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ABSTRACT

Unsupervised contrastive learning for indoor-scene point clouds has achieved
great successes. However, unsupervised representation learning on outdoor-scene
point clouds remains challenging because previous methods need to reconstruct
the whole scene and capture partial views for the contrastive objective. This is
infeasible in outdoor scenes with moving objects, obstacles, and sensors. In this
paper, we propose CO3, namely Cooperative Contrastive Learning and Contextual
Shape Prediction, to learn 3D representation for outdoor-scene point clouds in an
unsupervised manner. CO3 has several merits compared to existing methods. (1)
It utilizes LiDAR point clouds from vehicle-side and infrastructure-side to build
views that differ enough but meanwhile maintain common semantic information
for contrastive learning, which are more appropriate than views built by previous
methods. (2) Alongside the contrastive objective, we propose contextual shape
prediction to bring more task-relevant information for unsupervised 3D point cloud
representation learning and we also provide a theoretical analysis for this pre-
training goal. (3) As compared to previous methods, representation learned by CO3
is able to be transferred to different outdoor scene datasets collected by different
type of LiDAR sensors. (4) CO3 improves current state-of-the-art methods on both
Once, KITTI and NuScenes datasets by up to 2.58 mAP in 3D object detection task
and 3.54 mIoU in LiDAR semantic segmentation task. Codes and models will be
released here. We believe CO3 will facilitate understanding LiDAR point clouds in
outdoor scene.

1 INTRODUCTION

LiDAR is an important sensor for autonomous driving in outdoor environments and both of the
machine learning and computer vision communities have shown strong interest on perception tasks on
LiDAR point clouds, including 3D object detection, segmentation and tracking. Up to now, randomly
initializing and directly training from scratch on detailed annotated data still dominates this field.
On the contrary, recent research efforts (He et al., 2020; Tian et al., 2019; Caron et al., 2020; Grill
et al., 2020; Wang et al., 2021) in image domain focus on unsupervised representation learning with
contrastive objective on different views built from different augmentation of images. They pre-train
the 2D backbone with a large-scale dataset like ImageNet (Deng et al., 2009) in an unsupervised
manner and use the pre-trained backbone to initialize downstream neural networks on different
datasets and tasks, which achieve significant performance improvement in 2D object detection and
semantic segmentation (Girshick et al., 2014; Lin et al., 2017; Ren et al., 2015). Inspired by these
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Figure 1: Example views built by different methods in contrastive learning, including (a) previous indoor-scene
methods (b) previous outdoor-scene methods and (c) the proposed CO3. Compared to previous methods, CO3
can build two views that differ a lot and share adequate common semantics.

successes, we explore unsupervised representation learning for outdoor scene point clouds to learn
general representations for different architectures on various downstream datasets and tasks.

In the past decade, learning 3D representation from unlabelled data has achieved great success in
indoor-scene point clouds. PointContrast (Xie et al., 2020) is the pioneering work and proposes to
reconstruct the whole indoor scenes, collect partial point clouds from two different poses and utilize
them as two views in contrastive learning to learn dense (point-level or voxel-level) representation.
More recent works such as (Hou et al., 2021) and (Liu et al., 2020) also need the reconstruction
and this naturally assumes that the environment is static. Fig. 1 (a) shows an example of views in
PointContrast (Xie et al., 2020). We can see that the views differ a lot because they are captured from
different poses but meanwhile, they still contain enough common semantic information such as the
same sofa and table. These are demonstrated important properties of views in contrastive learning
in (Tian et al., 2020).

However, outdoor scenes are dynamic and large-scale, making it impossible to reconstruct the whole
scenes for building views. Thus, methods in (Xie et al., 2020; Hou et al., 2021; Liu et al., 2020)
cannot be directly transferred but there exists two possible alternatives to build views. The first
idea, embraced by (Liang et al., 2021; Yin et al., 2022), is to apply data augmentation to single
frame of point cloud and treat the original and augmented versions as different views, which are
indicated by the first and second pictures in Fig. 1 (b). However, all the augmentation of point clouds,
including random drop, rotation and scaling, can be implemented in a linear transformation and views
constructed in this way do not differ enough. The second idea is to consider point clouds at different
timestamps as different views, represented by (Huang et al., 2021). Yet the moving objects would
make it hard to find correct correspondence for contrastive learning. See the first and third pictures in
Fig. 1 (b), while the autonomous vehicle is waiting at the crossing, other cars and pedestrians are
moving around. The autonomous vehicle has no idea about how they move and is not able to find
correct correspondence (common semantics). Due to these limitations, it is still challenging when
transferring the pre-trained 3D encoders to datasets collected by different LiDAR sensors. Could we
find better views to learn general representations for outdoor-scene LiDAR point clouds?

In this paper, we propose COoperative COntrastive Learning and COntextual Shape Prediction,
namely CO3, to explore the potential of utilizing vehicle-infrastructure cooperation dataset for build-
ing adequate views in unsupervised 3D representation learning. As shown in (c) in Fig. 1, a recently
released infrastructure-vehicle-cooperation dataset called DAIR-V2X (Yu et al., 2022) is utilized to
learn general 3D representations. Point clouds from both vehicle and infrastructure sides are captured
at the same timestamp thus views share adequate common semantic. Meanwhile infrastructure-side
and vehicle-side point clouds differ a lot. These properties make views constructed in this way appro-
priate in contrastive learning. Besides, as proposed in (Wang et al., 2022), representations learned
by pure contrastive learning lack task-relevant information. Thus we further add a pre-training goal
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Figure 2: (a) shows the unsupervised 3D representation learning pipeline. (b) presents the performance changes
after pre-training with different methods. Our CO3 achieves consistent improvement.

called contextual shape prediction to reconstruct local point distribution, encouraging our proposed
CO3 to capture more task-relevant information.

Our contributions can be summarized as follows. (1) CO3 is proposed to utilize the vehicle-
infrastructure-cooperation dataset to build adequate views for unsupervised contrastive 3D rep-
resentation learning on outdoor-scene point clouds. (2) A shape-context prediction task is proposed
alongside to inject task-relevant information, which is beneficial for downstream 3D detection and
LiDAR semantic segmentation tasks. (3) The learned 3D representations is generic enough to be well
transferred to datasets collected by different LiDAR sensors. (4) Extensive experiments demonstrate
the effectiveness of CO3. For example, on 3D object detection task, CO3 improves Second, Center-
Points on Once dataset by 1.07 and 2.58 mAPs respectively. As for LiDAR semantic segmentation
task, CO3 improves Cylinder3D on NuScenes dataset by 3.54 mIoUs.

2 RELATED WORKS

3D Perception Tasks. 3D object detection aims to predict 3D boundary boxes for different objects in
the LiDAR point clouds. Current 3D detectors can be divided into three main streams due to the 3D
backbones they use: (1) point-based methods (Shi et al., 2019; Chen et al., 2017; Yang et al., 2018) use
point-based 3D backbone. (2) voxel-based methods (Zhou & Tuzel, 2018; Lang et al., 2019; Su et al.,
2015; Shi et al., 2020b; Yin et al., 2021; Fan et al., 2021) generally transform point cloud into voxel
grids and process them using 3D volumetric convolutions. (3) point-voxel-combined methods (Shi
et al., 2020a; 2021; Deng et al., 2021) utilize features from both (1) and (2). LiDAR Semantic
Segmentation aims to predict per-point label for LiDAR point clouds. Cylinder3D (Zhu et al., 2021)
and PVKD (Hou et al., 2022) are current SOTA methods for LiDAR Semantic Segmentation.

Unsupervised 3D Representation Learning. As shown in (a) of Fig. 2, unsupervised 3D representa-
tion learning aims to pre-train only for one time and downstream to different architectures on various
datasets and tasks to achieve performance gain. PointContrast (Xie et al., 2020) is the pioneering work
for unsupervised contrastive learning on indoor-scene point clouds, which relies on the reconstructed
point clouds for constructing adequate views. To extend their ideas to outdoor-scene point clouds,
GCC-3D and ProposalContrast (Liang et al., 2021; Yin et al., 2022) augment single frame of point
cloud to build views and STRL (Huang et al., 2021) utilizes point clouds at different timestamps as
views for contrastive learning. Alongside contrastive learning, authors in (Hu et al., 2021) propose to
use safe space prediction as a pretext task for self-supervised representation learning. However, as
discussed in Sec. 1, previous works fail to build suitable views and their learned representations are
unable to transfer to datasets collected by different LiDAR sensors. In this paper, we propose to use
point clouds from vehicle and infrastructure to construct views in contrastive learning and also extend
the idea of shape context to introduce task-relevant information with a local-distribution prediction
goal. The performance change after initialized with different methods are shown in (b) of Fig. 2.
CO3 generally improve the performance and achieve more performance gains than other pre-training
methods for different detectors on different datasets.

3 METHODS

In this section, we introduce the proposed CO3 for unsupervised representation learning on LiDAR
point clouds in outdoor scenes. As detailed in Fig. 3, CO3 has two pre-training objectives: (a) a
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Figure 3: The pipeline of CO3. With vehicle-side and fusion point clouds as inputs, we first process them with
the 3D backbone and propose two pre-training objectives: (a) Cooperative Contrastive Loss (b) Contextual
Shape Prediction Loss

cooperative contrastive learning goal on dense (point-level or voxel-level) representations between
vehicle-side and fusion point clouds, which provides adequate views for contrastive learning. (b)
a contextual shape prediction loss to bring in more task-relevant information. To start with, we
discuss the problem formulation and overall pipeline in Sec. 3.1. Then we respectively introduce the
cooperative contrastive objective and contextual shape prediction goal in Sec. 3.2 and Sec. 3.3.

3.1 PROBLEM FORMULATION AND PIPELINE

Notation. To begin with, we denote LiDAR point clouds P ∈ RN×(3+d) as the concatenation of
the xyz-coordinate C ∈ RN×3 and the point features F ∈ RN×d, which leads to P = [C,F]. Here
N denotes the number of points (or voxels) and d is the number of point feature channels. For raw
LiDAR point clouds, d = 1 represents the intensity of each point. Moreover, we use the subscripts (e.g.
‘v’ and ‘i’) to indicate point clouds from different sources. For example, Pv = [Cv,Fv] ∈ RNv×(3+d)

and Pi = [Ci,Fi] ∈ RNi×(3+d) respectively represent Nv and Ni points (or voxels) in vehicle
and infrastructure sides. Besides, each pair of vehicle-side and infrastructure-side point clouds is
associated with a transformation T mapping infrastructure-side coordinate to that of vehicle-side.

Pre-processing and Encoding. For cooperative learning, we need to first align the point clouds
from both sides in the same coordinate. Hence, we transform the infrastructure-side point clouds to
P′

i = [C′
i ,Fi] where C′

i = T (Ci). However, we empirically find that the contrastive learning built
upon vehicle-side point cloud Pv and transformed infrastructure-side point clouds P′

i only achieve
marginal performance gains than training from scratch on downstream ONCE dataset (0.53 mAPs vs
2.58 mAPs, also see Table 7 in Appendix D). We believe this stems from the sparsity of LiDAR point
clouds, which sometimes make it difficult to find good positive pairs to perform contrastive learning.
To mitigate this problem, we concatenate the LiDAR point clouds from both sides to fusion point
clouds Pf = [Pv,P

′
i ] ∈ R(Nv+Ni)×(3+d), which is used as the contrastive view of vehicle-side point

clouds Pv as shown in Fig.3. By default of notations, we can express the coordinate and feature of
fusion point clouds as Cf = [Cv,C

′
i ] and Ff = [Fv,Fi], respectively. Then Pv and Pf are embedded

by the 3D encoder f enc to obtain their 3D representations. We use subscript ‘v/f’ to indicate that the
same operation is applied respectively on both pointclouds.

P̂v/f = f enc(Pv/f) (1)

where P̂v/f ∈ RN̂v/f×(3+d̂) indicates the vehicle point cloud and fusion point cloud respectively. Here
we use N̂v/f to denote the number of points after encoding because pooling operation often exists
in 3D encoders (Graham et al., 2018) and changes the number of voxels/points. Moreover, d̂ is the
number of feature channels after encoding.

Loss Function. To guide the 3D encoder to learn good representations in an unsupervised manner,
our proposed CO3 consists of a cooperative contrastive loss LCO2 and a contextual shape prediction
loss LCSP. The overall loss function is given by:

L =
1

|Pv/f|
∑

Pv/f∈{Pv/f}

LCO2
{P̂v, P̂f}+ w × LCSP{P̂v, P̂f,Cf} (2)

4



Published as a conference paper at ICLR 2023

where Pv/f denote a batch of vehicle and fusion point clouds and |Pv/f| indicates the batch size.
LCO2

applies contrastive learning on the encoded vehicle and fusion pointclouds. Meanwhile, LCSP
introduces more task-relevant information into f enc by using the encoded features to predict contextual
shape obtained by the coordinate of fusion point clouds Cf. w is a weight to balance the losses.

3.2 COOPERATIVE CONTRASTIVE OBJECTIVE

Unsupervised contrastive learning has been demonstrated successful in image domain (He et al.,
2020; Tian et al., 2019) and indoor-scene point clouds (Xie et al., 2020). However, when it turns
to outdoor-scene LiDAR point clouds, building adequate views, which share common semantics
while differing enough, for contrastive learning is difficult. To tackle this challenge, we utilize a
recently released vehicle-infrastructure-cooperation dataset called DAIR-V2X (Yu et al., 2022) and
use vehicle-side point clouds and fusion point clouds as views for contrastive representation learning.
Views built in this way differ a lot because they are captured at different positions and they share
enough information because they are captured at the same timestamp. More details about view
building in contrastive learning can be found in Appendix A.

Contrastive Head. Following BYOL (Grill et al., 2020), we construct contrastive head of cooperative
contrastive objective by a Multi-Layer-Perceptron (MLP) layer and a ℓ2-normalization. Specifically,
the embedded features of vehicle and fusion point clouds, F̂v and F̂f, are first projected by a MLP
layer denoted as MLP1. Then an ℓ2-normalization is applied along feature dimension. This process
is described below, where Zv/f ∈ RN̂v/f×dz and dz is the output feature dimension.

Ẑv/f = MLP1(F̂v/f), Zv/f = Ẑv/f/∥Ẑv/f∥2 (3)

Cooperative Contrastive Loss. For cooperative contrastive learning, we obtain positive pairs by
exploring the correspondence between coordinates Ĉv and Ĉf. In detail, we uniformly sample N1

points from the vehicle point cloud and find their corresponding points in the fusion point cloud to
form N1 pairs of features ({znv/f}

N1
n=1) from Zv/f for contrastive learning, where znv/f ∈ R1×dz . We

treat corresponding points (or voxels) as positive pairs and otherwise negative pairs for contrastive
learning. Example pairs are shown in Fig. 3. The final loss function is formulated below,

LCO2 =
1

N1

N1∑
n=1

− log(
exp(znv · znf /τ)∑N1

i=1 exp(z
n
v · zif/τ)

) (4)

where τ is the temperature parameter. The bottom right box in Fig. 3 shows examples for this loss.
As ground points only contain background information that is not related to perception tasks, we
mark those points with height value lower than a threshold zthd as ground points and filter them out
when sampling.

3.3 CONTEXTUAL SHAPE PREDICTION

CO3 aims to learn representations applicable to various downstream datasets. However, as demon-
strated in (Wang et al., 2022), pure contrastive loss in Eqn. (4) would result in the lack of task-relevant
information in the learned representations, making it hard to generalize across different architectures
and datasets. Meanwhile, an additional reconstruction objective could increase the mutual information
between the representations and the input views, which would bring in task-relevant information.
Please refer to detailed explanations about this in Appendix B. For outdoor-scene point clouds, it is
difficult to reconstruct the whole scene with point/voxel-level representations. To mitigate this issue,
we propose to reconstruct the neighborhood of each point/voxel with its representation.

Figure 4: Two examples of shape context.

Local Distribution. Shape context has
been demonstrated as useful point fea-
ture descriptor in previous works (Hou
et al., 2021; Belongie et al., 2002; Kört-
gen et al., 2003; Xie et al., 2018). Fig.
4 shows two examples of shape context
with 8 bins (the number of bins can be
changed) around the query point, which
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is marked as a larger black point. Previous works use the number of points in each bin as the
descriptor for the query point. However, it can be difficult for the neural net to learn to regress the
exact number of points in each bin. Thus, we propose to use the representation to predict a local
distribution built upon shape context. In practice, we divide the neighborhood of each point in fusion
point clouds into Nbin = 32 bins along xyz-plane with R1 = 0.5m and R2 = 4m. Then we compute
the “raw” shape context Q′ ∈ RNf×Nbin , which describe the number of points in each bin around
every fusion point. Next, we apply ℓ2-normalization to Q′ and a consecutive softmax to obtain the
ground-truth shape context Q ∈ RNf×Nbin as described below, where Qi,∗ ∈ R1×Nbin describes the
ground-truth local distribution for i-th point.

Qi,∗ = softmax(Q′
i,∗/∥Q′

i,∗∥2) (5)

Prediction Loss. We use the encoded features of both vehicle and fusion point clouds, i.e. F̂v/f, to
predict the local distribution. To be specific, F̂v/f is first passed through a MLP layer MLP2 and
softmax operation is applied on the projected features to get the predicted local distribution.

Pv/f = softmax(MLP2(F̂v/f)) (6)

where Pv/f ∈ RN̂v/f×Nbin . Then we uniformly sample N2 predictions ({pnv/f}
N2
n=1) from Pv/f and find

their corresponding “ground truth” in Q by coordinate correspondence, where we have {qnv/f}
N2
n=1. The

dimensions of each prediction and “ground truth” are pnv/f ∈ R1×Nbin and qnv/f ∈ R1×Nbin . Finally,
the prediction loss with KL-divergence is given by,

LCSP =
1

N2

N2∑
n=1

Nbin∑
m=1

(pn,mv log
pn,mv

qn,mv
+ pn,mf log

pn,mf

qn,mf
) (7)

4 EXPERIMENTS

The goal for unsupervised representation learning is to learn general representation that can benefit
different downstream architectures on different downstream datasets and tasks. In this section, we
design experiments to answer the question whether CO3 learns such representation as compared to
previous methods. We first provide experiment setups in Sec. 4.1 and then discuss main results in
Sec. 4.2. We also conduct ablation study and qualitative visualization in Sec. 4.3 and 4.4.

4.1 EXPERIMENT SETUP

Pre-training Dataset. We utilize the recently released vehicle-infrastructure-cooperation dataset
called DAIR-V2X (Yu et al., 2022) to pre-train the 3D encoder. DAIR-V2X is the first real-world
autonomous dataset for vehicle-infrastructure-cooperative task. The LiDAR sensor at vehicle-side is
40-beam while a 120-beam LiDAR is utilized at infrastructure-side. There are 38845 LiDAR frames
(10084 in vehicle-side and 22325 in infrastructure-side) for cooperative-detection task. The dataset
contains around 7000 synchronized cooperative samples in total.

Implementation Details of CO3. We use Sparse-Convolution as the 3D encoder which is a 3D con-
volutional network because it is widely used as 3D encoders in current state-of-the-art methods (Zhou
& Tuzel, 2018; Yin et al., 2021; Shi et al., 2020a). We set the number of feature channels denc = 64,
the temperature parameter in contrastive learning τ = 0.07, the dimension of common feature space
of vehicle-side and fusion point clouds dz = 256 and the sample number in cooperative contrastive
loss N1 = 2048. For contextual shape prediction, we set the number of bins Nbin = 32, the sample
number N2 = 2048 and the weighting constant w = 10. The threshold for ground point filtering
is zthd = 1.6m. We empirically find that freezing the parameters of MLP2 brings better results in
detection task thus we fix them.

Baselines. We implement STRL (Huang et al., 2021) and use the official code of ProposalCon-
trast (Yin et al., 2022) as baselines. Besides, as proposed in (Mao et al., 2021), several methods
in image domain and indoor-scene point clouds can be transferred to outdoor scene point clouds,
including Swav (Caron et al., 2020), Deep Cluster (Caron et al., 2018), BYOL (Grill et al., 2020) and
Point Contrast (Xie et al., 2020). Note that in order to make fair comparisons, all the pre-training
methods are pre-trained on DAIR-V2X. Thus there might exist number discrepancy between the
results and previous benchmarks.
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Init. Second PV-RCNN CenterPoint
Overall 0-30m 30-50m Overall 0-30m 30-50m Overall 0-30m 30-50m

Rand 52.21 60.71 47.31 54.55 63.05 50.00 55.92 66.39 50.16
Swav 53.03 61.38 48.34 54.89 63.41 50.31 57.00 67.54 50.60

Deep Cluster 52.30 61.03 47.00 54.91 63.84 50.29 57.65 68.05 51.04
BYOL 45.24 53.84 40.22 49.41 58.04 45.19 52.17 63.53 45.00

PointContrast 47.64 56.91 42.54 50.49 58.94 46.30 54.17 65.57 46.53
ProposalContrast 50.70 59.42 46.09 52.79 60.97 48.91 56.02 66.26 48.70

STRL 51.57 59.80 46.59 54.25 63.03 49.31 57.44 67.90 50.47
Ours 53.28+1.07 62.16 49.33 55.17+0.61 63.94 50.29 58.50+2.58 69.09 51.51

Table 1: Results of 3D object detection on Once dataset (Mao et al., 2021). We conduct experiments on 3
different detectors: Second (Zhou & Tuzel, 2018) (short as Sec.), PV-RCNN (Shi et al., 2021) (short as PV) and
CenterPoint (Yin et al., 2021) (short as Cen.) and 8 different initialization methods including random (short as
Rand, i.e. training from scratch), Swav (Caron et al., 2020), Deep Cluster (short as D. Cl.) (Caron et al., 2018),
BYOL (Grill et al., 2020), Point Contrast (short as P.C.) (Xie et al., 2020), GCC-3D (Liang et al., 2021) and
STRL (Huang et al., 2021). Results are mAPs in %. “0-30m” and “30-50m” respectively indicate results for
objects in 0 to 30 meters and 30 to 50 meters. The “Overall” metric highlighted in red is the overall mAP, which
serves as major metric for comparisons. We use bold font for the best overall mAP of each detector for better
understanding.

Downstream Tasks. Two downstream tasks are selected for evaluation: 3D object detection and
LiDAR semantic segmentation. 3D object detection task takes raw 3D point clouds as inputs and
aims to output 3D boundary boxes of different objects in the scene. LiDAR semantic segmentation
assign each 3D point a category label, including Car, Pedestrian, Bicycle, Truck and so on.

3D Object Detection. We select two downstream datasets: Once (Mao et al., 2021) and KITTI (Geiger
et al., 2012). Once has 15k fully annotated frames of LiDAR scans. A 40-beam LiDAR is used to
collect the point cloud data. We adopt common practice, including point cloud range and voxel size,
in their public code repository. mAPs (mean accurate precisions) in different ranges and overall
mAP are presented. KITTI is a widely used self-driving dataset, where point clouds are collected by
LiDAR with 64 beams. It contains around 7k samples for training and another 7k for evaluation. All
the results are evaluated by mAPs with three difficulty levels: Easy, Moderate and Hard. We select
several current state-of-the-art methods implemented in the public repository of Once dataset (Mao
et al., 2021)1 and OpenPCDet2 to evaluate the quality of representations learned by CO3, including
Second (Zhou & Tuzel, 2018), CenterPoint (Yin et al., 2021) and PV-RCNN (Shi et al., 2020a).

LiDAR Semantic Segmentation. We select NuScenes (Caesar et al., 2020) as downstream dataset.
There are 1000 scenes each of which lasts 20 seconds in NuScenes. It is collected with a 32-
beam LiDAR sensor and the total number of frames is 40,000. We select Cylinder3D (Zhu et al.,
2021) as downstream architecture. The full training is time-consuming (at least 4 days for one
training) and we use a 1/8 training schedule setting to evaluate whether CO3 is able to speed up
training. We follow the conventional evaluation metrics. mAPs for detailed categories and mean
intersection-over-union (mIoU) for overall evaluation are presented. Per-class mIoU is first computed
as mIoUi =

TPi

TPi+FPi+FNi
, where TPi, FPi and FNi respectively represent true positive, false positive

and false negative for class i. We then average over classes and get the final mIoU.

4.2 MAIN RESULTS

Once Detection. As shown in Table 1, when initialized by CO3 , all the three detectors achieve
the best performance on the overall mAPs, which we value the most, and CenterPoint (Yin et al.,
2021) achieves the highest overall mAP (58.50) with 2.58 improvement. The improvement on PV-
RCNN (Shi et al., 2021) is 0.62 in mAP (similar lower improvement with other pre-training methods)
because PV-RCNN (Shi et al., 2021) has both the point-based and voxel-based 3D backbones, among
which CO3 only pre-trains the voxel-based branch. It can be found that other baselines are not
able to learn general representation for different architectures. For example, STRL achieves +1.52
mAPs improvements on CenterPoint but degrades the performance of Second and PV-RCNN. On the
contrary, CO3 achieve consistent improvement over different detectors.

KITTI Detection. As shown in Table 2, when initialized by CO3 , PV-RCNN (Shi et al., 2021)
achieves the best performance on Easy and Hard (+1.19) level and third place on Moderate level.

1
https://github.com/PointsCoder/Once_Benchmark

2
https://github.com/open-mmlab/OpenPCDet
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Initialization Second PV-RCNN
Easy Moderate Hard Easy Moderate Hard

Random 73.29 63.16 60.34 78.54 67.23 63.68
Swav 73.23 64.05 60.90 78.43 67.91 64.60

Deep Cluster 73.19 63.37 60.08 77.05 67.06 64.50
BYOL 71.05 60.39 56.98 77.96 67.50 64.42

PointContrast 72.67 62.74 59.21 77.62 67.79 63.31
ProposalContrast 74.23 64.22 60.88 77.28 66.47 63.22

STRL 73.95 63.90 60.90 77.10 66.21 62.90
Ours 74.40+1.11 64.38+1.22 60.90+0.56 78.84+0.30 67.75+0.52 64.87+1.09

Table 2: Results of 3D object detection on KITTI dataset (Geiger et al., 2012). Results are mAPs in %. “Easy”,
“Moderate” and “Hard” respectively indicate difficulty levels defined in KITTI dataset. We use bold font for the
best mAP of each detector in each difficulty level for better understanding.

Initialization mIoU Car Truck Con. Veh. Ped. Trailer Bic. M.C. S.W. Terrain Veg.
Random 63.34 84.32 70.25 28.29 64.46 41.35 0.00 60.46 69.76 71.21 83.32

P.C. 64.31 84.70 74.36 30.81 63.52 47.13 10.16 55.55 70.38 71.43 84.65
STRL 64.71 84.66 76.65 27.30 63.29 52.76 12.79 60.11 70.27 71.70 84.60
Ours 66.88+3.54 85.52 77.00 36.00 66.93 53.13 19.51 70.65 70.40 72.43 84.88

Table 3: LiDAR semantic segmentation on NuScenes (Caesar et al., 2020). Results are mIoU and mAPs in
%. We shows details results in each category. “Con. Veh.”, “Ped.”, “Bic.”, “M.C.”, “S. W.” and “Veg.” are
abbreviations respectively for Construction Vehicle, Pedestrian, Bicycle, MotoCycle, Sidewalk and Vegetation.
We use bold font for the best results in each column for better understanding.

Init. Overall Vehicle Pedestrian Cyclist
Random 55.92 62.85 45.52 59.39

Sup. 57.50 63.86 46.96 61.68
CO3 58.50 64.60 48.83 62.17

Table 4: Comparison to supervised initialization

Init. Overall Vehicle Pedestrian Cyclist
From Scratch 55.92 62.85 45.52 59.39

CO3 w. ground 57.37 63.19 48.16 60.76
CO3 58.50 64.60 48.83 62.17

Table 5: Ablation study on filtering out ground points.

Meanwhile, when Second (Zhou & Tuzel, 2018) is equipped with CO3, it achieves the highest
mAPs on Easy level (+1.11), Moderate level (+1.22) and Hard level (+0.56). The lower gains on the
KITTI dataset (Geiger et al., 2012) stem from the smaller number of training samples (half of that in
Once (Mao et al., 2021)), which makes the detectors easily reach their capacity and improvement is
hard to achieve. Consistent results across different initialization methods demonstrate this.

NuScene Semantic Segmentation. As shown in Table 3, CO3 improve Cylinder3D by 3.54 in mIoU
and also achieves the best performance among the four initialization methods. Meanwhile, when
initialized by CO3, Cylinder3D achieves the best mAPs among all the categories. On truck and
construction vehicle, CO3 improve the performance of random initialization by 6.75 and 7.71 mAPs,
which is very important in autonomous driving because correct segmentation of different vehicles
can help benefit control and avoid accidents.

Comparison to Supervised Pre-training. We find backbone pre-trained on 3D detection task
from the official codebase of DAIR-V2X dataset and use it to initialize CenterPoint, after which we
fine-tune it on Once dataset. Results are shown in Table 4. It can be found that although supervised
pre-training achieve improvement as compared to training from scratch, CO3 leads to the best results
in all categories and the overall mAP. This is because supervised pre-training overfit to DAIR-V2X
dataset, making the improvement lower than CO3 in 3D detection task on Once dataset.

Overall Evaluation. To summarize, CO3 achieves consistent performance gains over different
architectures on different tasks (3D object detection and LiDAR semantic segmentation) and datasets
(Once, KITTI and NuScenes) when pre-trained only on DAIR-V2X dataset. In comparison, other
baseline pre-training methods only occasionally improve the performance and sometimes even bring
degradation. These demonstrate CO3 learns general 3D representations.

4.3 ABLATION STUDY

The influence of ground points in pre-training. We first conduct ablation experiments on filtering
out ground points. We use CO3 to pre-train 3D backbone without filtering out ground points and
downstream it to 3D object detection with CenterPoint on Once. Results are shown in Table 5. When
pre-training without filtering out ground points, the performance of CO3 drop in each category and
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Init. Once (CenterPoint) KITTI (Second)
Overall Vehicle Pedestrian Cyclist Overall Vehicle Pedestrian Cyclist

Random 55.92 62.85 45.52 59.39 63.16 77.45 48.71 63.32
Contextual Shape Prediction Only 57.30 62.86 49.17 59.86 63.36 77.75 49.16 63.18

Cooperative Contrastive Only 57.53 63.39 48.14 61.05 63.41 77.40 47.78 65.06
CO3 58.50 64.50 48.83 62.17 64.38 77.95 49.59 65.60

Table 6: Results of ablation study on Once (Mao et al., 2021) and KITTI (Geiger et al., 2012). We use
CenterPoint (Yin et al., 2021) on Once and Second (Zhou & Tuzel, 2018) on KITTI. Results are mAPs in %. For
Once, results are average across different ranges. For KITTI, results are all in moderate level. We highlight the
best performance in each column for better understanding.

(a) Case 1
Pre-trained by CO3 Pre-trained by PointContrast

(c) Case 3
Pre-trained by CO3 Pre-trained by PointContrast

(b) Case 2
Pre-trained by CO3 Pre-trained by PointContrast

(d) Case 4
Pre-trained by CO3 Pre-trained by PointContrast

Figure 5: Visualization for detection results. Green boxes are predicted ones and red boxes are the ground truth.

the overall mAP. This demonstrate the effectiveness of filtering out ground points because ground
points contain background information that is not useful for 3D perception tasks.

The effect of each component in CO3. We conduct ablation experiments to analyze the effectiveness
of different components. We respectively pre-train the 3D encoder with cooperative contrastive
objective and contextual shape prediction objective. As shown in Table 6, it can be found that each
objective alone can achieve slight improvement, which demonstrates the effectiveness of either part.
Besides, when pre-trained by CO3, we achieve the best performance on the overall mAPs. A more
detailed discussion on the ablation study is provided in Appendix G

4.4 QUALITATIVE EXPERIMENT

We use the 3D backbone pre-trained by CO3 and PointContrast to initialize CenterPoint and train it
on Once dataset. Then we visualize the detection results in Fig. 5, where predicted boxes are marked
as green and the ground truth boxes are red. In Case 1 and 2, when the detector is initialized by CO3,
the detection results are more correct in headings as shown in the zoom-in area. Correct heading
prediction is important especially for control in autonomous driving. In Case 3 and 4, it can be found
that CO3 helps the CenterPoint detect object with only a few points captured by the LiDAR sensor
and meanwhile, PointContrast initialization fails to detect them. This is also essential in autonomous
driving because detection failure can sometimes lead to disaster.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose CO3, namely Cooperative Contrastive Learning and Contextual Shape
Prediction, for unsupervised 3D representation learning in outdoor scenes. The recently released
vehicle-infrastructure-cooperation dataset DAIR-V2X is utilized to build views for cooperative
contrastive learning. Meanwhile the contextual shape prediction objective provides task-relevant
information for the 3D encoders. Our experiments demonstrate that the representation learned by
CO3 can be transferred to various architectures and different downstream datasets and tasks to achieve
performance gain. Currently the size of the real cooperation dataset is relatively small and it will be
interesting if larger cooperative datasets can be collected for pre-training in the future.
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A BACKGROUND ABOUT VIEW BUILDING IN CONTRASTIVE LEARNING

In this section, we discuss how to build proper views in contrastive learning. Firstly, we introduce
the formulation of contrastive learning and some important properties of good views in contrastive
learning as proposed in (Tian et al., 2020). Then we discuss view building for LiDAR point clouds.

View Building Contrastive Learning. Unsupervised representation learning aims to pre-train 2D/3D
backbones on a dataset without labels, which can be transferred to downstream datasets and tasks
to achieve performance improvement over training from scratch (random initialization). Recently,
unsupervised contrastive learning achieves great success in image domain (He et al., 2020; Tian et al.,
2019; Caron et al., 2020; Grill et al., 2020; Wang et al., 2021). Given a batch of images X as inputs,
these works first apply two kinds of random augmentations for each image xn ∈ X (n = 1, 2, ..., N
where N is the number of images in the batch) to get augmented images xn

1 and xn
2 , which are called

different views of xn. The main objective of contrastive learning is to pull together the representations
of views of the same image in the feature space while pushing away representations of different
images, as indicated in the equation below:

Lcon =
1

N

N∑
n=1

− log(
exp(zn1 · zn2 /τ)∑N
i=1 exp(z

n
1 · zi2/τ)

) with

zn1,2 = f enc
I (xn

1,2) n = 1, 2, ..., N

(8)

where f enc
I is the 2D backbone used to extract representations. zn1,2 is the encoded representations

for views xn
1,2. To apply contrastive loss in the first line in Eqn. (8), views of the same image are

considered as positive pairs and other pairs are negative ones. The numerator indicates the similarity
of positive pairs while the denominator sums up the positive similarity and the sum of similarity of
negative pairs. τ is the temperature parameter. Minimizing this loss equals to maximize the similarity
of positive pairs and minimize the similarity of negative pairs.

Authors in (Tian et al., 2020) discuss what property views should have to benefit contrastive learning
via Information Theory and propose that mutual information (Shannon, 2001; Kreer, 1957; Wikipedia
contributors, 2022) of views ,I(xn

1 ;x
n
2 ), can indicate the quality of the learned representations.

Mutual information formally quantifies “how much information about one random variable we can
obtain when observing the other one”. Experiments on images suggest that there exists a “sweet
spot” for I(xn

1 ;x
n
2 ) where the pre-trained backbone can achieve the most significant performance

improvement in downstream tasks. This means the mutual information between views can neither
be too low (sharing little semantics) nor too high (differing little). Further experiments in (Tian
et al., 2020) indicate that the mutual information of different augmented images is high and reducing
I(xn

1 ;x
n
2 ) by applying stronger augmentations is effective. The performance on downstream tasks

increases at the beginning and then decrease when the augmentations are too strong.

Views Building for LiDAR Point Clouds. As discussed in the main paper, it is impossible for us
to reconstruct the whole outdoor-scene for constrative learning, which is demonstrated useful in
indoor-scene (Xie et al., 2020; Hou et al., 2021; Liu et al., 2020). And there exists two alternatives to
build views for outdoor-scene LiDAR point clouds. The first one (Liang et al., 2021; Yin et al., 2022)
is to apply data augmentation to single frame of point cloud and treat the original and augmented
versions as different views, which is similar to what previous works do in image domain. However,
the augmentations in image domain are highly non-linear while all the augmentation of point clouds,
including random drop, rotation and scaling, can be implemented in a linear transformation. As
claimed in (Tian et al., 2020), the highly non-linear augmentations on images already bring high
mutual information between views. Thus views of LiDAR point clouds built in this way would have
higher mutual information, which is not adequate for learning representations. The second intuitive
idea to build views is to utilize point clouds at different timestamps, embraced by (Huang et al.,
2021). However, outdoor-scenes are dynamic and the autonomous driving vehicle has no idea about
how other objects (cars, pedestrians, etc.) move. Thus observing one view (timestamp t) bring in
little information about the other one (timestamp t+10 for example), meaning that I(xn

1 ;x
n
2 ) can be

extremely low and this can be harmful to the learned representations. Due to these limitations, pre-
trained 3D encoders in (Liang et al., 2021; Huang et al., 2021) cannot achieve noticeable improvement
when transferring to datasets collected by different LiDAR sensors. Thus, in this paper, we propose to
utilize the vehicle-infrastructure-cooperation dataset (Yu et al., 2022), which capture the same scene
from different view-point at the same timestamp, for contrastive representation learning. Views built
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with this dataset neither share too much information (captured from different view-points) nor share
too little information (captured at the same time, easy to find correspondence), which is adequate for
contrastive learning.

B RECONSTRUCTION OBJECTIVE FOR TASK-RELEVANT INFORMATION

In this section, we borrow the ideas from (Wang et al., 2022) to explain why pure contrastive learning
bring less improvements as shown in Table 3 in the main paper. Firstly, we give the definition of
sufficient representation and minimal sufficient representation in contrastive learning. Then, we
present analysis on image classification problem as downstream task and we refer readers to (Wang
et al., 2022) for other downstream tasks. Finally, we propose our pre-training objective for LiDAR
point clouds.

Sufficient Representation and Minimal Sufficient Representation. Sufficient Representation zn1,suf
of xn

1 contains all the information that is shared by xn
1 and xn

2 , which means zn1,suf can be used to
express common semantics shared by these two views. Among all the sufficient representations for
xn
2 , minimal sufficient representation zn1,min contains the least information about xn

1 . The learned
representation in contrastive learning is sufficient and almost minimal. Assuming that Z1,suf is the set
of all possible sufficient representations of view xn

1 , we can define these two concepts as belows,
Definition 1. zn1,suf of view xn

1 is sufficient for xn
2 if and only if I(zn1,suf, x

n
2 ) = I(xn

1 , x
n
2 ).

Definition 2. zn1,min ∈ Z1,suf of view xn
1 is minimal sufficient if and only if I(zn1,min, x

n
1 ) ≤

I(zn1,suf, x
n
1 ), ∀zn1,suf ∈ Z1,suf.

Theorem. (1) z1,suf provides more information about the downstream task T than z1,min. (2) The
upper bound of error rates in downstream tasks using minimal sufficient representations are higher
than that of sufficient representations. That is,

I(z1,suf, T ) ≥ I(z1,min, T )

sup{P e
suf} ≤ sup{P e

min}
(9)

This gap stems from the missing task-relevant information in z1,min. To prevent this problem, authors
in (Wang et al., 2022) propose to add a reconstruction objective (reconstruct x1 using z1) alongside the
contrastive loss to increase I(z1, x1), which indirectly increases I(z1, T |x2) and brings improvement
in downstream classification problem over pure contrastive learning.

Proof for Image Classification Problem. We denote the downstream classification task as T and the
task-relevant information in minimal sufficient representation z1,min can be described as below:

I(z1,suf, T ) = I(z1,min, T ) + [I(x1, T |z1,min)− I(x1, T |z1,suf)]

≥ I(z1,min, T )
(10)

To begin with, z1,suf and z1,min are sufficient representations and they contain two parts of infor-
mation: shared information between x1 and x2, and extra information about x1. Thus the mutual
information I(z1,suf, T ) can be decomposed into I(z1,min, T ) and [I(x1, T |z1,min)− I(x1, T |z1,suf)],
where I(x1, T |z1,min) indicates the information about T we can obtain by observing x1 when z1,min
is known. As z1,suf contains more information about x1 than z1,min, the second term is larger than
zero and the right-hand-side of the first line in Eqn. (10) is larger than I(z1,min, T ). This indicates
that z1,suf contains more task-relevant information than z1,min and thus would have better performance
in T . Then we consider using Bayes error rate P e (Fukunaga, 2013), which is the lower-bound
of achievable error for the classifier, to analyze performance of z1,suf and z1,min on downstream
classification problem. We have

P e
suf ≤ 1− exp[−H(T ) + I(x1, x2, T ) + I(z1,suf, T |x2)]

P e
min ≤ 1− exp[−H(T ) + I(x1, x2, T )]

(11)

where H(T ) is the entropy of the task. Since 1−exp[−(H(T )+I(x1, x2, T )+I(z1,suf, T |x2)] ≤ 1−
exp[−H(T )+ I(x1, x2, T )], the upper bound of Bayes error rate of minimal sufficient representation
is larger than that of sufficient representations. This indicates that ideally z1,suf can achieve better
performance than z1,min in classification problem.
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Contextual Shape Prediction Objective. As it is impossible to reconstruct the whole scene point
cloud with point-level or voxel-level representations. We propose an additional pre-training objective
to predict distribution of local neighborhood using point/voxel-level representation. We use shape
context to describe the local neighborhood distribution of a point/voxel, which has been demonstrated
as a useful local distribution descriptor in previous works (Hou et al., 2021; Belongie et al., 2002;
Körtgen et al., 2003; Xie et al., 2018). As demonstrated in our ablation study (Table 3 in main
paper), this additional pre-training objective bring more significant performance improvement over
pre-trained by pure contrastive loss. We also provide python-style code for computing shape context
as followings

Algorithm 1 Implementation of Contextual Shape Computation in Python Style.
class Contextual_Shape(object):

def __init__(self, r1=0.125, r2=2, nbins_xy=2, nbins_zy=2):
self.r1 = r1
self.r2 = r2
self.nbins_xy = nbins_xy
self.nbins_zy = nbins_zy
self.partitions = nbins_xy * nbins_zy * 2

def pdist_batch(rel_trans):
D2 = torch.sum(rel_trans.pow(2), 3)
return torch.sqrt(D2 + 1e-7)

def compute_rel_trans_batch(A, B):
return A.unsqueeze(1) - B.unsqueeze(2)

def hash_batch(A, B, seed):
mask = (A >= 0) & (B >= 0)
C = torch.zeros_like(A) - 1
C[mask] = A[mask] * seed + B[mask]
return C

def compute_angles_batch(rel_trans):
angles_xy = torch.atan2(rel_trans[:, :, :, 1], rel_trans[:, :, :, 0])
angles_xy = torch.fmod(angles_xy + 2 * math.pi, 2 * math.pi)
angles_zy = torch.atan2(rel_trans[:, :, :, 1], rel_trans[:, :, :, 2])
angles_zy = torch.fmod(angles_zy + 2 * math.pi, math.pi)
return angles_xy, angles_zy

def compute_partitions_batch(self, xyz_batch):
rel_trans_batch = ShapeContext.compute_rel_trans_batch(xyz_batch,

xyz_batch)
# compute angles from different points to the query one
angles_xy_batch, angles_zy_batch = ShapeContext.compute_angles_batch(

rel_trans_batch)
angles_xy_bins_batch = torch.floor(angles_xy_batch / (2 * math.pi /

self.nbins_xy))
angles_zy_bins_batch = torch.floor(angles_zy_batch / (math.pi / self.

nbins_zy))
angles_bins_batch = ShapeContext.hash_batch(angles_xy_bins_batch,

angles_zy_bins_batch, self.nbins_zy)
# compute distances between different points and the query one
distance_matrix_batch = ShapeContext.pdist_batch(rel_trans_batch)
dist_bins_batch = torch.zeros_like(angles_bins_batch) - 1
# generate partitions for each points
mask_batch = (distance_matrix_batch >= self.r1) & (

distance_matrix_batch < self.r2)
dist_bins_batch[mask_batch] = 0
mask_batch = distance_matrix_batch >= self.r2
dist_bins_batch[mask_batch] = 1
bins_batch = ShapeContext.hash_batch(dist_bins_batch,

angles_bins_batch, self.nbins_xy * self.nbins_zy)
return bins_batch

16



Published as a conference paper at ICLR 2023

C DATASETS DETAILS

In this section, we introduce details about different datasets used in the main paper for evaluation and
also two more datasets in additional experiments.

DAIR-V2X. DAIR-V2X (Yu et al., 2022) is the first real-world autonomous dataset for vehicle-
infrastructure-cooperative detection task. It covers various scenes, including cities and highways, and
different whether condition including sunny, rainy and foggy days. A virtual world coordinate is
used to align the vehicle LiDAR coordinate and infrastructure LiDAR coordinate. There are 38845
LiDAR frames (10084 in vehicle-side and 22325 in infrastructure-side) for cooperative-detection
task. The dataset contains around 7000 synchronized cooperative samples in total and we utilize
them to pre-train 3D encoder in an unsupervised manner via the proposed CO3. The LiDAR sensor
at vehicle-side is 40-beam while a 120-beam LiDAR is utilized at infrastructure-side.

Once. Once (Mao et al., 2021) is a large-scale autonomous dataset for evaluating self-supervised
methods with 1 Million LiDAR frames and only 15k fully annotated frames with 3 classes (Vehicle,
Pedestrian, Cyclist). A 40-beam LiDAR is used in (Mao et al., 2021) to collect the point cloud
data. We adopt common practice, including point cloud range and voxel size, in their public code
repository3. As for the evaluation metrics, IoU thresholds 0.7, 0.3, 0.5 are respectively adopted
for vehicle, pedestrian, cyclist. Then 50 score thresholds with the recall rates ranging from 0.02 to
1.00 (step size if 0.02) are computed and the 50 corresponding values are used to draw a PR curve,
resulting in the final mAPs (mean accurate precisions) for each category. We also further overage
over the three categories and compute an ’Overall’ mAP for evaluations.

KITTI. KITTI (Geiger et al., 2012) is a widely used self-driving dataset, where point clouds are
collected by LiDAR with 64 beams. It contains around 7k samples for training and another 7k for
evaluation. For point cloud range and voxel size, we adopt common practice in current popular
codebase like MMDetection3D4 and OpenPCDet5. All the results are evaluated by mAPs with three
difficulty levels: Easy, Moderate and Hard. These three results are further average and an ’Overall’
mAP is generated for comparisons.

D ADDITIONAL EXPERIMENT RESULTS

D.1 INFRASTRUCTURE AS VIEW IN CONTRASTIVE LEARNING

We also conduct ablation study on the fusion view. Instead of using fusion point clouds as view
in contrastive learning, we directly use infrastructure side point cloud as another view. Results are
shown in Table 7. It can be found that if we directly use infrastructure-side point cloud for contrastive
learning, the performance improvement is very marginal. This stems from the sparsity of LiDAR
point clouds, which sometimes make it difficult to find good positive pairs to perform contrastive
learning.

Init. Overall Vehicle Pedestrian Cyclist
Random 55.92 62.85 45.52 59.39
Inf-view 56.45 62.71 46.63 60.02

CO3 58.50 64.60 48.83 62.17

Table 7: Resuls of directly using infrastructure-side point cloud as view in contrastive learning.

E IMPLEMENTATION DETAILS

In this section, we introduce some details about implementation in both pre-training stage and fine-
tuning stage. Common settings of pre-training and fine-tuning are listed in Table 8 and we discuss
other settings that vary in different detectors later.

3https://github.com/PointsCoder/Once_Benchmark
4https://github.com/open-mmlab/mmdetection3d
5https://github.com/open-mmlab/OpenPCDet
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Configuration Pre-training KITTI Once
optimizer AdamW Adam Adam

base learning rate 0.0001 0.003 0.003
weight decay 0.01 0.01 0.01

batch size 16 - -
learning rate schedule cyclic cyclic cyclic

GPU numbers 8 4 4
training epochs 20 80 80

Table 8: Details about implementations. “Pre-training” means settings in DAIR-V2X (Yu et al., 2022). “KITTI”
and “Once” respectively indicate settings for detection tasks in KITTI (Geiger et al., 2012) and Once (Mao et al.,
2021). We list all common settings and discuss those vary in different detectors below, which are marked as “-”
in this table.

Other Pre-training Settings. To accelerate the pre-training process, we utilize the “repeated dataset”
in MMDetection3D and the schedule is set to 10 epochs, which equals to 20 epochs without “repeated
dataset”. Thus the number 20 for training epochs in Table 8 is tilt.

Other Fine-tuning Settings. Batch size settings for different detectors on different datasets are
shown in Table 9. We use different types of GPUs, different number of GPUs and different version
of PyTorch (Paszke et al., 2019) as compared to those used in the codebases, which may lead to
degrading when training from scratch. Thus these parameters are tuned based on the original settings
from the codebases to make the performance of training from scratch match or even surpass the
results they published.

Detectors KITTI Once
Second 48 48

PV-RCNN 16 48
CenterPoint - 32

Table 9: Details about batchsize settings for different detectors on different datasets. “-” means there is no
configuration for the detector on the exact dataset in the codebase or we do not conduct the downstream
experiments.
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F TABLE OF NOTATION

Variable Description Note
Pv/f Raw vehicle/fusion LiDAR points.

P̂v/f
Point/Voxel-level features after
embedded by the 3D backbone.

Indicating same process applied
to vehicle/fusion point cloud.

Ẑv/f
Projected point/voxel-level features
in the common feature space.

Zv/f
Normalized point/voxel-level features
in the common feature space.

An L-2 normalization is applied on
the feature dimension of Ẑv/f.
znv/f is sampled point/voxel
feature for contrastive learning.

N1 The number of samples for contrastive learning.
τ Temperature parameter in contrastive learning.

Q′
A matrix in dimension RNf×Nbin indicating
the number of points in each bin in the
neighborhood of each fusion point.

Q

Apply ℓ2-normalization and softmax to Q′

then we get Q ∈ RNf×Nbin , which describes
a local geometry distribution in the neighborhood
of each fusion point.

qnv/f is sampled “ground truth”
distribution from Q

P Predicted local geometry distribution from Penc
v/f . pnv/f is sampled distribution prediction

from P.
N2 The number of samples for contextual shape prediction.

Table 10: Detailed description of variables

G DISCUSSION ABOUT THE ABLATION STUDY

(a) Different Cases of Pedestrian Class

(b) Different Cases of Cyclist Class

Figure 6: Example samples of pedestrian and cyclist. LiDAR points are shown in red. It can be found that
pedestrian category has consistent shape while the shape of cyclist varies across time and identities.

It can be found in Table 6 that using contextual shape prediction loss only brings more improvement
on Pedestrian class while cooperative contrastive loss introduce more gains on the Cyclist class. In
this section, we provide a discussion on this phenomenon.

First of all, the "ground truth" shape context is computed with point clouds and the contextual
shape prediction goal is to predict the local point distribution with voxel-level representations. This
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enables the voxel-level representation to predict the structure inside a voxel. Meanwhile, cooperative
contrastive only focus on contrast different voxel representation. For pedestrian class, there are
usually only one or two voxels for one pedestrian. Thus, with cooperative contrastive loss only, the
representation fail to recognize the inner structure of the voxel and thus cannot improve upon the
pedestrian category. On the contrary, when we pre-train the encoder with contextual shape prediction
loss only, the learned representation is able to express the structure inside the voxel and this helps
with the downstream detection on the pedestrian category.

Second, as the contextual shape prediction goal aims to capture local shape distribution, it fails
to learn good representation with varying shape. Compared to pedestrians whose shape is always
cylinder-like, cyclists with their bicycles are usually captured with different poses, leading to different
shapes. A visualization of different cases of the two categories are provided in Fig. 6. Thus the
representation fails to learn knowledge when predicting varying shape of the same semantic. When
we look at the cyclist category, it can be found that pre-training with contextual shape loss only brings
little improvement.

Besides, as discussed in Appendix B, the two pre-training objectives are complementary. Pure
cooperative contrastive learning makes the representation minimal sufficient, which lacks of task-
relevant information. The contextual shape prediction loss brings more task-relevant information by
increasing the mutual information between the representations and the inputs. Thus combining them
leads to better performance.

H MORE EXPERIMENTS.

H.1 ABLATION EXPERIMENTS ON SHAPE CONTEXT.

We conduct a ablation experiment on the contextual shape prediction loss. Previous works (Belongie
et al., 2002; Körtgen et al., 2003) use the number of points in each bin as the feature of the query point.
However, we think it is difficult for the network to directly regress the exact number of points in the
bins. Thus we propose to construction a local distribution and use the representation to predict it. In
this part, we conduct ablation study on this design. We use the exact number of points as prediction
goal and keep other parts of our method the same. The experiment results are shown in Table 11
and it can be found that directly transfer the idea of shape context only brings little improvement
(0.94mAP) as compared to the proposed CO3 (2.58 mAP). Thus our insight can also be transferred to
indoor scene point clouds.

Initialization Overall mAP Vehicle Pedestrian Cyclist
Random 55.92 62.85 45.52 59.39

CO3 with exact number of points prediction 56.86 (+0.94) 62.79 47.63 60.15
CO3 58.50 (+2.58) 64.60 48.83 62.17

Table 11: Ablation experiments on shape context.

H.2 EXPERIMENTS COMPARED TO SAFETY SPACE FORECASTING.

We also conduct experiments where freespace forecasting (Hu et al., 2021) is used as pre-training
goal. The pre-training setting is kept the same as all the other initialization methods. The results are
shown in Table 12. It can be found that pre-training with safety space forecasting (Hu et al., 2021)
brings minor performance gain. We think this might stems from the objective of the pre-training goal.
The pre-training goal of (Hu et al., 2021) is to predict freespace for safe driving and their downstream
task is motion planning. However, 3D perception task requires semantic information and simply
predicting freespace does not help to distinguish the representation of different objects. This is why
pre-training with freespace forecasting bring lower performance improvement on 3D perception task.

H.3 PARAMETER SENSITIVITY EXPERIMENTS

In this part, we conduct parameter sensitivity experiments on temperature parameter and radius in
contextual shape prediction loss.
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Initialization Overall mAP Vehicle Pedestrian Cyclist
From Scratch 55.92 62.85 45.52 59.39

Freespace forecasting 56.18 (+0.26) 63.33 46.19 59.01
CO3 58.50 (+2.58) 64.60 48.83 62.17

Table 12: Experiment results on freespace forecasting pre-training.

We first fix all the other parameters in the main paper and change R1 and R2 in the contextual shape
prediction loss. We pre-train the 3D encoder on the DAIR-V2X dataset and downstream it to Once
dataset with CenterPoint as detector. Results are shown in Table 13. It can be found that for the
same R2, an increasing R1 brings more improvement on the downstream detection tasks. This might
stem from that a larger inner radius can help capture more neighborhood information, making the
contextual shape prediction goal more meaningful. It can also be found that when R2 is relatively
small, for example R2=3.5m and R1=1m, the performance drops. This might stem from the relatively
small R2 which might fail to capture the local shape distribution of a larger object like cars or trucks.
Also, we did not search these parameters before and we surprisingly find that using R1=1.5m and
R2=4m brings the best performance (58.86 mAP).

R2/m
R1/m 0.5 1.0 1.5 2.0

3.5 57.55 57.31 58.00 58.42
4.0 57.53 58.50 58.86 58.48

Table 13: Results on parameter sensitivity experiments on temperature.

In the experiment on temperature, all other parameters are kept the same as those in the main
experiment and we only change the temperature in the cooperative contrastive loss. We pre-train the
3D backbone on DAIR-V2X dataset with different parameter settings and fine-tune it on Once dataset
with CenterPoint. The results are shown in Table 14. It can be found that as the temperature increases
to 0.15, the downstream performance drop to 57.34 mAP. This is because a higher temperature brings
smaller gap between negative pairs and this makes the representations hard to separate different
objects. Also, as we keep decreasing the temperature, the overall downstream performance drop
to 57.74 mAP. This is because too small temperature push representation of different objects too
far away but ignore the similar semantic meaning for the same category. For example, it will make
representation of two different cars far away and this will harm the performance of downstream
detection task. It can also be found that using adequate temperature brings comparable performance
(58.50 mAP vs 58.10 mAP).

Temperature 0.02 0.07 0.1 0.15
Overall mAP 57.74 58.50 58.10 57.34

Table 14: Results on parameter sensitivity experiments on radius in contextual shape prediction loss.

I DISCUSSION ON THE INFLUENCE TO V2X COMMUNITY.

The V2X community is developing rapidly and the original motivation of V2X setting is to alleviate
occlusion and long-range sensing problems (Yu et al., 2022). There are several V2X settings including
vehicle-to-infrastructure and vehicle-to-vehicle.

In this paper, we propose to use cooperation dataset for 3D unsupervised representation learning and
achieve performance improvement on perception task using vehicle-side point clouds only. Although
our experiments are conducted on vehicle-infrastructure dataset, our method can also be applied on
other V2X settings without any label. As labeling is the most intensive and time-consuming part in
the collection of cooperation dataset, we believe larger scale of unlabeled cooperation dataset will be
collected in the future for unsupervised 3D representation learning to introduce more performance
gain. Also, it is expensive and difficult to deploy V2X settings everywhere. In our work, we pre-
train on such cooperation dataset and achieve improvements on downstream tasks with vehicle-side
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point clouds as inputs, which is a new exciting finding about the V2X research. We believe the
promising results will encourage more attempts in cooperative unsupervised representation learning
and accelerate the development of the V2X community.
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