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Abstract
Protein language models (PLMs) implicitly learn
distributional constraints on protein sequences
upheld over the course of evolution. As a con-
sequence, the sequence and mutation-level likeli-
hoods of such models form effective zero-shot pre-
dictors of mutations. Although various schemes
have been proposed for exploiting the distribu-
tional knowledge captured by PLMs to enhance
supervised fitness prediction and sequence design
tasks, a lack of head-to-head comparison across
different prediction strategies and different classes
of PLM has made it challenging to identify the
best-performing methods. Our contribution is to
extend previously proposed ranking-based loss
functions to develop likelihood scoring functions
for family-based and masked PLMs. We demon-
strate that in the low-data setting the best config-
urations outperform the current SOTA approach,
which is based on frozen embeddings. Further-
more, we propose ensembling strategies that ex-
ploit the strong dependence of the mutational dis-
tributions learned by PLMs on sequence context,
showing that they can be used to guide efficient
optimisation strategies over fitness landscapes.

1. Introduction
Natural protein sequences are the result of evolution via
natural selection. Protein language models (PLMs) fit to the
distribution of natural sequences and therefore learn to im-
plicitly model functional and structural constraints relevant
to protein fitness (Gordon et al., 2024). PLM likelihoods
form effective zero-shot predictors of the fitness effects of
amino acid mutations (Meier et al., 2021; Notin et al., 2022).
These distribution learning capabilities are also highly in-
formative for protein sequence design. Mutations assigned
high likelihoods by the PLM can be iteratively incorporated
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to improve fitness (Hie et al., 2023), or entire sequences can
be sampled from generative PLMs (Madani et al., 2023).

In multi-round design scenarios, experimental techniques
are often used to generate labelled datasets associating a
collection of sequences with measurements of biological
properties of interest. Although in some cases these proper-
ties are amenable to high-throughput experimental screen-
ing methodologies whose resulting datasets are typically
large (Rocklin et al., 2017; Tsuboyama et al., 2023), in gen-
eral, experimental constraints mean that it might only be
feasible to generate measurements for tens or hundreds of
proteins in each round (Biswas et al., 2021). It is therefore
of considerable interest to ask how to best leverage the zero-
shot prediction capacities of PLMs alongside small labelled
datasets to improve fitness prediction and sequence design.

One popular paradigm for exploiting the information in pre-
trained PLMs involves extracting sequence representations
and utilising these as (frozen) inputs into task-specific down-
stream predictive models (or “heads”) (Alley et al., 2019;
Biswas et al., 2021; Rao et al., 2019; Dallago et al., 2021;
Khan et al., 2023; Notin et al., 2023b). However, recent
trends in natural language processing have shown the ben-
efits of directly adapting the distributions of models using
task-specific labelled data or pairwise preferences (Ouyang
et al., 2022; Rafailov et al., 2023) to fine-tune all parame-
ters, thereby fully exploiting the distributional knowledge
contained in the original pretrained model.

While pairwise ranking losses have previously been con-
sidered to adapt the likelihoods of unconditional autore-
gressive PLMs (in the context of protein fitness predic-
tion) (Krause et al., 2021; Lee et al., 2023), it remains
under-explored whether similar strategies can effectively
be applied across other popular classes of PLMs. Here, we
introduce likelihood scoring functions for masked PLMs,
e.g. ESM-1v (Meier et al., 2021) and ESM-2 (Lin et al.,
2022), along with recent family-based autoregressive mod-
els e.g. PoET (Truong Jr & Bepler, 2023) that condition
predictions on multiple-sequence alignments (MSA) and
often outperform unconditional autoregressive models for
fitness prediction (Notin et al., 2023a). For the first time we
are able to directly compare fine-tuning strategies for differ-
ent classes of PLMs, including the current state-of-the-art
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non-parametric architectures for operating on frozen PLM
embeddings, e.g. ProteinNPT (Notin et al., 2023b).

In this paper we (i) extend pairwise ranking loss functions to
fine-tune the likelihoods of leading zero-shot fitness predic-
tors trained with both masked- and family-based autoregres-
sive language model objectives, (ii) provide direct compar-
ison with SOTA approaches based on frozen embeddings,
as well as regression-based fine-tuning approaches, provid-
ing compelling empirical evidence that practitioners should
make use of ranking-based fine-tuning schemes, regardless
of the specific PLM at hand, especially in low-data regimes,
and (iii) develop ensemble strategies compatible with these
fine-tuning schemes, demonstrating their effectiveness in
multi-round Bayesian optimisation settings.

In this paper, we study the modelling problem in silico
which mimics ground truth values being available from wet
lab experiments. We evaluate the performance on a super-
vised fitness prediction task and a pool-based optimisation
task proposed in Notin et al. (2023b). Crucially, unlike their
work, we evaluate performance on a diverse subset of Prote-
inGym landscapes (Notin et al., 2023a) containing multiple
mutations, a more realistic and challenging setting.

2. Related work
2.1. Zero-shot protein fitness prediction

The most successful models for zero-shot prediction of pro-
tein fitness effects attempt to predict the likelihood of par-
ticular sets of mutations occurring within a natural protein
given its evolutionary context. Traditional methods within
this category involve statistical models trained directly on
multiple sequence alignments (MSAs) for each protein of
interest, such as profile models (Hopf et al., 2017), Potts
models (Figliuzzi et al., 2016; Hopf et al., 2017) and VAEs
(Frazer et al., 2021; Riesselman et al., 2018). More recent
generalisations of such methods involve pretraining large
PLMs across all natural proteins. For example, ESM-1v
(Meier et al., 2021) and ESM-2 (Lin et al., 2022) are trained
using a masked language modelling objective, allowing
point mutations to be scored by the ratio of probabilities
of mutant and wild-type amino acids. Alternatively, au-
toregressive models can directly compute the likelihood of
entire protein sequences, making them more appropriate
for scoring sequences containing multiple mutations (Notin
et al., 2022; Nijkamp et al., 2023; Madani et al., 2023).
However, unconditional PLMs suffer from a lack of context,
often requiring fine-tuning to specialise their distributions
towards a particular protein family of interest (Madani et al.,
2023). As a result, the leading autoregressive models exploit
the information in MSAs to improve predictions, either by
biasing language model likelihoods with statistics from the
MSA, in the case of Tranception (Notin et al., 2022), or by

explicitly conditioning on the MSA (Hawkins-Hooker et al.,
2021; Ram & Bepler, 2022; Truong Jr & Bepler, 2023).

2.2. Supervised protein fitness prediction

Fitness prediction has been studied as a supervised learn-
ing task in many prior works (Rao et al., 2019; Hsu et al.,
2022a; Krause et al., 2021). Several works have sought
to exploit the pretrained representations of PLMs to im-
prove performance, using either fine-tuned (Rao et al., 2019)
or frozen embeddings (Dallago et al., 2021; Notin et al.,
2023b). Nonetheless, approaches based on embeddings risk
discarding useful distributional information captured in the
models’ output layers (Krause et al., 2021). The importance
of fully leveraging distribution information for fitness pre-
diction is highlighted by the success of ‘augmented density’
predictors (Hsu et al., 2022a), which combine zero-shot
fitness predictions with either one-hot encoded (Hsu et al.,
2022a), or embedded (Notin et al., 2023b) representations of
input sequences. The state-of-the-art supervised fitness pre-
diction method ProteinNPT (Notin et al., 2023b) combines
these strategies, training a bespoke non-parametric Trans-
former (Kossen et al., 2021) to reason over both zero-shot
predictions and associated sequence embeddings to produce
fitness predictions.

Methods seeking to adapt the distributions learned by PLMs
directly have been less well studied. Rives et al. (2021)
propose to use the log-likelihood ratio between mutant and
wild-type amino acids as a regression function, fine-tuning
the full model. Krause et al. (2021) suggest using a ranking-
based loss function to fine-tune autoregressive PLMs, show-
ing improvements over augmented density baselines on a
small set of fitness landscapes. A similar ranking-based loss
function was proposed for training non-pretrained CNN ar-
chitectures on fitness datasets in Brookes et al. (2023). Most
recently, Lee et al. (2023) apply ranking-based loss func-
tions derived from the literature on large language model
alignment (Rafailov et al., 2023) to fine-tune unconditional
autoregressive PLMs. The application of ranking-based loss
functions to masked PLMs is also considered in concurrent
work (Zhao et al., 2024).

2.3. Model-guided protein design

Several works have proposed variants of Bayesian optimiza-
tion (BO) for designing biological sequences, including
proteins (Gruver et al., 2021; Jain et al., 2022; Khan et al.,
2023; Stanton et al., 2022; Hie & Yang, 2022). It is com-
mon to evaluate BO approaches in an unconstrained set-
ting, where sequences are proposed by an optimiser and
evaluated with a black-box oracle. However, recent work
suggests that designing such biological oracles is a challeng-
ing task in itself (Buttenschoen et al., 2024; Surana et al.,
2024). An alternative in silico evaluation strategy avoids
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the challenge of defining a meaningful oracle function by
adopting a pool-based optimisation problem formulation
over experimentally determined fitness landscapes (Notin
et al., 2023b). Another line of work has sought to provide
direct experimental validation of approaches combining un-
certainty estimates with PLMs, in settings ranging from
zero- (Hie et al., 2023) to few-shot design (Biswas et al.,
2021), to single-round design with large training sets of
sequence-fitness pairs (Li et al., 2023).

Gruver et al. (2021) study various choices of surrogate
model for protein design with BO, finding CNN ensembles
to be particularly robust to the kinds of distribution shift
encountered during online design. More recently, Greenman
et al. (2025) studied a range of uncertainty quantification
strategies applied to models trained directly on sequences,
and on frozen language model embeddings.

3. Background
3.1. Ranking-based loss functions

While mean squared error has been widely used as a loss
function in training sequence-based predictive models of
fitness landscapes, two recent works have advocated the
use of ranking-based loss functions (Krause et al., 2021;
Brookes et al., 2023). In particular, they suggest param-
eterising a Bradley-Terry model (Bradley & Terry, 1952)
with a learned function of the sequence. The Bradley-Terry
model represents the probability that a given sequence xi

has higher fitness y(xi) than another sequence xj by param-
eterising a binary classifier via the difference in scores of
each sequence under a learned scoring function sθ(x):

p(y(xi) > y(xj)) = σ(sθ(xi)− sθ(xj)) , (1)

where σ is the logistic sigmoid function. The model is
trained by maximising the likelihood of the complete set
of pairwise comparisons between the fitness values of se-
quences with respect to the parameters θ of the scoring func-
tion. Concretely, given a batch of B sequences x1, ..., xB ,
the loss is given by

L =

B∑
i=1

B∑
j=1

−I(y(xi) > y(xj))logσ(sθ(xi)− sθ(xj)) ,

(2)
where I is an indicator function. In this way, fitness predic-
tion for a dataset of size N is converted from a regression
problem with N labels into a binary classification problem
with N ×N labels.

3.2. Fine-tuning autoregressive PLMs

To use the ranking-based loss functions to fine-tune an au-
toregressive protein language model, Krause et al. (2021)
propose an unconditional sequence log-likelihood score

function:

sθ(x) =

L∑
i=1

log p(xi|x<i) . (3)

Since the log-likelihoods of autoregressive protein language
models are strong zero-shot predictors of the fitness effects
of mutations (Notin et al., 2022), the difference in log-
likelihoods used to parameterise the Bradley-Terry model of
Equation 1 can produce an effective pairwise classifier at ini-
tialisation, which makes this fine-tuning method particularly
relevant in low-data regimes.

4. Likelihood-based fine-tuning of masked and
family-based PLMs

We describe below how pairwise ranking losses can be ex-
tended to fine-tune the likelihoods of other widely used
classes of protein language models, masked language mod-
els and family-based autoregressive models. These exten-
sions are derived from the principle that fine-tuning strate-
gies should exploit as far as possible the properties of mod-
els that lead to strong zero-shot performance (Krause et al.,
2021). We enforce this principle by suggesting an appropri-
ate choice of the scoring function sθ used to parameterise
the Bradley-Terry model in each case.

4.1. Conditional scoring functions

Previous applications of the ranking-based loss to fine-
tune PLMs have focussed on unconditional autoregressive
models. However, these models often underperform other
classes of model including conditional autoregressive mod-
els and masked language models in fitness prediction set-
tings (Notin et al., 2023a). We therefore propose new like-
lihood scoring strategies, amenable to the Bradley-Terry
model, to accommodate these newer PLM classes. To do
so, we incorporate the additional conditioning information
c exploited by these models into the conditional scoring
function sθ(x, c):

p
(
(y(xi) > y(xj))|c

)
= σ(sθ(xi, c)− sθ(xj , c)). (4)

Below, we will consider cases where c represents either
a wild-type sequence or a multiple sequence alignment
(MSA), since conditioning on evolutionary context is es-
pecially effective in fitness prediction (Truong Jr & Bepler,
2023). Note the same approach could be applied to models
which condition on protein structure (Hsu et al., 2022b).

4.2. Scoring functions for masked PLMs

Masked language models do not define a sequence-level
likelihood, meaning that it is not immediately obvious how
to define a scoring function for the Bradley-Terry model.
Meier et al. (2021) proposed a variety of strategies for zero-
shot scoring of mutants using the likelihoods assigned to
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sets of mutations by masked language models. We propose
to use these zero-shot scoring-functions to parameterise the
Bradley-Terry model in Equation 4, allowing the models
to be fine-tuned with ranking-based losses, similar to other
concurrent work (Zhao et al., 2024). Concretely, for sin-
gle mutation ProteinGym landscapes, we utilize the ‘wild-
type marginals’ (wt-marginals) scoring function. Under this
strategy the score for a mutated sequence is given by the
summation of the log-likelihood ratios between mutated and
wild-type amino acids across mutated positions, given the
unmasked wild-type sequence as input:

sθ(x, x
wt) =

∑
i:xwt

i ̸=xi

logp(xi|xwt)− logp(xwt
i |xwt) . (5)

We choose the marginal strategy for its combination of com-
putational efficiency and strong performance as a zero-shot
scoring function (Meier et al., 2021). Since all sequences
are scored under the residue distributions obtained by in-
putting the wild-type sequence to the model, a set of mutated
sequences of arbitrary size can be scored using a single for-
ward pass, making it extremely efficient.

For landscapes with multiple mutations, the wt-marginal
strategy assumes an additive likelihood function over muta-
tions, and may not adequately capture the epistasis effects,
i.e. where the combined effect of mutations at different
positions is not simply the additive result of their individual
effects. For this reason, we explore additional marginal
strategies in Section 5.2 Result 4 (described further in Ap-
pendix B.4).

4.3. Scoring functions for family-based PLMs

Family-based PLMs represent the conditional distribution
over family members given a subset of other family mem-
bers (Rao et al., 2021; Hawkins-Hooker et al., 2021; Ram
& Bepler, 2022; Truong Jr & Bepler, 2023). These models
have proved effective as zero-shot fitness predictors, due to
their ability to explicitly condition on evolutionary context
to predict the effects of mutations.

In this paper we work with PoET (Truong Jr & Bepler,
2023), which models entire protein families autoregressively.
To produce predictions given a mutant sequence x and an
MSA M = {m(1), ...,m(N)} of homologues of a wild-type
sequence xwt, PoET computes the likelihood of the mutant
x conditional on the MSA M . To exploit this capacity to
condition on family members during fine-tuning, we con-
dition the autoregressive scoring function in Equation 3 on
the sequences in the MSA:

sθ(x,M) =

L∑
i=1

log p(xi|x<i,M) . (6)

Since PoET operates natively on unaligned sequences and
is sensitive to alignment depth, we subsample a small set of

sequences from the MSA and discard gaps before feeding
them into the model, following (Truong Jr & Bepler, 2023)
(details in Appendix A.2).

To increase the efficiency of fine-tuning PoET, in practice we
cache a single set of hidden layer representations obtained
by passing the subsampled MSA M through the model, and
fine-tune only the mapping between these frozen represen-
tations and the sequence likelihoods (Appendix A.3). This
effectively decouples the encoding of prior context from the
decoding of future amino acids given this context.

4.4. Uncertainty quantification with evolutionary
context ensembles

The amino acid output distributions learned by PLMs de-
pend heavily on sequence context, which language models
must use to infer the (structural or functional) constraints
determining native amino acid identities. We propose to ex-
ploit this property to build ensembles of fine-tuned PLMs, in
which each ensemble member sees a different, but function-
ally equivalent, sequence context. Concretely, we do this
for both family-based and masked PLMs: For family-based
models we fine-tune an ensemble of PoET models, for each
fitness landscape we sub-sample a set of K input MSAs
M1:K from the full MSA associated with the wild-type se-
quence. We then fine-tune a separate set of parameters to
minimise the loss conditioned on each MSA, producing K
sets of parameters, each specialised to a single input MSA
(further details are provided in Appendix A.2). To score
sequences, we define the ensemble scoring function as:

sθ1:K (x, {M1:K}) = 1

K

K∑
k=1

sθk(x,Mk). (7)

This procedure extends the practice of MSA ensembling
used to improve the zero-shot predictions of MSA-based
PLMs (Truong Jr & Bepler, 2023), to the supervised setting.

For masked models, to achieve a similar effect with no
MSA representation, we instead sample a set of K input
masks, and fine-tune a separate set of parameters for each
input mask, exploiting the intuition that differently masked
sequences remain functionally equivalent, but may nonethe-
less produce different outputs when passed through the
model (Appendix A.4). We demonstrate this approach in
Section 6.2 Result 1 for ESM-2 (Lin et al., 2022).

4.5. Relationship to preference learning for LLMs

Direct preference optimisation (DPO) (Rafailov et al., 2023)
is a recently proposed method for aligning large language
models (LLMs) using datasets of human preference data.
DPO also uses scoring functions from pretrained models to
parameterise a Bradley-Terry model. Instead of parameter-
ising a classifier directly via differences in log likelihoods,
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DPO uses the difference in scaled log likelihood ratios be-
tween the fine-tuned model and a frozen reference model.
Thus the probability that a completion x1 is preferred to a
completion x2 given an input prompt c is modelled as:

pθ(x1 ≻ x2|c) = σ

(
βlog

pθ(x1|c)
pref(x1|c)

− βlog
pθ(x2|c)
pref(x2|c)

)
.

(8)

In our notation, the DPO preference model therefore
amounts to a particular choice of scoring function
sθ(x, c) = βlog p(x|c)

pref(x|c) . Assuming an autoregressive de-
composition of p(x|c), this scoring function is equivalent
to the conditional autoregressive scoring function in Equa-
tion 6 if the reference model is constant and β = 1.

The non-constant reference model in DPO imposes a KL
penalty on the deviation between the fine-tuned pθ and the
reference model, which helps prevent collapse in the fine-
tuned distribution (Rafailov et al., 2023). Although some
recent work has reported success in adapting DPO to the
protein fitness prediction setting (Lee et al., 2023), in our
own experiments we did not find this regularisation neces-
sary to achieve good performance. We hypothesise that this
is because we do not require generations from the model,
unlike typical applications of DPO.

5. Experiment: Low-n fitness prediction
5.1. Experiment details

Protein fitness landscapes We study the performance of
fitness prediction strategies on mutational landscapes from
ProteinGym (Notin et al., 2023a). Each landscape contains
a set of protein sequences together with experimentally de-
termined fitness values. The protein sequences within a
landscape contain a small number of mutations relative to
the ‘wild-type’ protein, and the fitness values are quantita-
tive measurements of a functional property associated with
the wild-type. We utilise two subsets of ProteinGym: the
first is the validation set of 8 representative single-mutant
landscapes selected by Notin et al. (2023b). The second is a
set of 5 landscapes containing multiple mutations, that con-
stitutes a non-redundant set of diverse landscapes available
in ProteinGym (Appendix A.1).

In contrast to prior work (Notin et al., 2023b), we focus ex-
plicitly on the low-data setting. For each landscape, we train
all methods on n = 32, 128 or 512 sequences randomly
sampled from the landscape and evaluate on either 2000
(for single-mutant landscapes) or 5000 (for multiple-mutant
landscapes) randomly sampled held-out sequences. An ad-
ditional set of 128 randomly sampled sequences is used as
a validation set to perform early stopping. For each land-
scape, and each n, we generate three sets of random splits,
and report test set Spearman correlation averaged across

the three splits. For models trained with ranking losses,
the Spearman correlation is computed between the scoring
function sθ(x, c) and the ground truth fitness values.

Prior work has also considered non-random splits (Dallago
et al., 2021; Notin et al., 2023b), including splits that test
generalisation to mutations at unseen positions. We note
that such generalisation is required in the low-data setting,
as not all positions will be represented in the small training
sets. We therefore present our main results on randomly
generated splits, similar to (Hsu et al., 2022a; Krause et al.,
2021). However, in Section 5.2 Result 3 we also assess gen-
eralisation by computing metrics on subsets of the test sets
containing mutations at positions for which no mutations
were present in the training set sequences.

Fitness prediction strategies We evaluate the perfor-
mance of the fine-tuning strategies introduced in Section 4
on the selected landscapes. To attain an understanding of
the effectiveness of these strategies across different classes
of PLM, we apply them to the masked language model
ESM-1v (Meier et al., 2021) and ESM-2 (Lin et al., 2022),
and the family-based autoregressive model PoET (Truong
Jr & Bepler, 2023). In each case, the model is fine-tuned
by parameterising the Bradley-Terry model of Equation 1
via the corresponding scoring functions in Section 4, and
minimising the ranking loss in Equation 2. As an ablation,
we compare to a mean square error (MSE) loss applied to
the same scoring function.

Additionally, we compare to two further sets of baselines
representative of widely used approaches, that either (i) fine-
tune PLMs by adding a regression head (Rao et al., 2019),
or (ii) train new models on top of frozen language model
embeddings (Notin et al., 2023b). In the first case, we add
a linear regression head to ESM-1v, ESM-2 and PoET, and
fine-tune all parameters with an MSE loss (additional details
provided in Appendix A.2.1). Further, in Appendix B.1 we
present an ablation using the ranking loss in Equation 2
applied to the regression target. As the leading example of
the second class of approaches, we compare against Protein-
NPT (Notin et al., 2023b), a state-of-the-art model operating
on frozen language model embeddings. As additional base-
lines, we include the ‘augmented density’ strategies used
as baselines in Notin et al. (2023b). These are regression
models, taking as input the zero-shot predictions of a PLM
as well as either a one-hot representation of the mutated
sequence (Hsu et al., 2022a), or an embedding extracted
from a PLM (further details in Appendix A.6). We refer to
these distinct choices of augmented density representation as
‘OHE augmented’ (OHE aug.) and ‘Embedding augmented’
(Emb. aug.) respectively, following code made available
in Notin et al. (2023b). Hyperparameters are selected based
on performance on the single mutant set, consistent with the
practice used for ProteinNPT and associated baselines.
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Table 1. Fitness prediction in low data settings, comparing Spearman correlation (higher is better) of masked and family-based PLM
models with varying scoring strategies and loss functions. Evaluated on 8 single mutant landscapes and 5 multiple mutant landscapes from
ProteinGym. ProteinNPT and baseline models use a frozen base model to produce embeddings (base model provided in parentheses).

single-mutants multi-mutants

Model Name Scoring function Loss n = 32 n = 128 n = 512 n = 32 n = 128 n = 512

ESM-1v (650M) linear head mse 0.263 0.415 0.535 0.494 0.637 0.771
wt-marginals ranking 0.479 0.552 0.641 0.577 0.642 0.753

ESM-2 (650M) linear head mse 0.280 0.398 0.535 0.427 0.596 0.743
wt-marginals ranking 0.455 0.530 0.627 0.593 0.651 0.758

PoET linear head mse 0.443 0.553 0.646 0.571 0.714 0.793
likelihood ranking 0.513 0.591 0.672 0.667 0.737 0.806

ProteinNPT (MSAT) mse 0.415 0.533 0.637 0.517 0.692 0.791
ProteinNPT (ESM-1v) mse 0.410 0.497 0.607 0.438 0.645 0.769
Emb. aug. (MSAT) mse 0.424 0.507 0.553 0.581 0.696 0.764
Emb. aug. (ESM-1v) mse 0.451 0.505 0.550 0.440 0.624 0.702
OHE aug. (MSAT) mse 0.429 0.467 0.496 0.616 0.684 0.763
OHE aug. (ESM-1v) mse 0.466 0.502 0.526 0.460 0.566 0.711
OHE mse 0.144 0.314 0.488 0.268 0.473 0.664

5.2. Results

Result 1: Ranking-based fine-tuning outperforms re-
gression fine-tuning We first focus on the comparison be-
tween ranking-based fine-tuning and regression-based fine-
tuning in Table 1 (top), using the same models: i) For PoET,
ranking-based likelihood fine-tuning performs best across
all dataset sizes for single- and multi-mutant landscapes.
Regression-based fine-tuning is nonetheless a strong base-
line, performing slightly better than the best ProteinNPT
configuration. ii) For masked models, ESM-1v and ESM-2,
ranking-based likelihood fine-tuning performs much better
than regression-based fine-tuning across both the single-
and mutli-mutant landscapes in all dataset sizes except the
n = 512 multi-mutant setting. As discussed in Section 4,
in the n = 512 multi-mutant setting this result is likely
due to the linear regression head accounting for epistasis
effects better than the wild-type marginal likelihood scoring
rule. Further evidence of this is provided in Section 5.2
Result 4. Finally, as one expects, we observe the gap in per-
formance between the two fine-tuning approaches shrinks
with increasing n.

For completeness, in Appendix B.1 Table 6 we ablate other
possible configurations: i) the MSE loss applied to the PLM
likelihood score function, and ii) the ranking loss in Equa-
tion (2) applied to the PLM with a linear regression head.
Whilst an interesting ablation, the application of MSE loss
directly to the likelihoods does not perform well. However,
the ranking loss applied to the regression target is a strong
baseline, especially in the n = 128 and 512 multi-mutant
settings, demonstrating improved performance for ESM-1v
and ESM-2 over the standard MSE fine-tuning.

Result 2: Ranking-based fine-tuning outperforms mod-
els trained on frozen embeddings We next focus on
the comparison between the best-performing fine-tuning
schemes Table 1 (top) and the set of ProteinNPT base-
lines (bottom) that utilise frozen embeddings from a base
model (Notin et al., 2023b). The full results are provided in
Appendix Table 7. ProteinNPT (MSAT) is the current SOTA
for ProteinGym single-mutant landscapes. We demonstrate
here that ranking-based fine-tuning of PoET outperforms
ProteinNPT across all settings, with the gap largest in the
lowest data regimes, suggesting that directly adapting the
likelihoods of the pretrained PoET model is particularly im-
pactful for maximising performance in limited data regimes.
Notably this is not simply by virtue of PoET producing bet-
ter zero-shot predictions: on the single mutant datasets, the
zero-shot ESM-1v predictions used by ProteinNPT (ESM-
1v) outperform those produced by PoET (0.437 vs 0.417
evaluated on the n = 128 data splits). Masked PLMs ESM-
1v and ESM-2 fine-tuned via the wt-marginal likelihood
ranking strategy also outperform ProteinNPT on the single-
mutant datasets, but performs worse on the multi-mutant
datasets, likely due to the limited expressivity of the scoring
rule, as discussed further in Section 5.2 Result 4.

Result 3: Ranking-based fine-tuning generalises to un-
seen positions In Table 2 we assess the capability of the
fine-tuning methods to generalise to mutations at unseen
positions in the test set sequences. That is, random splits
provide an estimate of performance on heldout data. How-
ever, similar mutations can occur in both train and test sets
(e.g. related amino acid substitutions at the same position),
meaning that measuring performance on predicting the ef-
fects of these mutations does not necessarily test a model’s
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Table 2. Single-mutant Spearman correlations for test set mutations
at seen vs unseen residue positions (n=128). Test set sequences
are assigned to the unseen set if they contain mutations at residue
positions at which none of the training set sequences have muta-
tions. ProteinNPT (referred to as PNPT) uses a frozen base model
provided in parentheses.

Model Scoring fn. Loss Seen Unseen

ESM-1v (650M) linear head mse 0.460 0.331
wt-marginals rank 0.592 0.509

ESM-2 (650M) linear head mse 0.453 0.297
wt-marginals rank 0.568 0.455

PoET linear head mse 0.571 0.517
likelihood rank 0.612 0.549

PNPT (MSAT) - mse 0.563 0.462
PNPT (ESM-1v) - mse 0.529 0.420

Table 3. Masked-marginal scoring strategies for ESM-2 (650M)
with ranking loss applied to the five multi-mutant landscapes.
“Steps” specifies the number of inference steps required per batch
of training sequences; B = batch size; M = number of mutations;
and K = masked-modulo constant. Full results in Appendix B.4.

Scoring function Steps n=32 n=128 n=512

wt-marginals 1 0.593 0.651 0.758
mt-marginals B 0.398 0.591 0.750
masked-marginals-a B 0.559 0.651 0.766
masked-marginals-b 2MB 0.492 0.607 0.744
masked-marginals-c MB 0.493 0.598 0.751
masked-modulo KB 0.534 0.661 0.774

Table 4. Ensemble PLM models (n = 32, 128) evaluated on five
multi-mutant landscapes from ProteinGym. PNPT with dropout
uses 25 Monte Carlo simulations. ESM-2 ensemble uses the wt-
marginal scoring strategy; PoET MSA-ensemble uses likelihood,
and both use a ranking loss function and 5 ensemble members.

PLM Model n = 32 n = 128

PNPT (MSAT) 0.517 0.692
PNPT (MSAT) with dropout 0.512 0.696
ESM-2 0.593 0.651
ESM-2 ensemble 0.621 0.683
PoET 0.667 0.736
PoET MSA ensemble 0.696 0.757

capacity for generalisation (Notin et al., 2023b). This issue
is somewhat mitigated in our setup by the choice of rela-
tively small training sets, and the emphasis on multi-mutant
datasets, where the degree of overlap between train and test
sets is typically lower.

We provide results here for the single mutant landscapes,
and a complete table of results for the multi-mutant land-

scape in Appendix B.3 Table 8). We report the performance
for mutations in the n = 128 test sets occurring at positions
at which no mutations were present in the training set se-
quences. While there is a clear and expected drop in perfor-
mance at these unseen positions, ranking-based fine-tuning
directly on the likelihoods for all models demonstrates the
best out-of-distribution behaviour at unseen positions.

Result 4: Masked scoring strategies to capture epistasis
effects In Table 3 we empirically compare masked PLM
scoring strategies on the five multi-mutant ProteinGym land-
scapes (the full results are provided in Appendix B.4 Ta-
ble 9). These more expressive strategies proposed in Meier
et al. (2021) and Johnson et al. (2024) utilise additional for-
ward inference steps per sequence in order to better capture
the effects of multiple mutated residues, known as epistasis,
i.e. where the combined effect of mutations at different
residues may not simply be the additive result of their indi-
vidual effects as assumed by the wt-marginal strategy.

For the first time, we can demonstrate that whilst not all
additional compute improves over the highly efficient wt-
marginal strategy, the “modulo” masking strategy (Johnson
et al., 2024) outperforms all others with n = 128 or 512,
but requires K.B times more forward passes, where K = 4
or 8 depending on landscape (specified in Appendix B.4).

6. Experiment: Multi-round sequence design
6.1. Experiment details

We next ask whether the improvements in fitness prediction
translate to benefits in a multi-round sequence design. To do
so, we follow the evaluation protocol introduced by Notin
et al. (2023b), with minor modifications. Sequence design
is formulated as a pool-based optimisation task over the se-
quences in an empirical fitness landscape. For a given land-
scape, the goal is to retrieve as many high-scoring sequences
as possible over the course of 10 optimisation rounds (re-
call). In each round, the model’s predictions are used to
guide the acquisition of a batch of 100 sequences from a
pool of candidate sequences. The pool of candidate se-
quences is either the complete landscape, or, in the case of
the multiple mutant landscapes, a randomly selected sub-
set of 5000 sequences. Before the first round, models are
fine-tuned on 100 sequences randomly sampled from the
landscape. All experiments are run on three random seeds.

We follow Notin et al. (2023b) in using ensembling strate-
gies to derive uncertainty estimates which can be used to
guide the selection of candidates from the pool within the
framework of Bayesian optimisation (BO). We make use
of the upper confidence bound (UCB) acquisition function.
We note that our use of a ranking loss means that our en-
semble surrogates are preferential surrogates and, as such,
alternative (preferential) acquisition strategies from the field

7
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Figure 1. Recall results for multi-round pool-based optimisation task. PoET MSA-ensemble and ESM-2 ensemble both likelihood
ranking-based fine-tuned, along with their greedy single model counterparts (as dashed lines) for 8 single mutant landscapes (left) and 5
multiple mutant landscapes (right). Additional plots are provided in Appendix Figure 2 (masked-ensembles), Figure 3 (PoET ensembles),
and Figure 4 (ProteinNPT baselines). AUC refers to the area under the curve (higher is better).

of preferential BO (González et al., 2017) might better ex-
ploit the model’s pairwise classification uncertainty. At each
round, we rank all remaining sequences in the pool by their
acquisition values, and select the top 100 to add to the train-
ing set. For ProteinNPT we use Monte Carlo dropout (Gal
& Ghahramani, 2016) to produce uncertainty estimates.

6.2. Results

Result 1: Masked and family-based PLM-ensembles In
Table 4 we compare the fitness prediction performance of
the ensemble models introduced in Section 4.4 to their single
PLM model counterpart, averaged over the five multi-mutant
landscapes. Specifically, unlike ProteinNPT (referred to as
PNPT in the table), we see that the additional context pro-
vided by the evolutionary MSA in the PoET ensemble and
the masked-ensemble ESM-2 model improves the low-n fine
tuning performance. Full results for each scoring strategy
and loss functions are provided in Appendix B.7 Table 12.

Result 2: Sequence design guided by PLM-ensembles
In Figure 1 we present pool-based optimisation results (re-
call curves) guided by our ensemble models for PoET (or-
ange) and ESM-2 (green) compared to the ProteinNPT
(MSAT) baseline (blue). Results are averaged over 8 single
mutation landscapes (left) and 5 multiple mutant landscapes
(right). Additional baseline design curves are provided in
Appendix B.8.3, and a table of all method’s AUC top 30%
recall and top 100 recall is provided in Appendix Table 13.

Across both sets of landscapes, the PoET ranking-based
MSA-ensemble outperforms all other methods. In gen-
eral, the recall design curves show similar trends to the
supervised results. Ranking-based fine-tuning outperforms
regression-based fine-tuning, and leveraging our novel en-
semble strategies leads to the best overall design perfor-
mance. However, the single PLM models with greedy ac-

quisition strategy also provide a strong baseline.

While recall of high-fitness sequences saturates for the sin-
gle mutant landscapes, it improves steadily for the multiple
mutant landscapes, since the starting pools are larger, and
it is not possible to reach perfect recall within the fixed
budget of acquisitions. Design curves for each individual
landscape are provided in Appendix B.8.4 (singles) and
Appendix B.8.5 (multiples). The relative ordering of the
methods is reasonably stable across individual landscapes,
although there are some cases where the non-PLM base-
lines perform comparably to the best-performing methods,
suggesting these landscapes may contain noisy or otherwise
difficult-to-predict fitness labels (Notin et al., 2023b).

7. Conclusion
The ability of language models to learn distributional con-
straints governing natural protein sequences makes them
powerful zero-shot predictors of the effects of mutations on
protein function. We demonstrate that these learned distribu-
tions can be rapidly adapted via likelihood-based fine-tuning
from as few as 32 experimental measurements - of the order
of a typical low batch size in biological experiments. In
this paper, we extend existing ranking-based scoring func-
tions to the masked- and autoregressive family-based PLM
settings via explicitly conditioning on evolutionary infor-
mation. We surpass the leading baseline approaches, and
as such, provide strong empirical evidence that practition-
ers should make use of ranking-based losses regardless of
PLM choice, especially in low-data regimes. Further, we go
beyond existing literature, providing in-depth analysis on
out-of-distribution and epistasis effects for multiple mutant
landscapes. Finally, we demonstrate ensembling strategies
that are compatible with likelihood fine-tuning, demonstrat-
ing their effectiveness in multi-round sequence design tasks.
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Haunsberger, S. J., and Söding, J. HH-suite3 for fast
remote homology detection and deep protein annotation.
BMC Bioinformatics, 20(1):473, 2019. URL https:
//doi.org/10.1186/s12859-019-3019-7.

Surana, S., Grinsztajn, N., Atkinson, T., Duckworth, P., and
Barrett, T. D. Overconfident oracles: Limitations of in
silico sequence design benchmarking. In ICML 2024 AI
for Science Workshop, 2024.

Truong Jr, T. F. and Bepler, T. PoET: A generative model
of protein families as sequences-of-sequences. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=1CJ8D7P8RZ.

Tsuboyama, K., Dauparas, J., Chen, J., Laine, E.,
Mohseni Behbahani, Y., Weinstein, J. J., Mangan,
N. M., Ovchinnikov, S., and Rocklin, G. J. Mega-
scale experimental analysis of protein folding stabil-
ity in biology and design. Nature, 620(7973):434–
444, 2023. URL https://www.nature.com/
articles/s41586-023-06328-6.

Zhao, J., Zhang, C., and Luo, Y. Contrastive Fit-
ness Learning: Reprogramming Protein Language Mod-
els for Low-N Learning of Protein Fitness Landscape.
bioRxiv, 2024. URL https://www.biorxiv.org/
content/10.1101/2024.02.11.579859v1.

11

https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
http://arxiv.org/abs/2204.01168
http://arxiv.org/abs/2204.01168
https://proceedings.mlr.press/v139/rao21a.html
https://proceedings.mlr.press/v139/rao21a.html
https://www.nature.com/articles/s41592-018-0138-4
https://www.nature.com/articles/s41592-018-0138-4
https://www.pnas.org/doi/10.1073/pnas.2016239118
https://www.pnas.org/doi/10.1073/pnas.2016239118
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568797/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568797/
https://www.nature.com/articles/nature17995
https://www.nature.com/articles/nature17995
https://proceedings.mlr.press/v162/stanton22a.html
https://proceedings.mlr.press/v162/stanton22a.html
https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1186/s12859-019-3019-7
https://openreview.net/forum?id=1CJ8D7P8RZ
https://openreview.net/forum?id=1CJ8D7P8RZ
https://www.nature.com/articles/s41586-023-06328-6
https://www.nature.com/articles/s41586-023-06328-6
https://www.biorxiv.org/content/10.1101/2024.02.11.579859v1
https://www.biorxiv.org/content/10.1101/2024.02.11.579859v1


605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Likelihood-based finetuning of protein language models for few-shot fitness prediction and design

A. Appendix
A.1. Fitness landscapes from ProteinGym

We use the set of 8 single-mutant landscapes selected for ablations and hyperparameter selection by (Notin et al., 2023b).
The names of these landscapes in ProteinGym are:

• BLAT ECOLX Jacquier 2013
• CALM1 HUMAN Weile 2017
• DYR ECOLI Thompson 2019
• DLG4 RAT McLaughlin 2012
• REV HV1H2 Fernandes 2016
• TAT HV1BR Fernandes 2016
• RL40A YEAST Roscoe 2013
• P53 HUMAN Giacomelli WT Nutlin

We additionally select a set of 5 of the most diverse multi-mutant landscapes in ProteinGym. To select these landscapes, we
identified the landscapes with the largest number of mutations in ProteinGym, and discarded redundant landscapes (for
example the GFP landscapes of (Gonzalez Somermeyer et al., 2022) are landscapes of close homologues of the GFP protein
whose landscape was reported by (Sarkisyan et al., 2016). We therefore include only the latter.

The selected multi-mutant landscapes are:

• PABP YEAST Melamed 2013
• CAPSD AAV2S Sinai 2021
• GFP AEQVI Sarkisyan 2016
• GRB2 HUMAN Faure 2021
• HIS7 YEAST Pokusaeva 2019

Table 5. Additional details of the 8 single mutation, and 8 multiple mutation landscapes we use from ProteinGym. wt-length is the number
residues in the wild-type protein. Mutations refers to whether the landscape contains single mutant sequences, or the range of the number
of mutations present in the landscape. Fitness score distribution is provided as mean and std.

Landscape Name wt length Mutations Num of seqs Fitness Score Distr.
BLAT ECOLX Jacquier 2013 286 Single 989 −1.558± 1.952
CALM1 HUMAN Weile 2017 149 Single 1813 0.742± 0.365
DLG4 RAT McLaughlin 2012 724 Single 1,576 −0.172± 0.406
DYR ECOLI Thompson 2019 159 Single 2,363 −0.391± 0.742
P53 HUMAN Giacomelli 2018 WT Nutlin 393 Single 7,467 −0.020± 1.035
REV HV1H2 Fernandes 2016 116 Single 2,147 −0.121± 0.218
RL40A YEAST Roscoe 2013 128 Single 1,195 −0.265± 0.345
TAT HV1BR Fernandes 2016 86 Single 1,577 −0.116± 0.197
CAPSD AAV2S Sinai 2021 735 Multiple (1-28) 42,328 −1.226± 3.045
GFP AEQVI Sarkisyan 2016 238 Multiple (1-15) 51,714 2.658± 1.059
GRB2 HUMAN Faure 2021 217 Multiple (1-2) 63,366 −0.793± 0.467
HIS7 YEAST Pokusaeva 2019 220 Multiple (1-28) 496,137 0.619± 0.449
PABP YEAST Melamed 2013 577 Multiple (1-2) 37,708 0.524± 0.391

A.2. Hyperparameter details

Hyperparameters for the fine-tuning methods were selected based on performance on the single mutant set, consistent with
the practice used to select hyperparameters for the baselines from ProteinNPT. We report metrics obtained when using these
hyperparameters on both single-mutant and multiple-mutant landscapes for each method.
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ESM-1v, ESM-2 and PoET models were fine-tuned using the Adam optimizer (Kingma & Ba, 2015) using gradient
accumulation with an effective batch size of 32. Learning rates for regression-based and ranking-based fine-tuning were
selected separately in each case after after a sweep over the values 1e− 4, 3e− 5, 1e− 5 on the 8 single mutant landscapes.
For ESM models, we computed the loss by scoring all sequences using the wt-marginal strategy. In the fitness prediction
experiments, the models were trained for 50 epochs. During training on each landscape the Spearman correlation, computed
on a separate validation set of 128 sequences from the landscape, was used to determine the epoch whose checkpoint should
be used to produce predictions on the test set.

A.2.1. REGRESSION HEADS

Linear regression heads were added to embeddings extracted from ESM-1v, ESM-2 and PoET. In the former case, we
averaged embeddings across the sequence dimension before inputting them to the regression head, in the latter case we used
final token embeddings.

A.2.2. ENSEMBLES

Contextual ensemble models of size 5 were used for both ESM-2 and PoET. During design, the ensemble members were
trained for 20 epochs each round. In each round all ensemble members were reinitialised from the pretrained model and
retrained on the latest training dataset.

A.3. Decoder-only fine-tuning of PoET

PoET parameterises a sequence of conditional distributions over the amino acids in a set of protein sequences in the same
family. The model represents the joint likelihood of a set of sequences M = {m(1), ...,m(N)}, via an autoregressive
factorisation over sequences and over positions within each sequence:

p(M) =
∏
i

p(m(i)|m(<i)) =
∏
ij

p(m
(i)
j |m(i)

<j ,m
(<i)) . (9)

To parameterise this distribution, PoET uses a causally masked Transformer architecture, which maps from previous amino
acids to logits for the current amino acid. Conceptually, this function can be decomposed into two stages: first the entire
history of previous sequences m<i is encoded into a sequence of embeddings H<i ∈ RL<i×D×E , where D is the number
of layers and E is the embedding dimension, via a stack of causally masked layers:

H<i = fθ(m
(<i)) . (10)

The current sequence mi is then decoded by a function which maps these prior sequence embeddings and previous amino
acids in the current sequence to logits for each position j:

logitij = gθ(m
(i)
<j , H<i) . (11)

To fine-tune PoET from fitness data, we propose to fine-tune only the weights of the function g, representing the ‘decoding’
of the current sequence given its context. To achieve this, we first clone the PoET weights, producing a set of ‘encoder’
weights ϕ and a set of ‘decoder’ weights θ. We use the frozen encoder weights to produce an embedding H ∈ RLM×D×E

of the input MSA sequences: H = fϕ({m(1), ...,m(N)}), where LM is the total length of all sequences in the input MSA.
We then fine-tune the weights θ of the cloned ‘decoder’ to minimise the cross-entropy loss of Equation 2 on the labelled
data. Concretely, the scoring function used to parameterise the Bradley-Terry model becomes:

sθ(x,M) ≡ sθ(x,H) =
∑
i

logpθ(xi|x<i, H) (12)

To maximise computational efficiency, the MSA embeddings H are pre-computed before the start of the fine-tuning process,
and remain frozen throughout.
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A.4. ESM-2 ensembling strategy

To fine-tune an ensemble of models given a single ESM-2 checkpoint, we randomly sampled a set of 5 masks. Within each
mask, each sequence position had a 15% probability of being masked. We fine-tuned one model for each mask, by using the
correspondingly masked wild-type sequence x̃wt

k as input to the model, instead of the unmasked wild-type sequence. The
ensembled scoring function used to generate predictions is:

s(x, xwt) =
1

K

∑
k

s(x, x̃wt
k ) (13)

A.5. PoET MSA subsampling

For PoET, in both single-model and ensemble configurations, we sampled context sequences from the same filtered MSAs
used to extract MSA Transformer embeddings for ProteinNPT. These MSAs are generated from the full MSAs provided
with ProteinGym by running hhfilter (Steinegger et al., 2019), requiring a minimum coverage of 75% and a maximum
sequence identity of 90%. Subsequently, we use weighted sampling as described in Truong Jr & Bepler (2023) to select
sequences to pass as context to PoET, up to a maximum context length of 8192 tokens. The MSA is encoded using a frozen
copy of the PoET model into a set of cached hidden representations, as described in Appendix A.3. When ensembling, a
separate MSA is sampled for each ensemble member, and held fixed during the fine-tuning of that ensemble member.

A.6. Baseline models

ProteinNPT, the embeddings augmented (Emb. aug.) baselines, and the one-hot encoding augmented (OHE aug.) baselines
were all run using the code released by Notin et al. (2023b). The one-hot and embedding augmented models both use
the strategy from Hsu et al. (2022a), combining the zero-shot predictions from a pretrained model with sequence features
in a regression framework. They differ in the way sequence features are extracted: in the former case, ridge regression
is performed directly on the one-hot encoded sequences. In the latter case, PLM embeddings are used to featurise the
sequences. We refer to Notin et al. (2023b) for further details.

For the fitness prediction experiments, separate ProteinNPT models were trained for 2000 and 10000 steps, and the results
of the best-performing model were reported. The other baselines appeared to benefit more from longer training and were
trained for 10000 steps, as in Notin et al. (2023b). For design experiments, we used the Monte Carlo dropout uncertainty
quantification strategy proposed by Notin et al. (2023b) for both ProteinNPT and other baselines. Notin et al. (2023b) report
best results with a ‘hybrid’ uncertainty quantification strategy, however this strategy is not implemented in the publicly
available code.

A.7. Upper confidence bound acquisition function

For all ensembles, we use a parameter of λ = 0.1 within the upper confidence bound acquisition function a(x, λ) =
µ(x) + λσ(x), where µ(x) and σ(x) respectively are the mean and standard deviation of the predictions of the model given
an input sequence x.
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A.8. Implementation of ranking loss

We implement a pairwise ranking loss by using binary cross-entropy to train the model on ranking tasks by comparing
predicted scores for all pairs in a batch. It computes the difference in predictions for every pair, determines the ground-truth
ranking based on actual values, and applies BCE loss to these pairwise comparisons, excluding self-comparisons via a
diagonal mask. An example PyTorch implementation can be found below:

import torch
import torch.nn.functional as F

def full_ranking_bce(preds: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
# Calculate pairwise differences between all predictions
pairwise_diffs = preds[:, None] - preds[None, :]

# Determine if each target is greater than others in a pairwise manner
target_comparisons = targets[:, None] > targets[None, :]

# Compute binary cross-entropy loss for pairwise comparisons
ranking_loss = F.binary_cross_entropy_with_logits(pairwise_diffs, target_comparisons.

float(), reduction=’none’)

# Create a mask to exclude diagonal elements (self-comparisons)
batch_size = preds.size(0)
diag_mask = 1 - torch.eye(batch_size, device=preds.device)

# Apply the mask and calculate the mean loss, excluding the diagonal
masked_loss = 0.5 * ranking_loss * diag_mask
return masked_loss.mean((-1, -2))
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B. Appendix: Additional Results
B.1. Fitness Prediction: Score function and Loss Ablation

A core contribution of our work is the application of ranking-based loss function to directly fine-tune the likelihoods of
masked (ESM-1v and ESM-2) and conditional autoregressive (PoET) PLM models. As an additional ablation study, we
apply i) the ranking loss function in Equation (2) to the setting where a linear regression head is applied to the model
embeddings, and ii) an MSE loss function is applied to the likelihood scoring functions. Below is the full table of results for
each of the four settings.

Whilst we notice that the ranking loss function applied to the regression setting performs quite well, the MSE loss directly
applied to the likelihood scoring functions does not.

Table 6. Low-n fitness prediction comparing masked and family-based PLM scoring strategies and loss functions on the Spearman
correlation (higher is better). Evaluated on 8 single mutant landscapes and 5 multiple mutant landscapes from ProteinGym. ProteinNPT
models use a frozen base model to produce embeddings, the base model type is provided in parentheses.

single-mutants multi-mutants

Model Name Scoring function Loss n = 32 n = 128 n = 512 n = 32 n = 128 n = 512

ESM-1v (650M) wt-marginals mse 0.301 0.282 0.495 0.446 0.414 0.544
ranking 0.479 0.552 0.641 0.577 0.642 0.753

linear head mse 0.263 0.415 0.535 0.494 0.637 0.771
ranking 0.326 0.437 0.590 0.474 0.645 0.777

ESM-2 (650M) wt-marginals mse 0.330 0.267 0.475 0.461 0.407 0.522
ranking 0.455 0.530 0.627 0.593 0.651 0.758

linear head mse 0.280 0.398 0.535 0.427 0.596 0.743
ranking 0.307 0.411 0.563 0.447 0.648 0.773

PoET likelihood mse 0.409 0.378 0.230 0.601 0.583 0.433
ranking 0.513 0.591 0.672 0.667 0.737 0.806

linear head mse 0.443 0.553 0.646 0.571 0.714 0.793
ranking 0.471 0.577 0.665 0.578 0.726 0.802

B.2. Fitness Prediction: ProteinNPT Baseline methods

Similarly, we ablate fine-tuning the ProteinNPT model, with both ESM-1v or MSAT frozen embeddings, using the MSE loss,
as proposed in (Notin et al., 2023b), and also with the ranking loss function in Equation (2). We see that the ranking loss
function improves the results across all the single mutant landscapes, but results are mixed for the multi-mutant landscapes.

Table 7. ProteinNPT baselines (Notin et al., 2023b) that utilize frozen embeddings. Spearman correlation (higher is better) on 8 single
mutant landscapes and 5 multiple mutant landscapes from ProteinGym.

single-mutants multi-mutants

Model Name Frozen Emb. Loss Type n = 32 n = 128 n = 512 n = 32 n = 128 n = 512

ProteinNPT MSAT mse 0.415 0.533 0.637 0.517 0.692 0.791
ranking 0.444 0.548 0.648 0.515 0.680 0.789

ESM-1v mse 0.410 0.497 0.607 0.438 0.645 0.769
ranking 0.442 0.527 0.619 0.435 0.648 0.780

Emb. aug. MSAT mse 0.424 0.507 0.553 0.581 0.696 0.764
ESM-1v mse 0.451 0.505 0.550 0.440 0.624 0.702

OHE aug. MSAT mse 0.429 0.467 0.496 0.616 0.684 0.763
ESM-1v mse 0.466 0.502 0.526 0.460 0.566 0.711

OHE – mse 0.144 0.314 0.488 0.268 0.473 0.664
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B.3. Additional Results: Generalisation of Seen vs Unseen residue positions

We provide Spearman correlation results for the n = 128 fitness prediction setting specifically looking at out-of-distribution
generalisation at unseen mutated residues. That is, for single mutant landscapes the number of seen mutant positions in
the training datasets (varies per landscape): min=60, max=114, mean=82.67, and the number of unseen mutant positions:
min=17, max=657, mean=172.46. For single-mutant landscapes, we classify test set sequences as seen (mutation present in
the train set) or unseen (mutation absent). For multi-mutant landscapes, a test set sequence is considered seen if it has up to
two mutations that occur in the train set sequences; otherwise, it is unseen. The number of seen sequences in the test set
of multi-mutant landscapes is on average 2,124 (equivalent to approximately 42% of sequences in the test set) and 2,875
unseen sequences. Note, the test set size varies per protein landscape, however, for multi-mutant landscapes we limit it to
5,000 sequences.

Table 8. Seen vs Unseen Spearman correlation scores (higher is better) evaluated on the 8 single mutant landscapes (left) and 5 multi-mutant
landscapes (right) for the n = 128 dataset setting.

single-mutants multi-mutants

Model Name Scoring Function Loss Type Seen Unseen Seen Unseen

ESM-1v (650M) linear head mse 0.460 0.331 0.646 0.604
ranking 0.492 0.315 0.651 0.609

wt-marginals mse 0.350 0.234 0.412 0.387
ranking 0.592 0.509 0.652 0.643

ESM-2 (650M) linear head mse 0.453 0.297 0.605 0.556
ranking 0.447 0.335 0.649 0.622

wt-marginals mse 0.329 0.192 0.423 0.385
ranking 0.568 0.455 0.658 0.620

PoET linear head mse 0.571 0.517 0.700 0.695
ranking 0.601 0.535 0.716 0.715

likelihood mse 0.382 0.366 0.576 0.613
ranking 0.612 0.549 0.728 0.741

ProteinNPT (MSAT) - mse 0.563 0.462 0.694 0.670
- ranking 0.579 0.474 0.675 0.664

ProteinNPT (ESM-1v) - mse 0.529 0.420 0.641 0.601
- ranking 0.553 0.465 0.642 0.607

B.4. Additional Results: More Expressive Masked Scoring Functions

In Table 9 we show the complete results for additional masked PLM scoring functions that attempt to capture the epistasis
effects in the multi-mutant landscapes. We provide results for ESM-1v and ESM-2 for the additional strategies applied to
five multi-mutant landscapes, as introduced in Meier et al. (2021) and Johnson et al. (2024).

Note, due to GPU memory requirement of the masked-modulo strategy, we reduce the hyperparameters relative to the length
of the protein sequence in order to fit on an H100 GPU. For example, batch size (B) and K for each landscape were set to
GRB: (B=8, K=8), GFP: (B=4, K=8), HIS: (B=8, K=8), PABP: (B=4, K=4) and CAP: (B=2, K=7).

For each strategy proposed in Meier et al. (2021), as an ablation, we modify them to consider the likelihood of every token in
the sequence when computing the score, rather than just the likelihood at the mutations (we denote these modified strategies
with ′). As a result, the summation in Equation (5) is modified from

∑
i:xwt

i ̸=xi
to

∑
i.
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Table 9. Masked PLM scoring strategies evaluated on five multi-mutant ProteinGym landscapes, where M is the number of mutations in a
sequence, B is the batch size, and K is the masked-modulo constant (set to 4 or 8 depending on landscape).

ESM-1v ESM-2

Scoring Function Steps Loss n = 32 n = 128 n = 512 n = 32 n = 128 n = 512

wt-marginals 1 mse 0.446 0.414 0.544 0.461 0.407 0.522
(Meier et al., 2021) ranking 0.577 0.642 0.753 0.593 0.651 0.758
masked-mt-marginals B mse 0.389 0.362 0.562 0.392 0.328 0.561
(Meier et al., 2021) ranking 0.522 0.650 0.755 0.559 0.651 0.766
masked-mt-marginals′ B mse 0.572 0.604 0.602 0.571 0.629 0.632

ranking 0.555 0.586 0.647 0.558 0.606 0.635
mt-marginals B mse 0.214 0.291 0.533 0.264 0.330 0.530
(Meier et al., 2021) ranking 0.351 0.578 0.754 0.398 0.591 0.750
mt-marginals′ B mse 0.579 0.617 0.622 0.565 0.612 0.627

ranking 0.552 0.644 0.767 0.525 0.646 0.771
masked-modulo K ·B mse 0.579 0.621 0.645 0.568 0.586 0.620
(Johnson et al., 2024) ranking 0.529 0.654 0.769 0.534 0.661 0.774

B.5. Compute requirements

All experiments were run on either A100 or H100 NVIDIA GPUs. Compute required for a single fine-tuning run varies
based on the model, the length of the protein sequences, and the size of the dataset. We provide representative timings
averaged over the 8 single mutant landscapes for n = 512 in Table 10. Design experiments involved 10 rounds of fine-tuning
and therefore required roughly ten times the computation of a single fine-tuning run.

Table 10. Representative run times for fine-tuning (n = 512) averaged over 8 single-mutant landscapes and across 3 seeds, on an H100
GPU.

Model name Time

ProteinNPT (MSAT) 24 m
ProteinNPT (ESM-1v) 34 m
ESM-1v (linear head, mse) 35 m
ESM-1v (wt-marginals, rank) 7 m
ESM-2 (linear head, mse) 15 m
ESM-2 (wt-marginals, rank) 4 m
PoET (linear head, mse) 7 m
PoET (likelihood, rank) 7 m

B.6. Zero-shot PLM performance

As discussed in Section 5.2 Result 2, the ranking-based fine-tuning performance of PoET is not attributed directly to higher
zero-shot performance of the base PLM. We evaluate the zero-shot performance of the base models here, on the single
mutant landscapes using the n = 128 test split and report the Spearman correlation between likelihood scoring function and
the fitness measurement. The MSAT zero-shot predictions are taken from Notin et al. (2023a) for our test splits.

Table 11. Zero-shot Spearman correlation on the n = 128 test splits for the base PLM models.
Base Model Zero-shot Spearman

MSA Transformer (MSAT) 0.399
ESM-1v (wt-marginals, rank) 0.437
ESM-2 (wt-marginals, rank) 0.372
PoET (likelihood, rank) 0.417
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B.7. Low-n Fitness Prediction with Ensemble Models

Table 12. Low-n fitness prediction Spearman results comparing the masked- and family-based MSA-ensemble models to their single
model counterparts. Averaged over three seeds and 8 single mutant landscapes (left) and five multi-mutant landscapes (right).

Single-mutants Multi-mutant

Model Name Scoring Fn. Loss n = 32 n = 128 n = 32 n = 128

PNPT (MSAT) - mse 0.420 0.532 0.511 0.696
PNPT (MSAT) w/ dropout - mse 0.421 0.532 0.512 0.696
ESM-2 wt-marginal ranking 0.455 0.530 0.593 0.651

mse 0.330 0.267 0.461 0.407
linear head ranking 0.307 0.411 0.447 0.648

mse 0.280 0.398 0.427 0.596
ESM-2 ensemble wt-marginal ranking 0.477 0.553 0.621 0.683

mse 0.347 0.335 0.507 0.440
linear head ranking 0.357 0.435 0.511 0.694

mse 0.342 0.428 0.505 0.658
PoET likelihood ranking 0.514 0.594 0.667 0.736

mse 0.409 0.378 0.601 0.583
linear head ranking 0.468 0.575 0.574 0.723

mse 0.445 0.554 0.582 0.715
PoET MSA-ensemble likelihood ranking 0.524 0.607 0.696 0.757

mse 0.412 0.390 0.623 0.609
linear head ranking 0.504 0.598 0.618 0.744

mse 0.486 0.591 0.632 0.736
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B.8. Additional sequence design recall curves

B.8.1. ESM-2 MASKED-ENSEMBLES

ESM-2 masked-ensembles comparing the wt-marginal scoring strategy fine-tuning via ranking loss to the linear regression
head fine-tuned with MSE loss. AUC = area under the curve (higher is better). Each ensemble contains 5 members, with
more details specified in Appendix A.4. Evaluated on 8 single mutant landscapes (left) and 5 multiple mutant landscapes
(right).

Figure 2. ESM-2 (650) masked-ensembles (left): single mutation landscapes. (right) multiple mutation landscapes.

B.8.2. FAMILY-BASED PLMS

PoET MSA-ensemble comparing the likelihood fine-tuning via ranking loss to the linear regression head fine-tuned with
MSE loss. AUC = area under the curve (higher is better). Each ensemble contains 5 members, with more details specified in
Appendix A.5. Evaluated on 8 single mutant landscapes (left) and 5 multiple mutant landscapes (right).

Figure 3. PoET MSA-ensembles (left): single mutants landscapes. (right) multiple mutant landscapes.
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B.8.3. PROTEINNPT BASELINES

ProteinNPT baseline methods taken from (Notin et al., 2023b). AUC = area under the curve (higher is better). Uncertainty is
calculated using MC dropout, with more details specified in Appendix A.6. Evaluated on 8 single mutant landscapes (left)
and 5 multiple mutant landscapes (right).

Figure 4. ProteinNPT baselines (left): single mutation landscapes. (right) multiple mutation landscapes.

B.8.4. SINGLE MUTANT LANDSCAPE RESULTS

Each method is evaluated on each of the 8 single mutation landscapes and each of the 5 multiple mutation landscape,
repeated across 3 random seeds.
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a. BLAT ECOLX Jacquier 2013

b. CALM1 HUMAN Weile 2017

c. DLG4 RAT McLaughlin 2012

d. DYR ECOLI Thompson 2019

Figure 5. Sequence design top 100 sequences recall results on each of the single mutation landscapes. Masked PLM ESM-2 and ESM-2
masked-ensembles (left), Family-based PoET and PoET MSA-ensemble (right).
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e. P53 HUMAN Giacomelli 2018 WT Nutlin

f. RL40A YEAST Roscoe 2013

g. REV HV1H2 Fernandes 2016

h. TAT HV1BR Fernandes 2016

Figure 6. Sequence design top 100 sequences recall results on each of the single mutation landscapes. Masked PLM ESM-2 and ESM-2
masked-ensembles (left), Family-based PoET and PoET MSA-ensemble (right).
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B.8.5. MULTIPLE MUTANT LANDSCAPE RESULTS

a. CAPSD AAV2S Sinai 2021

b. GFP AEQVI Sarkisyan 2016

c. GRB2 HUMAN Faure 2021

Figure 7. Sequence design top 100 sequences recall results on each of the multiple mutation landscapes. Masked PLM ESM-2 and ESM-2
masked-ensembles (left), Family-based PoET and PoET MSA-ensemble (right).
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d. HIS7 YEAST Pokusaeva 2019

e. PABP YEAST Melamed 2013

Figure 8. Sequence design top 100 sequences recall results on each of the single mutation landscapes. Masked PLM ESM-2 and ESM-2
masked-ensembles (left), Family-based PoET and PoET MSA-ensemble (right).
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Table 13. Sequence design full table of AUC results, across models, scoring functions, loss functions, ensembles, and baseline methods.
AUC = area under the curve (higher is beter) presented for both Top 30% recall (as per Notin et al. (2023b), and recall over the Top 100
sequences in the pool. Averaged over 8 single mutant landscapes (left) and 5 multiple mutant landscapes (right).

Single-mutants Multi-mutant

Model Name Scoring Fn. Loss Top 100 Recall Top 30% Recall Top 100 Recall Top 30% Recall

ESM-2 (650M) linear head mse 2.145 2.961 4.402 4.354
ranking 2.372 3.505 4.614 4.873

wt-marginals mse 2.005 2.786 4.455 4.521
ranking 2.579 3.845 5.031 5.296

ESM-2 (650M) ensemble linear head mse 2.309 3.339 4.595 4.569
wt-marginals ranking 2.590 3.907 5.125 5.252

PoET linear head mse 2.683 4.271 4.967 5.041
ranking 2.732 4.330 5.209 5.532

likelihood mse 1.769 1.728 3.881 3.802
ranking 2.764 4.289 5.212 5.524

PoET ensemble linear head mse 2.776 4.312 5.057 5.049
ranking 2.775 4.408 5.260 5.552

likelihood mse 1.767 1.726 3.741 3.765
ranking 2.797 4.418 5.266 5.612

PNPT (MSA) w/ dropout - mse 2.604 4.121 5.099 5.567
Emb. aug. (ESM-1v) - mse 2.617 3.603 4.947 5.076
OHE - mse 2.326 3.098 4.421 4.211
OHE aug. (MSA) - mse 2.680 3.734 4.724 4.641
OHE aug. (ESM-1v) - mse 2.463 3.311 4.772 4.644
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