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Abstract

Causal spaces have recently been introduced as a
measure-theoretic framework to encode the notion
of causality. While it has some advantages over
established frameworks, such as structural causal
models, the theory is so far only developed for
single causal spaces. In many mathematical the-
ories, not least the theory of probability spaces of
which causal spaces are a direct extension, combin-
ations of objects and maps between objects form a
central part. In this paper, taking inspiration from
such objects in probability theory, we propose the
definitions of products of causal spaces, as well as
(stochastic) transformations between causal spaces.
In the context of causality, these quantities can be
given direct semantic interpretations as causally
independent components, abstractions and exten-
sions.

1 INTRODUCTION

Mathematical modelling of the world allows us to repres-
ent and analyse real-life situations in a quantitative manner.
Depending on the aspects that one is interested in, differ-
ent mathematical tools are chosen for the modelling; for
example, to model how a system evolves over time, a sys-
tem of differential equations can be used, and to model the
randomness of events, one can use probability theory. An-
other aspect of the world which researchers are increasingly
more interested in modelling is causality [Woodward, 2005,
Russo, 2010, Illari et al., 2011, Pearl and Mackenzie, 2018],
and this is the focus of our work.

For the mathematical frameworks used in modelling, there
are always ways to analyse multiple structures in a coher-
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ent manner. For example, in vector spaces, we have the
notions of subspaces, product spaces and maps between
vector spaces. In probability spaces, we have the notions of
subspaces and restrictions, product spaces and measurable
maps and transition probability kernels between spaces.

In this work, we consider a modelling of the world through
a recently proposed framework called causal spaces [Park
et al., 2023]. Causal spaces are a direct extension of prob-
ability spaces to encode causal information, and as such,
are rigorously grounded in measure-theory. While they have
some advantages over existing frameworks (e.g. structural
causal models, or SCMs), such as the fact that they can eas-
ily encode cycles and continuous-time stochastic processes
that are notoriously problematic in SCMs [Halpern, 2000,
Bongers et al., 2021], the theory of causal spaces is still in
its infancy. In particular, Park et al. [2023] only consider the
development of single causal spaces, and omit the discus-
sion of construction of new causal spaces from existing ones
or maps between causal spaces. The latter is of particular
interest to researchers in causality for the purpose of ab-
straction (see related works in Section 1.1). When systems,
humans or animals perceive the world, they consider dif-
ferent levels of detail depending on their ability to perceive
and retain information and their level of interest. It is there-
fore crucial to connect the mathematical representations at
varying levels of granularity in a coherent way.

In probability spaces, such notions are well-established.
Product measures give rise to independent random variables,
and measurable maps and probability kernels between prob-
ability spaces give rise to pushforward measures, which can
be interpreted as abstractions or inclusions. Based on these
concepts, and using the fact that causal spaces are a direct
extension of probability spaces, we develop the notions of
product causal spaces and causal transformations.



1.1 RELATED WORKS

The theory of causality has two dominant strands [Im-
bens, 2019], one based on SCMs [Pearl, 2009, Peters et al.,
2017] and another based on potential outcomes [Hernàn
and Robins, 2020, Imbens and Rubin, 2015]. Since concepts
such as abstractions and connected components attract much
more attention in the SCM community than in the potential
outcomes community, we focus on comparisons with the
SCM framework.

Seminal works on causal abstraction with SCMs are Ruben-
stein et al. [2017] and Beckers and Halpern [2019], where
the notions of exact transformations (to be further discussed
in Section 5), uniform transformations, abstractions, strong
abstractions and constructive abstractions are proposed.
Beckers et al. [2020] then relax these to an approximate
notion. Massidda et al. [2023] extended the notions to soft in-
terventions, and Zečević et al. [2023] to continually updated
abstractions. Causal feature learning is a closely related
approach, that also aims to learn higher level features [Cha-
lupka et al., 2015, 2016, 2017] There are also approaches
based on category theory [Rischel and Weichwald, 2021,
Otsuka and Saigo, 2022, 2023] and probabilistic logic [Ibel-
ing and Icard, 2023], all grounded in SCMs; see [Zennaro,
2022] for a review.

The notion of causal abstraction in the SCM framework
has found applications in interpretations of neural networks
[Geiger et al., 2021, 2023] as well as solving causal in-
ference tasks (identification, estimation and sampling) at
different levels of granularity with neural networks [Xia and
Bareinboim, 2024]. Moreover, Zennaro et al. [2023] pro-
posed a way of learning an abstraction from partial inform-
ation about the abstraction, and demonstrates an application
of causal abstraction in the SCM framework in the context
of electric vehicle battery manufacturing and Kekić et al.
[2023] learn an abstraction that explains a specific target.

1.2 PAPER ORGANISATION

The rest of this paper is structured as follows. We first
discuss the key notions from the theory of causal spaces
in Section 2. Then we introduce the extension of product
causal spaces in Section 3 followed by our definitions of
transformations of causal spaces in Section 4. We put our
definitions into context by comparing carefully to related
works in Section 5. In Section 6, we then show various prop-
erties of our transformations, in particular for the subclass
of abstractions.

2 PRELIMINARIES & NOTATIONS

We take a probability space as a starting point, namely, a
triple (Ω,H,P); for a comprehensive introduction, see, for

example, [Cinlar, 2011, Durrett, 2019]. Following [Park
et al., 2023], we additionally insist that P is defined over
the product measurable space (Ω,H) = ⊗t∈T (Et,Et) with
(Et,Et) being the same standard measurable space if T
is uncountable. Denote by P(T ) the power set of T , and
for S ∈ P(T ), we denote by HS the sub-σ-algebra of
H = ⊗t∈TEt generated by measurable rectangles ×t∈TAt,
where At ∈ Et differs from Et only for t ∈ S and fi-
nitely many t. In particular, H∅ = {∅,Ω} is the trivial
sub-σ-algebra of Ω = ×t∈TEt. Also, we denote by ΩS the
subspace ×s∈SEs of Ω = ×t∈TEt, and for T ⊇ S ⊇ U ,
we let πSU denote the natural projection from ΩS onto
ΩU and we use the shorthand πS = πTS . We also write
ωS = πSω = (ωs)s∈S . We write [d] = {1, . . . , d} and f∗P
denotes the pushforward measure along the map f , namely,
f∗P(A) = P(f−1(A)).

We first recall the definition of causal spaces, as given in
Park et al. [2023].

Definition 2.1 (Causal Spaces, [Park et al., 2023, Defin-
ition 2.2]). A causal space is defined as the quadruple
(Ω,H,P,K), where (Ω,H,P) = (×t∈TEt,⊗t∈TEt,P) is
a probability space and K = {KS : S ∈ P(T )}, called the
causal mechanism, is a collection of transition probability
kernels KS from (Ω,HS) into (Ω,H), called the causal
kernel on HS , that satisfy the following axioms:

(i) for all A ∈ H and ω ∈ Ω, we have K∅(ω,A) = P(A);

(ii) for all ω ∈ Ω, and events A ∈ HS and B ∈
H, we have KS(ω,A ∩ B) = 1A(ω)KS(ω,B) =
δω(A)KS(ω,B).

The causal kernels KS can be defined equivalently as maps
from (ΩS ,HS) to (Ω,H) and it will be convenient to use
this viewpoint occasionally in the following (this was also
used implicitly in Park et al. [2023]). This observation is
explained in Appendix C.

Next, we recall the definition of interventions, which is the
central concept in any theory of causality.

Definition 2.2 (Interventions, [Park et al., 2023, Definition
2.3]). Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a
causal space, U ⊆ T a subset, Q a probability measure on
(Ω,HU ) and L = {LV : V ∈ P(U)} a causal mechan-
ism on (Ω,HU ,Q). An intervention on HU via (Q,L) is
a new causal space (Ω,H,Pdo(U,Q),Kdo(U,Q,L)), where the
intervention measure Pdo(U,Q) is a probability measure on
(Ω,H) defined, for A ∈ H, by

Pdo(U,Q)(A) =

∫
Q(dωU )KU (ωU , A)

and Kdo(U,Q,L) = {Kdo(U,Q,L)
S : S ⊆ T} is the intervention

causal mechanism whose intervention causal kernels are

K
do(U,Q,L)
S (ωS , A)



=

∫
LS∩U (ωS∩U , dω

′
U )KS∪U ((ωS\U , ω

′
U ), A).

We also recall the definition of causal effect.

Definition 2.3 (Causal Effects, [Park et al., 2023, Definition
B.1]). Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a
causal space, U ⊆ T a subset, A ∈ H an event and F a
sub-σ-algebra of H (not necessarily of the form HS for
some S ∈ P(T )).

(i) If KS(ω,A) = KS\U (ω,A) for all S ∈ P(T ) and all
ω ∈ Ω, then we say that HU has no causal effect on A,
or that HU is non-causal to A.
We say that HU has no causal effect on F, or that HU

is non-causal to F, if, for all A ∈ F, the σ-algebra HU

has no causal effect on A.

(ii) If there exists ω ∈ Ω such that KU (ω,A) ̸= P(A),
then we say that HU has an active causal effect on A,
or that HU is actively causal to A.
We say that HU has an active causal effect on F, or
that HU is actively causal to F, if HU has an active
causal effect on some A ∈ F.

(iii) Otherwise, we say that HU has a dormant causal effect
on A, or that HU is dormantly causal to A.
We say that HU has a dormant causal effect on F, or
that HU is dormantly causal to F, if HU does not have
an active causal effect on any event in F and there exists
A ∈ F on which HU has a dormant causal effect.

Finally, we recall the definition of sources, which allows
us to connect the causal kernels to the probability measure
P. For a sub-σ-algebra F of H, we denote the conditional
probability of an event A ∈ H given F by PF.

Definition 2.4 (Sources, [Park et al., 2023, Definition D.1]).
Let (Ω,H,P,K) = (×t∈TEt,⊗t∈TEt,P,K) be a causal
space, U ⊆ T a subset, A ∈ H an event and F a sub-
σ-algebra of H. We say that HU is a (local) source of
A if KU (·, A) is a version of the conditional probability
PHU

(A). We say that HU is a (local) source of F if HU is
a source of all A ∈ F. We say that HU is a global source of
the causal space if HU is a source of all A ∈ H.

3 PRODUCT CAUSAL SPACES AND
CAUSAL INDEPENDENCE

We first give the definition of the product of causal ker-
nels, and the product of causal spaces. This constitutes the
simplest way of constructing new causal spaces from exist-
ing ones.

Definition 3.1 (Product Causal Spaces). Suppose C1 =
(Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) with Ω1 =
×t∈T 1Et and Ω2 = ×t∈T 2Et are two causal spaces. For

all S1 ⊆ T 1 and S2 ⊆ T 2, and for a pair of causal kernels
K1

S1 ∈ K1 and K2
S2 ∈ K2, we define the product causal

kernel K1
S1 ⊗ K2

S2 , for ω = (ω1, ω2) ∈ Ω1
S1 × Ω2

S2 and
events A1 ∈ H1 and A2 ∈ H2, by

K1
S1 ⊗K2

S2(ω,A1 ×A2) = K1
S1(ω1, A1)K

2
S2(ω2, A2).

This can then be extended to all of H1 ⊗ H2 since the
rectangles A1 ×A2 with A1 ∈ H1 and A2 ∈ H2 generate
H1 ⊗H2. Then we define the product causal space

C1 ⊗ C2 = (Ω1 × Ω2,H1 ⊗H2,P1 ⊗ P2,K1 ⊗K2)

where the product causal mechanism K1 ⊗K2 is the unique
family of kernels of the form (K1 ⊗K2)S1∪S2 = K1

S1 ⊗
K2

S2 for S1 ⊆ T 1 and S2 ⊆ T 2.

We first check that this procedure indeed produces a valid
causal space.

Lemma 3.2 (Products of Causal Spaces are Causal Spaces).
The product causal space C1 ⊗ C2 as defined in Definition
3.1 is a causal space.

The proof of this lemma can be found in Appendix B.1.

Note that it is only for the sake of simplicity of presentation
that we presented the notion of products only for two prob-
ability spaces. Indeed, we can easily extend the definition to
arbitrary products of causal kernels and causal spaces, just
like it is possible for products of probability spaces.

When we take a product of causal spaces, the corresponding
components in the resulting causal space do not have a
causal effect on each other, as the following result shows.

Lemma 3.3 (Causal Effects in Product Spaces). Suppose
C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) with
Ω1 = ×t∈T 1Et and Ω2 = ×t∈T 2Et are two causal spaces.
Then in C1 ⊗ C2,

(i) HT 1 has no causal effect on HT 2 , and HT 2 has no
causal effect on HT 1 ;

(ii) HT 1 and HT 2 are (local) sources of each other.

The proof of this Lemma is in Appendix B.1.

Product causal spaces are analogous to connected compon-
ents in graphical models – see, for example, [Sadeghi and
Soo, 2023].

3.1 CAUSAL INDEPENDENCE

Recall that, in probability spaces, two events A and B are
independent with respect to the measure P if P(A ∩B) =
P(A)P(B), i.e. the probability measure is the product meas-
ure. Moreover, two σ-algebras are independent if each pair
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Figure 1: Graphs of SCMs in Example 3.5.

of events from the two σ-algebras are independent1. Sim-
ilarly, for a sub-σ-algebra F of H, two events A and B
are conditionally independent given F if PF(A ∩ B) =
PF(A)PF(B) almost surely, and two σ-algebras are condi-
tionally independent given F if each pair of events from the
two σ-algebras are conditionally independent given F.

Now we give a definition of causal independence that is
analogous to conditional independence.

Definition 3.4 (Causal Independence). Consider a causal
space C = (Ω = ×t∈TEt,H = ⊗t∈TEt,P,K). Then for
U ⊆ T , two events A,B ∈ H are causally independent on
HU if, for all ω ∈ Ω,

KU (ω,A ∩B) = KU (ω,A)KU (ω,B).

We say that two sub-σ-algebras F1 and F2 are causally
independent on HU if each pair of events from F1 and F2

are causally independent on HU .

Semantically, causal independence should be interpreted
as follows: if A and B are causally independent on HU ,
then they are independent once an intervention has been
carried out on HU . Note also that causal independence is
really about the causal kernels, and has nothing to do with
the probability measure P of the causal space. Indeed, it is
possible for A and B to be causally independent but not
probabilistically independent, or causally independent but
not conditionally independent, or vice versa. Let us illustrate
with the following simple examples.

Example 3.5 (Causal Independence). (i) Consider three
variables X , Y1 and Y2 related through the equations

X = N, Y1 = X + U1, Y2 = X + U2,

where N , U1 and U2 are standard normal variables
(see Figure 1 left). We denote by P their joint distribu-
tion on R3, and we identify this SCM with the causal
space (R3,B(R3),P,K)2, where K is obtained via the
above structural equations. Then it is clear to see that
Y1 and Y2 are causally independent on HX , since, for

1Many authors take the view that the notion of independence
is truly where probability theory starts, as a distinct theory from
measure theory [Cinlar, 2011, p.82, Section II.5].

2Here, B represents the Borel σ-algebra.

every x, and A,B ∈ B(R), KX(x, {Y1 ∈ A, Y2 ∈
B}) is bivariate-normally distributed with mean (x, x)
and identity covariance matrix, and so

KX(x, {Y1 ∈ A, Y2 ∈ B})
= KX(x, {Y1 ∈ A})KX(x, {Y2 ∈ B}).

By the same reasoning, Y1 and Y2 are conditionally in-
dependent given HX . However, it is clear that they are
unconditionally dependent, because they both depend
on the value of X .

(ii) Now consider three variables X1, X2 and Y related
through the equations

X1 = N1, X2 = N2, Y = X1 +X2 + U

where N1, N2 and U are standard normal variables
(see Figure 1 right). We denote by P their joint dis-
tribution on R3, and we identify this SCM with the
causal space (R3,B(R3),P,K), where K is obtained
via the above structural equations. Then it is clear that
X1 and X2 are probabilistically independent. They
are also causally independent on HY , since, for any
A,B ∈ B(R),

KY (y, {X1 ∈ A,X2 ∈ B}) = P(X1 ∈ A,X2 ∈ B)

= P(X1 ∈ A)P(X2 ∈ B).

However, it is clear that they are conditionally depend-
ent given HY .

Again, causal independence is only defined for two σ-
algebras for the sake of notational convenience; it can easily
be extended to arbitrary collections of σ-algebra.

4 TRANSFORMATIONS OF CAUSAL
SPACES

Consider causal spaces C1 = (Ω1,H1,P1,K1) and C2 =
(Ω2,H2,P2,K2) with Ω1 = ×t∈T 1Et and Ω2 = ×t∈T 2Et.
We want to define transformations between causal spaces
C1 and C2. These transformations shall, on the one hand,
preserve aspects of the causal structure, i.e., the spaces C1

and C2 shall still describe essentially the same system. On
the other hand, they shall be flexible so that different types
of mappings between causal spaces can be captured.

We focus on transformations that preserve individual vari-
ables or combine them in a meaningful way. This relation
will be encoded by a map ρ : T 1 → T 2, which can be
interpreted as encoding the fact that S ⊆ T 2 depends only
on the variables indexed by ρ−1(S). Deterministic maps are
not sufficiently expressive for our purposes and we therefore
focus on stochastic maps, i.e., on probability kernels from
measurable spaces (Ω1,H1) to (Ω2,H2).
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Figure 2: Interventional Consistency Definition 4.2 Equation
(2) – intervention and transformation commute.

Definition 4.1 (Admissible Maps). Suppose that κ : Ω1 ×
H2 → [0, 1] is a probability kernel and ρ : T 1 → T 2 is a
map. Then we call the pair (κ, ρ) admissible if κ(·, A) is
H1

ρ−1(S) measurable for all S ⊂ ρ(T 1) and A ∈ H2
S .

One difference between probability theory and causality
seems to be that the latter requires the notion of variables
(equivalently a product structure of the underlying space)
that define entities that can be intervened upon. For a mean-
ingful relation between two causal spaces, their interven-
tions should be related, which requires some preservation
of variables. The definition of admissible maps captures the
fact that variables from ρ−1(S) are combined to form a new
summary collection of variables indexed by S.

We now require maps between causal spaces to respect the
distributional and interventional structure in the following
sense.

Definition 4.2 (Causal Transformations). A transformation
of causal spaces, or a causal transformation, φ : C1 → C2

is an admissible pair φ = (κ, ρ) satisfying the following
two properties.

(i) The map satisfies distributional consistency, i.e., for
A ∈ H2 ∫

P1(dω)κ(ω,A) = P2(A). (1)

(ii) The map satisfies interventional consistency, i.e., for all
A ∈ H2

ρ(T 1), S ⊂ ρ(T 1), and ω ∈ Ω1 the following
holds∫

K1
ρ−1(S)(ω,dω

′)κ(ω′, A)

=

∫
κ(ω,dω′)K2

S(ω
′, A).

(2)

Interventional consistency requires that interventions and
causal transformations commute, i.e., the result of first in-
tervening and then applying the transformation is the same
as intervening on the target after the transformation – see
Figure 2. We emphasise that in Definition 4.1 and 4.2 we do
not prescribe conditions for added components indexed by
T 2\ρ(T 1). Further, we remark that as a special case, we can

Y1 Y2

X1 X2 X

Y

X = X1 +X2

Y = Y1 + 2Y2

Figure 3: Abstraction of SCMs in Example 4.3.

accommodate deterministic maps f : Ω1 → Ω2 by consider-
ing the associated probability kernel κf (ω,A) = 1A(f(ω)).
In this case, the admissibility condition reduces to the state-
ment that πS ◦ f is measurable with respect to H1

ρ−1(S) for
all S ⊂ ρ(T 1) and distributional consistency becomes, for
A ∈ H2,

P2(A) =

∫
P1(dω)κ(ω,A)

=

∫
P1(dω)1A(f(ω))

= P1(f−1(A))

so f∗P1 = P2 is the pushforward measure of P1 along f .
Interventional consistency then reads

K1
ρ−1(S)(ω, f

−1(A)) = K2
S(f(ω), A) (3)

for all A ∈ H2
ρ(T 1), S ⊂ ρ(T 1), and ω ∈ Ω1. Alternatively

this can be expressed as

f∗K
1
ρ−1(S)(ω,A) = K2

S(f(ω), A).

where the push-forward acts on the measure defined by
the probability kernel for some fixed ω. Henceforth, with a
slight abuse of notation, we denote deterministic maps by
(f, ρ) without resorting to the associated probability kernel.

4.1 EXAMPLES

Let us provide four prototypical examples of maps between
causal spaces that are covered by this definition. Here we re-
sort to the language of SCMs because they are a convenient
framework that fits into causal spaces.

Example 4.3 (Abstraction). We consider four variables X1,
X2, Y1, and Y2 which are related through the equations

X1 = N1, X2 = N2,

Y1 = 3X1 +X2 + U1, Y2 = X2 + U2

where U1, U2, N1, N2 are independent standard normal
variables. We denote by P their joint distribution on R4.
Consider

X = N, Y = 3X + U



where N ∼ N(0, 2) and U ∼ N(0, 5). Denote their joint
distribution on R2 by Q. We identify the two SCMs with
causal spaces (R4,B(R4),P,K) and (R2,B(R2),Q,L) as
explained in [Park et al., 2023, Section 3.1].

Consider the deterministic map f : R4 → R2 given
by f(x1, x2, y1, y2) = (x1 + x2, y1 + 2y2) and the map
ρ : [4] → [2] given by ρ(1) = ρ(2) = 1, ρ(3) = ρ(4) = 2.
Clearly, the pair (f, ρ) is admissible as defined in Defini-
tion 4.1. It can be checked that

E[(X1 +X2)
2] = 2 = E[X2]

E[(Y1 + 2Y2)
2] = 23 = E[Y 2]

E[(X1 +X2)(Y1 + 2Y2)] = 6 = E[XY ]

which implies that f∗P = Q because both distributions are
centered Gaussian and their covariance matrices agree.

The non-trivial causal consistency relation (2) concerns
interventions on {X1, X2} and X and on {Y1, Y2} and Y .
Note that

K{X1,X2}((x1, x2, y1, y2), ·)

= δ(x1,x2) ⊗N

((
3x1 + x2

x2

)
, Id2

)
.

Then we obtain

f∗K{X1,X2}((x1, x2, y1, y2), ·)
= δx1+x2

⊗N(3x1 + 3x2, 5).

On the other hand, we find

LX((x, y), ·) = δx ⊗N (3x, 5)

⇒ LX(f(x1, x2, y1, y2), ·) = δx1+x2
⊗N(3x1 + 3x2, 5)

so that we see that (3) holds in this case. Similarly, we obtain

K{Y1,Y2}((x1, x2, y1, y2), ·) = N(0, Id1)⊗ δ(y1,y2),

LY ((x, y), ·) = N(0, 2)⊗ δy.

We again find

f∗K{Y1,Y2}((x1, x2, y1, y2), ·)
= LY ((x1 + x2, y1 + 2y2), ·).

This example shows abstraction, i.e., we obtain a transform-
ation to a more coarse-grained view of the system. Note that
interventional consistency is quite restrictive to satisfy, e.g.,
here it is crucial that all distributions are Gaussian so that
all conditional distributions are also Gaussian.

Next, we consider an example that allows us to embed a
causal space in a larger space that adds an independent
disjoint system. For this, we make use of the definition
of product causal spaces (Definition 3.1). In this case, the
transformation is stochastic.

C1 C1 ⊗ C2

ρ(t) = t

κ(ω, ·) = δω ⊗ P2

Figure 4: Inclusions of component causal spaces into the
product (Example 4.4).

Example 4.4 (Inclusion). Let C1 = (Ω1,H1,P1,K1) and
C2 = (Ω2,H2,P2,K2) be two causal spaces, with Ω1 =
×t∈T 1Et and Ω2 = ×t∈T 2Et. We define an inclusion map
(κ, ρ) : C1 → C1 ⊗ C2 by considering ρ(t) = t for t ∈ T 1

and κ(ω, ·) = δω ⊗ P2 (see Figure 4). This pair is clearly
admissible and satisfies distributional consistency:∫

P1(dω)κ(ω,A1 ×A2) =

∫
P1(dω)1A1

(ω)P2(A2)

= P1(A1)P2(A2).

Moreover, for any S ⊂ T 1, ω ∈ Ω1, A1 ∈ H1 and A2 ∈
H2, we have∫

K1
S(ω,dω

′)κ(ω′, A1 ×A2) = P2(A2)K
1
S(ω,A1)

and also,∫
κ(ω, dω′

1dω
′
2)K

1
S ⊗K2

∅((ω
′
1, ω

′
2), A1 ×A2)

=

∫
κ(ω, dω′

1dω
′
2)K

1
S(ω

′
1, A1)K

2
∅(ω

′
2, A2)

= K1
S(ω,A1)

∫
P2(dω′

2)P2(A2)

= P2(A2)K
1
S(ω,A1).

where we used the condition on K∅ in Definition 2.1. By the
usual monotone convergence theorem arguments, we have
that, for any A ∈ H1 ⊗H2,∫

K1
S(ω, dω

′)κ(ω′, A)

=

∫
κ(ω, dω′

1dω
′
2)K

1
S ⊗K2

∅((ω
′
1, ω

′
2), A1 ×A2).

Thus, interventional consistency holds, in this case even
for all sets A, not just for those measurable with respect to
H2

ρ(T 1).

This shows that we can consider causal maps including our
system into a larger system containing additional independ-
ent components.

Finally, we consider a more involved embedding example.

Example 4.5 (Inclusion of SCMs). Consider the following
SCM

H = NH , X = H +NX ,



Y

X

X M Y

H
ρ({X,Y }) ↪→ {X,Y,M,H}

κ = PH1

Figure 5: Inclusions of SCMs (Example 4.5).

M = X +NM , Y = M +H +NY .

We denote the joint distribution of (X,Y,M,H) by P, and
the marginal distribution on (X,Y ) by PXY .

We consider a causal space C1 = (Ω1,H1,PXY ,K) that
represents the pair (X,Y ), where Ω1 = R2 and H1 =
B(R2), and a causal space C2 = (Ω2,H2,P,L) repres-
enting the full SCM, where Ω2 = R4 and H2 = B(R4),
i.e., it contains in addition a mediator and a confounder.
The causal mechanisms K and L are derived from the SCM.
Then we consider the obvious ρ that embeds {X,Y } into
{X,Y,M,H} and, for A ∈ H2,

κ(·, A) = PH1(A).

Clearly, this pair is admissible because on the variables X
and Y we use the identity transformation. Distributional
consistency follows by∫

κ((x, y), A)PXY (d(x, y)) =

∫
PH1(A)dPXY

= P(A).

Interventional consistency also holds so that (κ, ρ) is indeed
a causal transformation. For a proof of this fact we refer to
the more general result in Lemma 6.3.

This example therefore shows that we can embed a system
in a larger system that captures a more accurate description.

4.2 ABSTRACTIONS

Note that Example 4.3 is different from Examples 4.4 and
4.5 in that it compresses the representation while the other
two consider an extension of the system. As these are differ-
ent objectives, we consider the following definition.

Definition 4.6 (Abstractions). The pair of maps (κ, ρ)
between measurable spaces (Ω1,H1) = ⊗t∈T 1(Et,Et)
and (Ω2,H2) = ⊗t∈T 2(Et,Et) is called an abstraction
if ρ : T 1 → T 2 is surjective.

In the case of abstractions it is often sufficient to consider
deterministic maps, motivating the following definition.

Definition 4.7 (Perfect Abstractions). An abstraction (κ, ρ)
is called a perfect abstraction if κ is deterministic, i.e., κ =
κf for some measurable f : Ω1 → Ω2, and moreover f is
surjective.

We finally remark that one further setting of potential in-
terest would be to consider the inverse of an abstraction,
i.e., a setting where a summary variable X is mapped to
a more detailed description (X1, X2). However, to accom-
modate such transformations we need a slightly different
framework than the one presented here. Roughly, we need
to consider ρ : T 1 → P(T 2) with ρ(t1) ∩ ρ(t′1) = ∅ for
t1, t

′
1 ∈ T1, and interventions on all sets S ⊂ T 1 can be

expressed as interventions on the target C2 (i.e., the more
fine-grained representations), while this is reversed in our
case so that those two settings are dual to each other. We do
not pursue this here any further, as those transformations are
of more limited interest and applicability. Let us emphas-
ise nevertheless that it seems ambitious to handle all cases
in one framework. Indeed, combining variables in a sum-
mary variable or splitting variables in a more fine-grained
description are meaningful operations, but it is less clear to
interpret in a causal manner a definition of a transformation
(X1, X2) → (Y1, Y2) that allows both at the same time. For
example, intervening on X1, in general, then does not cor-
respond to a meaningful causal operation on the variables
(Y1, Y2). We also remark that this attempt has not been made
in the SCM literature, where the focus is almost exclusively
on abstractions.

5 COMPARISON WITH ABSTRACTION
IN THE SCM FRAMEWORK

Rubenstein et al. [2017] gives the definition of exact trans-
formations between SCMs. While being the seminal work
on the theory of causal abstractions, it is probably also the
most relevant to compare to our proposals. We first recall
some essential aspects of their definition of SCMs (or SEMs,
for structural equation models, by their nomenclature)3.

Definition 5.1 ([Rubenstein et al., 2017, Definition 1]). Let
IX be an index set. An SEM MX over variables X = (Xi :
i ∈ IX taking values in X is a tuple (SX ,PE), where

• SX is a set of structural equations, i.e. the set of equa-
tions Xi = fi(X,Ei) for i ∈ IX ;

• PE is a distribution over the exogenous variables E =
(Ei : i ∈ IX).

Note that their definition of SCMs is a bit more general
than standard ones in the literature (e.g. [Peters et al., 2017,

3In this section, some imported notations might clash with
ours; the clashes are restricted to this section and should not cause
any confusion.



p.83, Definition 6.2]), in that they allow, for example, cycles
and latent confounders, but they simply insist that there
must be a unique solution to any interventions. They also
consider a specific set of “allowed interventions”, rather
than considering all possible interventions. We also recall
some essential aspects of the notion of exact transformations.

Definition 5.2 ([Rubenstein et al., 2017, Definition 3]). Let
MX and MY be SCMs, and τ : X → Y a function. We
say that MY is an exact τ -transformation of MX if, there
exists a surjective mapping ω of the interventions such that
for any intervention i, Pi

τ(X) = Pω(i)
Y .

Note that this definition is trying to capture the same concept
as our notion of interventional consistency given in (2): that
interventions and transformations commute. However, there
are several aspects in which our proposal is more appealing.

• They only consider deterministic maps τ : X → Y ,
whereas we allow the map ρ to be stochastic.

• They have to find a separate map ω between the inter-
ventions themselves, whereas our map ρ also determ-
ines the transformation of the causal kernels.

• By insisting on surjectivity of ω, they only allow the
consideration of abstraction, whereas we can consider
more general transformations of causal spaces, such as
inclusions considered in Example 4.4.

Nevertheless, restricted to considerations amenable to both
approaches, the notions coincide. For example, we return
to Example 4.3, where we already showed that f∗P = Q,
f∗K{X1,X2} = LX and f∗K{Y1,Y2} = LY , which implies
that two-variable SCM is an exact transformation of the
four-variable SCM according to Definition 5.2.

Finally, we mention that Beckers and Halpern [2019] criti-
cise exact transformations of Rubenstein et al. [2017] on the
basis that probabilities and allowed interventions can mask
significant differences between SCMs, and then proceed to
propose definitions of abstractions that depend only on the
structural equations, independently of probabilities. We re-
mark that this criticism is not valid in our framework, in that
the interventional consistency of our transformations is im-
posed independently of probabilities, making it impossible
to mask them with the choice of probability measures. That
this is possible with SCMs is an artifact of the fact that
in SCMs, the observational and interventional measures
are coupled through the exogenous distribution, whereas
in causal spaces they are completely decoupled. Moreover,
we consider all possible interventions rather than a reduced
set of allowed interventions. We also remark that, since
probabilities and causal kernels are the primitive objects in
our framework, rather than being derived by other primitive
objects (namely the structural equations), it does not make
sense for the transformation to be defined independently of
probabilities, as done by Beckers and Halpern [2019].

6 FURTHER PROPERTIES OF CAUSAL
TRANSFORMATIONS

In this section we investigate various properties of causal
transformations and connect them to the notions introduced
in Section 2.

6.1 EXISTENCE AND UNIQUENESS OF CAUSAL
TRANSFORMATIONS

First, we have the following lemma on the composition of
causal transformations. Recall that for two probability ker-
nels κ1 : Ω1 ×H2 → [0, 1] mapping (Ω1,H1) to (Ω2,H2)
and κ2 : Ω2 ×H3 → [0, 1] mapping (Ω2,H2) to (Ω3,H3)
the concatenation defined by [Cinlar, 2011, p.39]

κ1 ◦ κ2(ω1, A) =

∫
κ1(ω1,dω2)κ2(ω2, A)

defines a probability kernel from (Ω1,H1) to (Ω3,H3).

Lemma 6.1 (Compositions of Causal Transformations).
Let (κ1, ρ1) : C1 → C2 and (κ2, ρ2) : C2 → C3 be
causal transformations. If (κ1, ρ1) is an abstraction then
(κ3, ρ3) = (κ1 ◦ κ2, ρ1 ◦ ρ2) : C1 → C3 is a causal trans-
formation.

The proof can be found in Appendix B.2. We remark that,
unfortunately, we cannot remove the assumption that the
first transformation is an abstraction. Let us clarify this
through an example.

Example 6.2. Consider an SCM with equations

X1 = N1,

X2 = N2,

Y = X1 +X2 +NY

where N1, N2, and NY follow independent standard
normal distributions. Then we can consider the causal
space C1 containing (X1, Y ), the causal space C2 con-
taining (X1, X2, Y ) and an abstraction C3 containing
(X1 + X2, Y ). Then we can embed C1 → C2 and there
is an abstraction C2 → C3 which are both transformations
of causal spaces.

However, their concatenation is not a causal transformation
because it is not even admissible (and also interventional
consistency does not hold for the intervention K3

X as this
cannot be expressed by K1

X1
). Note that PX2|X1=x1,Y=y =

N((y−x1)/2, 1/2) and therefore we have κ1((x1, y), ·) =
δx1 ⊗N((y − x1)/2, 1/2)⊗ δy .

We also have κ2((x1, x2, y), ·) = δ(x1+x2,y). Thus, their
concatenation is given by

κ3((x1, y), ·) = N((y + x1)/2, 1/2)⊗ δy.

So the first coordinate is not measurable with respect to
H1

X1
.



This shows that we lose measurability along the concat-
enation because the variables added in the more complete
description C2 may depend on all other variables.

Let us now generalise Example 4.5 to general SCMs.

Lemma 6.3 (Inclusion of SCMs). Consider an acyclic SCM
on endogenous variables (X1, . . . , Xd) ∈ Rd with observa-
tional distribution P. Let S ⊂ [d], R = Sc = [d] \ S and
consider causal spaces C1 = (Ω1,H1,PS ,K) and C2 =
(Ω2,H2,P,L), where we have (Ω1,H1) = (R|S|,B(R|S|))
and (Ω2,H2) = (Rd,B(Rd)). Moreover, PS is the mar-
ginal distribution on the variables in S, and the causal
mechanisms K and L are derived from the SCM. In partic-
ular, K is a marginalisation of L, namely, for any ω ∈ Ω2,
any event A ∈ H1 and any S′ ⊆ S, we have that
KS′(ω,A) = LS′(ω,A).

Consider the map ρ : S ↪→ [d] and κ(·, A) = PH1(A).
Then (ρ, κ) is a causal transformation from C1 to C2.

The proof can be found in Appendix B.2.

We now investigate to what degree distributional and inter-
ventional consistency determines the causal structure on the
target space. We show that generally the causal structure on
H2

ρ(T ) is quite rigid.

Lemma 6.4 (Rigidity of target causal structure). Let C2 =
(Ω2,H2,P2,K2) and C̃2 = (Ω2,H2, P̃2, K̃2) be two causal
spaces with the same underlying measurable space. Let
(κ, ρ) be an admissible pair for the measurable spaces
(Ω1,H1) and (Ω2,H2). Assume that the pair (κ, ρ) defines
causal transformations φ : C1 → C2 and φ̃ : C1 → C̃2

be a causal transformations. Then P2 = P̃2, and for all
A ∈ H2

ρ(T 1) and any S ⊂ T 2

K2
S(ω,A) = K̃2

S(ω,A) for P2 = P̃2 a. e. ω ∈ Ω2.

The proof is in Appendix B.2. We cannot expect to derive
much stronger results for general causal transformation be-
cause interventional consistency does not restrict K2(ω,A)
for ω not in the support of P2 or A /∈ H2

ρ(T ). E.g., in the
setting of Example 4.4 the causal structure on the second
factor is arbitrary.

However, when we consider deterministic maps (f, ρ) such
that f : (Ω1,H1) → (Ω2,H2) and ρ are surjective, then
there is at most one causal structure on the target space
(Ω2,H2) such that the pair (f, ρ) is a causal transformation
(and thus a perfect abstraction).

Lemma 6.5 (Surjective Deterministic Maps). Suppose
(f, ρ) is an admissible pair for the causal space C1 =
(Ω1,H1,P1,K1) to the measurable space X2 = (Ω2,H2)
and assume that ρ is surjective and f : Ω1 → Ω2 meas-
urable. If f is surjective, there exists at most one causal
space C2 = (Ω2,H2,P2,K2) such that (f, ρ) : C1 → C2 is
a causal transformation.

If, in addition, K1
ρ−1(S2)(·, A) is measurable with respect

to f−1(H2
S2) for all A ∈ f−1(H2) and all S2 ⊂ T 2 then a

unique causal space C2 exists such that (f, ρ) : C1 → C2 is
a causal transformation.

The proof is in Appendix B.2. To motivate the measurab-
ility condition for K1(·, A) we remark that interventional
consistency requires K1(ω,A) = K1(ω′, A) for ω, ω′ with
f(ω) = f(ω′) and the measurability condition in the result
is a slightly stronger condition than this.

Next, we show that interventions on a space can be pushed
forward along a perfect abstraction.

Lemma 6.6 (Perfect Abstraction on Intervened Spaces). Let
C1 = (Ω1,H1,P1,K1) with (Ω1,H1) a product with index
set T 1 and C2 = (Ω2,H2,P2,K2) with (Ω2,H2) a product
with index set T 2 be causal spaces, and let (f, ρ) : C1 → C2

be a perfect abstraction.

Let U1 = ρ−1(U2) ⊆ T 1 for some U2 ⊆ T 2. Let Q1

be a probability measure on (Ω1,H1
U1) and L1 a causal

mechanism on (Ω1,H1
U1 ,Q1). Suppose that, for all S ⊆ U2

and A ∈ H1, the map L1
ρ−1(S)(·, A) is measurable with

respect to f−1(H2
S), and consider the intervened causal

spaces

C1
I = (Ω1,H1, (P1)do(U1,Q1), (K1)do(U1,Q1,L1)),

C2
I = (Ω2,H2, (P2)do(U2,Q2), (K2)do(U2,Q2,L2)),

where Q2 = f∗Q1 and L2 is the unique family of kernels
satisfying L2

S(f(ω), A) = L1
ρ−1(S)(ω, f

−1(A)) for all ω ∈
Ω1, A ∈ H2, and S ⊆ U2. Then (f, ρ) : C1

I → C2
I is a

perfect abstraction.

The proof of this result is in Appendix B.2.

6.2 SOURCES AND CAUSAL EFFECTS UNDER
CAUSAL TRANSFORMATIONS

We now study whether causal effects in target and domain
of a causal transformation can be related. Our first results
shows that for perfect abstractions having no causal effect
in the domain implies that there is also no causal effect in
the target.

Lemma 6.7 (Perfect Abstraction and No Causal Effect).
Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider
two sets U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and
V 1 = ρ−1(V 2). If H1

U1 has no causal effect on H1
V 1 in C1,

then H2
U2 has no causal effect on H2

V 2 in C2.

The proof can be found in Appendix B.3.

On the other hand, we can show that when there is an active
causal effect in the target space, there is also an active causal
effect in the domain.



Lemma 6.8 (Perfect Abstraction and Active Causal Effects).
Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider
two sets U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and
V 1 = ρ−1(V 2). Assume that H2

U2 has an active causal
effect on H2

V 2 in C2. Then H1
U1 has an active causal effect

on H1
V 1 in C1.

The proof is in Appendix B.3.

The reverse statements are not true, i.e., if there is no causal
effect in the target there might be a causal effect in the
domain and if there is an active causal effect in the domain
this does not imply that ther is a causal effect in the target,
which can be seen by considering a target space with only a
single point. We can also study causal effects in the context
of embedding transformations, as in Lemma 6.3. Then we
see directly that active causal effects are preserved. On the
other hand, it is straightforward to construct examples where
there is no causal effect in a subsystem, but there is a causal
effect in a larger system. This can be achieved by a violation
of faithfulness.

Example 6.9. Consider the SCM

X = NX ,

M = NX +NM ,

Y = M −X +NY .

Then there is no causal effect from σ(X) to σ(Y ) in the
system (X,Y ) but there is a causal effect in the complete
system.

Finally, we show that similar results can be established for
sources. Indeed, perfect abstraction preserve sources in the
following sense.

Lemma 6.10 (Perfect Abstraction and Sources). Let (f, ρ) :
C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 =
ρ−1(V 2). Assume that H1

U1 is a local source of H1
V 1 in

C1. Then H2
U2 is a local source of H2

V 2 in C2.

In particular, this implies that if H1
U1 is a global source then

H2
U2 also is a global source.

The proof is in Appendix B.3.

Similar to our results for causal effects, the existence of
sources in the abstracted space does not guarantee the exist-
ence of sources in the domain space. Note that local sources
are preserved in the setting of Lemma 6.3. On the other
hand, global sources are clearly not preserved, as we can
add a global source to the system.

7 CONCLUSION

In this paper, we developed the theory of causal spaces
initiated by Park et al. [2023] by proposing the notions of

products of causal spaces and transformations of causal
spaces. They are defined via natural extensions of the no-
tions of products and probability kernels in probability the-
ory. Not only are they mathematically elegant objects, but
they have natural and important semantic interpretations as
causal independence and abstraction or inclusion of causal
spaces. Moreover, we explore the connections of these no-
tions to those of causal effects and sources introduced in
[Park et al., 2023].

Despite the beauty and practical usefulness of the structural
causal model and potential outcomes frameworks, we be-
lieve that the theory of causal spaces has the potential to
overcome some of the longstanding limitations of them in
terms of rigour and expressiveness, and the contribution
of this paper is to develop the theory further in terms of
treating multiple causal spaces through products and trans-
formations rather than focusing the investigation to single
causal spaces.

Although probability theory does not seem to be so amen-
able to a category-theoretic treatment as other mathematical
objects, there have been some efforts to do so [Lynn, 2010,
Adachi and Ryu, 2016, Cho and Jacobs, 2019, Fritz, 2020].
As future work, it would be interesting to explore extensions
of the transformations proposed here to formal category-
theoretic morphisms between causal spaces.
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In the supplementary material, we provide the missing proofs for the results in our paper, and we recall some definitions
from probability theory.

A BACKGROUND ON PROBABILITY THEORY

Let us collect some definitions and notations from probability theory. Recall that a probability space (Ω,H,P) is defined
through the following axioms:

(i) Ω is a set;

(ii) H is a collection of subsets of Ω, called events, such that

• Ω ∈ H;
• if A ∈ H, then Ω \A ∈ H;
• if A1, A2, ... ∈ H, then ∪nAn ∈ H;

(iii) P is a probability measure on (Ω,H), i.e. a function P : H → [0, 1] satisfying

• P(∅) = 0;
• P(∪nAn) =

∑
n P(An) for any disjoint sequence An in H;

• P(Ω) = 1.

Probability kernels (sometimes called Markov kernels) from (Ω1,H1) to (Ω2,H2) are maps κ : Ω1×H2 → [0, 1] such that

(i) For every A ∈ H2 the function
ω → κ(ω,A)

is measurable with respect to H1.

(ii) For every ω ∈ Ω1 the function
A → κ(ω,A)

defines a measure on (Ω2,H2).

See, for example, [Cinlar, 2011, p.37, Section I.6] for details.

We remark that we can concatenate probability kernels and we can consider product kernels.

We denote integration with respect to a (probability) measure P by∫
P(dω)T (ω)

*Equal Contribution



for a measurable map T : (Ω,H) → (R,B(R)).

For a measurable map f : (Ω1,H1) → (Ω2,H2) we define the pushforward measure f∗P by f∗P(A) = P(f−1(A)). The
transformation formula for the pushforward measure reads∫

f∗P(dω)T (ω) =
∫

P(dω′)T ◦ f(ω′).

Finally we recall the Factorisation lemma [Cinlar, 2011, p.76, Theorem II.4.4].

Lemma A.1 (Factorisation Lemma). Let T : Ω1 → (Ω2,H2) be a function. A function f : Ω1 → R is σ(T )-B(R)
measurable if and only if there is a measurable function g : (Ω2,H2) → (R,B(R)) such that f = g ◦ T .

B PROOFS

In this appendix we collect the proofs of all the results in the paper.

B.1 PROOFS FOR SECTION 3

Lemma 3.2 (Products of Causal Spaces are Causal Spaces). The product causal space C1 ⊗ C2 as defined in Definition 3.1
is a causal space.

Proof of Lemma 3.2. It is a standard fact that K1 ⊗K2 defines a family of probability kernels1. For the first axiom of causal
kernels (Definition 2.1(i)), we observe that

(K1 ⊗K2)∅((ω1, ω2), A1 ×A2) = K1
∅(ω1, A1)K

2
∅(ω2, A2)

= P1(A1)P2(A2)

= P1 ⊗ P2(A1 ×A2).

By standard reasoning based on the monotone class theorem, this extends to A ∈ H1 ⊗H2 and therefore the first axiom of
causal spaces is satisfied. For the second axiom of causal spaces, for any S = S1 ∪ S2, first fix arbitrary A1 ∈ H1

S1 and
A2 ∈ H1

S2 . Then, for all B1 ∈ H1 and B2 ∈ H2, we find that for all ω = (ω1, ω2),

LS(ω, (A1 ×A2) ∩ (B1 ×B2)) = K1
S1
(ω1, A1 ∩B1)K

2
S2(ω2, A2 ∩B2)

= 1A1(ω1)K
1
S1(ω1, B1)1A2

(ω2)K
2
S2(ω2, B2)

= 1A1×A2(ω)LS(ω,B1 ×B2).

Hence, for this fixed pair A1, A2 and this ω, the measures B 7→ LS(ω, (A1 ×A2)∩B) and B 7→ 1A1×A2(ω)LS(ω,B) are
identical on the generating rectangles B1 ×B2, hence they are identical on all of H1 ⊗H2 by the standard monotone class
theorem reasoning. Now, since this is true for arbitrary rectangles A1 ×A2 with A1 ∈ H1

S1 and A2 ∈ H2
S2 , if we now fix

B ∈ H1 ⊗H2, we have that the two measures A 7→ LS(ω,A∩B) and A 7→ 1A(ω)LS(ω,B) on H1
S1 ⊗H2

S2 are identical
on the generating rectangles A1 × A2, hence they are identical on all of H1

S1 ⊗ H2
S2 . Now both A and B are arbitrary

elements of H1 ⊗H2 and H1
S1 ⊗H2

S2 respectively. To conclude, we have, for all ω, A ∈ H1 ⊗H2 and B ∈ H1
S1 ⊗H2

S2 ,

LS(ω,A ∩B) = 1A(ω)LS(ω,B),

confirming the second axiom of causal spaces.

Lemma 3.3 (Causal Effects in Product Spaces). Suppose C1 = (Ω1,H1,P1,K1) and C2 = (Ω2,H2,P2,K2) with
Ω1 = ×t∈T 1Et and Ω2 = ×t∈T 2Et are two causal spaces. Then in C1 ⊗ C2,

(i) HT 1 has no causal effect on HT 2 , and HT 2 has no causal effect on HT 1 ;

(ii) HT 1 and HT 2 are (local) sources of each other.

1See, e.g. math.stackexchange.com/questions/84078/product-of-two-probability-kernel-is-a-probability-kernel



Proof of Lemma 3.3. (i) Denote the causal kernels on the product space by Kp. Take any event A ∈ HT 2 , and any
S ⊆ T 1 ∪ T 2. Note that S can be written as a union S = S1 ∪ S2 for some S1 ⊆ T 1 and S2 ⊆ T 2. Then see that, by
writing A = Ω1 ×A′ ∈ HT 1 ⊗HT 2 with A′ ⊆ Ω2,

Kp
S(ω,A) = Kp

S1∪S2(ω,A)

= K1
S1(ω,Ω1)K

2
S2(ω,A′)

= K1
∅(ω,Ω1)KS2(ω,A′)

= KS\T 1(ω,A).

Here we used that K1
S1(ω,Ω1) = 1 = K1

∅(ω,Ω1) because K(ω, ·) is a probability measure for a probability kernel.
So HT 1 has no causal effect on A. Implication in the other direction follows the same argument.

(ii) Take any A ∈ HT 2 . By (i), HT 1 has no causal effect on A, so

KT 1(ω,A) = KT 1\T 1(ω,A) = K∅(ω,A) = P(A).

But since HT 1 and HT 2 are probabilistically independent, PT 1(A) = P(A). Hence, PT 1(A) = KT 1(ω,A), meaning
HT1

is a source of A. Since A ∈ HT2
was arbitrary, HT1

is a source of HT2
. The implication in the other direction

follows the same argument.

B.2 PROOFS FOR SECTION 6.1

Lemma 6.1 (Compositions of Causal Transformations). Let (κ1, ρ1) : C1 → C2 and (κ2, ρ2) : C2 → C3 be causal
transformations. If (κ1, ρ1) is an abstraction then (κ3, ρ3) = (κ1 ◦ κ2, ρ1 ◦ ρ2) : C1 → C3 is a causal transformation.

Proof of Lemma 6.1. First, we claim that the pair (κ3, ρ3) = (κ1 ◦ κ2, ρ1 ◦ ρ2) is admissible. We have to show that, for any
S3 ⊂ ρ3(T

1) and A ∈ H3
S3 , the map κ3(·, A) is measurable with respect to H1

ρ−1
3 (S3)

.

Let us call ρ−1
2 (S3) = S2. Note that, since (κ2, ρ2) : C

2 → C3 is a causal transformation, κ2(·, A) is measurable with respect
to H2

S2 . Since we assume that the first map is an abstraction, we find that S2 ⊂ ρ1(T 1) = T 2, and thus by Definition 4.1
that for B ∈ H2

S2 the function κ1(·, B) is measurable with respect to H1
ρ−1
3 (S3)

, where we used ρ−1
3 (S3) = ρ−1

1 (S2). We

now use the relation κ3(ω,A) =
∫
κ1(ω,dω

′)κ2(ω
′, A). Since κ2(·, A) is measurable with respect to H2

S2 , we conclude
that we can approximate κ2(·, A) by a simple function

∑
αi1Bi(·) with Bi ∈ H2

S2 . But for such a simple function, we find∫
κ1(ω,dω

′)
∑
i

αi1Bi(ω
′) =

∑
i

αiκ1(ω,Bi),

which is measurable with respect to H1
S1 as a sum of measurable functions because (κ1, ρ1) is admissible. By passing to the

limit (κ3, ρ3) is admissible.

Next we show that distributional consistency holds, which follows directly from distributional consistency of (κ1, ρ1) and
(κ2, ρ2): ∫

P1(dω)κ3(ω,A) =

∫
P1(dω)κ1(ω,dω2)κ2(ω2, A)

=

∫
P2(dω2)κ2(ω2, A)

= P3(A).

Next we consider interventional consistency. Let S3 ⊂ ρ3(T
1) and define S2 = ρ−1

2 (S3) and S1 = ρ−1
3 (S1) = ρ−1

1 (S2).
Note that, since (κ1, ρ1) is an abstraction, i.e., ρ1 is surjective, we have S2 ⊂ ρ1(T

1) = T 2. Now we find that, for ω1 ∈ Ω1

and A ∈ H3, ∫
κ3(ω,dω

′)K3
S3
(ω′, A) =

∫
κ1(ω,dω2)κ2(ω2,dω

′)K3
S3
(ω′, A)



=

∫
κ1(ω,dω2)K

2
S2
(ω2,dω

′)κ2(ω
′, A)

=

∫
K1

S1
(ω,dω′)κ1(ω

′,dω2)κ2(ω2, A)

=

∫
K1

S1
(ω,dω′)κ3(ω

′, A).

This ends the proof as we have shown that (κ3, ρ3) is a causal transformation.

Lemma 6.3 (Inclusion of SCMs). Consider an acyclic SCM on endogenous variables (X1, . . . , Xd) ∈ Rd with observational
distribution P. Let S ⊂ [d], R = Sc = [d] \ S and consider causal spaces C1 = (Ω1,H1,PS ,K) and C2 = (Ω2,H2,P,L),
where we have (Ω1,H1) = (R|S|,B(R|S|)) and (Ω2,H2) = (Rd,B(Rd)). Moreover, PS is the marginal distribution on
the variables in S, and the causal mechanisms K and L are derived from the SCM. In particular, K is a marginalisation of
L, namely, for any ω ∈ Ω2, any event A ∈ H1 and any S′ ⊆ S, we have that KS′(ω,A) = LS′(ω,A).

Consider the map ρ : S ↪→ [d] and κ(·, A) = PH1(A). Then (ρ, κ) is a causal transformation from C1 to C2.

Proof of Lemma 6.3. First we note that as in Example 4.5 it is clear that (κ, ρ) is admissible and∫
κ(xS , A)PS(dxS) =

∫
PH1(A)dPS = P(A),

so we have distributional consistency.

For interventional consistency, let A ∈ H1, S′ ⊆ S and ω ∈ Ω1 be arbitrary. Then see that∫
KS′(ω, dω′)κ(ω′, A) =

∫
KS′(ω, dω′)PH1(ω′, A)

=

∫
KS′(ω, dω′)1A(ω

′) since A ∈ H1

= KS′(ω,A).

On the other hand, see that∫
κ(ω, dω′)LS′(ω′, A) =

∫
PH1(ω, dω′)LS′(ω′, A)

=

∫
1dω′(ω)LS′(ω′, A) since LS′(·, A) is measurable with respect to H1

= LS′(ω,A).

But by the marginalisation condition on the causal mechanisms K and L, we have that LS′(ω,A) = KS′(ω,A) for all
ω ∈ Ω1. This proves interventional consistency.

Lemma 6.4 (Rigidity of target causal structure). Let C2 = (Ω2,H2,P2,K2) and C̃2 = (Ω2,H2, P̃2, K̃2) be two causal
spaces with the same underlying measurable space. Let (κ, ρ) be an admissible pair for the measurable spaces (Ω1,H1)
and (Ω2,H2). Assume that the pair (κ, ρ) defines causal transformations φ : C1 → C2 and φ̃ : C1 → C̃2 be a causal
transformations. Then P2 = P̃2, and for all A ∈ H2

ρ(T 1) and any S ⊂ T 2

K2
S(ω,A) = K̃2

S(ω,A) for P2 = P̃2 a. e. ω ∈ Ω2.

Proof of Lemma 6.4. Applying distributional consistency of φ and φ̃, we find, for all A ∈ H2,

P2(A) =

∫
P1(dω)κ(ω,A) = P̃ 2(A) (4)

and thus P2 = P̃2. Next, we consider A ∈ H2
ρ(T 1) and S ⊂ ρ(T 1). Let us define

B = {ω ∈ Ω2 : K2
S(ω,A) < K̃2

S(ω,A)}. (5)



Since K2
S(·, A) and K̃2

S(·, A) are H2
S measurable we find B ∈ H2

S ⊂ H2
ρ(T 1). Then the definition of causal spaces (see

Definition 2.1) implies that

K2
S(ω

′, A ∩B) = 1B(ω
′)K2

S(ω
′, A). (6)

Note that A ∩B ∈ H2
ρ(T 1) so we can apply interventional consistency (2) for C2 and C̃2 and obtain for any ω∫

κ(ω,dω′)1B(ω
′)K2

S(ω
′, A) =

∫
κ(ω,dω′)1B(ω

′)K2
S(ω

′, A ∩B) =

∫
K1

ρ−1(S)(ω,dω
′)κ(ω′, A)

=

∫
κ(ω,dω′)1B(ω

′)K̃2
S(ω

′, A ∩B) =

∫
κ(ω,dω′)1B(ω

′)K̃2
S(ω

′, A)

(7)

We integrate this relation with respect to P1(dω) and then apply distributional consistency and get

0 =

∫
P1(dω)κ(ω,dω′)1B(ω

′)(K̃2
S(ω

′, A)−K2
S(ω

′, A))

=

∫
P2(dω′)1B(ω

′)(K̃2
S(ω

′, A)−K2
S(ω

′, A))

=

∫
B

P2(dω′) (K̃2
S(ω

′, A)−K2
S(ω

′, A)).

(8)

On B the last term is strictly positive by definition. Thus we conclude that P2(B) = 0 and thus K̃2
S(ω

′, A) ≤ K2
S(ω

′, A)
holds almost surely. The same reasoning implies the reverse bound and we conclude that P2 almost surely the relation

K̃2
S(ω

′, A) = K2
S(ω

′, A) (9)

holds.

Lemma 6.5 (Surjective Deterministic Maps). Suppose (f, ρ) is an admissible pair for the causal space C1 =
(Ω1,H1,P1,K1) to the measurable space X2 = (Ω2,H2) and assume that ρ is surjective and f : Ω1 → Ω2 meas-
urable. If f is surjective, there exists at most one causal space C2 = (Ω2,H2,P2,K2) such that (f, ρ) : C1 → C2 is a
causal transformation.

If, in addition, K1
ρ−1(S2)(·, A) is measurable with respect to f−1(H2

S2) for all A ∈ f−1(H2) and all S2 ⊂ T 2 then a
unique causal space C2 exists such that (f, ρ) : C1 → C2 is a causal transformation.

Proof of Lemma 6.5. We first prove uniqueness. The relation f∗P1 = P2 that are necessarily true for deterministic maps
(see Section 4) implies that P2 is predetermined. Moreover, we find that, by (3), for any A ∈ H2, S ⊂ T 2 and any ω ∈ Ω1,

K1
ρ−1(S)(ω, f

−1(A)) = K2
S(f(ω), A).

But since f is surjective we conclude that due to interventional consistency K2
S(ω

′, A) for ω′ ∈ Ω2 is unique.

To prove the existence we note that by assumption for fixed A ∈ H2 the function K1
ρ−1(S2)(·, f

−1(A)) is measurable with
respect to f−1(H2

S2). Now by the Factorisation Lemma (see Lemma A.1 in Appendix A) there is a measurable function
g : (Ω2,H2

S2) → R such that
K1

ρ−1(S2)(ω, f
−1(A)) = g ◦ f(ω).

We define K2
S2(ω′, A) = g(ω′). By surjectivity this defines K2

S2 everywhere and this defines a probability kernel because g
is measurable.

It remains to verify that the resulting C2 is indeed a causal space. Using interventional and distributional consistency we
obtain

K2
∅(f(ω), A) = K1

∅(ω, f
−1(A))

= P1(f−1(A))

= f∗P1(A)

= P2(A).



This verifies the first property of causal spaces. For the second property we observe that for A ∈ H2
S2 , S1 = π−1(S2) using

causal consistency

K2
S2(f(ω), A ∩B) = K1

S1(ω, f−1(A ∩B))

= K1
S1(ω, f−1(A) ∩ f−1(B))

= 1f−1(A)(ω)K
1
S1(ω, f−1(B))

= 1A(f(ω))K
2
S2(f(ω), B).

Here we used that C1 is a causal space and f−1(A) ∈ H1
S1 . Thus, we conclude that we obtained a causal space C2.

Lemma 6.6 (Perfect Abstraction on Intervened Spaces). Let C1 = (Ω1,H1,P1,K1) with (Ω1,H1) a product with index set
T 1 and C2 = (Ω2,H2,P2,K2) with (Ω2,H2) a product with index set T 2 be causal spaces, and let (f, ρ) : C1 → C2 be a
perfect abstraction.

Let U1 = ρ−1(U2) ⊆ T 1 for some U2 ⊆ T 2. Let Q1 be a probability measure on (Ω1,H1
U1) and L1 a causal mechanism on

(Ω1,H1
U1 ,Q1). Suppose that, for all S ⊆ U2 and A ∈ H1, the map L1

ρ−1(S)(·, A) is measurable with respect to f−1(H2
S),

and consider the intervened causal spaces

C1
I = (Ω1,H1, (P1)do(U1,Q1), (K1)do(U1,Q1,L1)),

C2
I = (Ω2,H2, (P2)do(U2,Q2), (K2)do(U2,Q2,L2)),

where Q2 = f∗Q1 and L2 is the unique family of kernels satisfying L2
S(f(ω), A) = L1

ρ−1(S)(ω, f
−1(A)) for all ω ∈ Ω1,

A ∈ H2, and S ⊆ U2. Then (f, ρ) : C1
I → C2

I is a perfect abstraction.

Proof of Lemma 6.6. First, we note that by Lemma 6.5 L2 exists and is unique. Thus, we need to verify distributional
consistency and interventional consistency.

Let us first show f∗(P1)do(U1,Q1) = (P2)do(U2,Q2). Since (f, ρ) is a causal transformation (i.e., interventional consistency as
in (2) holds), we find that, for A ∈ H2,

f∗(P1)do(U1,Q1)(A) =

∫
Q1(dω)K1

U1(ω, f−1(A))

=

∫
Q1(dω)K2

U2(f(ω), A)

=

∫
(f∗Q1)(dω′)K2

U2(ω′, A)

=

∫
Q2(dω′)K2

U2(ω′, A)

= (P2)do(U2,Q2)(A).

Here we used the change of variable for pushforward-measures.

Next, we show interventional consistency of (f, ρ) : C1
I → C2

I . For this, we introduce the shorthand fS = πS ◦ f . Note
that since fS is measurable with respect to H1

ρ−1(S) we can find f̃S such that fS(ω) = f̃S(ωρ−1(S)). Note that, by the
interventional consistency of (f, ρ) : C1 → C2, we have

K1
ρ−1(S)(ω, f

−1(S)) = K2
S(f(ω), A) = K2

S(f̃S(ωS), A).

We can now show for A ∈ H2 and S1 = ρ−1(S2) that

(K1)
(U1,Q1,L1)
S1 (ω, f−1(A)) =

∫
L1
S1∩U1(ωS1∩U1 ,dω′

U1)K1
S1∪U1((ωS1\U1 , ω′

U1), f−1(A))

=

∫
L1
S1∩U1(ωS1∩U1 ,dω′

U1)K2
S2∪U2(f̃S2\U2(ωS1\U1), f̃U2(ω′

U1), A)

=

∫ (
(f̃U1)∗(L

1
S1∩U1(ωS1∩U1 , ·)

)
(dωU2)K2

S2∪U2(f̃S2\U2(ωS1\U1), ωU2 , A)



=

∫
L2
S2∩U2(f(ω)S2∩U2),dωU2)K2

S2∪U2(f(ω)S2\U2), ωU2 , A)

= (K2)
(U2,Q2,L2)
S2 (f(ω), A).

This ends the proof.

B.3 PROOFS FOR SECTION 6.2

Lemma 6.7 (Perfect Abstraction and No Causal Effect). Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). If H1

U1 has no causal effect on H1
V 1 in C1, then H2

U2 has no
causal effect on H2

V 2 in C2.

Proof of Lemma 6.7. Consider A ∈ H2
V 2 and any S2 ⊂ T 2. Then for any ω′ ∈ Ω2 we find an ω ∈ Ω1 such that f(ω) = ω′.

Using interventional consistency and f−1(A) ∈ H1
V 1 we conclude

K2
S2(ω′, A) = K1

ρ−1(S2)(ω, f
−1(A))

= K1
ρ−1(S2)\ρ−1(U2)(ω, f

−1(A))

= K1
ρ−1(S2\U2)(ω, f

−1(A))

= K2
S2\U2(ω′, A).

This ends the proof.

Lemma 6.8 (Perfect Abstraction and Active Causal Effects). Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two
sets U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). Assume that H2

U2 has an active causal effect on H2
V 2 in

C2. Then H1
U1 has an active causal effect on H1

V 1 in C1.

Proof of Lemma 6.8. Since H2
U2 has an active causal effect on H2

V 2 in C2, we find that there is an ω′ ∈ Ω2 and an A ∈ H2
V 1

such that
K2

U2(ω′, A) ̸= P2(A).

By surjectivity there is ω ∈ Ω1 such that ω′ = f(ω) and thus

K1
U1(ω, f−1(A)) = K2

U2(ω′, A)

̸= P2(A)

= P1(f−1(A)).

The claim follows because f−1(A) ∈ H1
U1 .

Lemma 6.10 (Perfect Abstraction and Sources). Let (f, ρ) : C1 → C2 be a perfect abstraction. Consider two sets
U2, V 2 ⊂ T 2 and denote U1 = ρ−1(U2) and V 1 = ρ−1(V 2). Assume that H1

U1 is a local source of H1
V 1 in C1. Then H2

U2

is a local source of H2
V 2 in C2.

In particular, this implies that if H1
U1 is a global source then H2

U2 also is a global source.

Proof of Theorem 6.10. Our goal is to show that K2
U2(·, A) is a version of the conditional probability P2

H2
U2

(A) for A ∈
H2

V 2 . It is sufficient to show that for all B ∈ H2
U2 the following relation holds∫

P2(dω′)1A(ω
′)1B(ω

′) =

∫
P2(dω′)1B(ω

′)K2
U2(ω′, A). (10)

Using that (f, ρ) is a perfect abstraction, f−1(A) ∈ H1
V 1 , f−1(B) ∈ H1

U1 , and that H1
U1 is a local source of H1

V 1 we find∫
P2(dω′)1A(ω

′)1B(ω
′) =

∫
f∗P1(dω′)1A(ω

′)1B(ω
′)

=

∫
P1(dω)1A(f(ω))1B(f(ω))



=

∫
P1(dω)1f−1(A)(ω)1f−1(B)(ω)

=

∫
P1(dω)K1

U1(ω, f−1(A))1f−1(B)(ω)

=

∫
P1(dω)K2

U2(f(ω), A)1B(f(ω))

=

∫
f∗P1(dω′)K2

U2(ω′, A)1B(ω
′)

=

∫
P2(dω′)K2

U2(ω′, A)1B(ω
′).

Thus we have shown that (10) holds and the proof is completed.

C EQUIVALENCE OF CAUSAL MECHANISM DEFINITIONS

Let us here briefly comment on the notation and equivalence of the notions KS(ω,A) to KS(ωS , A). To clarify the
equivalence let us recall the factorization lemma.

Lemma C.1 (Factorization Lemma). Let T : Ω → Ω′ be a map and (Ω′,A′) a measurable space. A function f : Ω → [0, 1]
is σ(T )/B([0, 1]) measurable if and only if f = g ◦ T for some A′/B([0, 1]) measurable function g : Ω′ → [0, 1].

We apply this where for T we use the projection πS : (Ω,H) → (ΩS ,HS). Then, by the factorization lemma, a HS

measurable map KS(·, A) : Ω → [0, 1] gives rise to a map K ′
S(·, A) : ΩS → [0, 1] such that

KS(ω,A) = K ′
S(πSω,A) = K ′

S(ωS , A). (11)

Moreover, this maps is unique because πS is surjective. On the other hand, give K ′
S(·, A) : ΩS → [0, 1] we can just define

KS(·, A) : Ω → [0, 1] by (11). For this reason KS(ω,A) and KS(ωS , A) can be used equivalently when identified as
explained here and with a slight abuse of notation we will use both depending on the context without indicating the different
domains.
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