00905364, 21688966.

[34] Simon Shaolei Du, Wei Hu, Sham M. Kakade, Jason D. Lee, and Qi Lei. Few-shot learning via
learning the representation, provably. In International Conference on Learning Representations,
2021.

[35] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pages 24261–24272, 2021.

[36] Yuqian Zhang, Qing Qu, and John Wright. From symmetry to geometry: Tractable nonconvex
problems. arXiv preprint arXiv:2007.06753, 2020.

13

A Related Work on LoRA-Style PEFT

There is a vast amount of work in developing PEFT methods for FMs. The LoRA algorithm [7]
has established itself as a popular and successful PEFT strategy and has inspired various extensions
such as QLoRA, DoRA, and others [26, 25, 27]. These algorithms are heuristics for mimicking the
full finetuning of an FM to a specific downstream task and have proven to be empirically successful
in various settings. However, there is a lack of theoretical analysis on the adaptability of PFMs
under LoRA-style adaptations, the ability to efficiently optimize LoRA-style objectives, and the
kinds of solutions they recover. Some recent works have attempted to analyze different parts of these
theoretical questions.

Convergence of LoRA. [29] analyzes the optimization landscape for LoRA for the Neural Tangent
Kernel regime. The authors show that LoRA finetuning converges in this setting as they prove that the
objective function satisfies a strict saddle property, ensuring that there are no spurious local minima.
However, this focuses on the actual ability of LoRA to converge to the optimal low-rank adapter
given an FM, and does not consider the adaptability of the FM in the first place.

Expressivity of LoRA. [30] derives the expressive power of LoRA as a function of model depth.
This work shows that under some mild conditions, fully connected and transformer networks when
respectively adapted with LoRA can closely approximate arbitrary smaller networks. They quantify
the required LoRA rank to achieve this approximation as well as the resulting approximation error.

B Proofs

B.1 Proof of Theorem 1

By Equation (12) we have that ÂSR = A∗ + 1
T

∑T
t=1 U

∗
t U

∗
t
⊤. In the following the expectation is

always taken over U∗ = (U∗
1 , . . . ,U

∗
T), where U∗

t ∈ Rd×k satisfies vec(U∗
t) ∼ N (0, Idk). Then,

EU∗

[
T∑

t=1

Lt(ÂSR)

]
=

T∑
t=1

E

∥∥∥∥∥A∗ +U∗
t U

∗
t
⊤ −A∗ − 1

T

T∑
s=1

U∗
sU

∗
s
⊤

∥∥∥∥∥
2

F


=

T∑
t=1

E

∥∥∥∥∥U∗
t U

∗
t
⊤ − 1

T

T∑
s=1

U∗
sU

∗
s
⊤

∥∥∥∥∥
2

F


=

T∑
t=1

E

∥∥∥∥∥U∗
t U

∗
t
⊤ − kI − 1

T

T∑
s=1

(
U∗

sU
∗
s
⊤ − kI

)∥∥∥∥∥
2

F


=

T∑
t=1

E

∥∥∥U∗
t U

∗
t
⊤ − kI

∥∥∥2
F
+

∥∥∥∥∥ 1T
T∑

s=1

(
U∗

sU
∗
s
⊤ − kI

)∥∥∥∥∥
2

F

−

2

T
tr

{(
U∗

t U
∗
t
⊤ − kI

)(T∑
s=1

U∗
sU

∗
s
⊤ − kI

)}]

= TE
[∥∥U∗

1U
∗⊤
1 − kI

∥∥2
F

]
+

1

T
E

∥∥∥∥∥
T∑

s=1

(
U∗

sU
∗
s
⊤ − kI

)∥∥∥∥∥
2

F


− 2E

[
tr

{(
U∗

1U
∗⊤
1 − kI

)(T∑
s=1

U∗
sU

∗
s
⊤ − kI

)}]
,

where the last equality follows from the fact that each U∗
t U

∗
t
⊤ are i.i.d.

14

Note that the second term 1
T E

[∥∥∥∑T
s=1

(
U∗

sU
∗
s
⊤ − kI

)∥∥∥2
F

]
is the total variance of the sum of i.i.d.

matrices U∗
sU

∗
s
⊤ − kI , so it is equal to the sum of the individual total variances:

1

T
E

∥∥∥∥∥
T∑

s=1

(
U∗

sU
∗
s
⊤ − kI

)∥∥∥∥∥
2

F

 =
1

T

T∑
s=1

E
[∥∥∥(U∗

sU
∗
s
⊤ − kI

)∥∥∥2
F

]
= E

[∥∥U∗
1U

∗⊤
1 − kI

∥∥2
F

]
.

Further, the third term −2E
[
tr
{(

U∗
1U

∗⊤
1 − kI

) (∑T
s=1 U

∗
sU

∗
s
⊤ − kI

)}]
is the sum of total

covariances between zero mean random matrices U∗
1U

∗⊤
1 − kI and each U∗

sU
∗
s
⊤ − kI . Since each

U∗
s is drawn independently, we only pick up the first term of

∑T
s=1 U

∗
sU

∗
s
⊤ − kI:

E

[
tr

{(
U∗

1U
∗⊤
1 − kI

)(T∑
s=1

U∗
sU

∗
s
⊤ − kI

)}]
= E

[
tr
{(

U∗
1U

∗⊤
1 − kI

) (
U∗

1U
∗⊤
1 − kI

)}]
= E

[∥∥U∗
1U

∗⊤
1 − kI

∥∥2
F

]
.

Combining the above simplifications gives that

EU∗

[
T∑

t=1

Lt(ÂSR)

]
= (T − 1)E

[∥∥U∗
1U

∗⊤
1 − kI

∥∥2
F

]
.

Then using the fact that each U∗
t U

∗
t is an independent sample of a d× d Wishart distribution with

scale matrix I and k degrees of freedom, we have that

E
[∥∥U∗

1U
∗⊤
1 − kI

∥∥2
F

]
= kd(d+ 1)

B.2 Proof of Propositions 1, 2

Recall ÂSR = A∗ + 1
T

∑T
t=1 U

∗
t U

∗
t
⊤. Then for any Q,V ∈ Rd×r,

L∗
T+1(Q,V ; ÂSR) =

1

2

∥∥∥A∗ +U∗
T+1U

∗⊤
T+1 − ÂSR −QV ⊤

∥∥∥2
F

=
1

2

∥∥∥∥∥U∗
T+1U

∗⊤
T+1 −

T∑
t=1

U∗
t U

∗
t
⊤ −QV ⊤

∥∥∥∥∥
2

F

By Remark 1 we have that rank
(
U∗

T+1U
∗⊤
T+1 −

∑T
t=1 U

∗
t U

∗
t
⊤
)

= min{d, k(T + 1)}. Then

Proposition 1 follows from that fact that rank(QV ⊤) ≤ r.

Further, as T → ∞, the strong law of large numbers implies that 1
T

∑T
t=1 U

∗
t U

∗
t
⊤ →

E
[
U∗

t U
∗
t
⊤
]
= kI . Thus for large T ,

∥∥∥∥∥U∗
T+1U

∗⊤
T+1 −

1

T

T∑
t=1

U∗
t U

∗
t
⊤ −QV ⊤

∥∥∥∥∥
2

F

→
∥∥U∗

T+1U
∗⊤
T+1 − kI −QV ⊤∥∥2

F
(15)

Using classic low-rank matrix factorization results, the Q∗V ∗⊤ that minimizes∥∥U∗
T+1U

∗⊤
T+1 − kI −QV ⊤

∥∥2
F

will exactly capture the r eigenvectors of U∗
T+1U

∗⊤
T+1 − kI

with largest magnitude eigenvalue. But, U∗
T+1U

∗⊤
T+1 − kI has d − k eigenvalues of magnitude k,

so Q∗V ∗⊤ can only capture r of them. Thus,
∥∥U∗

T+1U
∗⊤
T+1 − kI −Q∗V ∗⊤

∥∥2
F
≥ (d− k − r)k2.

Since Q∗V ∗⊤ minimized this quantity, we have that

L∗
T+1(Q,V ; ÂSR) ≥ (d− k − r)k2 ∀Q,V ∈ Rd×r

Thus, LT+1(Q,V ; ÂSR) scales as (d− k − r)k2 ≈ (d− r)k2 since k ≪ d.

15

B.3 Proof of Theorem 2

Since L∗(Â, Û) = 0 and L∗ ≥ 0 we must have that ∇AL∗ = 0.

Thus, Â = A∗ − 1
T

∑T
j=1

(
ÛjÛj

⊤
−U∗

j U
∗
j
⊤
)

. Plugging this into L∗ gives

0 = L∗(Â, Û) =
1

2

T∑
t=1

∥∥∥∥∥A∗ +U∗
t U

∗
t
⊤ −

(
A∗ − 1

T

T∑
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
))
−UtU

⊤
t

∥∥∥∥∥
2

F

=
1

2

T∑
t=1

∥∥∥∥∥U∗
t U

∗
t
⊤ −UtU

⊤
t −

1

T

T∑
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
)∥∥∥∥∥

2

F

.

Thus each term of the summation is zero, so for all t, s ∈ [T],

ÛtÛ
T
t −U∗

t U
∗⊤
t = ÛsÛ

T
s −U∗

sU
∗⊤
s .

Combining these results gives that

Â = A∗ − 1

T

T∑
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
)

= A∗ −
(
Û1Û

⊤
1 −U∗

1U
∗⊤
1

)
Let C = −Û1Û

⊤
1 +U∗

1U
∗⊤
1 .

Then Â = A∗ +C and rank(C) ≤ rank(Û1Û
⊤
1) + rank(U∗

1U
∗⊤
1) ≤ 2k.

Note the the effective remaining test-task dimension is

rank
(
A∗ +U∗

T+1U
∗⊤
T+1 −A∗ −C

)
= rank

(
U∗

T+1U
∗⊤
T+1 −C

)
≤ rank

(
U∗

T+1U
∗⊤
T+1

)
+ rank (C)

≤ 3k

B.4 Proof of Theorem 3

Proof. Since L∗(Â, Û) = 0, we have that for all t, s ∈ [T],

ÛtÛ
⊤
t −U∗

t U
∗⊤
t = ÛsÛ

⊤
s −U∗

sU
∗⊤
s (16)

Applying this to the first three tasks and rearranging gives that

U∗
1U

∗⊤
1 = Û1Û

⊤
1 +U∗

2U
∗⊤
2 − Û2Û

⊤
2 (17)

= Û1Û
⊤
1 +U∗

3U
∗⊤
3 − Û3Û

⊤
3 . (18)

We first show that im(Û1) = im(U∗
1).

Since U∗
1U

∗⊤
1 ≽ 0, we must have that im(Û2) ⊆ im(Û1) + im(U∗

2) and im(Û3) ⊆ im(Û1) +

im(U∗
3), as otherwise there would exist a vector on ker

(
Û1Û

⊤
1 +U∗

2U
∗⊤
2

)
∩ker(Û2Û

⊤
2)⊥ whose

existence contradicts the positive semi-definiteness of U∗
1U

∗⊤
1 .

Thus,

im(U∗
1) ⊆ im(Û1) + im(U∗

2) (19)

im(U∗
1) ⊆ im(Û1) + im(U∗

3) (20)

16

Using that fact that for subspaces X,Y ,Z, X ⊆ Y =⇒ X +Z ⊆ Y +Z, we can add im(U∗
2)

and im(U∗
3) to both sides of 19 and 20 respectively. This gives:

im(U∗
1)⊕ im(U∗

2) ⊆ im(Û1) + im(U∗
2) (21)

im(U∗
1)⊕ im(U∗

3) ⊆ im(Û1) + im(U∗
3). (22)

For t ∈ {2, 3}, we clearly have that dim
(
im(Û1) + im(U∗

t)
)
≤ dim im(Û1)+dim im(U∗

t) ≤ 2k,
and dim (im(U∗

1) + im(U∗
t)) = 2k. Thus,

(im(U∗
1)⊕ im(U∗

2)) =
(
im(Û1)⊕ im(U∗

2)
)

(23)

(im(U∗
1)⊕ im(U∗

3)) =
(
im(Û1)⊕ im(U∗

3)
)

(24)

Lemma 2.
(
[im(Û1)⊕ im(U∗

2)] ∩ [im(Û1)⊕ im(U∗
3)]
)
= im(Û1)

Proof. Clearly, im(Û1) ⊆
(
[im(Û1)⊕ im(U∗

2)] ∩ [im(Û1)⊕ im(U∗
3)]
)

. To show the converse,

consider x ∈
(
[im(Û1)⊕ im(U∗

2)] ∩ [im(Û1)⊕ im(U∗
3)]
)

.

By assumption there exists some a, b, c,d ∈ Rk such that

x = Û1a+U∗
2 b (25)

= Û1c+U∗
3d (26)

Thus,
Û1(a− c) +U∗

2 b−U∗
3d = 0. (27)

By Equation 23, we can write

im(U∗
2) = ([im(U∗

1)⊕ im(U∗
2)] ∩ [im(U∗

2)⊕ im(U∗
3)])

=
(
[im(Û1)⊕ im(U∗

2)] ∩ [im(U∗
2)⊕ im(U∗

3)]
)

Thus, im(Û1) ∩ [im(U∗
2)⊕ im(U∗

3)] ⊆ im(Û1) ∩ im(U∗
2) = {0}, so

im(Û1) ∩ [im(U∗
2)⊕ im(U∗

3)] = {0} (28)

Applying Equation (28) to Equation (27) implies that a = c and b = d = 0. Thus x = Û1a ∈
im(Û1), so

(
[im(Û1)⊕ im(U∗

2)] ∩ [im(Û1)⊕ im(U∗
3)]
)
⊆ im(Û1).

Then Equations (19) and (20) combined with Lemma (2) implies that im(U∗
1) ⊆ im(Û1) but

dim(im(U∗
1)) = dim(im(Û1)) = k, so im(U∗

1) = im(Û1).

Since the initial assumptions about Û1 and U∗
1 analogously hold for the corresponding matrices for

tasks 2 and 3, by the exact same argument we can show that

im(U∗
t) = im(Ût) ∀t ∈ [T]. (29)

Then by equation (16), im(U∗
1) ⊇ im

(
Û1Û

⊤
1 −U∗

1U
∗⊤
1

)
= im

(
Û2Û

⊤
2 −U∗

2U
∗⊤
2

)
⊆ im(U∗

2).
Thus,

im
(
Û1Û

⊤
1 −U∗

1U
∗⊤
1

)
⊆ im(U∗

1) ∩ im(U∗
2)

= {0}.

17

Thus Û1Û
⊤
1 = U∗

1U
∗⊤
1 . Then by Equation (16), ÛtÛ

⊤
t = U∗

t U
∗⊤
t for all t ∈ [T]. Lastly, since

L∗(Â, Û) = 0, we have that∇AL∗(Â, Û) = 0, so

Â = A∗ +
1

T

T∑
t=1

U∗
t U

∗
t
⊤ −UtU

⊤
t = A∗

B.5 Proof of Theorem 4

Proof. Clearly if L∗(Â, Û) = 0, then (Â, Û) is an SOSP. The reverse direction is the challenging
part of the proof. We equivalently prove that if (Â, Û) is a critical point and L∗(Â, Û) ̸= 0, then
∇2L∗(Â, Û) has a negative eigenvalue.

Assume for the sake of contradiction that (Â, Û) is a critical point and L∗(Â, Û) ̸= 0. Then,

∇AL∗(Â, Û) = T (Â−A∗) +

T∑
t=1

(
ÛtÛt

⊤
−U∗

t U
∗
t
⊤
)
= 0 (30)

∇Ut
L∗(Â, Û) = 2

(
Â−A∗ + ÛtÛt

⊤
−U∗

t U
∗
t
⊤
)
Ût = 0 (31)

Thus,

Â = A∗ − 1

T

T∑
t=1

(
ÛtÛt

⊤
−U∗

t U
∗
t
⊤
)
. (32)

Define Bt(Û) = ÛtÛt
⊤
−U∗

t U
∗
t
⊤− 1

T

∑T
s=1

(
ÛsÛs

⊤
−U∗

sU
∗
s
⊤
)

. Despite being a slight abuse

of notation, we refer to Bt(Û) as just Bt for the remainder of the proof.

Then (31) equivalently states:

BtÛt = 0. (33)

Note that by construction,
∑T

t=1 Bt = 0.

Considering L as a function of the flattened vector [vec(A); vec(U1); vec(U2)], and let U1 =
[x1 . . . xk], U2 = [y1 . . . yk], we compute the Hessian

∇2L =

 ∇2
AL ∇U1

∇AL ∇U2
∇AL

(∇U1
∇AL)⊤ ∇2

U1
L 0

(∇U2∇AL)⊤ 0 ∇2
U2
L

 (34)

18

where

∇2
AL∗ = 2Id2

∇U1∇AL∗ = [(x1 ⊕ x1) . . . (xk ⊕ xk)] ∈ Rd2×dk

∇U2∇AL∗ = [(y1 ⊕ y1) . . . (yk ⊕ yk)] ∈ Rd2×dk

∇2
U1
L∗ = 2(A+U1U

⊤
1 −A∗ −U∗

1U
∗
1
⊤)⊗ Ik

+ 2


x1x

⊤
1 + ∥x1∥22 I x⊤

1 x2I + x2x
⊤
1 . . . x⊤

1 xkI + xkx
⊤
1

x⊤
2 x1I + x1x

⊤
2 x2x

⊤
2 + ∥x2∥22 I . . . x⊤

2 xkI + xkx
⊤
2

...
...

. . .
...

x⊤
k x1I + x1x

⊤
k xkx

⊤
k + ∥xk∥22 I


∇2

U2
L∗ = 2(A+U2U

⊤
2 −A∗ −U∗

2U
∗
2
⊤)⊗ Ik

+ 2


y1y

⊤
1 + ∥y1∥22 I y⊤

1 y2I + y2y
⊤
1 . . . y⊤

1 ykI + yky
⊤
1

y⊤
2 y1I + y1y

⊤
2 y2y

⊤
2 + ∥y2∥22 I . . . y⊤

2 ykI + yky
⊤
2

...
...

. . .
...

y⊤
k y1I + y1y

⊤
k yky

⊤
k + ∥yk∥22 I


Note that ⊕ denotes the Kronecker sum defined as X ⊕ Y = I ⊗X + Y ⊗ I where ⊗ is the
Kronecker product.

Lemma 3. L∗(Â, Û) = 0 if and only if Bt = 0 for each t ∈ [T].

Proof. Since (Â, Û) is a critical point, then plugging Equation (32) into the definition of L gives
that

L∗(Â, Û) =
1

2

T∑
t=1

∥Bt∥2F .

Thus L∗(Â, Û) = 0 if and only if Bt = 0 ∀t.

Lemma 4. If ∇2
UL∗(Â, Û) ≽ 0, then the eigenvectors corresponding to the non-zero eigenvalues

of ÛtÛt
⊤

are the leading non-negative eigenvectors of A∗ +U∗
t U

∗
t
⊤ − Â for all t ∈ [T].

Proof. Consider the function f̄t(Ut; Â) = 1
2

∥∥∥A∗ +U∗
t U

∗
t
⊤ − Â−UtU

⊤
t

∥∥∥2
F

. f̄t is simply the

tth summand in L∗ where A = Â is fixed and we only consider the variable Ut. Minimizing f̄t is
identical to the problem of symmetric matrix factorization.

Using well-known properties of symmetric matrix factorization, since∇f̄t(Ût) = 0, we must have
that Ût = VtΓ where the columns of Vt are the properly scaled eigenvectors of A∗ +U∗

t U
∗
t
⊤ −

Â with non-negative eigenvalues where each column has norm equal to the square root of its
corresponding eigenvalue, and Γ ∈ Ok is some orthogonal matrix. Further, if the eigenvectors
corresponding to the non-zero eigenvalues of ÛtÛt

⊤
are not the leading non-negative eigenvectors,

then ∇2f̄t(Û) ̸≽ 0 by [36]. Since ∇2f̄t(Ût) is a diagonal block of ∇2L∗(Â, Û), ∇2f̄i(Ût) ̸≽ 0

would imply ∇2L∗(Â, Û) ̸≽ 0.

Remark 3. Without loss of generality, we can assume that the eigenvectors corresponding to the

non-zero eigenvalues of ÛtÛt
⊤

are the leading non-negative eigenvectors of A∗ +U∗
t U

∗
t
⊤ − Â for

all i.

Lemma 5.
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
x =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
x for all x ∈ im(Û1) + im(Û2).

19

Proof. Recall B1 = 1
2

(
Û1Û

⊤
1 −U∗

1U
∗
1
⊤ − Û2Û

⊤
2 +U∗

2U
∗
2
⊤
)

. Then applying first-order sta-
tionarity and the fact that B2 = −B1, we have(

Û2Û
⊤
2 − Û1Û

⊤
1

)
Û1 =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
Û1(

Û2Û
⊤
2 − Û1Û

⊤
1

)
Û2 =

(
U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤
)
Û2.

Corollary 5. Û2Û
⊤
2 − Û1Û

⊤
1 and U∗

2U
∗
2
⊤ −U∗

1U
∗
1
⊤ share an eigenbasis.

Proof. Using the lemma, any non-zero eigenvector-eigenvalue pair of Û2Û
⊤
2 − Û1Û

⊤
1 is also an

eigenvector-eigenvalue pair of U∗
2U

∗
2
⊤ −U∗

1U
∗
1
⊤. Denote the space defined by the span of these

eigenvectors as S. Then all other eigenvectors of U∗
2U

∗
2
⊤ −U∗

1U
∗
1
⊤ are orthogonal to S, so they

are also 0-eigenvectors of Û2Û
⊤
2 − Û1Û

⊤
1 . Thus the two matrices share an eigenbasis.

Corollary 6. dim
(
im Û1 + im Û2

)
≤ 2k−1, i.e., the set of columns of Û1 and Û2 are not linearly

independent.

Proof. Assume for contradiction that the vectors in the set S = {Û1ei | i = 1, . . . , k} ∪ {Û2ei |
i = 1, . . . , k} are linearly independent, where ei is the ith standard basis vector in Rk.

Then note that
(
Û1Û

⊤
1 − Û2Û

⊤
2

)
x ̸= 0 and

(
U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤
)
x ̸= 0 for all x ∈ S. By

Lemma (5), Û1Û
⊤
1 − Û2Û

⊤
2 and U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤ agree for each vector on the 2k-dimensional

space span(S). But, both rank(Û1Û
⊤
1 − Û2Û

⊤
2), rank(U∗

1U
∗
1
⊤−U∗

2U
∗
2
⊤) ≤ 2k by construction.

Then by dimension counting, Û1Û
⊤
1 − Û2Û

⊤
2 and U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤ must send span{S}⊥ to 0.

Thus, Û1Û
⊤
1 − Û2Û

⊤
2 and U∗

1U
∗
1
⊤ −U∗

2U
∗
2
⊤ agree on the entire basis formed by concatenating

basis vectors of span{S}⊥ with those of span(S). This implies that Û1Û
⊤
1 − Û2Û

⊤
2 = U∗

1U
∗
1
⊤−

U∗
2U

∗
2
⊤ and thus B1 = Û1Û

⊤
1 − Û2Û

⊤
2 −U∗

1U
∗
1
⊤ +U∗

2U
∗
2
⊤ = 0. Then B2 = −B1 = 0 so by

Lemma 3, L∗(Â, Û) = 0 which is a contradiction.

Lemma 6. U∗
2U

∗
2
⊤ −U∗

1U
∗
1
⊤ has exactly k positive and k negative eigenvalues.

Proof. First, note that U∗
2U

∗
2
⊤ has exactly k positive eigenvalues and k − d eigenvalues of 0. Then

U∗
2U

∗
2
⊤ − (U∗

1 e1)(U
∗
1 e1)

⊤ has rank k + 1 because of the linear independence of the columns of
the combined set of columns U∗

1 and U∗
2 . Further, since we subtract (U∗

1 e1)(U
∗
1 e1)

⊤, we must
be accumulating an additional negative eigenvalue relative to U∗

2U
∗
2
⊤. Continuing this process

shows that subtracting (U∗
1 ej+1)(U

∗
1 ej+1)

⊤ from U∗
2U

∗
2
⊤ −

∑j
t=1(U

∗
1 ei)(U

∗
1 ei)

⊤ contributes
exactly one more negative eigenvalue, since U∗

1 ej+1 can never be written as a linear combination of
{U∗

1 e1, . . .U
∗
1 ek,U

∗
2 e1, . . .U

∗
2 ej} for 0 < j < k. The result then follows from induction.

Lemma 7. rank(Û1) = rank(Û2) = k.

Proof. Assume for contradiction that rank(Û1) = m < k without loss of generality. Since by
Remark (3) we assume the columns of Û1 are the leading k non-negative eigenvectors of A∗ +

U∗
1U

∗
1
⊤ − Â = Û1Û

⊤
1 −B1, this must imply that A∗ +U∗

1U
∗
1
⊤ − Â− Û1Û

⊤
1 = −B1 ≼ 0.

Plugging in the definition of B1 gives that 1
2

(
Û1Û

⊤
1 −U∗

1U
∗
1
⊤ − Û2Û

⊤
2 +U∗

2U
∗
2
⊤
)
≽ 0. Thus,

Û1Û
⊤
1 ≽ U∗

1U
∗
1
⊤ + Û2Û

⊤
2 − U∗

2U
∗
2
⊤ ≽ U∗

1U
∗
1
⊤ − U∗

2U
∗
2
⊤. This contradicts the fact from

Lemma (6) that U∗
1U

∗
1
⊤ −U∗

2U
∗
2
⊤ has k positive eigenvalues.

With this lemma, we will prove the existence of a direction of ∇2L∗ with negative curvature. Instead
of directly working with this matrix, we instead use the Schur complement to work with a different
form.

20

Theorem 5. (Schur Complement) Since∇2
AL∗(Â, Û) = 2I ≻ 0,∇2L∗(Â, Û) ≽ 0 if and only if

∇2
UL∗(Â, Û)−

(
∇A∇UL∗(Â, Û)

)(
∇2

AL∗(Â, Û)
)−1 (

∇U∇AL∗(Â, Û)
)
≽ 0.

Define M = ∇2
UL∗(Â, Û)−

(
∇A∇UL∗(Â, Û)

)(
∇2

AL∗(Â, Û)
)−1 (

∇U∇AL∗(Â, Û)
)

.

For example, when k = 2 and letting U1 = [x1 x2], U2 = [y1 y2], we have

M =

[
M11 M12

M⊤
12 M22

]
,

where

M11 =

[
2B1 + x1x

⊤
1 + ∥x1∥22 x⊤

1 x2I + x2x
⊤
1

x⊤
2 x1I + x1x

⊤
2 2B1 + x2x

⊤
2 + ∥x2∥22

]

M12 =

[
−x⊤

1 y1I − y1x
⊤
1 −x⊤

1 y2I − y2x
⊤
1

−x⊤
2 y1I − y1x

⊤
2 x⊤

2 y2I − y2x
⊤
2

]

M22 =

[
2B2 + y1y

⊤
1 + ∥y1∥22 y⊤

1 y2I + y2y
⊤
1

y⊤
2 y1I + y1y

⊤
2 2B2 + y2y

⊤
2 + ∥y2∥22

]
For brevity, we do not include the full form of M for general k. However, we can make an easy
simplification that will allow for a much cleaner expression.

Using Corollaries (5) and (6), there is an eigenvector z of U∗
2U

∗
2
⊤ − U∗

1U
∗
1
⊤ with eigenvalue

λ ̸= 0 such that z ∈ ker
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
. Assume without loss of generality that λ > 0,

and consider α ∈ R2k. Define the function g(· ; z) : R2k → R parameterized by z such that
g(α; z) = (α⊗ z)

⊤
M (α⊗ z), where we partition α = [α1;α2], α1,α2 ∈ Rk. Then after some

algebra,

g (α; z) =
∥∥∥Û1α1 + Û2α2

∥∥∥2
2
+ λ

(
∥α1∥22 − ∥α2∥22

)
. (35)

We prove the existence of α ∈ R2k,x ∈ Rd such that g (α;x) < 0 considering two different cases.
Define N− : Sd → Z as the function that returns the number of strictly negative eigenvalues of its
input.

Case 1: N−
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
< k.

Using Corollary (6), we can pick α such that Û1α1 + Û2α2 = 0, α1,α2 ̸= 0.

Because N−
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
< k, N− (U∗

2U
∗⊤
2 −U∗

1U
∗⊤
1

)
= k, and Û2Û

⊤
2 − Û1Û

⊤
1 and

U∗
2U

∗⊤
2 −U∗

1U
∗⊤
1 share an eigenbasis by Corollary 5, there exists z− ∈ Rd that is a λ−-eigenvector

of U∗
2U

∗T
2 −U∗

1U
∗T
1 , λ− < 0, where z ∈ ker

(
Û2Û

⊤
2 − Û1Û

⊤
1

)
Then for the same choice of α,

sign (g (α; z)) = sign
(
∥α1∥22 − ∥α2∥22

)
sign

(
g
(
α; z−)) = sign

(
∥α2∥22 − ∥α1∥22

)
.

Then if ∥α1∥2 ̸= ∥α2∥2, one of the above expressions is negative and thus M has a negative
eigenvalue. This then implies∇2L∗(Â, Û) ̸≽ 0.

21

Otherwise ∥α1∥2 = ∥α2∥2. Then g (α; z) = 0, but ∇α1
g(α; z) = Û⊤

1

(
Û1ᾱ1 + Û2α2

)
−

2λα2 = −2λα2 ̸= 0. Thus g(α; z) = 0 and ∇g(α; z) ̸= 0 so there exists ᾱ in an infinitesimal
neighborhood around α where g(ᾱ; z) < 0. Thus M has a negative eigenvalue so∇2L∗(Â, Û) ̸≽ 0.

Case 2: N−
(
Û2Û

⊤
2 − Û1Û

⊤
1

)
= k.

Define m = dim
(
im(Û1) ∩ im(Û2)

)
. By Corollary 6, m ≥ 1, so we can select orthogonal matrix

Γ ∈ Ok such that Û2Γe1 ∈
(
im(Û1) ∩ im(Û2)

)
. Define y = Û2Γe1.

Clearly for any B ∈ Sd and R ∈ S+
d , N−(B) ≥ N−(B +R). Then since N−

(
−Û1Û

⊤
1

)
= k

by Lemma (7), we have that

k = N−(−Û1Û
⊤
1) ≥ N−(yy⊤ − Û1Û

⊤
1) = N−

((
Û2Γe1

)(
Û2Γe1

)⊤
− Û1Û

⊤
1

)
≥ N−

((
Û2Γ

)(
Û2Γ

)⊤
− Û1Û

⊤
1

)
= N−

(
Û2Û

⊤
2 − Û1Û

⊤
1

)
= k,

Thus, N−(yy⊤ − Û1Û
⊤
1) = k. But, since y ∈ im(Û1), rank

(
yy⊤ − Û1Û

⊤
1

)
= k. Thus,

yy⊤ − Û1Û
⊤
1 ≼ 0. (36)

Take α such that Û1α1 = −y and α2 = Γe1. Then

y1y
⊤
1 − Û1Û

⊤
1 =

(
Û1α

)(
Û1α

)⊤
− Û1Û

⊤
1 (37)

= Û1

(
α1α

⊤
1 − I

)
Û⊤

1 ≼ 0. (38)

Therefore ∥α1∥2 ≤ 1.

Then g (α; z) =
∥∥∥Û1α1 + Û2α2

∥∥∥2
2
+ λ

(
∥α1∥22 − ∥α2∥22

)
= λ

(
∥α1∥22 − 1

)
≤ 0.

If g (α; z) < 0, then we are done. Otherwise, g (α; z) = 0. Then the same analysis from Case 1 will
show that∇g(α; z) ̸= 0, so there exists ᾱ in an infinitesimal neighborhood around α where g(ᾱ ; z)
is strictly negative. This then implies our desired result.

B.6 Derivation of Equation (8)

Recall our generative model where each input sample x ∈ Rd satisfies E [x] = 0 and E
[
xx⊤] =

σ2
xId, each noise sample is generated independently of x as ϵ ∼ N (0, σ2

ϵId), and y = (A∗ +
R∗

t)x+ ϵ. Then,

2E[L1
t (A)] = E

[
∥y −Ax∥22

]
= E

[
∥(A∗ +R∗

t −A)x+ ϵ∥22
]

= E
[
∥(A∗ +R∗

t −At)x∥22 + ∥ϵ∥
2
2 + 2ϵ⊤(A∗ +R∗

t −At)x
]

= E
[
tr
(
x⊤(A∗ +R∗

t −At)
⊤(A∗ +R∗

t −At)x
)]

+ σ2
ϵ

+ 2E [ϵ]
⊤
(A∗ +R∗

t −At)E [x]

= E
[
tr
{
(A∗ +R∗

t −At)
⊤(A∗ +R∗

t −At)xx
⊤}]+ σ2

ϵ

= tr
{
(A∗ +R∗

t −At)
⊤(A∗ +R∗

t −At)E
[
xx⊤]}+ σ2

ϵ

= σ2
x tr

(
(A∗ +R∗

t −At)
⊤(A∗ +R∗

t −At)
)
+ σ2

ϵ

= σ2
x ∥A∗ +R∗

t −At∥2F + σ2
ϵ

22

Thus, E[L1
t (At)] =

1
2

(
σ2
x ∥A∗ +R∗

t −At∥2F + σ2
ϵ

)
. Then E[Lnt

t (At)] = E[L1
t (At)] by linearity

of expectation, so

1

σ2
x

(
E [Lnt

t (At)]−
σ2
ϵ

2

)
=

1

2

∥∥∥A∗ +U∗
t U

∗
t
⊤ −At

∥∥∥2
F

C Limitations of Standard Retraining for Asymmetric Adapters

In this section we show that even if the ground truth rank-k adapters R∗
t are asymmetric in our

theoretical model defined in Section 3, standard retraining still fails to recover a retraining solution
ÂSR that guarantees that either rank

(
ÂSR −A∗

)
or
∥∥∥ÂSR −A∗

∥∥∥ is small.

Consider task-specific adapters R∗
t ∈ Rd×d drawn independently from a general distribution DR

such that rank(R∗
t) = k and DR is absolutely continuous with respect to the Lebesgue measure.

Then since ÂSR = A∗ + 1
T

∑T
t=1 R

∗
t , we immediately have that ÂSR and A∗ are far apart in terms

of rank:
rank

(
ÂSR −A∗

)
= min{d, kT} w.p. 1.

As a result, the necessary adaptation rank during fine-tuning to realize the test task parameters
A∗ +R∗

T+1 is min{d, k(T + 1)}, just as in Proposition 1.

Additionally, we show that we can never guarantee that
∥∥∥ÂSR −A∗

∥∥∥ is small for general adapter

distributions DR. Let mean of the adapter distribution be MR = E [R∗
t]. Since the error between

ÂSR and A∗ is the average of retraining adapters 1
T

∑T
t=1 R

∗
t , then by the law of large numbers

we must have that as the number of retraining tasks T → ∞, then ÂSR −A∗ →MR. Thus, we
can only guarantee that standard retraining will approach a reasonable solution in the special and
impractical case where both (i) the number of tasks approaches infinity, and (ii) the mean of the
adapter distribution MR = 0. If either of these conditions do not hold, then standard retraining will
provably fail to recover A∗.

We lastly note that even though we model each task t by the additive parameterization A∗ +R∗
t , we

cannot absorb the mean MR into A∗ to reduce to the case where MR = 0 without destroying the
low-rank structure of R∗

t . Specifically, given a problem instance defined by tasks Tt parameterized
by A∗ + R∗

t where MR = E [R∗
t], we could equivalently consider the tasks as parameterized

by (A∗ +MR) + (R∗
t −MR). Then the transformed adapters R∗

t −MR are zero-mean, but
rank(R∗

t −MR) may be as large as the ambient dimension d, eliminating the low-rank structure
needed for the computational and sample-efficiency gains of low-rank adaptation during test-time
fine-tuning.

D Synthetic Experiments

D.1 Linear Model

We first test our meta-learning framework on synthetic regression tasks. We consider data yt,j =
(A∗ +R∗

t)xt,j + ϵt,j for task t and j ∈ [nt], where we generate xt,j , ϵt,j , and R∗
t as in Section 3

with xt,j ∼ N (0, I), ϵt,j ∼ N (0, .01× I), and R∗
t = U∗

t U
∗
t
⊤ with each element of U∗

t sampled
as a N (0, 1) random variable. We similarly generate the entries of A∗ as N (0, 1) random variables.
We set the number of samples per retraining task for each task t as nt = N , so each retraining task
is equipped with N samples. Further, we denote the number of test task samples nT+1 = n. We
set L to be the mean squared error loss, and we run gradient descent on the standard retraining (1)
and the LoRA-ML (5) objectives. For the LoRA-ML objective, we alternate between the outer step,
updating the shared parameter A, and the inner steps, where we update the task specific parameter
Ut for each task independently. We run 3000 outer steps, where after each outer step we run 10 inner
steps. We use a learning rate of 3× 10−2 for the outer steps and 3× 10−3 for the inner steps. For the
standard retraining objective, we simply run gradient descent using the learning rate 3× 10−2 over
3000 epochs.

23

After recovering Â during retraining, we apply the low-rank adaptation QV ⊤ when fine-tuning to
the test task. When T = 2, we use a rank-3k adaptation during fine-tuning to account for the inexact
recovery explained in Theorem 2, and otherwise use a rank-k adaptation. To perform the adaptation,
we run gradient descent on the LoRA objective (9) using a learning rate of 5× 10−3.

In each experiment we vary one hyperparameter from a fixed set of values and plot the prediction error
between the recovered model and the ground truth model 1

n

∑
j ∥yT+1,j − (Â+QV ⊤)xT+1,j∥22.

Results are averaged over 5 trials, with the shaded region showing the full range of values across
trials. For each experiment, we fine-tuned for a different number of epochs, as some required more
epochs to converge. The performance by epoch is displayed on the x-axis of each plot.

Figure 2: Linear model fine-tuning performance varying the number of retraining tasks T . This is an
enlargement of the left subfigure of Figure 1.

Figure 3: Linear model fine-tuning performance varying the number of samples for the test task n.
This is an enlargement of the right subfigure of Figure 1.

24

Figure 4: Linear model fine-tuning performance varying the number of samples per retraining task
N .

Figure 5: Linear model fine-tuning performance varying the ground truth adaptation rank k.

25

Figure 6: Linear model fine-tuning performance varying the ambient dimension d.

D.2 Shallow Network

We additionally run a synthetic data experiment using data generated using a shallow network
architecture. We first generate inputs xt,j ∈ Rd distributed as N (0, Id). We then generate ground
truth parameters A∗ ∈ Rd×d, c∗ ∈ Rd, and U∗

t ∈ Rd×k for each task t ∈ [T] by sampling the
entries as N (0, 1) random variables. We denote R∗

t = U∗
t U

∗
t
⊤. Lastly, the outputs yt,j ∈ R for

task t are generated as yt,j = c∗⊤s((A∗ +R∗
t)xt,j) + ϵt,j , where s(·) is the element-wise sigmoid

function and ϵt,j ∼ N (0, .01) is noise. We again define parameters N,n such that nt = N for all
t ≤ T and nT+1 = n. Setting L to be the mean squared error loss, we apply the AdamW optimizer
with a learning rate of 1× 10−3 to both the standard retraining (1) and the LoRA-ML (5) objectives.
After recovering Â and ĉ during retraining, we apply the low-rank adaptation QV ⊤ only to Â when
fine-tuning to the test task. In each experiment we vary a single hyperparameter from a fixed set
of values and plot the prediction error between the recovered model and the ground truth model
1
n

∑n
j=1

∥∥∥ĉ⊤s((Â+QV ⊤)xT+1,j)− c∗⊤s((A∗ +R∗
T+1)xT+1,j)

∥∥∥2
2
. To mitigate the effects of

outliers, we plot the median over 10 trials, where the tables that accompany each figure report the
range of the central 6 values of the last epoch prediction error, clipping the two best and worst trials.

Figures 7, 8, 9, 10, and 11 again show that retraining using the LoRA-ML objective leads to much
better fine-tuning performance relative to standard retraining. Figure 7 shows that the LoRA-ML
objective effectively exploits the number of tasks, since fine-tuning performance improves as T
increases. Further, we observe in Figure 8 that fine-tuning with any number of samples after standard
retraining cannot even recover the performance of fine-tuning with just 100 samples after LoRA-ML
retraining. We note that the range of the results varied much more in the shallow network setting
relative to the linear model experiments. Although LoRA-ML performed much better than standard
retraining when looking at the median result, a few individual trials showed outlier results.

The data parameters for both synthetic experiments are summarized in Table 9. Both were performed
using a single NVIDIA A40 GPU.

26

Figure 7: Shallow network fine-tuning performance while varying number of retraining tasks T .

Table 4: Median and central range of the test task loss after fine-tuning (smaller is better) at the last
epoch for the shallow network experiment across 10 trials while varying T .

Method T = 2 T = 3 T = 5

LoRA-ML 0.047 (0.042, 0.127) 0.018 (0.017, 0.028) 0.005 (0.004, 0.024)
SR 0.119 (0.104, 0.161) 0.092 (0.086, 0.225) 0.076 (0.046, 0.107)

Figure 8: Shallow network fine-tuning performance while varying number of test task samples n.

Table 5: Median and central range of the test task loss after fine-tuning (smaller is better) at the last
epoch for the shallow network experiment across 10 trials while varying n.

Method n = 100 n = 1000 n = 10000

LoRA-ML 0.006 (0.005, 0.034) 0.003 (0.002, 0.061) 0.004 (0.004, 0.017)
SR 0.132 (0.114, 0.171) 0.147 (0.109, 0.221) 0.115 (0.112, 0.165)

27

Figure 9: Shallow network fine-tuning performance while varying number of samples per retraining
task N .

Table 6: Median and central range of the test task loss after fine-tuning (smaller is better) at the last
epoch for the shallow network experiment across 10 trials while varying N .

Method N = 100 N = 1000 N = 10000

LoRA-ML 0.138 (0.100, 0.262) 0.010 (0.006, 0.055) 0.023 (0.009, 0.048)
SR 0.354 (0.319, 0.646) 0.075 (0.073, 0.092) 0.085 (0.074, 0.108)

Figure 10: Shallow network fine-tuning performance while varying ground truth adaptation rank k.

Table 7: Median and central range of the test task loss after fine-tuning (smaller is better) at the last
epoch for the shallow network experiment across 10 trials while varying k.

Method k = 1 k = 3 k = 5

LoRA-ML 0.138 (0.100, 0.262) 0.093 (0.077, 0.117) 0.044 (0.043, 0.067)
SR 0.354 (0.319, 0.646) 0.283 (0.261, 0.359) 0.151 (0.140, 0.299)

28

Figure 11: Shallow network fine-tuning performance while varying ambient dimension d.

Table 8: Median and central range of the test task loss after fine-tuning (smaller is better) at the last
epoch for the shallow network experiment across 10 trials while varying d.

Method d = 5 d = 10 d = 20

LoRA-ML 0.002 (0.001, 0.003) 0.005 (0.004, 0.010) 0.069 (0.050, 0.121)
SR 0.004 (0.003, 0.021) 0.082 (0.082, 0.125) 0.483 (0.438, 0.690)

Table 9: Synthetic Data Parameters
Experiment T n N k d σx σϵ

Linear, varying T {2,3,5} 100 5000 1 10 1 .1
Linear, varying n 3 {100,1000,10000} 5000 1 10 1 .1
Linear, varying N 3 100 {100,1000,10000} 1 10 1 .1
Linear, varying k 3 100 1000 {1,2,3} 10 1 .1
Linear, varying d 3 100 5000 1 {5,10,20} 1 .1

Shallow Network, varying T {2,3,5} 100 1000 1 10 1 .1
Shallow Network, varying n 3 {100,1000,10000} 1000 1 10 1 .1
Shallow Network, varying N 3 100 {100,1000,10000} 1 10 1 .1
Shallow Network, varying k 3 100 1000 {1,3,5} 10 1 .1
Shallow Network, varying d 3 100 1000 1 {5,10,20} 1 .1

E Real Data Experiments

In this section, we describe the real data experiments in complete detail. All of the real data
experiments were performed on a single NVIDIA H200 GPU.

E.1 Vision Experiments

We use CIFAR-10 [21], and define T = 4 binary classification retraining tasks. Each task requires
classification between consecutive CIFAR-10 class labels. Specifically, task 1 classifies between
classes 1 and 2, task 2 between classes 3 and 4, etc. The test task is binary classification between
classes 9 and 10. We evaluate our PEFT-ML framework using a model based on the MLP-Mixer
architecture [35]. We use a depth of 1, and an embedding dimension of 512 for the patches. We
compare two different adaptation methods: (i) LoRA with rank 1 adapters, and (ii) fine-tuning only
the last layer. For both PEFT strategies, we evaluate three retraining strategies: (a) PEFT-ML for

29

Table 10: Mean test accuracies and standard errors for PEFT-ML and standard retraining methods
using LoRA-based and last-layer-based fine-tuning for adapting to a subset of CIFAR-10 classes.

LoRA Fine-Tuning
Method Mean Std. Err.

LoRA-ML 86.09 0.35
SR+LoRA 85.29 0.17
Reptile+LoRA 81.30 0.42

Last-Layer Fine-Tuning
Method Mean Std. Err.

Last-Layer-ML 83.90 0.17
SR+Last-Layer 81.16 0.22
Reptile+Last-Layer 72.55 0.39

each PEFT method (LoRA-ML, Last-Layer-ML), (b) standard retraining (SR), and (c) Reptile, a
popular gradient-based meta-learning method. We report mean results along with standard errors
across 5 trials in Table 10.

For each retraining method, we take the model from the epoch with the best average performance
on the validation samples for the retraining tasks to then be fine-tuned. We also apply basic trans-
formations of the retraining data like random cropping and flipping to reduce overfitting. During
fine-tuning, we take the best accuracy on the heldout samples for the test task across epochs for each
trial, and we report the average of these values in the Table 10. We summarize the hyperparameter
choices in Tables 11 and 12.

Table 11: Retraining hyperparameters for vision experiments.
Hyperparameter Standard Retraining LoRA-ML Last-Layer-ML Reptile

Learning Rate 10−4 10−4 10−4 10−2

Outer Learning Rate N/A N/A N/A 10−5

Weight Decay 10−5 10−5 10−5 10−5

Epochs 100 100 100 5
Inner Epochs N/A N/A N/A 20

Optimizer Adam Adam Adam Adam
Batch Size 256 256 256 256

LoRA Rank N/A 1 N/A N/A

Table 12: Fine-Tuning hyperparameters for vision experiments
Hyperparameter LoRA Fine-Tuning Last-Layer Fine-Tuning

Learning Rate 5 · 10−4 5 · 10−4

Weight Decay 10−5 10−5

Epochs 100 100
Optimizer Adam Adam

LoRA Rank 1 N/A

30

Table 13: Mean accuracies ± standard error for 10 test tasks using different retraining and fine-tuning
method combinations on ConvAI2.

Algorithm T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Avg

LoRA-ML 57±2 41±4 51±4 50±4 51±4 30±2 66±5 47±4 43 ±4 38±2 47.4±1.9
SR+LoRA 59 ±5 31±4 50±7 40±4 24±5 20±2 41±10 36±2 23±5 26±6 35.0±4.1
Reptile+LoRA 45 ± 7 29 ± 5 35 ± 6 36 ± 2 19 ± 6 21 ± 3 28 ± 10 29 ± 7 21 ± 5 21 ± 7 28.4 ± 5.0

Last-Layer-ML 55 ± 2 27 ± 5 51 ± 5 44 ± 2 36± 4 25 ± 4 55 ± 4 43 ± 5 33 ± 4 34 ± 4 40.2 ± 1.5
SR+Last-Layer 41 ± 4 9 ± 5 29 ± 3 36 ± 5 28 ± 8 15 ± 4 31 ± 8 24 ± 5 15 ± 6 17 ± 6 24.5 ± 4.2
Reptile+Last-Layer 35 ± 6 13 ± 4 18 ± 3 29 ± 3 19 ± 9 18 ± 4 15 ± 9 17 ± 5 15 ± 6 16 ± 4 19.4 ± 4.3

Table 14: Mean accuracies (averaged over all tasks) ± standard error for different retraining methods
at varying LoRA ranks during fine-tuning.

Algorithm Rank 1 Rank 4 Rank 8 Rank 16

LoRA-ML 44.7 ± 0.8 48.6 ± 1.6 47.4 ± 1.9 48.2 ± 1.5
SR+LoRA 36.3 ± 4.1 35.5 ± 4.3 35.0 ± 4.1 37.1 ± 4.1
Reptile+LoRA 26.6 ± 5.8 27.7 ± 5.3 28.4 ± 5.0 27.8 ± 5.9

E.2 Language Experiments

We use the ConvAI2 [23] dataset for the language tasks. ConvAI2 comprises conversations between
two personas, where each persona is associated with a list of facts that informs their responses. We
model learning the dialogue continuations of each persona as a different task. For each continuation
we are given 20 candidate continuations, with one option being the correct continuation.

We retrain starting from the RoBERTa-base model [22] along with the RoBERTa tokenizer. We add a
sequence classification head and use cross-entropy loss to predict whether a given continuation is in
fact the correct response. We label the incorrect continuations as class 0 and the correct continuation
as class 1 for training, and to perform inference we select the continuation with the highest predicted
probability of being from class 1. We retrain on the ten tasks (personas) with the most data, and
fine-tune on the next ten tasks (personas) with the most data. We perform 5 runs for each experiment
(both retraining and fine-tuning) and report the means and the standard errors of the accuracies of the
fine-tuned model on the validation sets of the fine-tuning tasks. During retraining, we save the model
from the epoch which demonstrates the best average performance on the validation samples for the
training tasks. We then fine-tune this retrained model and report the test task accuracies from the last
fine-tuning epoch.

The hyperparameters we used are listed below in Tables 15 and 16.

Table 15: Retraining Hyperparameters for language experiments
Hyperparameter Standard Retraining LoRA-ML Last-Layer-ML Reptile

Learning Rate 5 · 10−5 5 · 10−5 5 · 10−5 5 · 10−5

Learning Rate Schedule Linear Linear Linear Linear
Batch Size 8 8 8 8

Epochs 10 10 10 10
Inner Epochs N/A N/A N/A 20

Optimizer AdamW AdamW AdamW AdamW
LoRA Rank N/A 8 N/A N/A

LoRA Dropout N/A 0.1 N/A N/A
LoRA Alpha N/A 16 N/A N/A

Outer Learning Rate N/A N/A N/A 10−4

E.3 Asset Information

We use the CIFAR-10 [21] and ConvAI2 [23] datasets in our experiments. CIFAR-10 is publicly
available but does not specify an explicit license. ConvAI2 is distributed under the Creative Commons
Attribution 4.0 International (CC BY 4.0) license. We also use the MLP-Mixer [35] and RoBERTa-
Base [22] model architectures, including the pretrained weights for RoBERTa. The official MLP-

31

Table 16: Fine-Tuning Hyperparameters for language experiments
Hyperparameter LoRA Fine-Tuning Last-Layer Fine-tuning

Learning Rate 10−4 10−4

Learning Rate Schedule Linear Linear
Batch Size 8 8

Epochs 10 10
Optimizer AdamW AdamW

LoRA Rank 8 N/A
LoRA Dropout .1 N/A
LoRA Alpha 16 N/A

Mixer implementation is licensed under the Apache License 2.0, while RoBERTa-Base, as accessed
via Hugging Face, is licensed under the MIT License.

F Theory Notes

F.1 Non-Uniqueness of Global Min for T = 2

Consider T = 2, k = 1, d = 2, A∗ = 0, and u∗
t = et for t = 1, 2, where et is the tth standard

basis vector. Clearly the ground truth perturbations u∗
i are orthonormal and thus linearly independent.

The set of global minima of L∗ are (A,U) such that A = 1
T

∑T
t=1

(
u∗
tu

∗
t
⊤ − utu

⊤
t

)
and utu

⊤
t −

u∗
tu

∗
t
⊤− 1

T

∑T
s=1

(
usu

⊤
s − u∗

su
∗
s
⊤
)
= 0. It is not hard to see that a global minimum follows from

any set values of u1,u2 such that u1u
⊤
1 − u2u

⊤
2 =

[
1 0
0 −1

]
. When properly parameterized, this

system of equations defines a hyperbola where each point corresponds to a global minimum of L∗.

F.2 Spurious Local Minima

We observe that for T ≥ 3, for certain tasks U∗ = (U∗
1 ,U

∗
2 ,U

∗
3), it is possible to find points U

that are local minima, but not global minima. To find these points, we sample true tasks U∗ from a
normal distribution and use a numerical solver to find zeros of the gradient of the reduced loss

L̂(U) =

T∑
t=1

∥∥∥∥∥UtU
⊤
t −U∗

t U
∗
t
⊤ − 1

T

T∑
s=1

(UsU
⊤
s −U∗

sU
∗
s
⊤)

∥∥∥∥∥
2

F

.

Through the Schur complement argument used to prove Theorem 4, we can see that L̂ has a spurious
local minimum only if L has a spurious local minimum.

Typically, these zeros are close to the global minimum. Occasionally, it is possible to find a point Û
with gradients close to 0 and with positive definite Hessians. We then confirm that these are close to
the spurious local minimum through the following argument.

Consider the function
r(U) = vec(U − Û)⊤vec(∇L̂(U)).

Clearly, there is a minimum of L̂ in the δ-ball of Û if r(U) > 0 for all U on the boundary of the
δ-ball. As r is continuous, if for some small enough ϵ, γ > 0 if r(U) > γ > 0 for all U on the ϵ-net
of the boundary of the δ-ball, then there exists a spurious local minimum in the δ-ball around Û .
Numerically, such points and ϵ, δ, and γ can be found which would imply that spurious local minima
exist, barring any errors due to numerical computation. To confirm, we run gradient descent from this
point and observe that the loss stays constant in Figure 12

32

Figure 12: Loss does not decrease near these spurious local minima

G Example Pseudocode for Minimizing (5)

Algorithm 1 Meta-Adapter Training

1: Input: Tasks Tt, t ∈ [T], learning rate η, number of epochs Ne, batches per epoch Nb

2: Initialize: Model parameters W0,θ
(t)
0 for all t = 1, . . . , T

3: for epoch e = 1 to Ne do
4: for b = 1, . . . , Nb do
5: for t = 1, . . . , T do
6: Load next batch βt,b from Ti
7: Compute gradient g(t) = ∇W ,θ(t)

(∑
(x,y)∈βt,b

L(
(
ΦFT

(
x ;W ,θ(t)

)
,y
))

8: Update adapter parameters: θ(t)
e+1 ← θ

(t)
e − ηegθ(t)

9: end for
10: Update base parameters: We+1 ←We − ηe

∑T
t=1 g

(t)
W

11: end for
12: end for

33

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims focus on theoretical guarantees for meta-learning infused
with LoRA on linear models. We explicitly state our contributions, as well as their scope
relating to LoRA adaptations on linear models, in both the abstract and the introduction.
Further, our claims that PEFT-based meta-learning during retraining improves performance
over standard retraining is supported through our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: For all results, we state the scope in which they apply. Our theory applies to
linear models using LoRA fine-tuning, and each theoretical statement only applies within
our stated assumptions. In the conclusion, we mention future work which includes extending
our analysis to more complex model classes and different kinds of PEFT methods.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

34

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For all of our theoretical statements, we state the assumptions along with the
result statements. The proofs are in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all training details in the main body and in Appendices D and E.
We further release all code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

35

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release all code, and we use the publicly available datasets CIFAR-10 and
ConvAI2.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We explain the experimental methodologies in the paper body along with key
hyperparameter choices, like the LoRA rank. The full experimental details are in Appendices
D and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Each set of results is accompanied with a measure of uncertainty. For the
synthetic data experiments, we plot average results along with a shaded region showing the
full range of values for each setting. For the real data experiments, we report mean results
along with standard errors across trials.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These are reported in Appendices D and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms to each criterion.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

37

https://neurips.cc/public/EthicsGuidelines

Justification: This work focuses on the theoretical understanding of model preparation
for adaptation using parameter-efficient fine-tuning methods such as LoRA. It does not
introduce new models, datasets, or applications with direct societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Each dataset and model architecture we use is properly cited in the main paper
body, and the license information is included in the appendices.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

38

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our code which includes documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use experiments of this kind.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use experiments with human subjects.

Guidelines:

39

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs for any original or core component of this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work

	Retraining and Fine-Tuning Schemes
	Standard Retraining Then Fine-Tuning
	PEFT-Based Meta-Learning

	Main Results
	Negative Results for Standard Retraining then Fine-Tuning
	Results for LoRA-Meta-Learning
	Landscape of Global Minima of
	Algorithms for Minimizing

	Experiments
	Conclusion
	Related Work on LoRA-Style PEFT
	Proofs
	Proof of Theorem 1
	Proof of Propositions 1, 2
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Derivation of Equation

	Limitations of Standard Retraining for Asymmetric Adapters
	Synthetic Experiments
	Linear Model
	Shallow Network

	Real Data Experiments
	Vision Experiments
	Language Experiments
	Asset Information

	Theory Notes
	Non-Uniqueness of Global Min for T=2
	Spurious Local Minima

	Example Pseudocode for Minimizing

