On the Expressive Power of Tree-Structured Probabilistic Circuits

Anonymous Authors'

Abstract

Probabilistic circuits (PCs) have emerged as a
powerful framework to compactly represent prob-
ability distributions for efficient and exact proba-
bilistic inference. It has been shown that PCs with
a general directed acyclic graph (DAG) structure
can be understood as a mixture of exponentially
(in its height) many components, each of which is
a product distribution over univariate marginals.
However, existing structure learning algorithms
for PCs often generate tree-structured circuits or
use tree-structured circuits as intermediate steps
to compress them into DAG-structured circuits.
This leads to the intriguing question of whether
there exists an exponential gap between DAGs
and trees for the PC structure. In this paper, we
provide a negative answer to this conjecture by
proving that, for n variables, there exists a sub-
exponential upper bound 7°(°8™) on the size of
an equivalent tree computing the same probability
distribution. On the other hand, we also show
that given a depth restriction on the tree, there is
a super-polynomial separation between tree and
DAG-structured PCs. Our work takes an impor-
tant step towards understanding the expressive
power of tree-structured PCs, and our techniques
may be of independent interest in the study of
structure learning algorithms for PCs.

1. Introduction

Probabilistic circuits (PCs) (Choi et al., 2020; Sanchez-
Cauce et al., 2021), also commonly known as sum prod-
uct networks (SPNs) (Poon and Domingos, 2011), are a
type of deep graphical model that allow exact probabilis-
tic inference efficiently in linear time with respect to the
size of the circuit. Like other deep models, the parame-
ters of a PC can be learned from data samples (Zhao et al.,

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2024. Do not distribute.

2016b). Because of these desirable properties, they have
been increasingly applied in various contexts, including
generative modeling (Zhang et al., 2021), image process-
ing (Wang and Wang, 2016; Amer and Todorovic, 2015),
robotics (Sguerra and Cozman, 2016), planning (Prono-
bis et al., 2017) and sequential data including both textual
and audio signals (Peharz et al., 2014; Cheng et al., 2014).
Compared with deep neural networks, the sum and product
nodes in PCs admit clear probabilistic interpretation (Zhao
et al., 2015) of marginalization and context-specific statisti-
cal independence (Boutilier et al., 2013), which opens the
venue of designing efficient parameter learning algorithms
for PCs, including the expectation-maximization (EM) al-
gorithm (Gens and Domingos, 2012), the convex-concave
procedure (CCCP) (Zhao et al., 2016b), and the variational
EM algorithm (Zhao et al., 2016a).

Perhaps one of the most important properties of PCs is that
they can be understood as a mixture of exponentially (in
its height) many components, each of which is a product
distribution over univariate marginals (Zhao et al., 2016b).
Intuitively, each sum node in PC can be viewed as a hid-
den variable that encodes a mixture model (Zhao et al.,
2015) and thus a hierarchy of sum nodes corresponds to an
exponential number of components. This probabilistic inter-
pretation of PCs has led to a number of interesting structure
learning algorithms (Gens and Pedro, 2013; Dennis and Ven-
tura, 2012; Peharz et al., 2013; Rooshenas and Lowd, 2014;
Adel et al., 2015; Lee et al., 2013). However, almost all
of the existing structure learning algorithms for PCs output
tree-structured circuits, or use tree-structured circuits as in-
termediates to compress them into DAG-structured circuits.
Because of the restricted structure of trees, such algorithms
do not fully exploit the expressive power of PCs with general
DAG structures, and often output tree-structured PCs with
exceedingly large sizes (Gens and Pedro, 2013). Yet, from a
theoretical perspective, it remains open whether there truly
exists an exponential gap between DAGs and trees for the
PC structure. Being able to answer this question is important
for understanding the expressive power of tree-structured
PCs, and may also lead to new insights in structure learning
algorithms for PCs.

1.1. Our Contributions

In this work we attempt to answer the question above by
leveraging recent results in complexity theory (Valiant et al.,
1983; Raz and Yehudayoff, 2008; Fournier et al., 2023). Our
contributions are two-folds: an upper and lower bound for
the gap between tree and DAG-structured PCs. In what
follows we will first briefly state our main results and then
introduce the necessary concepts and tools to tackle this
problem.

An Upper Bound In Section 3, inspired by earlier works
in Valiant et al. (1983) and Raz and Yehudayoff (2008), we
show that, for a network polynomial that can be computed
efficiently with a DAG-structured PC, there always exists
a sub-exponentially-sized tree-structured PC to represent it.
An informal version of our main result for this part is stated
below.

Theorem 1.1 (Informal). Given a network polynomial of
n variables, if this polynomial can be computed efficiently
by a PC of size poly(n), then there exists an equivalent
tree-structured PC of depth O(logn) and of size n®1°8™)
that computes the same network polynomial.

We prove this result by adapting the proof in Raz and Yehu-
dayoff (2008). Our construction involves two phases: Phase
one applies the notion of partial derivatives for general
arithmetic circuits to represent intermediate network poly-
nomials alternatively, and construct another DAG-structured
PC using those alternative representations; we will provide
fine-grained analysis on the new DAG, such that its depth
is O(logn) and its size is still poly(n). Phase two applies
the standard duplicating strategy for all nodes with more
than one parent to convert the new DAG into a tree. This
strategy will lead to an exponential blowup for an arbitrary
DAG with depth D, since the size of the constructed tree
will be nPP), However, note that the DAG constructed in
the first phase has depth O(log n). Combining it with the
duplicating strategy, we will be able to construct an equiva-
lent tree-structured PC of size upper bounded by n©(°&™)
as desired.

The original algorithm in Raz and Yehudayoff (2008) only
reduces the depth to O(log® n) due to their restriction on
the graph of using nodes with at most two children. This
restriction is not necessary for PCs, and by avoiding it,
we show that the depth can be further reduced to O(log n)
with a slight modification of the original proof in Raz and
Yehudayoff (2008).

A Lower Bound In Section 4, we show that under a re-
striction on the depth of the trees, there exists a network
polynomial that can be computed efficiently with a DAG-
structured PC, but if a tree-structured PC computes it, then
the tree must have a super-polynomial size. The following

informal theorem states our main result for this part, which
will be formally addressed in Section 4.

Theorem 1.2 (Informal). Given n random variables, there
exists a network polynomial on those n variables, such that
it can be efficiently computed by a PC of size O(nlogn)
and depth O(logn), but any tree-structured PC with depth

o(logn) computing this polynomial must have size at least
ne),

Our result is obtained by finding a reduction to Fournier et al.
(2023). We first fix an integer k and a network polynomial
of degree n = 22¢. To show that the polynomial is not
intrinsically difficult to represent, i.e., the minimum circuit
representing it shall be efficient, we explicitly construct a
PC of depth O(logn) and size O(nlogn). Next, suppose
via a black box, we have a minimum tree-structured PC of
depth o(log n) computing this polynomial. After removing
some leaves from that minimum tree but maintaining its
depth, we recover a regular arithmetic tree that computes
a network polynomial of degree \/n = 2¥. Moreover, as
shown in (Fournier et al., 2023), if an arithmetic tree with
depth o(log n) computes this low-degree polynomial, then
the size of the tree must be at least n*(). Our operations
on the minimum tree PC must reduce its size; therefore, the
original tree must have a larger size than n*(), and this fact
concludes our proof.

1.2. More Related Work

There is an extensive literature on expressive efficiency of
network structures for PCs. The investigation on PCs has
started as early as in Delalleau and Bengio (2011) and later
in Martens and Medabalimi (2014). In neural networks
and variants, this topic, along with the relationship between
expressive efficiency and depth/width, has attracted many
interests as well (Telgarsky, 2016; Nguyen et al., 2018;
Malach and Shalev-Shwartz, 2019; Kileel et al., 2019; Sun
et al., 2016; Safran and Shamir, 2017; Mhaskar et al., 2017;
Eldan and Shamir, 2016). In particular, Martens and Med-
abalimi (2014, Theorem 34) has shown that there exists a
network polynomial with a super-polynomial minimum tree
expression, but it is unclear whether the same polynomial
can be computed by a polynomial-sized DAG. Our work
provides a positive answer to this question. For arbitrary
network polynomials, finding a minimum DAG-structured
PC is reducible to a special case of the minimum circuit
size problem for arithmetic circuits, which remains to be a
longstanding open problem in circuit complexity.

2. Preliminaries

We first introduce the setup of probabilistic circuits and
relevant notation used in this paper.

w fw = 8u)’fv fw’ = awfv w’

x1 T T2 T2

Figure 1. Partial derivatives of sum nodes.

Notation A rooted directed acyclic (DAG) graph consists
a set of nodes and directed edges. For such an edge u — v,
we say that u is a parent of v, and v is a child of u. We
use Ch(u) to denote the set of children of the node u. We
say there is a directed path from a to b if there is an edge
a — b or there are nodes uq, - - - , ug and edges a — u; —
-+ — ug — b; in this case, we say that a is an ancestor of
b and that b is a descendant of a. If two vertices v and w are
connected via a directed path, we call the number of edges
in a shortest path between them as the distance between
them, denoted by dist(v,w). A directed graph is rooted if
one and only one of its nodes has no incoming edges. A
leaf in a DAG is a node without outgoing edges. A cycle in
a directed graph is a directed path from a node to itself, and
a directed graph without directed cycles is a DAG. For two
disjoint sets A and B, we will denote their disjoint union by
AU B to emphasize their disjointedness.

Clearly, each directed graph has an underlying undirected
graph obtained by removing arrows on all edges. Although
by definition, a DAG cannot have a directed cycle, but its
underlying undirected graph may have an undirected cycle.
If the underlying undirected graph of a DAG is also acyclic,
then that DAG is called a directed tree. Every node in a
directed tree has at most one parent. If two nodes share a
parent, one is said to be a sibling of the other.

Probabilistic Circuits A probabilistic circuit (PC) is a
probabilistic model based on a rooted DAG. Without loss of
generality, in our work, we focus on PCs over Boolean
random variables. We first introduce the notion of net-
work polynomial. For each Boolean variable X, we use
the corresponding lower case alphabet x to denote the in-
dicator of X, which is either O or 1; for the same variable,
T represents the negation. In many cases, we use 1 : IV
to denote the index set [IV]. A PC over Boolean variables
{X1, -, X} computes a polynomial over the set of indi-
cators {x1, - Xy, T1, - ,Tp}; we will refer this polyno-
mial as the network polynomial. In the network, the leaves

are indicators of variables, and all other nodes are either
sum or product nodes; a node that is not a leaf may also
be called an internal node. Each internal node computes a
polynomial already: a sum node computes a weighted sum
of the polynomials computed by its children, and a product
node computes the product of the polynomials computed by
its children. A PC is said to be normalized if the weights
of the outgoing edges from a sum node sum to one. It was
shown in Zhao et al. (2015) that, every unnormalized PC
can be transformed into an equivalent normalized PC within
linear time.

To represent valid probability distributions, a PC must sat-
isfy two structural properties: decomposability and smooth-
ness. To define them, we need to define the scope of a node,
which is the set of variables whose indicators are descen-
dants of that node. For a node v, if the indicator x of the
variable X is one of descendants of v, then X € scope(v);
more generally, scope(v) = U, ecn(w) Scope(v”).

Definition 2.1 (Decomposability and Smoothness). A PC
is decomposable if and only if for every product node v
and two of its children v; and ve, we have scope(vy) N
scope(va) = 0. A PC is smooth if and only if for each sum
node, all of its children have the same scope.

In this paper we restrict our attention to PCs that are both
decomposable and smooth, since otherwise we can always
transform a PC into an equivalent one that is both decom-
posable and smooth in quadratic time (Zhao et al., 2015).
The degree of a monomial is the sum of the exponents of all
its variables, and the degree of a polynomial f, denoted by
deg(f) is the highest degree among its constituent mono-
mials. A polynomial is said to be homogeneous if all of
its monomials have the same degree. A PC is said to be
homogeneous if all of its sum and product nodes compute
a homogeneous polynomial. Later, we will show that de-
composability and smoothness imply homogeneity, and vice
versa with mild conditions. For a node v in a PC, we use
deg(v) to denote deg(f,). As emphasized earlier, this paper
investigates the quantitative relationship between a DAG
and a tree, which are both PCs and represent the same prob-
ability distribution. To make the terminology uncluttered,
we will call the former a DAG-structured PC, and the latter
a tree-structured PC. If a tree-structured PC computes the
same network polynomial as a DAG-structured PC, then the
tree-structured PC is said to be an equivalent tree-structured
PC with respect to that DAG-structured PC.

Unless specified otherwise, we will use ® to denote the
entire PC in consideration and f the network polynomial
computed by the root. For each node v, the sub-network
rooted at v is denoted by ®,, and the polynomial computed
by v is f,. The set of variables in f,, is X,,, which is a subset
of {X1, -, X,}. The size of the network ®, denoted by
|®|, is the number of nodes and edges in the network. The

depth of ®, denoted by D(®), is its maximum length of a
directed path.

Partial Derivatives In the process of proving the upper
bound, a key notion named partial derivative is frequently
used and formally defined below.

Definition 2.2 (Partial Derivative). For two nodes v and w
in a network ®, the partial derivative of the polynomial f,
with respect to the node w, denoted by J,, f, is constructed
by the following steps:

1. Substitute the polynomial f,, by a new variable y.

2. Compute the polynomial computed by v with the vari-
able y; denote the new polynomial by f,. Due to
decomposability, f, is linear in y.

3. Define the partial derivative 9y, f, = %—J;“.

Observe that the chain rule in calculus also holds for our
notion here, and therefore leads to the two following facts.

e Let v be a sum node with children v, and vs, and the
edges have weight a; and as, respectively, then by
definition f, = a1 f,, + a2 fy,. For any other node w,
the partial derivative is Oy, f,, = a1 - Oy fo, + a2 Oy fu,-

 Similarly, let v be a product node with children v; and
ve, then f, = f,, - fu,. For any other node w, we have

8wfv = f’Ul . awfm + fv2 . awfvl'

The partial derivative has been proven to be a powerful tool
in the field of complexity theory and combinatorial geome-
try (Guth and Katz, 2010; Kaplan et al., 2010). Readers are
welcome to refer Chen et al. (2011) for more details and ex-
tensive background. An illustration is provided in Figure 1.

Arithmetic Circuits An arithmetic circuit, aka algebraic
circuit, is a generalization of a probabilistic circuit. Such a
circuit shares the same structure as a PC and also computes
a network polynomial. If an arithmetic/algebraic circuit
is a directed tree, then we call it an arithmetic/algebraic
formula. In the proof of the lower bound, the notion of
monotonicity of a formula is essential, whose definition
relies on the concept parse tree.

Definition 2.3 (Parse Tree). A parse tree of a formula ® is
a sub-formula of ® which corresponds to a monomial of f,
the network polynomial computed by ®. Parse trees of @ is
defined inductively by the following process:

e If the root of ® is a sum node, a parse tree of ® is
obtained by taking a parse tree of one of its children
together with the edge between the root and that child.

* If the root of ® is a product node, a parse tree of P is
obtained by taking a parse tree of each of its children
together with all outgoing edges from the root.

* The only parse tree of a leaf is itself.

Definition 2.4 (Monotonicity). An algebraic formula is
monotone if the monomial computed by any of its parse
trees has a non-negative coefficient in the network polyno-
mial.

3. A Universal Upper Bound

In this section, we present our first main result, which pro-
vides a universal upper bound on the size of an equivalent
tree versus a DAG-structured PC.

Theorem 3.1. For any given DAG-structured PC named ®
with V nodes and over n variables, there exists an equiva-
lent tree PC with n®(1°¢™) nodes and of depth O(log n).

As discussed earlier, our constructive proof heavily relies
on deeper properties of partial derivatives, and applying
them to represent sub-network polynomials. Our strategy,
inspired by Raz and Yehudayoff (2008), will be efficient if
the circuit being considered is a binary circuit, i.e. every
node has at most two children. While such structure is rare
for natural networks, we make the following observation,
that an arbitrary PC can always be transformed to a binary
one with a polynomial increase in size and depth. The proof
and an illustrating figure will appear in Appendix A.

Lemma 3.2. Given a DAG-structured PC ®, we may trans-
Sorm it into another DAG ®' that computes the same network
polynomial and every node in ® has at most two children.
Moreover, the differences between the sizes and depths of
@' and ® are only in polynomial size.

Therefore, for the remaining discussion in this section, we
will assume without loss of generality, that a given PC is
binary. During the conversion process towards a binary
circuit, some intermediate nodes may be created to ensure
no sum node is connected to another sum node and no
product node is connected to another product node. The
set of those intermediate nodes is denoted by @1, and will
be present in our later discussions. Next, we present a
key property of partial derivatives, which holds for any
(including non-binary) PC.

Lemma 3.3. Given a PC ®, if v and w are two nodes
in ® such that O, f, # 0, then Oy f, is a homogeneous
polynomial over the set of variables X, \ X, of degree

deg(v) — deg(w).

The next lemma tells that, given a product node, its partial
derivative with another node with a restriction on degree
can be expressed using its children.

Lemma 3.4. Let v be a product node and w be any other
node in a PC ®, and deg(v) < 2deg(w). The children
of v are v and vy such that deg(v1) > deg(ve). Then

8wfv = fvz : awfvl'

To construct the sub-exponential tree, the key is to compress
many nodes with partial derivatives. Fundamentally, we
will use the following results to show that such compression
works because each node, and each partial derivative of any
node with any other, can be more concisely represented
using partial derivatives. The key question is to find eligible
nodes, so that taking partial derivatives with respect to them
will lead to compact expressions. Inspired by the observa-
tion in Raz and Yehudayoff (2008), we define the following
set G,,,, which will be critical in our later process.

Definition 3.5. Given a PC ® and an integer m € N,
the set G,, is the collection of product nodes ¢t in
with children ¢; and ¢ such that m < deg(t) and
max {deg(t1),deg(t2)} < m.

With this set, we may choose a set of nodes as variables for
partial derivatives for any node in a PC, and the following
two lemmas respectively illustrate: 1) the compact expres-
sion of the sub-network polynomial f, for any node v in a
PC; 2) the compact expression of 0,, f,, given two nodes v
and w with a degree restriction. It is easy to observe that
(I>1 N Gm - @

We now present two key lemmas that will be central to the
proof for the upper bound. Specifically, they spell out the
alternative representations for the network polynomial of
any node, and the partial derivative of any pair of nodes.
Lemma 3.6 ((Raz and Yehudayoff, 2008)). Let m € N
and a node v such that m < deg(v) < 2m, then f, =
ZteGm ft : atfv~

Lemma 3.7 ((Raz and Yehudayoff, 2008)). Let m € N, and
v and w be two nodes such that deg(w) < m < deg(v) <

2d€g(w), then Oy, f,, = ZtEGm Ow ft - O fo.

3.1. Construction of ¥, another DAG-structured PC
with restriction on depth

Given a binary DAG-structured PC ® with n variables and
poly(n) nodes, we explicitly construct a tree PC with size
n0°g") and depth O (logn). Specifically, the construction
takes two main steps:

1. Transform ® to another DAG-structured PC ¥ with
size poly(n) and depth O(logn).

2. Apply a simple duplicating strategy to further convert
U to a tree with size n?(1°8™) and the same depth of
v,

We will later show that step two can be simply done by a
standard duplicating operation. Step one, however, needs

Algorithm 1 Construction of ¥
Input: The original DAG-structured PC ® with n vari-
ables of size poly(n), and the set of its nodes V.
Output: Another DAG-structured PC ¥ of size poly(n)
and depth O(logn).

i 0,V 0; P« 0.
fori =0,1, [logn] — 1do
Fix m; + 2%
Find all nodes v such that 2¢ < deg(v) < 2¢*!, and
place them in V.
Find all pairs of nodes (u,w) such that 2! < deg(u) —
deg(w) < 2*1 and deg(u) < 2deg(w), and place
them in P.
Fix mgy « 2¢ + deg(w).
for every v € V do
Find all nodes in G,,,, and compute f, using Equa-
tion 6.
end for
for every pair of nodes (u,w) € P do
Find all nodes in G,,, and compute 0, f, using
Equation 9.
end for
Ve 0;P 0.
end for

much more careful operations. Each iteration, starting from
1 = 0, again needs two steps:

1. Compute f, for each node v such that 2i-1 <
deg(v) < 2! using the compact expression illustrated
earlier. We will show that, computing one such poly-
nomial adds poly(n) nodes and increases the depth by
at most two on V. This new node representing f, will
be a node in ¥, denoted by v'.

2. Compute all partial derivatives 0, f,, for two non-
variable nodes v and w in ®, such that u is an an-
cestor of w and 2! < deg(u) — deg(w) < 2¢ and
deg(u) < 2deg(w). Like those new nodes represent-
ing sub-network polynomials from &, this new node
representing a partial derivative will also be a node
in ¥, denoted by (u,w). We will show that comput-
ing a partial derivative with respect to each pair adds
poly(n) nodes and increases the depth by at most two
on V.

The process is summarized in Algorithm 1. Before pre-
senting the construction, we first confirm the quantitative
information of W, the output of the algorithm. The first
observation is the number of iterations: The degree of the
root of @ is n, so at most logn iterations are needed for
the entire process. Each iteration only increases the size of
the updated circuit by poly(n) and the depth by a constant

number. Consequently, the final form of ¥ has size poly(n)
and depth O(logn).

We now provide an inductive construction of ¥ starting
from ¢ = 0. After each step, it is necessary to verify the
validity of the updated W. Although decomposability is
easy to verify, smoothness is less straightforward. To tackle
this, we argue that the final state of ¥ is homogeneous, i.e.
every node in ¥ computes a homogeneous polynomial, and
consequently ¥ is smooth due to the following lemma.

Lemma 3.8. If a decomposable PC contains n variables
and computes a polynomial of degree n, then it is homoge-
neous if and only if it is smooth.

Iteration zero (¢ = 0): During this iteration, for the first
step, we only need to consider nodes v such that 0.5 <
deg(v) < 1; the degree of any node must be an integer,
so we must have deg(v) = 1, i.e. v represents an affine
polynomial. Without loss of generality, we may assume
all such affine nodes are sum nodes with strictly more than
one child. Indeed, if a product node represents an affine
polynomial, then it must only have exactly one child, which
must be a leaf node; in this case, we may remove this product
node and connect that leaf to the parents of the original
product node. Similarly, if a sum node represents an affine
polynomial and has exactly one child, then that child must
also be a leaf node, hence we may again remove the sum
node and connect that leaf to the parents of the original
sum node. Due to smoothness, such an affine node v must
represent a polynomial in the form ax + (1 — a)Z, where z
is the indicator of a variable, and 0 < a < 1. Therefore, the
depth of each sub-network ®, is only one. By duplicating
all such affine nodes onto ¥, we add at most poly(n) nodes
and increase the depth by one only.

Next, for step two, we only need to consider pairs of nodes
(u, w) such that deg(u) — deg(w) < 1. Thanks to Lemma
3.3, we know that 0,,, f,, is affine. For each pair satisfying the
restriction, we create a sum node (u, w) whose sub-network
@,) has size three and depth one. By moving all such
sub-networks to W for each eligible pair, we again add at
most poly(n) nodes and increase the depth by one to ¥.

Iteration i + 1: Suppose, after all previous iterations, we
have already computed all sub-network polynomials f, for
nodes v such that deg(v) < 2t and all partial derivatives
Ow [for pairs of nodes (u, w) such that deg(u) —deg(w) <
2" and deg(u) < 2deg(w). Like the base case, step i + 1
takes two steps: The first step computes f, for eligible
nodes, and the second step concerns partial derivatives for
eligible pairs of nodes. Because the analysis of the two steps
during this iteration is highly involved, we will discussion
the construction in details in Appendix A.7.

We conclude the proof of Theorem 3.1 in this section by
transforming the newly constructed W into a sub-exponential
tree. The transformation is a simple application of the naive

Algorithm 2 Transforming a rooted DAG to a tree
Input: A rooted DAG of size S and depth D, and the set
of its nodes V.
Output: A tree of size O(SP) and depth D.

for every node v in V do
if InDeg(v) > 1 then
Duplicate the tree rooted at v for InDeg(v) —1 times.
Construct an outgoing edge from each parent of v to
itself.
end if
end for

duplication strategy, which will be illustrated below. In
summary, given a poly(n)-sized DAG, the size of the trans-
formed tree directly depends on the depth of the original
DAG. The process of the duplication is briefly summarized
in Algorithm 2, and the detailed process of the entire trans-
formation from the original ® to the final tree is described
in Algorithm 5.

Duplication Strategy Given a DAG SPN of size V' and
depth D, a natural algorithm to a tree is that, if a node v has
k > 1 parents, then duplicate the sub-tree rooted at v for
k —1 times, and connect each duplicated sub-tree to a parent
of v. Indeed this algorithm generates a tree computing the
same function as the original DAG does, but in the worst
case we have to duplicate the entire graph O(V) times and
such iterative duplication may be executed for every layer
from the first to layer D. Therefore, in the worst case, the
outcoming tree has size O(NP).

The construction of ¥ shows that its size is O(n?) and depth
is O(log n). Using the naive duplication, we obtain that the
size of the final tree is n©(1°87),

4. A Conditional Lower Bound

In this section, we present our second main result, which
provides a lower bound on the tree complexity of a net-
work polynomial given a restriction on the depth of the
tree. Obtaining a lower bound for the problem of circuit
complexity is in general a more difficult problem than ob-
taining an upper bound because one cannot achieve this
goal by showing the failure of a single algorithm. Instead,
one must construct a specific polynomial, and confirm that
no algorithm can produce an equivalent tree of size lower
than the desired lower bound. However, thanks to some
recent results in circuit complexity theory, such a separation
is ensured if the tree PC has a bounded depth. The main
result in this section is presented below, stating that, there is
a concrete network polynomial that cannot be represented
by a polynomial-sized tree-structured PC if the depth of the
tree is restricted.

Theorem 4.1. Given an integer k > 1 and
n = 2%F there exists a network polynomial P €
Rlx1, - s Tn,T1, - ,Tn) of degree n = 22*, such that
any probabilistic tree of depth o(logn) = o(k) computing
P must have size n*1).

Note that if the polynomial P is innately difficult to be
represented by PCs, i.e., if it cannot even be represented
efficiently by DAG-structured PCs, then separation is not
shown. To show separation, P should be efficiently com-
puted by a DAG-structured PC, but any tree-structured PC
representing P must have a strictly larger size. Our next
construction, described with more details in Algorithm 3,
confirms a separation by constructing an efficient DAG-
structured PC P* that computes P. This PC has size
O(nlogn) and depth 2k = 2logn, where k is the inte-
ger given in Theorem 4.1. The next proposition confirms
the validity of P*, and the proof is in Appendix B.

Proposition 4.2. The tree PC P* is decomposable and
smooth.

It is easy to check that P* has the correct size and depth as
described earlier. Before adding leaf nodes, the algorithm
in total constructs 327 27 = 22k+1 _ 1 = 25 — 1 nodes.
Finally, observe that during the construction of leaf nodes,
each negation indicator is added exactly & times: At a layer
containing only product nodes, if a negation indicator is
added to a product node v at this layer, then it will next be
added to the sibling of the grandparent of v. Because each
product node has exactly one sibling, the negation indicator
for a random variable is duplicated exactly %k times, and
finally the total size is 2n — 14 kn = O(kn) = O(nlogn).
The depth O(k) is also apparent from the algorithm. We
therefore conclude that P can be efficiently computed by a
polynomial sized tree PC for an unrestricted depth.

However, the efficiency would be less optimal if we restrict
the depth to o(k). To show this, we design a reduction from
our problem for PCs to a well-studied problem on arithmetic
circuits. Our proof essentially argues that, for any minimum-
sized tree-structured PC that computes P, we can obtain its
sub-tree that computes a polynomial, and that polynomial
has been recently proven to not be able to be represented by
a polynomial-sized tree-structured PC. This recent result is
stated below.

Theorem 4.3 ((Fournier et al., 2023)). Letn and d = d(n)
be growing parameters such that d(n) < \/n. Then there
is a monotone algebraic formula F of size at most n and
depth O(log d) computing a polynomial Q € Flxy, -, x,]
of degree at most d such that any monotone formula F' of
depth o(log d) computing Q must have size n*(").

The proof of the lower bound for PCs in Theorem 4.1 is to
show that, for any II, a minimum tree-structured PC with
depth o(k) that computes P, the polynomial in the state-

Algorithm 3 Construction of P*, an efficient PC for P
without a depth constraint

22k

Input: A positive integer k, the number , a set

{21, -+, o2k, 1, -+ , Tozr } of 22K 1 indicators.
Output: A tree PC of size O(nlogn) and depth 2k =
2logn.

j < 0.

Place all non-negation indicators x1, - - - , X2« at the bot-
tom layer.

Label them as Lg 1, - , L o2».

fori=1,---,2logn do
if i is odd then
while j < 22~ do
Construct a product node labelled by L; (;/2)
and two outgoing edges from the new node to
Li—l,j—l and Li—l,j~
j—j+2
end while
for every odd integer ¢ = 1,3, --- ,22*~* — 1 do
Add the leaves representing negation indicators
{z,} for all z € scope(L; 4+1) as children of
Liq.
Add the leaves representing negation indicators
{z.} for all z € scope(L;,) as children of
Li,q+1-
end for
end if
if 7 is even then
while j < 22~ do
Construct a sum node labelled by L; (;/2) and two
outgoing edges from the new node to L;_1 ;1
and Li_17j.
j—j+2
end while
end if
end for

ment of Theorem 4.1, we can always obtain a smaller-sized
arithmetic formula II” with the same depth that computes
the polynomial () in the statement of Theorem 4.3. The
size of II is super-polynomial due to Theorem 4.3, and as
a result, the size of II cannot be smaller. In other words,
our proof involves a reduction from the PC problem to the
AC problem. Before introducing the reduction, we first
present the polynomial () in the statement of Theorem 4.3.
The original construction in Fournier et al. (2023) is for the
general class, but over here, we only present a specific case
with » = 2, which is sufficient for our purpose.

The Construction of the Polynomial) We denote the
polynomial Q by H*:2) which is defined over 22" variables

{26 0,7 €[2]F}. 1)

The polynomial H*+?) is recursively defined over interme-
diate polynomials H,, , for all (u,v) € [2]<% x [2]=F and
|u| = |v|. Specifically, if |u| = |v| = k, then Hy, ,, = Ty 05
otherwise, Hy ., = > _; Hy1,va Hu2,vq- The final polyno-
mial H(*2) is defined to be Hy y. Observe that the degree
of H*2) is 2% and it contains 22°~! monomials.

Given a minimum tree-structured PC II, which computes
P and is of depth o(k), we remove all of its leaves that
represent negation variables and call this pruned network
IT’; without leaves representing negation variables, IT' is
just a standard arithmetic formula. Clearly, |II'| < |TI|, and
the next proposition reveals the polynomial computed by
IT’, and its proof is in Appendix B.

Proposition 4.4. The arithmetic formula 1I' computes
H(:2),

Having all the necessary ingredients, we are now ready to
conclude this section by proving Theorem 4.1, the main
result of this section.

Proof of Theorem 4.1. The proof of Theorem 4.3 in
Fournier et al. (2023) uses the polynomial class H(*") as
the hard polynomial () in the statement, in particular, with
r=2,n =22 and d(n) = \/n = 2*. Note that the depth
of IT' is o(log d) = o(k), and the degree of H (%) is d = 2,
so the conditions in the statement of Theorem 4.1 are indeed
satisfied. Since IT’ is obtained from I by removing leaves,
we obtain the following inequality that concludes the proof:

I > |IT| > ne®). O

5. Conclusion

In this paper we have shown that given a network polyno-
mial with n variables that can be efficiently computed by
a DAG-structured PC, we can construct a tree PC with at
most sub-exponential size and is no deeper than O(log n).
On the flip side, we have also shown that there indeed exists
a polynomial that can be efficiently computed by a poly(n)-
sized PC without a depth restriction, but there is a super-
polynomial separation if we restrict the depth of the tree to
be o(logn). Our results make an important step towards
understanding the expressive power of tree-structured PCs
and show that an sub-exponential upper bound is possible.
However, the lower bound is still largely open, and we have
only shown a separation under a specific depth restriction.
One potential direction for the future work are discussed be-
low: although the upper bound n°(°8™) is sub-exponential,
it is still prohibitively large as n grows. The construction
outputs a tree of depth O(logn), which would be consid-
ered as a shallow tree. Is it possible to further reduce the
size of the tree, possibly in the cost of a larger depth?

References

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learn-
ing the structure of sum-product networks via an svd-
based algorithm. In Conference on Uncertainty in
Artificial Intelligence, 2015. URL https://api.
semanticscholar.org/CorpusID:15429402.

Mohamed R Amer and Sinisa Todorovic. Sum product
networks for activity recognition. /EEE transactions on
pattern analysis and machine intelligence, 38(4):800—
813, 2015.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and
Daphne Koller. Context-specific independence in
bayesian networks. arXiv preprint arXiv:1302.3562,
2013.

Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial deriva-
tives in arithmetic complexity and beyond. Found.
Trends Theor. Comput. Sci., 6(1-2):1-138, 2011. doi:
10.1561/0400000043. URL https://doi.org/10.
1561/0400000043.

Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong
Chieu, and Kian Ming A Chai. Language modeling with
sum-product networks. In Fifteenth Annual Conference
of the International Speech Communication Association,
2014.

Y Choi, Antonio Vergari, and Guy Van den Broeck. Prob-
abilistic circuits: A unifying framework for tractable
probabilistic models. UCLA. URL: http://starai. cs. ucla.
edu/papers/ProbCirc20. pdf, 2020.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep
sum-product networks. In Proceedings of the 24th Inter-
national Conference on Neural Information Processing
Systems, NIPS’ 11, page 666—-674, Red Hook, NY, USA,
2011. Curran Associates Inc. ISBN 9781618395993.

Aaron Dennis and Dan Ventura. Learning the archi-
tecture of sum-product networks using clustering on
variables. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.
cc/paper_files/paper/2012/file/
f33balb5effabcl0e873bf3842afb4d6ab6-Paper.
pdf.

Ronen Eldan and Ohad Shamir. The power of depth for
feedforward neural networks. In Conference on learning
theory, pages 907-940. PMLR, 2016.

Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth
Srinivasan, and Sébastien Tavenas. Towards optimal

https://api.semanticscholar.org/CorpusID:15429402
https://api.semanticscholar.org/CorpusID:15429402
https://doi.org/10.1561/0400000043
https://doi.org/10.1561/0400000043
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf

depth-reductions for algebraic formulas. In Proceed-
ings of the Conference on Proceedings of the 38th Com-
putational Complexity Conference, CCC *23, Dagstuhl,
DEU, 2023. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik. ISBN 9783959772822. doi: 10.4230/LIPIcs.
CCC.2023.28. URL https://doi.org/10.4230/
LIPIcs.CCC.2023.28.

Robert Gens and Pedro Domingos. Discriminative learning
of sum-product networks. Advances in Neural Informa-
tion Processing Systems, 25, 2012.

Robert Gens and Domingos Pedro. Learning the structure
of sum-product networks. In International conference on
machine learning, pages 873—-880. PMLR, 2013.

Larry Guth and Nets Hawk Katz. Algebraic meth-
ods in discrete analogs of the kakeya problem. Ad-
vances in Mathematics, 225(5):2828-2839, 2010. ISSN
0001-8708. doi: https://doi.org/10.1016/j.aim.2010.05.
015. URL https://www.sciencedirect.com/
science/article/pii/S0001870810002094.

Haim Kaplan, Micha Sharir, and Eugenii Shustin. On lines
and joints. Discrete and Computational Geometry, 44
(4):838-843, 2010. ISSN 0179-5376. doi: 10.1007/
s00454-010-9246-3. Funding Information: Work on
this paper has been partly supported by the Hermann
Minkowski-MINERVA Center for Geometry at Tel Aviv
University. Work by Micha Sharir was also supported
by NSF Grants CCF-05-14079 and CCF-08-30272, by
Grant 155/05 from the Israel Science Fund. and by Grant
2006/194 from the U.S.—Israeli Binational Science Foun-
dation. Work by Haim Kaplan was also supported by
Grant 975/06 from the Israel Science Fund, and by Grant
2006/204 from the U.S.—Israel Binational Science Foun-
dation.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expres-
sive power of deep polynomial neural networks. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Sang-Woo Lee, Min-Oh Heo, and Byoung-Tak Zhang. On-
line incremental structure learning of sum—product net-
works. volume 8227, pages 220-227, 11 2013. ISBN 978-
3-642-42041-2. doi: 10.1007/978-3-642-42042-9_28.

Eran Malach and Shai Shalev-Shwartz. Is deeper better
only when shallow is good? Curran Associates Inc., Red
Hook, NY, USA, 2019.

James Martens and Venkatesh Medabalimi. On the ex-
pressive efficiency of sum product networks. CoRR,
abs/1411.7717, 2014. URL http://arxiv.org/
abs/1411.7717.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio.
When and why are deep networks better than shallow
ones? In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 31, 2017.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias
Hein. Neural networks should be wide enough to
learn disconnected decision regions. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 3740-3749. PMLR, 10-15 Jul 2018.
URL https://proceedings.mlr.press/v80/
nguyenl8b.html.

Robert Peharz, Bernhard Geiger, and Franz Pernkopf.
Greedy part-wise learning of sum-product networks. vol-
ume 8189, 09 2013. ISBN 978-3-642-38708-1. doi:
10.1007/978-3-642-40991-2_39.

Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz
Pernkopf. Modeling speech with sum-product networks:
Application to bandwidth extension. In 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3699-3703. IEEE, 2014.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689-690, 2011. doi: 10.1109/ICCVW.
2011.6130310.

Andrzej Pronobis, Francesco Riccio, Rajesh PN Rao, et al.
Deep spatial affordance hierarchy: Spatial knowledge
representation for planning in large-scale environments.
In ICAPS 2017 Workshop on Planning and Robotics,
pages 1-9, 2017.

Ran Raz and Amir Yehudayoff. Balancing syntactically mul-
tilinear arithmetic circuits. Computational Complexity,
17:515-535, 2008.

Amirmohammad Rooshenas and Daniel Lowd. Learning
sum-product networks with direct and indirect variable
interactions. In Proceedings of the 31st International Con-
ference on International Conference on Machine Learn-
ing - Volume 32, ICML’ 14, page I-710-1-718. JMLR.org,
2014.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in
approximating natural functions with neural networks.

In International conference on machine learning, pages
2979-2987. PMLR, 2017.

Raquel Sénchez-Cauce, lago Paris, and Francisco Javier
Diez. Sum-product networks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(7):3821-3839, 2021.

https://doi.org/10.4230/LIPIcs.CCC.2023.28
https://doi.org/10.4230/LIPIcs.CCC.2023.28
https://www.sciencedirect.com/science/article/pii/S0001870810002094
https://www.sciencedirect.com/science/article/pii/S0001870810002094
http://arxiv.org/abs/1411.7717
http://arxiv.org/abs/1411.7717
https://proceedings.mlr.press/v80/nguyen18b.html
https://proceedings.mlr.press/v80/nguyen18b.html

Bruno Massoni Sguerra and Fabio G Cozman. Image clas-
sification using sum-product networks for autonomous
flight of micro aerial vehicles. In 2016 5th Brazilian Con-
ference on Intelligent Systems (BRACIS), pages 139-144.
IEEE, 2016.

Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and
Tie-Yan Liu. On the depth of deep neural networks: A
theoretical view. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

Matus Telgarsky. benefits of depth in neural networks. In
Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
editors, 29th Annual Conference on Learning The-
ory, volume 49 of Proceedings of Machine Learn-
ing Research, pages 1517-1539, Columbia University,
New York, New York, USA, 23-26 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v49/
telgarskyl6.html.

Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and
Charles Rackoff. Fast parallel computation of polynomi-
als using few processors. SIAM J. Comput., 12:641-644,

1983. URL https://api.semanticscholar.

org/CorpusID:10197224.

Jinghua Wang and Gang Wang. Hierarchical spatial sum—
product networks for action recognition in still images.
IEEE Transactions on Circuits and Systems for Video
Technology, 28(1):90-100, 2016.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck.
Probabilistic generating circuits. In International Confer-
ence on Machine Learning, pages 12447-12457. PMLR,
2021.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the
relationship between sum-product networks and bayesian
networks. In International Conference on Machine Learn-
ing, pages 116-124. PMLR, 2015.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon
Amos. Collapsed variational inference for sum-product
networks. In International conference on machine learn-
ing, pages 1310-1318. PMLR, 2016a.

Han Zhao, Pascal Poupart, and Geoffrey J Gordon. A uni-
fied approach for learning the parameters of sum-product
networks. Advances in neural information processing
systems, 29, 2016b.

10

https://proceedings.mlr.press/v49/telgarsky16.html
https://proceedings.mlr.press/v49/telgarsky16.html
https://api.semanticscholar.org/CorpusID:10197224
https://api.semanticscholar.org/CorpusID:10197224

i)

Figure 2. The process of transforming a non-binary DAG-structured PC to a binary one that computes the identical network polynomial.
‘We omit the edge weights for simplicity.

A. Missing proofs in Section 3

In this section we provide the proofs of the lemmas and theorems that are not included in the main text. For better readability,
we first restate the statements and then provide the proofs.

A.1. Proof of Lemma 3.2

Given a depth-D network with V' nodes and E edges, we scan over all its nodes. If a sum node has more than two children,
say My, --- , My, then keep M and create a product node, whose only child is an intermediate sum node. The intermediate
sum node has two children: M5 and another just created intermediate sum node. Keep going and until an intermediate sum
node has Mj, as the only child.

The operation is the same if a product node has more than two children by just exchanging sum and product. Note that for
one operation for a node with k children, the depth increases by 2(k — 1), and 2(k — 1) nodes and edges are added. Once
we do the same for all nodes, the number of increased depth, nodes, and edges are upper bounded by

2 x < Z out-degree of node N if N has more than two children) -2V <2FE -2V € O(E).
Nev

In fact, for depth, this upper bound is very conservative because, for example, if a node has three children, one of its children
again has three children. After we operate on both of them, the depth increases by four only. A better upper bound is
O(M) < O(V), where M is the maximum out-degree in the original network. It is easy to check that each child of the root
computes the same polynomial as before, and so does the new network. Clearly, the new network is still decomposable and
smooth if the original network is.

A.2. Proof of Lemma 3.3

Lemma 3.3. Given a PC 9, if v and w are two nodes in ® such that 0, f,, # 0, then Oy, f, is a homogeneous polynomial
over the set of variables X, \ X, of degree deg(v) — deg(w).

Proof. Clearly, 0, f, # 0 implies that w is a descendant of v. We prove the statement by induction on L, the length of the
longest directed path from v to w. If L = 0, i.e. w = v, then 0, f, = 1 and the statement trivially holds. Suppose the

11

statement is true for all L and now the longest distance from v to w is L + 1. We prove the statement by discussing two
cases, whether w is a sum or product node.

Case I: w is a sum node. We first assume w is a sum node, and its parent inside this particular path v ~» w is u, whose
children are w and w’. We write f,, as the polynomial if we substitute w with y, and f,, as the polynomial if we substitute u
with y. Note that if we write them as functions with respect to y, then f,(y) = f,(y - fu), and hence

0Ly _Ofly-fu) _ORly-fu) . o o
Oufu = =g = = T T = Ty Ty = Oulu fur &)

By the inductive hypothesis, 9, f, is a homogeneous polynomial over the set of variables X, \ X, of total degree
deg(v) — deg(u), so O, f, must also be homogeneous, and its degree is deg(d, f,,) + deg(w’) = deg(v) — deg(u) +
deg(w') = deg(v) — deg(w) — deg(w’) + deg(w’) = deg(v) — deg(w), and it is over variables (X, \ X,) U X,y =
(X \ (X U X)) UXy =X, \ Xy

Case II: w is a product node. Next, assume w is a product node. In this case, w is a sum node and deg(u) = deg(w) =
deg(w’), and X,, = X,, = X,. Let the weight of the edge u — w be a, and the weight for v — w’ be b. Then,

fv(y) = fv(ay + bfw’), and

OFo(y) _ Ofulay+bfu) _ Ofulay+bfu)

ay 8y =a a(ay-l—bfwf)) :a'auqu (3)

awfv =

Clearly, by the inductive hypothesis, both 9, f,, and 9,, f,, are homogeneous, and they have the same degree and set of
variables. Specifically, deg(0,, f,) = deg(0y fy) = deg(v) —deg(u) = deg(v) —deg(w), and X, , = X, = Xy \ Xy =
Xo \ Xu- O

A.3. Proof of Lemma 3.4

Lemma 3.4. Let v be a product node and w be any other node in a PC ®, and deg(v) < 2 deg(w). The children of v are vy
and vy such that deg(vy) > deg(va). Then Oy fv = fv, * Ow fo,-

Proof. Clearly, deg(v) = deg(vi) + deg(vs). Therefore, since deg(v) < 2deg(w), we have deg(vs) < deg(w); by
Lemma 3.3, we have 0,, f,,, = 0, and the conclusion follows directly because of the chain rule. O

A.4. Proof of Lemma 3.6

First, observe that with such choice of m, we have G, N ®,, # (). Write v and v as the children of v. If deg(v1) < m
and deg(ve) < m, then v € G,,. Otherwise, assume without loss of generality that deg(v;) > deg(v2) and deg(vy) > m.
Keep reducing and there will be a position such that the condition of being a member in G,,, holds.

We now prove the statement by induction on L, the length of the longest directed path from v to G,;,, i.e. L =
maxyeq,, dist(v,v’). If L = 0, then v € G,, and all other nodes in G, (if any) are not descendants of v. There-
fore, if t € G,,, and t # v, we have 9, f,, = 0. Clearly, 0,,f, = 1, so

fv:fv'ava+ ft'atfv: ft'atfv- “4)
-1 tEG%;t;ﬁv :/0/ tez(}:m

Now suppose the statement is true for all L, and now the longest directed path from v to G,,, has length L + 1.

Case I: v is a sum node. First, assume v is a sum node and f,, = a1 f,, + a2 fy,. Recall that, since v is a sum node, we
have m < deg(vy) = deg(v2) = deg(v) < 2m, so we may apply the inductive hypothesis on v; and vq. Therefore,

foo =Y fe-0ifoii foo= Y fr-Oifu, Q)

teG, teG,

12

Hence, using the chain rule of the partial derivative, we have

fo=01fo, +a2fo, = > ar-fi-Oufo, + Y az- fr-Oifu, 6)
teG,, teG,y,
= Z fe- (a1 O0ufo, +az -0 f,) = Z ft - Ocfo. (7N
teG,, teG,

Case II: v is a product node. Next, assume v is a product node and deg(v;) > deg(vs). If v € G,,,, then the statement
trivially holds like the base case, so we assume v ¢ G,,,, and therefore m < deg(v1) < 2m and the longest directed path
from v; to G,,, has length L, while such a path does not exist from vy to G,,. So, by the inductive hypothesis,

foo =Y fr0ifu,- ®)

teG,

By definition, if ¢ € G, then we must have 2 deg(t) > 2m > deg(v), and by Lemma 3.4,

fo=tfor fon =" fo-(fon-Oufo) = Y fr-Oifo ©)

teG, teG,

A.5. Proof of Lemma 3.7

We again write v, and vy as the children of v, and again induct on L, the length of the longest directed path from v to G, in
the network. If L = 0, then v € G,,, and same as the previous case, every other node ¢ in G, is not a descendant of v,
which implies 0; f,, = 0. So,

awfv = wfv : avfu + Z 8wfv : atfv = Z awft : atfv- (10)

] teEG, :t#£v -0 teGm,
Suppose the statement is true for all L, and now the longest directed path from v to G,,, has length L + 1.

Case I: v is a sum node. First, assume v is a sum node and f, = a1 f,, + a2 fy,. Again, since v is a sum node we may
apply the inductive hypothesis on v; and vo:

awf'ul = Z awft : 8tf111; 6wf1)2 = Z 8w.ft 'atf112~ (11)

teG,, teG,,

Again, by the chain rule, we have

awf’u = alﬁwfvl + QQawfvg = Z awft . (alatfvl + QQatf’uz) = Z 8wft . atf’u- (12)

teGm, teGm,

Case II: v is a product node. Now assume v is a product node and deg(vy) > deg(ve). If v € G,,,, then the statement
trivially holds like the base case, so we assume v ¢ G,,,, and therefore m < deg(v;) < 2deg(w) and the longest directed
path from v, to G, has length L, while such a path does not exist from vs to G,,,. So, by the inductive hypothesis,

Ouwfor = Y Owfr- Oufo. (13)

teG,,

Since deg(v) < 2deg(w), and for all nodes ¢t € G,;,, we have 2deg(t) > 2m > deg(v), so by applying Lemma 3.4 twice,
we have

Oufo = for Oulos = > Oulr- (for - 0ifo) = D Ouli-Ofo. (14)

teG, teG,,

13

Figure 3. The process of converting an arbitrary DAG to a DAG with depth restriction. The red nodes are those in G2 and their
relationships imply the computational procedure.

A.6. Proof of Lemma 3.8

Suppose the network is smooth. Recall that if the root of a PC contains n variables, then the network computes a multi-linear
polynomial of degree n. If the root is a sum node, then its children must be homogeneous with degree n. If the root is a
product node, then its children must also be homogeneous, otherwise the product node will not be homogeneous.

Conversely, suppose such network is homogeneous. We prove by induction on the depth d of the network. If d = 1 and the
root is a sum node, then the polynomial must be linear and therefore there can only be one variable x and Z; as a result, this
simple network is smooth. Now suppose the statement is true for any d, and we have a PC with depth d + 1. If the root
is a product node, we are done because if any sum node had two children with different scopes, the inductive hypothesis
would be violated. If the root is a sum node, then every sum node other than the root cannot have two children with different
scopes, because each sum node is in the induced sub-network rooted at a grandchild of the root of depth d — 1 and the
inductive hypothesis must hold. So, we only need to show Xp = X, = --- = Xp,. Because the sub-networks rooted at
Ry, -+, Ry are decomposable and homogeneous and therefore smooth by the inductive hypothesis, thanks to ?? each R;
computes a polynomial of degree | X r,|. If | Xg,| < n, then the polynomial computed by R is not homogeneous of degree
n and we obtain a contradiction.

A.7. Construction of W

A.7.1. STEP ONE: COMPUTING f, FOR ELIGIBLE NODES

During iteration i + 1, a polynomial £, is in consideration if and only if 2¢ < deg(v) < 2¢*!. Naturally we shall apply
Lemma 3.6, and therefore choosing an appropriate m and the corresponding G.,, is essential. Here we choose m = 2°.
Moreover, we define a set T' = G,,, N ®,, for each v being considered; for every ¢ € T, we use t; and 2 to denote its
children. By Lemma 3.6 and the definition that all nodes in G,,, are product nodes, we have

fo= fe-0ufo =Y frr - for - 0o (15)

teT teT
Since ¢t € T, we must have max {deg(t1), deg(t2)} < m = 2¢, and therefore
2" = m < deg(t) = deg(t;) + deg(tz) < 2m = 2%, (16)

Therefore, deg(v) — deg(t) < 2iT1 — 2! = 2¢ and deg(v) < 2 + deg(t) < 2deg(t). Hence, fi,, fi, and 0, f, have all
been computed already during earlier iterations. If deg(v) = deg(t), then ¢ is a child of v and 0 f,, is the weight of the edge
v — t. Therefore, to compute such a f,,, we need to add |T'| product nodes and one sum node, whose children are those |T'|
product nodes; apparently, the depth increases by two. If a subset of the three terms { f¢,, f1,, ¢ fo } is a constant, then their
product will be the weight of the edge connecting the product node f;, - f;, and the new sum node.

14

We now verify the validity of this updated circuit. Because ® is decomposable and ¢ is a product node, we conclude
Xy, N Xy, =0and X; = X;, UX,,. By Lemma 3.3, we have X; , = X, \ X; = X, \ (X¢, U Xy,). Therefore, every
summand in Equation (15) is a product node whose children are sum nodes with pairwise disjoint scopes, and thus, the
updated circuit must be decomposable as well. Also, since f, is a homogeneous polynomial, so must be every summand for
each t. As a result, the updated circuit is also homogeneous. Thanks to Lemma 3.8, the updated circuit is valid.

A.7.2. STEP TWO: COMPUTING Oy, f,, FOR ELIGIBLE PAIRS OF NODES

As discussed earlier, during iteration i + 1, a pair of nodes u and w are chosen if and only if 2¢ < deg(u) — deg(w) < 2¢*+1
and deg(u) < 2deg(w). In this case, we fix m = 2¢ 4 deg(w), and define T' = G,,, N ®,,. Clearly, deg(w) < m <
deg(u) < 2deg(w), so by Lemma 3.7, we have Oy fu =) _;cp Owft - O¢fu. For each t € T, by definition ¢ must be a
product node, and since ¢ € ®,,, we have deg(w) < deg(t) < deg(u) < 2deg(w). Recall that the children of ¢ are denoted
by ¢1 and t5, and we may assume without loss of generality that deg(¢1) > deg(t2). Hence, by Lemma 3.4, we have
Owfu =D yer fta - Owft, - Oy fu. Furthermore, we may safely assume deg(w) < deg(t1), otherwise w is not a descendant
of t1 nor ¢ and therefore 0,, fr, = 0. f: = 0. Next, by analyzing their degrees and differences in degrees, we show that for
each ¢, the terms fi,, O, ft,, and O, f,, in that summand have all been computed by earlier iterations or the step one during
this iteration i + 1. Term f;,: since deg(u) < deg(w) + 2771 < 20+ 4 deg(t1) = 207! + deg(t) — deg(t2), we have

deg(tz) < 27! 4 deg(t) — deg(u) < 21, (17

Hence, f:, has already been computed during the first step of this current iteration or even earlier. Term 9, f;, : Recall
that deg(t1) < m = 2! + deg(w), so deg(t1) — deg(w) < 2¢. Moreover, deg(t;) < deg(t) < deg(u) < 2deg(w).
Therefore, the pair (¢1, w) satisfies both requirements to be computed during iteration 7 or earlier. Term 9, f,,: Recall that
deg(t) > m = 2¢ + deg(w), so

deg(u) — deg(t) < deg(u) — deg(w) — 2t < 9+l _ 9t — 9t (18)

where the second inequality follows from deg(u) — deg(w) < 2¢*1, the requirement of choosing u and w for iteration i + 1.
Finally, _ _
deg(u) < 2! 4 deg(w) < 2+ (2" + deg(w)) < 2deg(t). (19)
—————

=m<deg(t)
These two facts together ensure that J; f,, must have been computed during iteration i or earlier.

Finally, we verify the validity of the updated circuit after this step. The new objects introduced in this step are only |T|
product nodes whose children are f,, Oy, ft,, and 0, f,, for each t € T, and one sum node whose children are those |T|
product nodes. It is easy to see that the sets X;,, Xy, \ X, and X,, \ X, are pairwise disjoint since X,, C X;, and
X, N Xy, = 0; therefore, the updated circuit is indeed decomposable. By Lemma 3.3, all three terms in each summand are
homogeneous, and therefore the new circuit is also homogeneous, and consequently, it is valid again by Lemma 3.8.

B. Missing proofs in Section 4
B.1. Proof of Proposition 4.2

Before writing the rigorous proof, we first fix some terminologies. In this proof, we refer the layer of all indicators
constructed in step one as layer zero, and each set of nodes constructed in one of steps three, four, and five as one layer above.
A negation indicator added in step six does not belong to any layer. Therefore, when we consider a layer of sum nodes, the
negation indicator leaves whose parents are product nodes on the next layer are not in consideration. Step six augments the
scope of every product node; for any product node v, we use v’ to denote the same vertex before being augmented during
step six. To prove this statement, we first prove an equivalent condition for P* to be valid, and then show P* satisfies the
equivalent property.

Lemma B.1. Validity of P* is equivalent with the following statement:

In P*, every product node and its sibling have the same scope. If two product nodes are on the same layer but not siblings,
then they have disjoint scopes.

Proof. Suppose the statement holds, then for any sum node, its two children are product nodes and siblings, so they have
the same scope; for any product node v, denote its children by w and w’, and their children by {wq, wo} and {w], w}},

15

respectively. Clearly, w; and wj are siblings and have the same scope for any i € {1,2}, butif j # 7, then w; and w have
disjoint scopes. Therefore, scope(w) = scope(w;) = scope(ws) and scope(w’) = scope(w]) = scope(w}) are disjoint,
as desired.

Conversely, suppose P* is decomposable and smooth. For any pair of product nodes which are siblings, they share a unique
parent and thus have the same scope due to smoothness. Now suppose we have two product nodes v and w, which are
on the same layer but not siblings. We prove a useful fact: If two product nodes are on the same layer 25 + 1 for some
1 < j <k, then deg(v) = deg(w) = 22772, When j = 1, we know that initially every product node on layer one has two
leaf children, so adding two negation indicators enforce that every product node on that layer has degree four. Assume the
statement is true for all j, and we now consider those product nodes on layer 2(j + 1) — 1 = 25 + 1. By the inductive
hypothesis, every product node on layer 25 — 1 has degree 2%/, and therefore every sum node on layer 2; also has degree
22J_1f u is a product node on layer 2j + 1 with the sibling u*, we have deg(u’) = deg((u*)’) = 227+1. Step six ensures
that deg(u) = deg(u*) = deg(u’) + deg((u*)’) = 227+2,

If they share an ancestor that is a product node, then their scopes are disjoint due to decomposability. On the other
hand, suppose their only common ancestor is the root, whose children are denoted by a; and as, then without loss of
generality, we may assume that v is a descendant of a; and w is a descendant of as. Because P* is valid, it must be
homogeneous and we have deg(a;) = deg(az). The fact we proved in the previous paragraph implies that deg(a}) =
deg(al) = 22F=3+2 = 22k=1 1Tp other words, step six increases the degree of a/ and a}, by 22*~! each. Because the whole
tree P* is decomposable, the increase in deg(a}) is exactly 2251 = |scope(a})|, and vice versa. Due to smoothness,
{X1,-+,Xo2} = scope(a)) Uscope(a)), and thus scope(a)) N scope(ah) = 0. Finally, since scope(v) C scope(a])
and scope(w) C scope(as), we must have scope(v) N scope(w) = (). O

Now we prove Proposition 4.2 by showing that P* indeed satisfies the equivalent property.

Proposition 4.2. The tree PC P* is decomposable and smooth.

Proof. Now we prove that P* satisfies the equivalent statement by induction on the index of the layer containing product
nodes only. Using the index above, only the layers with odd indices from {2i — 1}¥_, are concerned. For the base case,
consider those 22~! product nodes constructed in step two, denoted by vy, - - - , vg2s—1. For each 1 < j < 2281 if j is
odd, then following steps two and six, the children of v; are {x2;_1, %25, Z2j41,T2j4+2}. Its only sibling is vj41, whose
children are {$2j+2, T2j41,T25, jigj_l}. Thus, scope(vj) = scope(vj+1) = {XQj_l, ng, X2j+1, X2j+2}. The argument
is identical if j is even.

On the other hand, suppose 1 <r < s < 22k=1 and two product nodes v,. and v, are not siblings, i.e. either s — r > 1, or
s —1r =1 and r is even.

Case I: s — r > 1. In this case, the set scope(v,) is {Xor—1,Xor, Xopi1, Xorya} if r is odd,
{Xop_3, Xor_2, Xor_1, Xo,} if it is even; similarly, the set scope(vs) depends on the parity of s. If s — r = 2, then
they have an identical parity. If they are both odd, then scope(vs) = { Xa(r12)—1, Xo(r12), Xo(rt2)+1, Xo(rt2)+2) =
{Xor13, Xorta, Xort5, Xar+6}, and is disjoint with scope(v;.). The argument is identical if they are both even. If s—r > 2,
then the largest index among the elements in scope(v;.) is 2r + 2, and the smallest index among the elements in scope(v;)
is 2s — 3 > 2(r + 3) — 3 = 2r + 3; hence, scope(v,) N scope(vs) = 0.

Case II: s — r = 1 and r is even. In this case, scope(v,) = {Xor_3, Xor—2, Xo,-1, X2r} and scope(vs) =
{ng_l,ng,X23+17X23+2} = {X2r+1,X2r+2,X2T+3,X27~+4} because s = r + 1 is odd. Clearly, scope(vr) N
scope(vs) = 0.

The argument above proves the base case. Suppose the statement holds until the layer 27 — 1 for some ¢ < k, and we now
consider layer 2(i + 1) — 1 = 2i + 1, which contains 22~2=1 product nodes, denoted by vy, - - - , Ug2x—2i—1. They must
have non-leaf children, and we denote these nodes without their leaf nodes by v/, - - , vé%_zi_l. By construction, the layer
2i below contains 22*~%" sum nodes, denoted by w1, - - - , wq2r—2:; and the layer 2i — 1 contains 22¥~2/*1 product nodes,
denoted by 21, -+ , 292k—2:+1. Foreach 1 < r < 22k=2i—1 the product node v, has children ws,.—; and ws,., and is their
unique parent. Similarly, ws, has children z4,._1 and z4, and is their unique parent; ws,_1 has children z4,_3 and z4,_o,
and is their unique parent.

16

We prove a simple fact that will simplify the induction step. We claim that, given two integers r, s € {1,-.. ,22k=2i=1}1
and r # s, the scopes scope(v,.) and scope(v)) are disjoint. Without loss of generality, we assume r < s. By
construction, Ch(v..) = {war_1,ws,} and Ch(v.) = {wes_1,wss}; furthermore, Ch(wo,—1) = {24r—3,24r—2},
Ch(UJQT) = {Z4r,1,2:4r}, Ch(wQSfl) = {2437&24372}, Ch(wgs) = {2437172:45}. Observe that, if a pair of product
nodes belong to one of the four sets above, then they are siblings and have the same scope; if they belong to distinct sets,
then they are not siblings and have disjoint scopes. We know that the scope of a node is the union of the scopes of their
children, so the four scopes scope(wa;,.—1), scope(wsa,.), scope(was—1), and scope(wss) are pairwise disjoint. As a result,
the scopes scope(v..) = scope(ws,_1) LI scope(ws,.) and scope(v]) = scope(was_1) L scope(wss) are disjoint.

Now we prove the induction step. In the first case, suppose v, and v, are sibling, i.e. 7 is odd so v,y is the only sibling
of v,.. We have shown that scope(v}.) N scope(v,., ;) = (). However, step six enforces that scope(v,) = scope(v;.) U
scope(v;.; 1) = scope(v,41), as desired.

Next, suppose 1 < r < s < 22k—=2i—1 and v, and v, are not siblings. Denote the siblings of v, and v, by v, and v/,
respectively; by definition, ' € {r — 1,7 + 1} and s’ € {s — 1, s + 1}, depending on the parity of r and s. Clearly, the
four nodes v,., v+, vs, vy are distinct, and consequently the four sets scope(v;), scope(v,), scope(vs), and scope(vy) are
pairwise disjoint. Step six enforces that scope(v,) = scope(v..) L scope(v..,) and scope(v,s) = scope(v,) U scope(v.,),
which are disjoint as desired. O

B.2. Proof of Proposition 4.4

We first realize the polynomial P returned by Algorithm 3 without adding those leaves representing negation variables.
Recall that layer one contains 22*~1 product nodes, and before adding negation variables, the bottom layer (layer zero)
contains 22* leaves. If for every odd integer i € {1,3,5,...,22* — 1}, we denote the monomial by fii+1 = TiTi1, then
without adding negation variables, the polynomial can be constructed by the following recursion with 2k + 1 steps:

22k—1

* Construct monomials z1%s, . .., To2k _1To2k.

22k72 22k72

e Sum up pairs of consecutive monomials, and return polynomials with two monomials x12x2 +

T3T4y .- ,$22k_3.’f22k_2 + To2k _1T92k.
* Multiply 22~3 pairs of consecutive polynomials, and return 22*=3 polynomials.

* Repeat the operation until only one polynomial is returned.

Observe that this polynomial is exactly H(%2) defined in Section 4 with an alternative set of indices for the variables
([2]% x [2]* versus [22¥]). To prove Proposition 4.4, it is sufficient to show that for every minimum tree-structured probabilistic
circuit IT of depth o(k) that computes P, the removal of those leaves representing negation variables returns an arithmetic
formula that has the same depth and computes H(%2). To show this, we need the following lemma.

Lemma B.2. In any tree-structured probabilistic circuit 11 that computes P, no sum node has a negation indicator as a
child, and no product node has only negation indicators as its children.
The proof of Lemma B.2 relies on the following lemma on monotone arithmetic formulas.

Lemma B.3. A monotone arithmetic formula computing a homogeneous polynomial must be homogeneous.

Proof. 1f a formula is rooted at a sum node, then clearly every child of its must be homogeneous. If the root is a product
node with & children, then denote the polynomials computed by them as f1,-- - , fi and write f = Hle fi. Furthermore,
for each i € [k], further assume f; contains ¢; monomials, and write it as

fi=fix+ -+ fiq- (20

Without loss of generality, assume f; is not homogeneous and deg(f1,1) # deg(f12). Then at least two of the monomials
of f, namely f; 1 x H?:z fijpand fi 2 x H§:2 fj,1, must have distinct degrees and therefore destroy the homogeneity of
the root. O

17

Proof of Lemma B.2. First, observe that in a PC, if a sum node has a leaf as a child, then due to smoothness, it can only
have two children, which are negation and non-negation indicators for a same variable.

Suppose 1I does have a sum node u that has a negation indicator Z; as a child. Observe that, if we replace all negation
indicators with the constant one, then the resulting tree is still monotone and computes F', which is a homogeneous
polynomial. The replacement will cause that sum node to compute exactly x; + 1, which is not homogeneous.

Similarly, if a product node v has only negation indicators as its children, then the replacements above force v to compute
one. Smoothness enforces that its siblings have the same scope as v does, and without loss of generality we may assume none
of its siblings computes the same polynomial as v does, so their degrees are higher than one. As a result, the replacements
of all negation indicators to one will force the parent of v to compute a non-homogeneous polynomial, which contradicts
Lemma B.3. O

Now Proposition 4.4 can be confirmed, because the removal strategy will indeed produce a tree that computes H (*:2), and
no internal nodes will be affected, because Lemma B.2 ensures that, no internal node in II’ computes a constant one and
can be removed. Clearly, IT’ has a strictly smaller size than II, and combining with Theorem 4.3, we have the following
inequality that concludes Theorem 4.1.

C. Pseudocodes

Algorithm 4 Construction of G
Input: a binary DAG SPN ® with V nodes and n variables.
Output: For eachi = 1,--- ,logn, a set of nodes G: and for selected w, a set of nodes Gyi .

T+ 0;P«0,Q; +0,Gai < 0, Gy, < D forie{l,--- ,logn} and w € ; @, < P forv € .
Scan all nodes from the bottom and calculate the degree of each f,,.
During the scanning, extract all weights of edges from a sum node to a product node.
for nodes v in ® do
®, « &, U {v}if uis a parent of v.
for i = 1 to logn do
if 20 < deg(v) < 2¢*! then
P, + P, U {’U}
end if
if v is a product node and deg(v) > 2% and deg(v;) < 2¢ and deg(v,) < 2¢ then
Gzi < Ggi U {’U}
end if
for other nodes w in ® do
if 2¢ < deg(v) — deg(w) < 2! and deg(v) < 2deg(w) then
Qi < Qi U{(v,w)}.
end if
if v is a product node and deg(v) > 2% + deg(w) and deg(v;) < 2° + deg(w) and deg(vs) < 2% + deg(w) then
G'2i7w — ng‘,u, U {U}
end if
end for
end for
end for

18

Algorithm 5 Construction of the tree

Input: a binary DAG-structured PC & with V' nodes and n variables
Output: a tree-structured PC with size n©(1°87)

T+ 0;P+0,Q; < 0,Ga < 0, Ggi, < O fori e {1, ,logn} and w € ®; ®,, + @ for v € ®; m € Nis not
defined yet.
Operate Algorithm 4 and return Go: and Gy ,, for all i € {1,--- ,logn} and those w € ® that were selected for
computing partial derivatives.
fori =1tom — 1do
m « 2%
for v € P; do
T+ Gy ND,.
fort €T do
Create a product node ®; computing f;, - fi, - Ot fo-
end for
Create a sum node &, that sums over all ®;; for ¢ € T such that 0, f, is a non-zero-or-one constant, the edge
Dy — ®¢ has weight O, f,.
end for
for (v,w) € Q; do
m < 2" 4+ deg(w), T <+ Gagi ,, N Dy.
fort € T do
Create a product node ®; computing f, - Ow ft, - Ot fo.
end for
Create a sum node @ ,,,,) that sums over all ®;; for ¢t € T such that ®; contains a constant multiplier, the edge
®(v,w) — ¢ has weight of that constant.
end for
end for
Apply the naive duplication to convert the DAG into a tree.
Apply Algorithm 2 in (Zhao et al., 2015) to normalize the tree.

19

