
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On the Expressive Power of Tree-Structured Probabilistic Circuits

Anonymous Authors1

Abstract

Probabilistic circuits (PCs) have emerged as a
powerful framework to compactly represent prob-
ability distributions for efficient and exact proba-
bilistic inference. It has been shown that PCs with
a general directed acyclic graph (DAG) structure
can be understood as a mixture of exponentially
(in its height) many components, each of which is
a product distribution over univariate marginals.
However, existing structure learning algorithms
for PCs often generate tree-structured circuits or
use tree-structured circuits as intermediate steps
to compress them into DAG-structured circuits.
This leads to the intriguing question of whether
there exists an exponential gap between DAGs
and trees for the PC structure. In this paper, we
provide a negative answer to this conjecture by
proving that, for n variables, there exists a sub-
exponential upper bound nO(logn) on the size of
an equivalent tree computing the same probability
distribution. On the other hand, we also show
that given a depth restriction on the tree, there is
a super-polynomial separation between tree and
DAG-structured PCs. Our work takes an impor-
tant step towards understanding the expressive
power of tree-structured PCs, and our techniques
may be of independent interest in the study of
structure learning algorithms for PCs.

1. Introduction
Probabilistic circuits (PCs) (Choi et al., 2020; Sánchez-
Cauce et al., 2021), also commonly known as sum prod-
uct networks (SPNs) (Poon and Domingos, 2011), are a
type of deep graphical model that allow exact probabilis-
tic inference efficiently in linear time with respect to the
size of the circuit. Like other deep models, the parame-
ters of a PC can be learned from data samples (Zhao et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2024. Do not distribute.

2016b). Because of these desirable properties, they have
been increasingly applied in various contexts, including
generative modeling (Zhang et al., 2021), image process-
ing (Wang and Wang, 2016; Amer and Todorovic, 2015),
robotics (Sguerra and Cozman, 2016), planning (Prono-
bis et al., 2017) and sequential data including both textual
and audio signals (Peharz et al., 2014; Cheng et al., 2014).
Compared with deep neural networks, the sum and product
nodes in PCs admit clear probabilistic interpretation (Zhao
et al., 2015) of marginalization and context-specific statisti-
cal independence (Boutilier et al., 2013), which opens the
venue of designing efficient parameter learning algorithms
for PCs, including the expectation-maximization (EM) al-
gorithm (Gens and Domingos, 2012), the convex-concave
procedure (CCCP) (Zhao et al., 2016b), and the variational
EM algorithm (Zhao et al., 2016a).

Perhaps one of the most important properties of PCs is that
they can be understood as a mixture of exponentially (in
its height) many components, each of which is a product
distribution over univariate marginals (Zhao et al., 2016b).
Intuitively, each sum node in PC can be viewed as a hid-
den variable that encodes a mixture model (Zhao et al.,
2015) and thus a hierarchy of sum nodes corresponds to an
exponential number of components. This probabilistic inter-
pretation of PCs has led to a number of interesting structure
learning algorithms (Gens and Pedro, 2013; Dennis and Ven-
tura, 2012; Peharz et al., 2013; Rooshenas and Lowd, 2014;
Adel et al., 2015; Lee et al., 2013). However, almost all
of the existing structure learning algorithms for PCs output
tree-structured circuits, or use tree-structured circuits as in-
termediates to compress them into DAG-structured circuits.
Because of the restricted structure of trees, such algorithms
do not fully exploit the expressive power of PCs with general
DAG structures, and often output tree-structured PCs with
exceedingly large sizes (Gens and Pedro, 2013). Yet, from a
theoretical perspective, it remains open whether there truly
exists an exponential gap between DAGs and trees for the
PC structure. Being able to answer this question is important
for understanding the expressive power of tree-structured
PCs, and may also lead to new insights in structure learning
algorithms for PCs.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

1.1. Our Contributions

In this work we attempt to answer the question above by
leveraging recent results in complexity theory (Valiant et al.,
1983; Raz and Yehudayoff, 2008; Fournier et al., 2023). Our
contributions are two-folds: an upper and lower bound for
the gap between tree and DAG-structured PCs. In what
follows we will first briefly state our main results and then
introduce the necessary concepts and tools to tackle this
problem.

An Upper Bound In Section 3, inspired by earlier works
in Valiant et al. (1983) and Raz and Yehudayoff (2008), we
show that, for a network polynomial that can be computed
efficiently with a DAG-structured PC, there always exists
a sub-exponentially-sized tree-structured PC to represent it.
An informal version of our main result for this part is stated
below.

Theorem 1.1 (Informal). Given a network polynomial of
n variables, if this polynomial can be computed efficiently
by a PC of size poly(n), then there exists an equivalent
tree-structured PC of depth O(log n) and of size nO(logn)

that computes the same network polynomial.

We prove this result by adapting the proof in Raz and Yehu-
dayoff (2008). Our construction involves two phases: Phase
one applies the notion of partial derivatives for general
arithmetic circuits to represent intermediate network poly-
nomials alternatively, and construct another DAG-structured
PC using those alternative representations; we will provide
fine-grained analysis on the new DAG, such that its depth
is O(log n) and its size is still poly(n). Phase two applies
the standard duplicating strategy for all nodes with more
than one parent to convert the new DAG into a tree. This
strategy will lead to an exponential blowup for an arbitrary
DAG with depth D, since the size of the constructed tree
will be nO(D). However, note that the DAG constructed in
the first phase has depth O(log n). Combining it with the
duplicating strategy, we will be able to construct an equiva-
lent tree-structured PC of size upper bounded by nO(logn),
as desired.

The original algorithm in Raz and Yehudayoff (2008) only
reduces the depth to O(log2 n) due to their restriction on
the graph of using nodes with at most two children. This
restriction is not necessary for PCs, and by avoiding it,
we show that the depth can be further reduced to O(log n)
with a slight modification of the original proof in Raz and
Yehudayoff (2008).

A Lower Bound In Section 4, we show that under a re-
striction on the depth of the trees, there exists a network
polynomial that can be computed efficiently with a DAG-
structured PC, but if a tree-structured PC computes it, then
the tree must have a super-polynomial size. The following

informal theorem states our main result for this part, which
will be formally addressed in Section 4.

Theorem 1.2 (Informal). Given n random variables, there
exists a network polynomial on those n variables, such that
it can be efficiently computed by a PC of size O(n log n)
and depth O(log n), but any tree-structured PC with depth
o(log n) computing this polynomial must have size at least
nω(1).

Our result is obtained by finding a reduction to Fournier et al.
(2023). We first fix an integer k and a network polynomial
of degree n = 22k. To show that the polynomial is not
intrinsically difficult to represent, i.e., the minimum circuit
representing it shall be efficient, we explicitly construct a
PC of depth O(log n) and size O(n log n). Next, suppose
via a black box, we have a minimum tree-structured PC of
depth o(log n) computing this polynomial. After removing
some leaves from that minimum tree but maintaining its
depth, we recover a regular arithmetic tree that computes
a network polynomial of degree

√
n = 2k. Moreover, as

shown in (Fournier et al., 2023), if an arithmetic tree with
depth o(log n) computes this low-degree polynomial, then
the size of the tree must be at least nω(1). Our operations
on the minimum tree PC must reduce its size; therefore, the
original tree must have a larger size than nω(1), and this fact
concludes our proof.

1.2. More Related Work

There is an extensive literature on expressive efficiency of
network structures for PCs. The investigation on PCs has
started as early as in Delalleau and Bengio (2011) and later
in Martens and Medabalimi (2014). In neural networks
and variants, this topic, along with the relationship between
expressive efficiency and depth/width, has attracted many
interests as well (Telgarsky, 2016; Nguyen et al., 2018;
Malach and Shalev-Shwartz, 2019; Kileel et al., 2019; Sun
et al., 2016; Safran and Shamir, 2017; Mhaskar et al., 2017;
Eldan and Shamir, 2016). In particular, Martens and Med-
abalimi (2014, Theorem 34) has shown that there exists a
network polynomial with a super-polynomial minimum tree
expression, but it is unclear whether the same polynomial
can be computed by a polynomial-sized DAG. Our work
provides a positive answer to this question. For arbitrary
network polynomials, finding a minimum DAG-structured
PC is reducible to a special case of the minimum circuit
size problem for arithmetic circuits, which remains to be a
longstanding open problem in circuit complexity.

2. Preliminaries
We first introduce the setup of probabilistic circuits and
relevant notation used in this paper.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

×

+ +

x1 x̄1 x2 x̄2

v fv = fw × fw′

w fw = ∂w′fv w′fw′ = ∂wfv

Figure 1. Partial derivatives of sum nodes.

Notation A rooted directed acyclic (DAG) graph consists
a set of nodes and directed edges. For such an edge u→ v,
we say that u is a parent of v, and v is a child of u. We
use Ch(u) to denote the set of children of the node u. We
say there is a directed path from a to b if there is an edge
a→ b or there are nodes u1, · · · , uk and edges a→ u1 →
· · · → uk → b; in this case, we say that a is an ancestor of
b and that b is a descendant of a. If two vertices v and w are
connected via a directed path, we call the number of edges
in a shortest path between them as the distance between
them, denoted by dist(v, w). A directed graph is rooted if
one and only one of its nodes has no incoming edges. A
leaf in a DAG is a node without outgoing edges. A cycle in
a directed graph is a directed path from a node to itself, and
a directed graph without directed cycles is a DAG. For two
disjoint sets A and B, we will denote their disjoint union by
A ⊔B to emphasize their disjointedness.

Clearly, each directed graph has an underlying undirected
graph obtained by removing arrows on all edges. Although
by definition, a DAG cannot have a directed cycle, but its
underlying undirected graph may have an undirected cycle.
If the underlying undirected graph of a DAG is also acyclic,
then that DAG is called a directed tree. Every node in a
directed tree has at most one parent. If two nodes share a
parent, one is said to be a sibling of the other.

Probabilistic Circuits A probabilistic circuit (PC) is a
probabilistic model based on a rooted DAG. Without loss of
generality, in our work, we focus on PCs over Boolean
random variables. We first introduce the notion of net-
work polynomial. For each Boolean variable X , we use
the corresponding lower case alphabet x to denote the in-
dicator of X , which is either 0 or 1; for the same variable,
x̄ represents the negation. In many cases, we use 1 : N
to denote the index set [N]. A PC over Boolean variables
{X1, · · · , Xn} computes a polynomial over the set of indi-
cators {x1, · · ·xn, x̄1, · · · , x̄n}; we will refer this polyno-
mial as the network polynomial. In the network, the leaves

are indicators of variables, and all other nodes are either
sum or product nodes; a node that is not a leaf may also
be called an internal node. Each internal node computes a
polynomial already: a sum node computes a weighted sum
of the polynomials computed by its children, and a product
node computes the product of the polynomials computed by
its children. A PC is said to be normalized if the weights
of the outgoing edges from a sum node sum to one. It was
shown in Zhao et al. (2015) that, every unnormalized PC
can be transformed into an equivalent normalized PC within
linear time.

To represent valid probability distributions, a PC must sat-
isfy two structural properties: decomposability and smooth-
ness. To define them, we need to define the scope of a node,
which is the set of variables whose indicators are descen-
dants of that node. For a node v, if the indicator x of the
variable X is one of descendants of v, then X ∈ scope(v);
more generally, scope(v) = ∪v′∈Ch(v) scope(v

′).

Definition 2.1 (Decomposability and Smoothness). A PC
is decomposable if and only if for every product node v
and two of its children v1 and v2, we have scope(v1) ∩
scope(v2) = ∅. A PC is smooth if and only if for each sum
node, all of its children have the same scope.

In this paper we restrict our attention to PCs that are both
decomposable and smooth, since otherwise we can always
transform a PC into an equivalent one that is both decom-
posable and smooth in quadratic time (Zhao et al., 2015).
The degree of a monomial is the sum of the exponents of all
its variables, and the degree of a polynomial f , denoted by
deg(f) is the highest degree among its constituent mono-
mials. A polynomial is said to be homogeneous if all of
its monomials have the same degree. A PC is said to be
homogeneous if all of its sum and product nodes compute
a homogeneous polynomial. Later, we will show that de-
composability and smoothness imply homogeneity, and vice
versa with mild conditions. For a node v in a PC, we use
deg(v) to denote deg(fv). As emphasized earlier, this paper
investigates the quantitative relationship between a DAG
and a tree, which are both PCs and represent the same prob-
ability distribution. To make the terminology uncluttered,
we will call the former a DAG-structured PC, and the latter
a tree-structured PC. If a tree-structured PC computes the
same network polynomial as a DAG-structured PC, then the
tree-structured PC is said to be an equivalent tree-structured
PC with respect to that DAG-structured PC.

Unless specified otherwise, we will use Φ to denote the
entire PC in consideration and f the network polynomial
computed by the root. For each node v, the sub-network
rooted at v is denoted by Φv and the polynomial computed
by v is fv . The set of variables in fv is Xv , which is a subset
of {X1, · · · , Xn}. The size of the network Φ, denoted by
|Φ|, is the number of nodes and edges in the network. The

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

depth of Φ, denoted by D(Φ), is its maximum length of a
directed path.

Partial Derivatives In the process of proving the upper
bound, a key notion named partial derivative is frequently
used and formally defined below.

Definition 2.2 (Partial Derivative). For two nodes v and w
in a network Φ, the partial derivative of the polynomial fv
with respect to the node w, denoted by ∂wfv , is constructed
by the following steps:

1. Substitute the polynomial fw by a new variable y.

2. Compute the polynomial computed by v with the vari-
able y; denote the new polynomial by f̄v. Due to
decomposability, f̄v is linear in y.

3. Define the partial derivative ∂wfv = ∂f̄v
∂y .

Observe that the chain rule in calculus also holds for our
notion here, and therefore leads to the two following facts.

• Let v be a sum node with children v1 and v2, and the
edges have weight a1 and a2, respectively, then by
definition fv = a1fv1 + a2fv2 . For any other node w,
the partial derivative is ∂wfv = a1 ·∂wfv1 +a2 ·∂wfv2 .

• Similarly, let v be a product node with children v1 and
v2, then fv = fv1 · fv2 . For any other node w, we have
∂wfv = fv1 · ∂wfv2 + fv2 · ∂wfv1 .

The partial derivative has been proven to be a powerful tool
in the field of complexity theory and combinatorial geome-
try (Guth and Katz, 2010; Kaplan et al., 2010). Readers are
welcome to refer Chen et al. (2011) for more details and ex-
tensive background. An illustration is provided in Figure 1.

Arithmetic Circuits An arithmetic circuit, aka algebraic
circuit, is a generalization of a probabilistic circuit. Such a
circuit shares the same structure as a PC and also computes
a network polynomial. If an arithmetic/algebraic circuit
is a directed tree, then we call it an arithmetic/algebraic
formula. In the proof of the lower bound, the notion of
monotonicity of a formula is essential, whose definition
relies on the concept parse tree.

Definition 2.3 (Parse Tree). A parse tree of a formula Φ is
a sub-formula of Φ which corresponds to a monomial of f ,
the network polynomial computed by Φ. Parse trees of Φ is
defined inductively by the following process:

• If the root of Φ is a sum node, a parse tree of Φ is
obtained by taking a parse tree of one of its children
together with the edge between the root and that child.

• If the root of Φ is a product node, a parse tree of Φ is
obtained by taking a parse tree of each of its children
together with all outgoing edges from the root.

• The only parse tree of a leaf is itself.

Definition 2.4 (Monotonicity). An algebraic formula is
monotone if the monomial computed by any of its parse
trees has a non-negative coefficient in the network polyno-
mial.

3. A Universal Upper Bound
In this section, we present our first main result, which pro-
vides a universal upper bound on the size of an equivalent
tree versus a DAG-structured PC.

Theorem 3.1. For any given DAG-structured PC named Φ
with V nodes and over n variables, there exists an equiva-
lent tree PC with nO(logn) nodes and of depth O(log n).

As discussed earlier, our constructive proof heavily relies
on deeper properties of partial derivatives, and applying
them to represent sub-network polynomials. Our strategy,
inspired by Raz and Yehudayoff (2008), will be efficient if
the circuit being considered is a binary circuit, i.e. every
node has at most two children. While such structure is rare
for natural networks, we make the following observation,
that an arbitrary PC can always be transformed to a binary
one with a polynomial increase in size and depth. The proof
and an illustrating figure will appear in Appendix A.

Lemma 3.2. Given a DAG-structured PC Φ, we may trans-
form it into another DAG Φ′ that computes the same network
polynomial and every node in Φ′ has at most two children.
Moreover, the differences between the sizes and depths of
Φ′ and Φ are only in polynomial size.

Therefore, for the remaining discussion in this section, we
will assume without loss of generality, that a given PC is
binary. During the conversion process towards a binary
circuit, some intermediate nodes may be created to ensure
no sum node is connected to another sum node and no
product node is connected to another product node. The
set of those intermediate nodes is denoted by Φ1, and will
be present in our later discussions. Next, we present a
key property of partial derivatives, which holds for any
(including non-binary) PC.

Lemma 3.3. Given a PC Φ, if v and w are two nodes
in Φ such that ∂wfv ̸= 0, then ∂wfv is a homogeneous
polynomial over the set of variables Xv \ Xw of degree
deg(v)− deg(w).

The next lemma tells that, given a product node, its partial
derivative with another node with a restriction on degree
can be expressed using its children.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Lemma 3.4. Let v be a product node and w be any other
node in a PC Φ, and deg(v) < 2 deg(w). The children
of v are v1 and v2 such that deg(v1) ≥ deg(v2). Then
∂wfv = fv2 · ∂wfv1 .

To construct the sub-exponential tree, the key is to compress
many nodes with partial derivatives. Fundamentally, we
will use the following results to show that such compression
works because each node, and each partial derivative of any
node with any other, can be more concisely represented
using partial derivatives. The key question is to find eligible
nodes, so that taking partial derivatives with respect to them
will lead to compact expressions. Inspired by the observa-
tion in Raz and Yehudayoff (2008), we define the following
set Gm, which will be critical in our later process.
Definition 3.5. Given a PC Φ and an integer m ∈ N,
the set Gm is the collection of product nodes t in Φ
with children t1 and t2 such that m < deg(t) and
max {deg(t1),deg(t2)} ≤ m.

With this set, we may choose a set of nodes as variables for
partial derivatives for any node in a PC, and the following
two lemmas respectively illustrate: 1) the compact expres-
sion of the sub-network polynomial fv for any node v in a
PC; 2) the compact expression of ∂wfv given two nodes v
and w with a degree restriction. It is easy to observe that
Φ1 ∩Gm = ∅.
We now present two key lemmas that will be central to the
proof for the upper bound. Specifically, they spell out the
alternative representations for the network polynomial of
any node, and the partial derivative of any pair of nodes.
Lemma 3.6 ((Raz and Yehudayoff, 2008)). Let m ∈ N
and a node v such that m < deg(v) ≤ 2m, then fv =∑

t∈Gm
ft · ∂tfv .

Lemma 3.7 ((Raz and Yehudayoff, 2008)). Let m ∈ N, and
v and w be two nodes such that deg(w) ≤ m < deg(v) <
2 deg(w), then ∂wfv =

∑
t∈Gm

∂wft · ∂tfv .

3.1. Construction of Ψ, another DAG-structured PC
with restriction on depth

Given a binary DAG-structured PC Φ with n variables and
poly(n) nodes, we explicitly construct a tree PC with size
nO(logn) and depth O(log n). Specifically, the construction
takes two main steps:

1. Transform Φ to another DAG-structured PC Ψ with
size poly(n) and depth O(log n).

2. Apply a simple duplicating strategy to further convert
Ψ to a tree with size nO(logn) and the same depth of
Ψ.

We will later show that step two can be simply done by a
standard duplicating operation. Step one, however, needs

Algorithm 1 Construction of Ψ
Input: The original DAG-structured PC Φ with n vari-
ables of size poly(n), and the set of its nodes V .
Output: Another DAG-structured PC Ψ of size poly(n)
and depth O(log n).

i← 0; V ← ∅; P ← ∅.
for i = 0, 1, ⌈log n⌉ − 1 do

Fix m1 ← 2i.
Find all nodes v such that 2i < deg(v) ≤ 2i+1, and
place them in V .
Find all pairs of nodes (u,w) such that 2i < deg(u)−
deg(w) ≤ 2i+1 and deg(u) < 2 deg(w), and place
them in P .
Fix m2 ← 2i + deg(w).
for every v ∈ V do

Find all nodes in Gm1 and compute fv using Equa-
tion 6.

end for
for every pair of nodes (u,w) ∈ P do

Find all nodes in Gm2
and compute ∂wfv using

Equation 9.
end for
V ← ∅; P ← ∅.

end for

much more careful operations. Each iteration, starting from
i = 0, again needs two steps:

1. Compute fv for each node v such that 2i−1 <
deg(v) ≤ 2i using the compact expression illustrated
earlier. We will show that, computing one such poly-
nomial adds poly(n) nodes and increases the depth by
at most two on Ψ. This new node representing fv will
be a node in Ψ, denoted by v′.

2. Compute all partial derivatives ∂wfu for two non-
variable nodes u and w in Φ, such that u is an an-
cestor of w and 2i−1 < deg(u) − deg(w) ≤ 2i and
deg(u) < 2 deg(w). Like those new nodes represent-
ing sub-network polynomials from Φ, this new node
representing a partial derivative will also be a node
in Ψ, denoted by (u,w). We will show that comput-
ing a partial derivative with respect to each pair adds
poly(n) nodes and increases the depth by at most two
on Ψ.

The process is summarized in Algorithm 1. Before pre-
senting the construction, we first confirm the quantitative
information of Ψ, the output of the algorithm. The first
observation is the number of iterations: The degree of the
root of Φ is n, so at most log n iterations are needed for
the entire process. Each iteration only increases the size of
the updated circuit by poly(n) and the depth by a constant

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

number. Consequently, the final form of Ψ has size poly(n)
and depth O(log n).

We now provide an inductive construction of Ψ starting
from i = 0. After each step, it is necessary to verify the
validity of the updated Ψ. Although decomposability is
easy to verify, smoothness is less straightforward. To tackle
this, we argue that the final state of Ψ is homogeneous, i.e.
every node in Ψ computes a homogeneous polynomial, and
consequently Ψ is smooth due to the following lemma.

Lemma 3.8. If a decomposable PC contains n variables
and computes a polynomial of degree n, then it is homoge-
neous if and only if it is smooth.

Iteration zero (i = 0): During this iteration, for the first
step, we only need to consider nodes v such that 0.5 <
deg(v) ≤ 1; the degree of any node must be an integer,
so we must have deg(v) = 1, i.e. v represents an affine
polynomial. Without loss of generality, we may assume
all such affine nodes are sum nodes with strictly more than
one child. Indeed, if a product node represents an affine
polynomial, then it must only have exactly one child, which
must be a leaf node; in this case, we may remove this product
node and connect that leaf to the parents of the original
product node. Similarly, if a sum node represents an affine
polynomial and has exactly one child, then that child must
also be a leaf node, hence we may again remove the sum
node and connect that leaf to the parents of the original
sum node. Due to smoothness, such an affine node v must
represent a polynomial in the form ax+ (1− a)x̄, where x
is the indicator of a variable, and 0 < a < 1. Therefore, the
depth of each sub-network Φv is only one. By duplicating
all such affine nodes onto Ψ, we add at most poly(n) nodes
and increase the depth by one only.

Next, for step two, we only need to consider pairs of nodes
(u,w) such that deg(u)− deg(w) ≤ 1. Thanks to Lemma
3.3, we know that ∂wfu is affine. For each pair satisfying the
restriction, we create a sum node (u,w) whose sub-network
Φ(u,w) has size three and depth one. By moving all such
sub-networks to Ψ for each eligible pair, we again add at
most poly(n) nodes and increase the depth by one to Ψ.

Iteration i+ 1: Suppose, after all previous iterations, we
have already computed all sub-network polynomials fv for
nodes v such that deg(v) ≤ 2i, and all partial derivatives
∂wfu for pairs of nodes (u,w) such that deg(u)−deg(w) ≤
2i and deg(u) ≤ 2 deg(w). Like the base case, step i + 1
takes two steps: The first step computes fv for eligible
nodes, and the second step concerns partial derivatives for
eligible pairs of nodes. Because the analysis of the two steps
during this iteration is highly involved, we will discussion
the construction in details in Appendix A.7.

We conclude the proof of Theorem 3.1 in this section by
transforming the newly constructed Ψ into a sub-exponential
tree. The transformation is a simple application of the naive

Algorithm 2 Transforming a rooted DAG to a tree
Input: A rooted DAG of size S and depth D, and the set
of its nodes V .
Output: A tree of size O(SD) and depth D.

for every node v in V do
if InDeg(v) > 1 then

Duplicate the tree rooted at v for InDeg(v)−1 times.
Construct an outgoing edge from each parent of v to
itself.

end if
end for

duplication strategy, which will be illustrated below. In
summary, given a poly(n)-sized DAG, the size of the trans-
formed tree directly depends on the depth of the original
DAG. The process of the duplication is briefly summarized
in Algorithm 2, and the detailed process of the entire trans-
formation from the original Φ to the final tree is described
in Algorithm 5.

Duplication Strategy Given a DAG SPN of size V and
depth D, a natural algorithm to a tree is that, if a node v has
k > 1 parents, then duplicate the sub-tree rooted at v for
k−1 times, and connect each duplicated sub-tree to a parent
of v. Indeed this algorithm generates a tree computing the
same function as the original DAG does, but in the worst
case we have to duplicate the entire graph O(V) times and
such iterative duplication may be executed for every layer
from the first to layer D. Therefore, in the worst case, the
outcoming tree has size O(ND).

The construction of Ψ shows that its size is O(n3) and depth
is O(log n). Using the naive duplication, we obtain that the
size of the final tree is nO(logn).

4. A Conditional Lower Bound
In this section, we present our second main result, which
provides a lower bound on the tree complexity of a net-
work polynomial given a restriction on the depth of the
tree. Obtaining a lower bound for the problem of circuit
complexity is in general a more difficult problem than ob-
taining an upper bound because one cannot achieve this
goal by showing the failure of a single algorithm. Instead,
one must construct a specific polynomial, and confirm that
no algorithm can produce an equivalent tree of size lower
than the desired lower bound. However, thanks to some
recent results in circuit complexity theory, such a separation
is ensured if the tree PC has a bounded depth. The main
result in this section is presented below, stating that, there is
a concrete network polynomial that cannot be represented
by a polynomial-sized tree-structured PC if the depth of the
tree is restricted.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Theorem 4.1. Given an integer k ≥ 1 and
n = 22k, there exists a network polynomial P ∈
R[x1, · · · , xn, x̄1, · · · , x̄n] of degree n = 22k, such that
any probabilistic tree of depth o(log n) = o(k) computing
P must have size nω(1).

Note that if the polynomial P is innately difficult to be
represented by PCs, i.e., if it cannot even be represented
efficiently by DAG-structured PCs, then separation is not
shown. To show separation, P should be efficiently com-
puted by a DAG-structured PC, but any tree-structured PC
representing P must have a strictly larger size. Our next
construction, described with more details in Algorithm 3,
confirms a separation by constructing an efficient DAG-
structured PC P ∗ that computes P . This PC has size
O(n log n) and depth 2k = 2 log n, where k is the inte-
ger given in Theorem 4.1. The next proposition confirms
the validity of P ∗, and the proof is in Appendix B.

Proposition 4.2. The tree PC P ∗ is decomposable and
smooth.

It is easy to check that P ∗ has the correct size and depth as
described earlier. Before adding leaf nodes, the algorithm
in total constructs

∑2k
r=0 2

r = 22k+1 − 1 = 2n− 1 nodes.
Finally, observe that during the construction of leaf nodes,
each negation indicator is added exactly k times: At a layer
containing only product nodes, if a negation indicator is
added to a product node v at this layer, then it will next be
added to the sibling of the grandparent of v. Because each
product node has exactly one sibling, the negation indicator
for a random variable is duplicated exactly k times, and
finally the total size is 2n−1+kn = O(kn) = O(n log n).
The depth O(k) is also apparent from the algorithm. We
therefore conclude that P can be efficiently computed by a
polynomial sized tree PC for an unrestricted depth.

However, the efficiency would be less optimal if we restrict
the depth to o(k). To show this, we design a reduction from
our problem for PCs to a well-studied problem on arithmetic
circuits. Our proof essentially argues that, for any minimum-
sized tree-structured PC that computes P , we can obtain its
sub-tree that computes a polynomial, and that polynomial
has been recently proven to not be able to be represented by
a polynomial-sized tree-structured PC. This recent result is
stated below.

Theorem 4.3 ((Fournier et al., 2023)). Let n and d = d(n)
be growing parameters such that d(n) ≤ √n. Then there
is a monotone algebraic formula F of size at most n and
depth O(log d) computing a polynomial Q ∈ F[x1, · · · , xn]
of degree at most d such that any monotone formula F ′ of
depth o(log d) computing Q must have size nω(1).

The proof of the lower bound for PCs in Theorem 4.1 is to
show that, for any Π, a minimum tree-structured PC with
depth o(k) that computes P , the polynomial in the state-

Algorithm 3 Construction of P ∗, an efficient PC for P
without a depth constraint

Input: A positive integer k, the number 22k, a set
{x1, · · · , x22k , x̄1, · · · , x̄22k} of 22k+1 indicators.
Output: A tree PC of size O(n log n) and depth 2k =
2 log n.

j ← 0.
Place all non-negation indicators x1, · · · , x22k at the bot-
tom layer.
Label them as L0,1, · · · , L0,22k .
for i = 1, · · · , 2 log n do

if i is odd then
while j < 22k−i do

Construct a product node labelled by Li,(j/2)

and two outgoing edges from the new node to
Li−1,j−1 and Li−1,j .
j ← j + 2.

end while
for every odd integer q = 1, 3, · · · , 22k−i − 1 do

Add the leaves representing negation indicators
{xz} for all z ∈ scope(Li,q+1) as children of
Li,q .
Add the leaves representing negation indicators
{xz} for all z ∈ scope(Li,q) as children of
Li,q+1.

end for
end if
if i is even then

while j < 22k−i do
Construct a sum node labelled by Li,(j/2) and two
outgoing edges from the new node to Li−1,j−1

and Li−1,j .
j ← j + 2.

end while
end if

end for

ment of Theorem 4.1, we can always obtain a smaller-sized
arithmetic formula Π′ with the same depth that computes
the polynomial Q in the statement of Theorem 4.3. The
size of Π′ is super-polynomial due to Theorem 4.3, and as
a result, the size of Π cannot be smaller. In other words,
our proof involves a reduction from the PC problem to the
AC problem. Before introducing the reduction, we first
present the polynomial Q in the statement of Theorem 4.3.
The original construction in Fournier et al. (2023) is for the
general class, but over here, we only present a specific case
with r = 2, which is sufficient for our purpose.

The Construction of the Polynomial Q We denote the
polynomial Q by H(k,2), which is defined over 22k variables{

xσ,τ : σ, τ ∈ [2]k
}
. (1)

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

The polynomial H(k,2) is recursively defined over interme-
diate polynomials Hu,v for all (u, v) ∈ [2]≤k × [2]≤k and
|u| = |v|. Specifically, if |u| = |v| = k, then Hu,v = xu,v;
otherwise, Hu,v =

∑r
a=1 Hu1,vaHu2,va. The final polyno-

mial H(k,2) is defined to be H∅,∅. Observe that the degree
of H(k,2) is 2k, and it contains 22

k−1 monomials.

Given a minimum tree-structured PC Π, which computes
P and is of depth o(k), we remove all of its leaves that
represent negation variables and call this pruned network
Π′; without leaves representing negation variables, Π′ is
just a standard arithmetic formula. Clearly, |Π′| ≤ |Π|, and
the next proposition reveals the polynomial computed by
Π′, and its proof is in Appendix B.

Proposition 4.4. The arithmetic formula Π′ computes
H(k,2).

Having all the necessary ingredients, we are now ready to
conclude this section by proving Theorem 4.1, the main
result of this section.

Proof of Theorem 4.1. The proof of Theorem 4.3 in
Fournier et al. (2023) uses the polynomial class H(k,r) as
the hard polynomial Q in the statement, in particular, with
r = 2, n = 22k and d(n) =

√
n = 2k. Note that the depth

of Π′ is o(log d) = o(k), and the degree of H(k,2) is d = 2k,
so the conditions in the statement of Theorem 4.1 are indeed
satisfied. Since Π′ is obtained from Π by removing leaves,
we obtain the following inequality that concludes the proof:

|Π| ≥ |Π′| ≥ nω(1).

5. Conclusion
In this paper we have shown that given a network polyno-
mial with n variables that can be efficiently computed by
a DAG-structured PC, we can construct a tree PC with at
most sub-exponential size and is no deeper than O(log n).
On the flip side, we have also shown that there indeed exists
a polynomial that can be efficiently computed by a poly(n)-
sized PC without a depth restriction, but there is a super-
polynomial separation if we restrict the depth of the tree to
be o(log n). Our results make an important step towards
understanding the expressive power of tree-structured PCs
and show that an sub-exponential upper bound is possible.
However, the lower bound is still largely open, and we have
only shown a separation under a specific depth restriction.
One potential direction for the future work are discussed be-
low: although the upper bound nO(logn) is sub-exponential,
it is still prohibitively large as n grows. The construction
outputs a tree of depth O(log n), which would be consid-
ered as a shallow tree. Is it possible to further reduce the
size of the tree, possibly in the cost of a larger depth?

References
Tameem Adel, David Balduzzi, and Ali Ghodsi. Learn-

ing the structure of sum-product networks via an svd-
based algorithm. In Conference on Uncertainty in
Artificial Intelligence, 2015. URL https://api.
semanticscholar.org/CorpusID:15429402.

Mohamed R Amer and Sinisa Todorovic. Sum product
networks for activity recognition. IEEE transactions on
pattern analysis and machine intelligence, 38(4):800–
813, 2015.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and
Daphne Koller. Context-specific independence in
bayesian networks. arXiv preprint arXiv:1302.3562,
2013.

Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial deriva-
tives in arithmetic complexity and beyond. Found.
Trends Theor. Comput. Sci., 6(1-2):1–138, 2011. doi:
10.1561/0400000043. URL https://doi.org/10.
1561/0400000043.

Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong
Chieu, and Kian Ming A Chai. Language modeling with
sum-product networks. In Fifteenth Annual Conference
of the International Speech Communication Association,
2014.

Y Choi, Antonio Vergari, and Guy Van den Broeck. Prob-
abilistic circuits: A unifying framework for tractable
probabilistic models. UCLA. URL: http://starai. cs. ucla.
edu/papers/ProbCirc20. pdf, 2020.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep
sum-product networks. In Proceedings of the 24th Inter-
national Conference on Neural Information Processing
Systems, NIPS’11, page 666–674, Red Hook, NY, USA,
2011. Curran Associates Inc. ISBN 9781618395993.

Aaron Dennis and Dan Ventura. Learning the archi-
tecture of sum-product networks using clustering on
variables. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.
cc/paper_files/paper/2012/file/
f33ba15effa5c10e873bf3842afb46a6-Paper.
pdf.

Ronen Eldan and Ohad Shamir. The power of depth for
feedforward neural networks. In Conference on learning
theory, pages 907–940. PMLR, 2016.

Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth
Srinivasan, and Sébastien Tavenas. Towards optimal

8

https://api.semanticscholar.org/CorpusID:15429402
https://api.semanticscholar.org/CorpusID:15429402
https://doi.org/10.1561/0400000043
https://doi.org/10.1561/0400000043
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

depth-reductions for algebraic formulas. In Proceed-
ings of the Conference on Proceedings of the 38th Com-
putational Complexity Conference, CCC ’23, Dagstuhl,
DEU, 2023. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. ISBN 9783959772822. doi: 10.4230/LIPIcs.
CCC.2023.28. URL https://doi.org/10.4230/
LIPIcs.CCC.2023.28.

Robert Gens and Pedro Domingos. Discriminative learning
of sum-product networks. Advances in Neural Informa-
tion Processing Systems, 25, 2012.

Robert Gens and Domingos Pedro. Learning the structure
of sum-product networks. In International conference on
machine learning, pages 873–880. PMLR, 2013.

Larry Guth and Nets Hawk Katz. Algebraic meth-
ods in discrete analogs of the kakeya problem. Ad-
vances in Mathematics, 225(5):2828–2839, 2010. ISSN
0001-8708. doi: https://doi.org/10.1016/j.aim.2010.05.
015. URL https://www.sciencedirect.com/
science/article/pii/S0001870810002094.

Haim Kaplan, Micha Sharir, and Eugenii Shustin. On lines
and joints. Discrete and Computational Geometry, 44
(4):838–843, 2010. ISSN 0179-5376. doi: 10.1007/
s00454-010-9246-3. Funding Information: Work on
this paper has been partly supported by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv
University. Work by Micha Sharir was also supported
by NSF Grants CCF-05-14079 and CCF-08-30272, by
Grant 155/05 from the Israel Science Fund. and by Grant
2006/194 from the U.S.—Israeli Binational Science Foun-
dation. Work by Haim Kaplan was also supported by
Grant 975/06 from the Israel Science Fund, and by Grant
2006/204 from the U.S.—Israel Binational Science Foun-
dation.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expres-
sive power of deep polynomial neural networks. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Sang-Woo Lee, Min-Oh Heo, and Byoung-Tak Zhang. On-
line incremental structure learning of sum–product net-
works. volume 8227, pages 220–227, 11 2013. ISBN 978-
3-642-42041-2. doi: 10.1007/978-3-642-42042-9 28.

Eran Malach and Shai Shalev-Shwartz. Is deeper better
only when shallow is good? Curran Associates Inc., Red
Hook, NY, USA, 2019.

James Martens and Venkatesh Medabalimi. On the ex-
pressive efficiency of sum product networks. CoRR,
abs/1411.7717, 2014. URL http://arxiv.org/
abs/1411.7717.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio.
When and why are deep networks better than shallow
ones? In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 31, 2017.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias
Hein. Neural networks should be wide enough to
learn disconnected decision regions. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 3740–3749. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/
nguyen18b.html.

Robert Peharz, Bernhard Geiger, and Franz Pernkopf.
Greedy part-wise learning of sum-product networks. vol-
ume 8189, 09 2013. ISBN 978-3-642-38708-1. doi:
10.1007/978-3-642-40991-2 39.

Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz
Pernkopf. Modeling speech with sum-product networks:
Application to bandwidth extension. In 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3699–3703. IEEE, 2014.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690, 2011. doi: 10.1109/ICCVW.
2011.6130310.

Andrzej Pronobis, Francesco Riccio, Rajesh PN Rao, et al.
Deep spatial affordance hierarchy: Spatial knowledge
representation for planning in large-scale environments.
In ICAPS 2017 Workshop on Planning and Robotics,
pages 1–9, 2017.

Ran Raz and Amir Yehudayoff. Balancing syntactically mul-
tilinear arithmetic circuits. Computational Complexity,
17:515–535, 2008.

Amirmohammad Rooshenas and Daniel Lowd. Learning
sum-product networks with direct and indirect variable
interactions. In Proceedings of the 31st International Con-
ference on International Conference on Machine Learn-
ing - Volume 32, ICML’14, page I–710–I–718. JMLR.org,
2014.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in
approximating natural functions with neural networks.
In International conference on machine learning, pages
2979–2987. PMLR, 2017.

Raquel Sánchez-Cauce, Iago Parı́s, and Francisco Javier
Dı́ez. Sum-product networks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(7):3821–3839, 2021.

9

https://doi.org/10.4230/LIPIcs.CCC.2023.28
https://doi.org/10.4230/LIPIcs.CCC.2023.28
https://www.sciencedirect.com/science/article/pii/S0001870810002094
https://www.sciencedirect.com/science/article/pii/S0001870810002094
http://arxiv.org/abs/1411.7717
http://arxiv.org/abs/1411.7717
https://proceedings.mlr.press/v80/nguyen18b.html
https://proceedings.mlr.press/v80/nguyen18b.html

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Bruno Massoni Sguerra and Fabio G Cozman. Image clas-
sification using sum-product networks for autonomous
flight of micro aerial vehicles. In 2016 5th Brazilian Con-
ference on Intelligent Systems (BRACIS), pages 139–144.
IEEE, 2016.

Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and
Tie-Yan Liu. On the depth of deep neural networks: A
theoretical view. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, 2016.

Matus Telgarsky. benefits of depth in neural networks. In
Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
editors, 29th Annual Conference on Learning The-
ory, volume 49 of Proceedings of Machine Learn-
ing Research, pages 1517–1539, Columbia University,
New York, New York, USA, 23–26 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v49/
telgarsky16.html.

Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and
Charles Rackoff. Fast parallel computation of polynomi-
als using few processors. SIAM J. Comput., 12:641–644,
1983. URL https://api.semanticscholar.
org/CorpusID:10197224.

Jinghua Wang and Gang Wang. Hierarchical spatial sum–
product networks for action recognition in still images.
IEEE Transactions on Circuits and Systems for Video
Technology, 28(1):90–100, 2016.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck.
Probabilistic generating circuits. In International Confer-
ence on Machine Learning, pages 12447–12457. PMLR,
2021.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the
relationship between sum-product networks and bayesian
networks. In International Conference on Machine Learn-
ing, pages 116–124. PMLR, 2015.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon
Amos. Collapsed variational inference for sum-product
networks. In International conference on machine learn-
ing, pages 1310–1318. PMLR, 2016a.

Han Zhao, Pascal Poupart, and Geoffrey J Gordon. A uni-
fied approach for learning the parameters of sum-product
networks. Advances in neural information processing
systems, 29, 2016b.

10

https://proceedings.mlr.press/v49/telgarsky16.html
https://proceedings.mlr.press/v49/telgarsky16.html
https://api.semanticscholar.org/CorpusID:10197224
https://api.semanticscholar.org/CorpusID:10197224

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

+

× × ×

x2
+ +

x̄1

x1 x̄1 x2 x̄2

+

× ×

x2
+

× ×

+ +
x̄1

x1 x̄1 x2 x̄2

Figure 2. The process of transforming a non-binary DAG-structured PC to a binary one that computes the identical network polynomial.
We omit the edge weights for simplicity.

A. Missing proofs in Section 3
In this section we provide the proofs of the lemmas and theorems that are not included in the main text. For better readability,
we first restate the statements and then provide the proofs.

A.1. Proof of Lemma 3.2

Given a depth-D network with V nodes and E edges, we scan over all its nodes. If a sum node has more than two children,
say M1, · · · ,Mk, then keep M1 and create a product node, whose only child is an intermediate sum node. The intermediate
sum node has two children: M2 and another just created intermediate sum node. Keep going and until an intermediate sum
node has Mk as the only child.

The operation is the same if a product node has more than two children by just exchanging sum and product. Note that for
one operation for a node with k children, the depth increases by 2(k − 1), and 2(k − 1) nodes and edges are added. Once
we do the same for all nodes, the number of increased depth, nodes, and edges are upper bounded by

2×
(∑

N∈V

out-degree of node N if N has more than two children

)
− 2V ≤ 2E − 2V ∈ O(E).

In fact, for depth, this upper bound is very conservative because, for example, if a node has three children, one of its children
again has three children. After we operate on both of them, the depth increases by four only. A better upper bound is
O(M) ≤ O(V), where M is the maximum out-degree in the original network. It is easy to check that each child of the root
computes the same polynomial as before, and so does the new network. Clearly, the new network is still decomposable and
smooth if the original network is.

A.2. Proof of Lemma 3.3

Lemma 3.3. Given a PC Φ, if v and w are two nodes in Φ such that ∂wfv ̸= 0, then ∂wfv is a homogeneous polynomial
over the set of variables Xv \Xw of degree deg(v)− deg(w).

Proof. Clearly, ∂wfv ̸= 0 implies that w is a descendant of v. We prove the statement by induction on L, the length of the
longest directed path from v to w. If L = 0, i.e. w = v, then ∂wfv = 1 and the statement trivially holds. Suppose the

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

statement is true for all L and now the longest distance from v to w is L+ 1. We prove the statement by discussing two
cases, whether w is a sum or product node.

Case I: w is a sum node. We first assume w is a sum node, and its parent inside this particular path v ⇝ w is u, whose
children are w and w′. We write fv as the polynomial if we substitute w with y, and f̂v as the polynomial if we substitute u
with y. Note that if we write them as functions with respect to y, then fv(y) = f̂v(y · fw′), and hence

∂wfv =
∂fv(y)

∂y
=

∂f̂v(y · fw′)

∂y
=

∂f̂v(y · fw′)

∂(y · fw′)
· fw′ = ∂ufv · fw′ . (2)

By the inductive hypothesis, ∂ufv is a homogeneous polynomial over the set of variables Xv \ Xu of total degree
deg(v) − deg(u), so ∂wfv must also be homogeneous, and its degree is deg(∂ufv) + deg(w′) = deg(v) − deg(u) +
deg(w′) = deg(v) − deg(w) − deg(w′) + deg(w′) = deg(v) − deg(w), and it is over variables (Xv \Xu) ∪ Xw′ =
(Xv \ (Xw ⊔Xw′)) ∪Xw′ = Xv \Xw.

Case II: w is a product node. Next, assume w is a product node. In this case, u is a sum node and deg(u) = deg(w) =
deg(w′), and Xu = Xw = Xw′ . Let the weight of the edge u → w be a, and the weight for u → w′ be b. Then,
fv(y) = f̂v(ay + bfw′), and

∂wfv =
∂fv(y)

∂y
=

∂f̂v(ay + bfw′)

∂y
= a · ∂f̂v(ay + bfw′)

∂(ay + bfw′))
= a · ∂ufv. (3)

Clearly, by the inductive hypothesis, both ∂ufv and ∂wfv are homogeneous, and they have the same degree and set of
variables. Specifically, deg(∂wfv) = deg(∂ufv) = deg(v)−deg(u) = deg(v)−deg(w), and Xw,v = Xu,v = Xv \Xu =
Xv \Xw.

A.3. Proof of Lemma 3.4

Lemma 3.4. Let v be a product node and w be any other node in a PC Φ, and deg(v) < 2 deg(w). The children of v are v1
and v2 such that deg(v1) ≥ deg(v2). Then ∂wfv = fv2 · ∂wfv1

.

Proof. Clearly, deg(v) = deg(v1) + deg(v2). Therefore, since deg(v) < 2 deg(w), we have deg(v2) < deg(w); by
Lemma 3.3, we have ∂wfv2 = 0, and the conclusion follows directly because of the chain rule.

A.4. Proof of Lemma 3.6

First, observe that with such choice of m, we have Gm ∩ Φv ̸= ∅. Write v1 and v2 as the children of v. If deg(v1) ≤ m
and deg(v2) ≤ m, then v ∈ Gm. Otherwise, assume without loss of generality that deg(v1) ≥ deg(v2) and deg(v1) > m.
Keep reducing and there will be a position such that the condition of being a member in Gm holds.

We now prove the statement by induction on L, the length of the longest directed path from v to Gm, i.e. L =
maxv′∈Gm dist(v, v′). If L = 0, then v ∈ Gm and all other nodes in Gm (if any) are not descendants of v. There-
fore, if t ∈ Gm and t ̸= v, we have ∂tfv = 0. Clearly, ∂vfv = 1, so

fv = fv · ∂vfv︸︷︷︸
=1

+
∑

t∈Gm:t ̸=v

ft · ∂tfv︸︷︷︸
=0

=
∑

t∈Gm

ft · ∂tfv. (4)

Now suppose the statement is true for all L, and now the longest directed path from v to Gm has length L+ 1.

Case I: v is a sum node. First, assume v is a sum node and fv = a1fv1 + a2fv2 . Recall that, since v is a sum node, we
have m < deg(v1) = deg(v2) = deg(v) ≤ 2m, so we may apply the inductive hypothesis on v1 and v2. Therefore,

fv1 =
∑

t∈Gm

ft · ∂tfv1 ; fv2 =
∑

t∈Gm

ft · ∂tfv2 . (5)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Hence, using the chain rule of the partial derivative, we have

fv = a1fv1 + a2fv2 =
∑

t∈Gm

a1 · ft · ∂tfv1 +
∑

t∈Gm

a2 · ft · ∂tfv2 (6)

=
∑

t∈Gm

ft · (a1 · ∂tfv1 + a2 · ∂tfv2) =
∑

t∈Gm

ft · ∂tfv. (7)

Case II: v is a product node. Next, assume v is a product node and deg(v1) ≥ deg(v2). If v ∈ Gm, then the statement
trivially holds like the base case, so we assume v /∈ Gm, and therefore m < deg(v1) ≤ 2m and the longest directed path
from v1 to Gm has length L, while such a path does not exist from v2 to Gm. So, by the inductive hypothesis,

fv1 =
∑

t∈Gm

ft · ∂tfv1 . (8)

By definition, if t ∈ Gm, then we must have 2 deg(t) > 2m ≥ deg(v), and by Lemma 3.4,

fv = fv1 · fv2 =
∑

t∈Gm

ft · (fv2 · ∂tfv1) =
∑

t∈Gm

ft · ∂tfv. (9)

A.5. Proof of Lemma 3.7

We again write v1 and v2 as the children of v, and again induct on L, the length of the longest directed path from v to Gm in
the network. If L = 0, then v ∈ Gm, and same as the previous case, every other node t in Gm is not a descendant of v,
which implies ∂tfv = 0. So,

∂wfv = ∂wfv · ∂vfv︸︷︷︸
=1

+
∑

t∈Gm:t ̸=v

∂wfv · ∂tfv︸︷︷︸
=0

=
∑

t∈Gm

∂wft · ∂tfv. (10)

Suppose the statement is true for all L, and now the longest directed path from v to Gm has length L+ 1.

Case I: v is a sum node. First, assume v is a sum node and fv = a1fv1 + a2fv2 . Again, since v is a sum node we may
apply the inductive hypothesis on v1 and v2:

∂wfv1 =
∑

t∈Gm

∂wft · ∂tfv1 ; ∂wfv2 =
∑

t∈Gm

∂wft · ∂tfv2 . (11)

Again, by the chain rule, we have

∂wfv = a1∂wfv1 + a2∂wfv2 =
∑

t∈Gm

∂wft · (a1∂tfv1 + a2∂tfv2) =
∑

t∈Gm

∂wft · ∂tfv. (12)

Case II: v is a product node. Now assume v is a product node and deg(v1) ≥ deg(v2). If v ∈ Gm, then the statement
trivially holds like the base case, so we assume v /∈ Gm, and therefore m < deg(v1) < 2 deg(w) and the longest directed
path from v1 to Gm has length L, while such a path does not exist from v2 to Gm. So, by the inductive hypothesis,

∂wfv1 =
∑

t∈Gm

∂wft · ∂tfv1 . (13)

Since deg(v) < 2 deg(w), and for all nodes t ∈ Gm, we have 2 deg(t) > 2m > deg(v), so by applying Lemma 3.4 twice,
we have

∂wfv = fv2 · ∂wfv1 =
∑

t∈Gm

∂wft · (fv2 · ∂tfv1) =
∑

t∈Gm

∂wft · ∂tfv. (14)

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

+

× ×

x2 = ∂u1
v1 +

× ×

+ +
x̄1

x1 x̄1 x2 x̄2

v

v1

u

v2 v3

u1 = ∂x2v1 = ∂u2v2

u2 = ∂u2
v3 = ∂x̄1

v3

+

× × ×

x2
+ +

x̄1

x1 x̄1 x2 x̄2

v1 v2 v3

u1 = ∂x2
v1 = ∂u2

v2 u2 = ∂u2
v3 = ∂x̄1

v3

Figure 3. The process of converting an arbitrary DAG to a DAG with depth restriction. The red nodes are those in G2 and their
relationships imply the computational procedure.

A.6. Proof of Lemma 3.8

Suppose the network is smooth. Recall that if the root of a PC contains n variables, then the network computes a multi-linear
polynomial of degree n. If the root is a sum node, then its children must be homogeneous with degree n. If the root is a
product node, then its children must also be homogeneous, otherwise the product node will not be homogeneous.

Conversely, suppose such network is homogeneous. We prove by induction on the depth d of the network. If d = 1 and the
root is a sum node, then the polynomial must be linear and therefore there can only be one variable x and x̄; as a result, this
simple network is smooth. Now suppose the statement is true for any d, and we have a PC with depth d+ 1. If the root
is a product node, we are done because if any sum node had two children with different scopes, the inductive hypothesis
would be violated. If the root is a sum node, then every sum node other than the root cannot have two children with different
scopes, because each sum node is in the induced sub-network rooted at a grandchild of the root of depth d − 1 and the
inductive hypothesis must hold. So, we only need to show XR = XR1

= · · · = XRk
. Because the sub-networks rooted at

R1, · · · , Rk are decomposable and homogeneous and therefore smooth by the inductive hypothesis, thanks to ?? each Ri

computes a polynomial of degree |XRi
|. If |XRi

| < n, then the polynomial computed by R is not homogeneous of degree
n and we obtain a contradiction.

A.7. Construction of Ψ

A.7.1. STEP ONE: COMPUTING fv FOR ELIGIBLE NODES

During iteration i + 1, a polynomial fv is in consideration if and only if 2i < deg(v) ≤ 2i+1. Naturally we shall apply
Lemma 3.6, and therefore choosing an appropriate m and the corresponding Gm is essential. Here we choose m = 2i.
Moreover, we define a set T = Gm ∩ Φv for each v being considered; for every t ∈ T , we use t1 and t2 to denote its
children. By Lemma 3.6 and the definition that all nodes in Gm are product nodes, we have

fv =
∑
t∈T

ft · ∂tfv =
∑
t∈T

ft1 · ft2 · ∂tfv. (15)

Since t ∈ T , we must have max {deg(t1),deg(t2)} ≤ m = 2i, and therefore

2i = m < deg(t) = deg(t1) + deg(t2) ≤ 2m = 2i+1. (16)

Therefore, deg(v) − deg(t) < 2i+1 − 2i = 2i and deg(v) < 2i + deg(t) < 2 deg(t). Hence, ft1 , ft2 and ∂tfv have all
been computed already during earlier iterations. If deg(v) = deg(t), then t is a child of v and ∂tfv is the weight of the edge
v → t. Therefore, to compute such a fv , we need to add |T | product nodes and one sum node, whose children are those |T |
product nodes; apparently, the depth increases by two. If a subset of the three terms {ft1 , ft2 , ∂tfv} is a constant, then their
product will be the weight of the edge connecting the product node ft1 · ft2 and the new sum node.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

We now verify the validity of this updated circuit. Because Φ is decomposable and t is a product node, we conclude
Xt1 ∩Xt2 = ∅ and Xt = Xt1 ⊔Xt2 . By Lemma 3.3, we have Xt,v = Xv \Xt = Xv \ (Xt1 ⊔Xt2). Therefore, every
summand in Equation (15) is a product node whose children are sum nodes with pairwise disjoint scopes, and thus, the
updated circuit must be decomposable as well. Also, since fv is a homogeneous polynomial, so must be every summand for
each t. As a result, the updated circuit is also homogeneous. Thanks to Lemma 3.8, the updated circuit is valid.

A.7.2. STEP TWO: COMPUTING ∂wfu FOR ELIGIBLE PAIRS OF NODES

As discussed earlier, during iteration i+ 1, a pair of nodes u and w are chosen if and only if 2i < deg(u)− deg(w) ≤ 2i+1

and deg(u) < 2 deg(w). In this case, we fix m = 2i + deg(w), and define T = Gm ∩ Φu. Clearly, deg(w) < m <
deg(u) < 2 deg(w), so by Lemma 3.7, we have ∂wfu =

∑
t∈T ∂wft · ∂tfu. For each t ∈ T , by definition t must be a

product node, and since t ∈ Φu, we have deg(w) < deg(t) ≤ deg(u) < 2 deg(w). Recall that the children of t are denoted
by t1 and t2, and we may assume without loss of generality that deg(t1) ≥ deg(t2). Hence, by Lemma 3.4, we have
∂wfu =

∑
t∈T ft2 · ∂wft1 · ∂tfu. Furthermore, we may safely assume deg(w) ≤ deg(t1), otherwise w is not a descendant

of t1 nor t and therefore ∂wft1 = ∂wft = 0. Next, by analyzing their degrees and differences in degrees, we show that for
each t, the terms ft2 , ∂wft1 , and ∂tfu in that summand have all been computed by earlier iterations or the step one during
this iteration i+ 1. Term ft2 : since deg(u) ≤ deg(w) + 2i+1 ≤ 2i+1 + deg(t1) = 2i+1 + deg(t)− deg(t2), we have

deg(t2) ≤ 2i+1 + deg(t)− deg(u) ≤ 2i+1. (17)

Hence, ft2 has already been computed during the first step of this current iteration or even earlier. Term ∂wft1: Recall
that deg(t1) ≤ m = 2i + deg(w), so deg(t1) − deg(w) ≤ 2i. Moreover, deg(t1) ≤ deg(t) ≤ deg(u) < 2 deg(w).
Therefore, the pair (t1, w) satisfies both requirements to be computed during iteration i or earlier. Term ∂tfu: Recall that
deg(t) > m = 2i + deg(w), so

deg(u)− deg(t) < deg(u)− deg(w)− 2i ≤ 2i+1 − 2i = 2i, (18)

where the second inequality follows from deg(u)− deg(w) ≤ 2i+1, the requirement of choosing u and w for iteration i+1.
Finally,

deg(u) ≤ 2i+1 + deg(w) < 2 · (2i + deg(w))︸ ︷︷ ︸
=m<deg(t)

< 2 deg(t). (19)

These two facts together ensure that ∂tfu must have been computed during iteration i or earlier.

Finally, we verify the validity of the updated circuit after this step. The new objects introduced in this step are only |T |
product nodes whose children are ft2 , ∂wft1 , and ∂tfu for each t ∈ T , and one sum node whose children are those |T |
product nodes. It is easy to see that the sets Xt2 , Xt1 \ Xw and Xu \ Xt are pairwise disjoint since Xw ⊆ Xt1 and
Xt1 ∩Xt2 = ∅; therefore, the updated circuit is indeed decomposable. By Lemma 3.3, all three terms in each summand are
homogeneous, and therefore the new circuit is also homogeneous, and consequently, it is valid again by Lemma 3.8.

B. Missing proofs in Section 4
B.1. Proof of Proposition 4.2

Before writing the rigorous proof, we first fix some terminologies. In this proof, we refer the layer of all indicators
constructed in step one as layer zero, and each set of nodes constructed in one of steps three, four, and five as one layer above.
A negation indicator added in step six does not belong to any layer. Therefore, when we consider a layer of sum nodes, the
negation indicator leaves whose parents are product nodes on the next layer are not in consideration. Step six augments the
scope of every product node; for any product node v, we use v′ to denote the same vertex before being augmented during
step six. To prove this statement, we first prove an equivalent condition for P ∗ to be valid, and then show P ∗ satisfies the
equivalent property.
Lemma B.1. Validity of P ∗ is equivalent with the following statement:

In P ∗, every product node and its sibling have the same scope. If two product nodes are on the same layer but not siblings,
then they have disjoint scopes.

Proof. Suppose the statement holds, then for any sum node, its two children are product nodes and siblings, so they have
the same scope; for any product node v, denote its children by w and w′, and their children by {w1, w2} and {w′

1, w
′
2},

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

respectively. Clearly, wi and w′
i are siblings and have the same scope for any i ∈ {1, 2}, but if j ̸= i, then wi and w′

j have
disjoint scopes. Therefore, scope(w) = scope(w1) = scope(w2) and scope(w′) = scope(w′

1) = scope(w′
2) are disjoint,

as desired.

Conversely, suppose P ∗ is decomposable and smooth. For any pair of product nodes which are siblings, they share a unique
parent and thus have the same scope due to smoothness. Now suppose we have two product nodes v and w, which are
on the same layer but not siblings. We prove a useful fact: If two product nodes are on the same layer 2j + 1 for some
1 ≤ j ≤ k, then deg(v) = deg(w) = 22j+2. When j = 1, we know that initially every product node on layer one has two
leaf children, so adding two negation indicators enforce that every product node on that layer has degree four. Assume the
statement is true for all j, and we now consider those product nodes on layer 2(j + 1) − 1 = 2j + 1. By the inductive
hypothesis, every product node on layer 2j − 1 has degree 22j , and therefore every sum node on layer 2j also has degree
22j . If u is a product node on layer 2j + 1 with the sibling u∗, we have deg(u′) = deg((u∗)′) = 22j+1. Step six ensures
that deg(u) = deg(u∗) = deg(u′) + deg((u∗)′) = 22j+2.

If they share an ancestor that is a product node, then their scopes are disjoint due to decomposability. On the other
hand, suppose their only common ancestor is the root, whose children are denoted by a1 and a2, then without loss of
generality, we may assume that v is a descendant of a1 and w is a descendant of a2. Because P ∗ is valid, it must be
homogeneous and we have deg(a1) = deg(a2). The fact we proved in the previous paragraph implies that deg(a′1) =
deg(a′2) = 22k−3+2 = 22k−1. In other words, step six increases the degree of a′1 and a′2 by 22k−1 each. Because the whole
tree P ∗ is decomposable, the increase in deg(a′1) is exactly 22k−1 = | scope(a′2)|, and vice versa. Due to smoothness,
{X1, · · · , X22k} = scope(a′1) ∪ scope(a′2), and thus scope(a′1) ∩ scope(a′2) = ∅. Finally, since scope(v) ⊆ scope(a′1)
and scope(w) ⊆ scope(a′2), we must have scope(v) ∩ scope(w) = ∅.

Now we prove Proposition 4.2 by showing that P ∗ indeed satisfies the equivalent property.

Proposition 4.2. The tree PC P ∗ is decomposable and smooth.

Proof. Now we prove that P ∗ satisfies the equivalent statement by induction on the index of the layer containing product
nodes only. Using the index above, only the layers with odd indices from {2i− 1}ki=1 are concerned. For the base case,
consider those 22k−1 product nodes constructed in step two, denoted by v1, · · · , v22k−1 . For each 1 ≤ j ≤ 22k−1, if j is
odd, then following steps two and six, the children of vj are {x2j−1, x2j , x̄2j+1, x̄2j+2}. Its only sibling is vj+1, whose
children are {x2j+2, x2j+1, x̄2j , x̄2j−1}. Thus, scope(vj) = scope(vj+1) = {X2j−1, X2j , X2j+1, X2j+2}. The argument
is identical if j is even.

On the other hand, suppose 1 ≤ r < s ≤ 22k−1 and two product nodes vr and vs are not siblings, i.e. either s− r > 1, or
s− r = 1 and r is even.

Case I: s − r > 1. In this case, the set scope(vr) is {X2r−1, X2r, X2r+1, X2r+2} if r is odd,
{X2r−3, X2r−2, X2r−1, X2r} if it is even; similarly, the set scope(vs) depends on the parity of s. If s − r = 2, then
they have an identical parity. If they are both odd, then scope(vs) =

{
X2(r+2)−1, X2(r+2), X2(r+2)+1, X2(r+2)+2

}
=

{X2r+3, X2r+4, X2r+5, X2r+6}, and is disjoint with scope(vr). The argument is identical if they are both even. If s−r > 2,
then the largest index among the elements in scope(vr) is 2r + 2, and the smallest index among the elements in scope(vs)
is 2s− 3 ≥ 2(r + 3)− 3 = 2r + 3; hence, scope(vr) ∩ scope(vs) = ∅.

Case II: s − r = 1 and r is even. In this case, scope(vr) = {X2r−3, X2r−2, X2r−1, X2r} and scope(vs) =
{X2s−1, X2s, X2s+1, X2s+2} = {X2r+1, X2r+2, X2r+3, X2r+4} because s = r + 1 is odd. Clearly, scope(vr) ∩
scope(vs) = ∅.
The argument above proves the base case. Suppose the statement holds until the layer 2i− 1 for some i < k, and we now
consider layer 2(i+ 1)− 1 = 2i+ 1, which contains 22k−2i−1 product nodes, denoted by v1, · · · , v22k−2i−1 . They must
have non-leaf children, and we denote these nodes without their leaf nodes by v′1, · · · , v′22k−2i−1 . By construction, the layer
2i below contains 22k−2i sum nodes, denoted by w1, · · · , w22k−2i ; and the layer 2i− 1 contains 22k−2i+1 product nodes,
denoted by z1, · · · , z22k−2i+1 . For each 1 ≤ r ≤ 22k−2i−1, the product node vr has children w2r−1 and w2r, and is their
unique parent. Similarly, w2r has children z4r−1 and z4r and is their unique parent; w2r−1 has children z4r−3 and z4r−2,
and is their unique parent.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

We prove a simple fact that will simplify the induction step. We claim that, given two integers r, s ∈ {1, · · · , 22k−2i−1}
and r ̸= s, the scopes scope(v′r) and scope(v′s) are disjoint. Without loss of generality, we assume r < s. By
construction, Ch(v′r) = {w2r−1, w2r} and Ch(v′s) = {w2s−1, w2s}; furthermore, Ch(w2r−1) = {z4r−3, z4r−2},
Ch(w2r) = {z4r−1, z4r}, Ch(w2s−1) = {z4s−3, z4s−2}, Ch(w2s) = {z4s−1, z4s}. Observe that, if a pair of product
nodes belong to one of the four sets above, then they are siblings and have the same scope; if they belong to distinct sets,
then they are not siblings and have disjoint scopes. We know that the scope of a node is the union of the scopes of their
children, so the four scopes scope(w2r−1), scope(w2r), scope(w2s−1), and scope(w2s) are pairwise disjoint. As a result,
the scopes scope(v′r) = scope(w2r−1) ⊔ scope(w2r) and scope(v′s) = scope(w2s−1) ⊔ scope(w2s) are disjoint.

Now we prove the induction step. In the first case, suppose vr and vr+1 are sibling, i.e. r is odd so vr+1 is the only sibling
of vr. We have shown that scope(v′r) ∩ scope(v′r+1) = ∅. However, step six enforces that scope(vr) = scope(v′r) ⊔
scope(v′r+1) = scope(vr+1), as desired.

Next, suppose 1 ≤ r < s ≤ 22k−2i−1 and vr and vs are not siblings. Denote the siblings of vr and vs by vr′ and vs′ ,
respectively; by definition, r′ ∈ {r − 1, r + 1} and s′ ∈ {s− 1, s+ 1}, depending on the parity of r and s. Clearly, the
four nodes vr, vr′ , vs, vs′ are distinct, and consequently the four sets scope(vr), scope(vr′), scope(vs), and scope(vs′) are
pairwise disjoint. Step six enforces that scope(vr) = scope(v′r) ⊔ scope(v′r′) and scope(vs) = scope(v′s) ⊔ scope(v′s′),
which are disjoint as desired.

B.2. Proof of Proposition 4.4

We first realize the polynomial P returned by Algorithm 3 without adding those leaves representing negation variables.
Recall that layer one contains 22k−1 product nodes, and before adding negation variables, the bottom layer (layer zero)
contains 22k leaves. If for every odd integer i ∈ {1, 3, 5, . . . , 22k − 1}, we denote the monomial by fi,i+1 = xixi+1, then
without adding negation variables, the polynomial can be constructed by the following recursion with 2k + 1 steps:

• Construct 22k−1 monomials x1x2, . . . , x22k−1x22k .

• Sum up 22k−2 pairs of consecutive monomials, and return 22k−2 polynomials with two monomials x1x2 +
x3x4, . . . , x22k−3x22k−2 + x22k−1x22k .

• Multiply 22k−3 pairs of consecutive polynomials, and return 22k−3 polynomials.

• Repeat the operation until only one polynomial is returned.

Observe that this polynomial is exactly H(k,2) defined in Section 4 with an alternative set of indices for the variables
([2]k×[2]k versus [22k]). To prove Proposition 4.4, it is sufficient to show that for every minimum tree-structured probabilistic
circuit Π of depth o(k) that computes P , the removal of those leaves representing negation variables returns an arithmetic
formula that has the same depth and computes H(k,2). To show this, we need the following lemma.

Lemma B.2. In any tree-structured probabilistic circuit Π that computes P , no sum node has a negation indicator as a
child, and no product node has only negation indicators as its children.

The proof of Lemma B.2 relies on the following lemma on monotone arithmetic formulas.

Lemma B.3. A monotone arithmetic formula computing a homogeneous polynomial must be homogeneous.

Proof. If a formula is rooted at a sum node, then clearly every child of its must be homogeneous. If the root is a product
node with k children, then denote the polynomials computed by them as f1, · · · , fk and write f =

∏k
i=1 fi. Furthermore,

for each i ∈ [k], further assume fi contains qi monomials, and write it as

fi = fi,1 + · · ·+ fi,qi . (20)

Without loss of generality, assume f1 is not homogeneous and deg(f1,1) ̸= deg(f1,2). Then at least two of the monomials
of f , namely f1,1 ×

∏k
j=2 fj,1 and f1,2 ×

∏k
j=2 fj,1, must have distinct degrees and therefore destroy the homogeneity of

the root.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Proof of Lemma B.2. First, observe that in a PC, if a sum node has a leaf as a child, then due to smoothness, it can only
have two children, which are negation and non-negation indicators for a same variable.

Suppose Π does have a sum node u that has a negation indicator x̄i as a child. Observe that, if we replace all negation
indicators with the constant one, then the resulting tree is still monotone and computes F , which is a homogeneous
polynomial. The replacement will cause that sum node to compute exactly xi + 1, which is not homogeneous.

Similarly, if a product node v has only negation indicators as its children, then the replacements above force v to compute
one. Smoothness enforces that its siblings have the same scope as v does, and without loss of generality we may assume none
of its siblings computes the same polynomial as v does, so their degrees are higher than one. As a result, the replacements
of all negation indicators to one will force the parent of v to compute a non-homogeneous polynomial, which contradicts
Lemma B.3.

Now Proposition 4.4 can be confirmed, because the removal strategy will indeed produce a tree that computes H(k,2), and
no internal nodes will be affected, because Lemma B.2 ensures that, no internal node in Π′ computes a constant one and
can be removed. Clearly, Π′ has a strictly smaller size than Π, and combining with Theorem 4.3, we have the following
inequality that concludes Theorem 4.1.

C. Pseudocodes

Algorithm 4 Construction of G
Input: a binary DAG SPN Φ with V nodes and n variables.
Output: For each i = 1, · · · , log n, a set of nodes G2i and for selected w, a set of nodes G2i,w.

T ← ∅; Pi ← ∅, Qi ← ∅, G2i ← ∅, G2i,w ← ∅ for i ∈ {1, · · · , log n} and w ∈ Φ; Φv ← ∅ for v ∈ Φ.
Scan all nodes from the bottom and calculate the degree of each fv .
During the scanning, extract all weights of edges from a sum node to a product node.
for nodes v in Φ do
Φu ← Φu ∪ {v} if u is a parent of v.
for i = 1 to log n do

if 2i < deg(v) ≤ 2i+1 then
Pi ← Pi ∪ {v}.

end if
if v is a product node and deg(v) > 2i and deg(v1) ≤ 2i and deg(v2) ≤ 2i then
G2i ← G2i ∪ {v}.

end if
for other nodes w in Φ do

if 2i < deg(v)− deg(w) ≤ 2i+1 and deg(v) < 2 deg(w) then
Qi ← Qi ∪ {(v, w)}.

end if
if v is a product node and deg(v) > 2i+deg(w) and deg(v1) ≤ 2i+deg(w) and deg(v2) ≤ 2i+deg(w) then
G2i,w ← G2i,w ∪ {v}.

end if
end for

end for
end for

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Algorithm 5 Construction of the tree
Input: a binary DAG-structured PC Φ with V nodes and n variables
Output: a tree-structured PC with size nO(logn)

T ← ∅; Pi ← ∅, Qi ← ∅, G2i ← ∅, G2i,w ← ∅ for i ∈ {1, · · · , log n} and w ∈ Φ; Φv ← ∅ for v ∈ Φ; m ∈ N is not
defined yet.
Operate Algorithm 4 and return G2i and G2i,w for all i ∈ {1, · · · , log n} and those w ∈ Φ that were selected for
computing partial derivatives.
for i = 1 to m− 1 do
m← 2i.
for v ∈ Pi do
T ← G2i ∩ Φv .
for t ∈ T do

Create a product node ⊗t computing ft1 · ft2 · ∂tfv .
end for
Create a sum node ⊕v that sums over all ⊗t; for t ∈ T such that ∂tfv is a non-zero-or-one constant, the edge
⊕v → ⊗t has weight ∂tfv .

end for
for (v, w) ∈ Qi do
m← 2i + deg(w), T ← G2i,w ∩ Φv .
for t ∈ T do

Create a product node ⊗t computing ft2 · ∂wft1 · ∂tfv .
end for
Create a sum node ⊕(v,w) that sums over all ⊗t; for t ∈ T such that ⊗t contains a constant multiplier, the edge
⊕(v,w) → ⊗t has weight of that constant.

end for
end for
Apply the naive duplication to convert the DAG into a tree.
Apply Algorithm 2 in (Zhao et al., 2015) to normalize the tree.

19

