
Non-approximate Inference
for Collective Graphical Models on Path Graphs

via Discrete Difference of Convex Algorithm

Yasunori Akagi
NTT Human Informatics Laboratories,

NTT Corporation
yasunori.akagi.cu@hco.ntt.co.jp

Naoki Marumo
NTT Communication Science Laboratories,

NTT Corporation
naoki.marumo.ec@hco.ntt.co.jp

Hideaki Kim
NTT Human Informatics Laboratories,

NTT Corporation
hideaki.kin.cn@hco.ntt.co.jp

Takeshi Kurashima
NTT Human Informatics Laboratories,

NTT Corporation
takeshi.kurashima.uf@hco.ntt.co.jp

Hiroyuki Toda
NTT Human Informatics Laboratories,

NTT Corporation
hiroyuki.toda.xb@hco.ntt.co.jp

Abstract

The importance of aggregated count data, which is calculated from the data of
multiple individuals, continues to increase. Collective Graphical Model (CGM)
is a probabilistic approach to the analysis of aggregated data. One of the most
important operations in CGM is maximum a posteriori (MAP) inference of unob-
served variables under given observations. Because the MAP inference problem
for general CGMs has been shown to be NP-hard, an approach that solves an
approximate problem has been proposed. However, this approach has two major
drawbacks. First, the quality of the solution deteriorates when the values in the
count tables are small, because the approximation becomes inaccurate. Second,
since continuous relaxation is applied, the integrality constraints of the output are
violated. To resolve these problems, this paper proposes a new method for MAP
inference for CGMs on path graphs. Our method is based on the Difference of
Convex Algorithm (DCA), which is a general methodology to minimize a function
represented as the sum of a convex function and a concave function. In our algo-
rithm, important subroutines in DCA can be efficiently calculated by minimum
convex cost flow algorithms. Experiments show that the proposed method outputs
higher quality solutions than the conventional approach.

1 Introduction

In recent years, the importance of aggregated count data, which is calculated from the data of multiple
individuals, has been increasing [21, 27]. Although technologies for acquiring individual data such
as sensors and GPS have greatly advanced, it is still very difficult to handle individual data due to
privacy concerns and the difficulty of tracking individuals. However, there are many situations where
data aggregated from multiple individuals can be obtained and utilized easily. For example, Mobile
Spatial Statistics [22], which is the hourly population data of fixed-size square grids calculated from

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

cell phone network data in Japan, are available for purchase; such data is being used for disaster
prevention and urban planning [20]. In traffic networks, traffic volume data at each point can be
obtained more easily by sensors or cameras than the trajectories of individual cars, and the data is
useful for managing traffic congestion [9, 26].

Collective Graphical Model (CGM) [17] is a probabilistic model to describe aggregated statistics of a
sample drawn from a graphical model. CGM makes it possible to conduct various practical tasks on
aggregated count data, such as estimating movements from population snapshots, parameter learning
of the underlying graphical model, and interpolation and denoising of count tables. Particularly, the
case where the underlying graph is a path graph is important because CGMs on path graphs can treat
time series data in which the states of interest follow Markov chains. In fact, most of the real-world
applications of CGMs utilize CGMs on path graphs to represent the collective movement of humans
and animals [2, 4, 19]. Detailed analyses of time series of collective people movements from limited
observations would be useful for controlling people flow to avoid congestion and to maintain social
distancing in urban spaces.

One of the most important operations in CGM is maximum a posteriori (MAP) inference. MAP
inference is the discrete (combinatorial) optimization problem of finding an assignment of unobserved
variables that maximizes the posterior probability under given observations. MAP inference makes it
possible to interpolate missing values of aggregated data and to estimate more detailed information
that lies behind the observations. Unfortunately, MAP inference for general CGMs has been shown
to be NP-hard [16] and thus is difficult to solve exactly and efficiently. Therefore, an alternative
approach that solves an approximate problem, which is derived by applying Stirling’s approximation
and continuous relaxation, has been proposed [16]. Subsequent studies have focused on solving this
approximate problem efficiently [12, 18, 19, 23].

However, there are inherent problems with this approach of solving the approximate problem. First,
this approach tends to output a solution with a low posterior probability when the values in the
count tables are small, because Stirling’s approximation, log x! ≈ x log x− x, is inaccurate when
x is small. Such a situation frequently occurs when the number of values that each variable in the
graphical model takes is large, or when the sample size is small. Second, since continuous relaxation
is applied, the integrality constraints of count table values are violated in the output. As a result,
values that should be integers (e.g., the number of people) are no longer integers, which not only
reduces interpretability, but also makes the output less sparse, resulting in high memory consumption
to maintain the output. It is possible to obtain integer-valued results by rounding the output, but this
rounding process destroys the sum constraints among the estimated counts, e.g., the sum of the count
table values at each node may not match the sample size.

To resolve these issues, in this paper, we propose a new method for MAP inference for CGMs on
path graphs. We first show that the objective function of the problem can be expressed as the sum of
univariate discrete convex functions and discrete concave functions. Based on this expression, we
utilize the idea of the Difference of Convex Algorithm (DCA) [6]. DCA is a framework to minimize
a function expressed as the sum of a convex function and a concave function. In DCA, a solution is
obtained by repeatedly minimizing a surrogate function that upper-bounds the objective function,
and the objective function value decreases monotonically in each iteration. In addition, the algorithm
terminates in a finite number of iterations in our case since the variables are discrete not continuous.

The key to make the DCA-based algorithm efficient is a fast minimization algorithm for the surrogate
function. Because the feasible region of our problem is limited to integer lattice points, continuous
optimization methods such as the gradient descent, which are usually used in DCAs, cannot be
applied to minimize our surrogate function. Instead, we utilize the special structure of path graphs;
it enables us to formulate the minimization problem of the surrogate function as a combinatorial
optimization problem called the minimum convex cost flow problem. Fast algorithms for the minimum
convex cost flow problem are known and we can minimize the surrogate function efficiently by using
these algorithms.

The proposed method has several practical advantages. First, since the proposed method does not
use Stirling’s approximation, it offers an accurate inference even when the values in the count tables
are small. This makes it possible to output solutions with much higher posterior probability than the
approximation-based approach. Second, because the proposed method does not apply continuous
relaxation, the obtained solution is guaranteed to be integer-valued, which results in sparse and
interpretable outputs. In Section 5, we show results gained from synthetic and real-world datasets;

2

they indicate that the proposed method outputs higher quality solutions than the existing approach.
We show that the superiority of the proposed method is much greater when the sample size is not
very large or the number of states on nodes in the graphical model is large.

2 Collective Graphical Models (CGMs)

Collective Graphical Model (CGM) is a probabilistic generative model that describes the distributions
of aggregated statistics of a sample drawn from a certain graphical model [17]. Let G = (V,E) be an
undirected tree graph (i.e., a connected graph with no cycles). We consider a pairwise graphical model
over discrete random variable X := (Xu)u∈V defined by Pr(X = x) = 1

Z

∏
(u,v)∈E ϕuv(xu, xv),

where ϕuv(xu, xv) is a local potential function on edge (u, v) and Z :=
∑

x

∏
(u,v)∈E ϕuv(xu, xv)

is the partition function for normalization. In this paper, we assume that xu takes values on the set
[R] for all u ∈ V , where [k] denotes the set {1, 2, . . . , k} for a positive integer k.

We draw an ordered sample (X(1), . . . ,X(M)) independently from the graphical model, where M
is the sample size. Let nu := (nu(i))i∈[R] and nuv := (nuv(i, j))i,j∈[R], where nu(i) := |{m |
X

(m)
u = i}| and nuv(i, j) := |{m | X(m)

u = i, X
(m)
v = j}|. Each entry of nu and nuv is the

number of occurrences of a particular variable setting. We call (nu)u∈V node contingency table and
(nuv)(u,v)∈E edge contingency table, and denote n := ((nu)u∈V , (nuv)(u,v)∈E). We assume that
observations y := (yu)u∈V are generated by adding noise to the node contingency table (nu)u∈V ,
and the distribution of y is given by Pr(y|n) =

∏
u∈V

∏
i∈[R] pui(yu(i)|nu(i)), where pui is the

noise distribution. An additional assumption is described below.

Assumption 1. For u ∈ V and i ∈ [R], log pui(y|n) is a concave function in n.

Assumption 1 is a quite common assumption in CGM studies [16, 19]. Commonly used noise
distributions such as Gaussian distribution pui(yu(i)|nu(i)) = 1√

2πσ2
exp

(−(yu(i)−nu(i))
2

2σ2

)
and

Poisson distribution pui(yu(i)|nu(i)) = nu(i)
yu(i)/yu(i)! · exp(−nu(i)) satisfy Assumption 1.

The MAP inference problem for CGM is to find n that maximizes the posterior probability Pr(n|y).
Since Pr(n|y) = Pr(n,y)/Pr(y) from Bayes’ rule, it suffices to maximize the joint probability
Pr(n,y) = Pr(n) · Pr(y|n). Pr(n) is called CGM distribution and calculated as follows [19]:

Pr(n) = F (n) · I(n ∈ LZ
M), (1)

F (n) :=
M !

ZM
·
∏

u∈V

∏
i∈[R] (nu(i)!)

νu−1∏
(u,v)∈E

∏
i,j∈[R] nuv(i, j)!

·
∏

(u,v)∈E

∏
i,j∈[R]

ϕuv(i, j)
nuv(i,j), (2)

LZ
M :=

{
n ∈ Z|V |R+|E|R2

≥0

∣∣∣ M =
∑

i∈[R]

nu(i) (u ∈ V),

nu(i) =
∑

j∈[R]

nuv(i, j) ((u, v) ∈ E, i ∈ [R])
}
. (3)

Here, I(·) is the indicator function, νu is the degree of node u in G, and LZ
M is the set of possible

contingency tables. Using the above notations, the MAP inference problem can be written as

min
n∈LZ

M

− logF (n)− log Pr(y|n). (4)

3 CGMs on Path Graphs

Hereafter, we focus on CGMs on path graphs, which is the main topic of this paper. Path graph Pn is
an undirected graph whose vertex set is V = [N] and edge set is E = {(t, t+ 1) | t ∈ [N − 1]}. A
graphical model (not CGM) on path graph is the most basic graphical model that represents a time
series generated by a Markov model; that is, the current state depends only on the previous state.
A CGM on a path graph represents the distribution of aggregated statistics when there are many
individuals whose state transition is determined by a Markov model. In the rest of this paper, we use
the notation nti := nt(i), ntij := nt,t+1(i, j), and ϕtij := ϕt,t+1(i, j) for simplicity. From (1)–(4),

3

the MAP inference problem for CGMs on path graphs can be written as follows:

min
n

N−1∑
t=1

∑
i,j∈[R]

ftij(ntij) +

N−1∑
t=2

∑
i∈[R]

g(nti) +

N∑
t=1

∑
i∈[R]

hti(nti),

s.t.
∑
i∈[R]

nti = M (t ∈ [N]),
∑
j∈[R]

ntij = nti (t ∈ [N − 1], i ∈ [R]),

∑
i∈[R]

ntij = nt+1,j (t ∈ [N − 1], j ∈ [R]), ntij , nti ∈ Z≥0,

(5)

where ftij(z) := log z!− z · log ϕtij , g(z) := − log z!, hti(z) := − log pti(yti|z). For the details of
the derivation, please see Appendix.

We give an example of a CGM on a path graph which models human mobility. Consider that a space
is divided into R distinct areas and that M people are moving around in the space. The random
variable X

(m)
t represents the area to which person m belongs at time step t, and the time series

X(m) =
(
X

(m)
1 , . . . , X

(m)
N

)
is determined by the graphical model p(x) = 1

Z

∏N−1
t=1 ϕtxtxt+1

. Here,
ϕtij is the affinity between two areas i and j at time step t → t + 1. nti represents the number of
people in area i at time step t, and ntij represents the number of people who moved from area i to j
at time step t→ t+ 1. We have noisy observations yti for t ∈ [N] and i ∈ [R], which are generated
by adding noise to nti. The MAP inference problem we want to solve is to find the true number of
people of each area at each time step, (nti)t∈[N],i∈[R], and the true number of people moving between
each two areas, (ntij)t∈[N−1],i,j∈[R], with the highest posterior probability given the observation
(yti)t∈[N],i∈[R].

4 Proposed Method

4.1 Application of DCA

To solve problem (5), we propose utilizing the idea of the Difference of Convex Algorithm (DCA).
Before describing our method, we review the core idea of DCA based on the description in [11].

DCA is a general framework to solve the minimization problem minn∈D P(n) = Q(n) +R(n),
where Q(n) is a convex function and R(n) is a concave function. DCA does this by using the
following procedure to generate a feasible solution sequence n(1), . . . ,n(s) that satisfies P(n(1)) ≥
P(n(2)) ≥ · · · ≥ P(n(s)). First, we choose an arbitrary feasible solution n(1) ∈ D. When we
already have the sequence n(1), . . . ,n(s), we find a function R̄(s)(n) that satisfies the following
three conditions: (i) R̄(s)(n(s)) = R(n(s)), (ii) R̄(s)(n) ≥ R(n) (∀n ∈ D), (iii) P̄(s)(n) :=
Q(n)+R̄(s)(n) can be minimized efficiently on D. BecauseR(n) is concave, by setting R̄(s)(n) =
R(n(s)) + ∇R(n(s)) · (n − n(s)), which is a linear approximation of R(n) at n(s), conditions
(i)–(ii) hold. Using this function, we get a new feasible solution by n(s+1) = arg minn P̄(s)(n).
This can be done easily because condition (iii) holds. Then, because P(n(s+1)) ≤ P̄(s)(n(s+1)) ≤
P̄(s)(n(s)) = P(n(s)), we get P(n(1)) ≥ P(n(2)) ≥ · · · ≥ P(n(s)) ≥ P(n(s+1)) by induction.

To apply the framework of DCA, the objective function must be expressed as the sum of convex and
concave functions. The following proposition shows that our MAP inference problem in (5) has such
a structure.
Definition 1. A function f : Z≥0 → R ∪ {+∞} is called a discrete convex function when f(z +
2) + f(z) ≥ 2 · f(z + 1) for all z ∈ Z≥0. If −f is a discrete convex function, f is called a discrete
concave function.
Proposition 1. ftij is a discrete convex function. Under Assumption 1, hti is a discrete convex
function. g is a discrete concave function.

The proof is given in the Appendix. Hereafter, we set Q(n) =
∑N−1

t=1

∑
i,j∈[R] ftij(ntij) +∑N

t=1

∑
i∈[R] hti(nti) and R(n) =

∑N−1
t=2

∑
i∈[R] g(nti). Thanks to Proposition 1, we can ap-

ply DCA to our problem. The following proposition provides a function R̄(s)(n) that satisfies
conditions (i) and (ii) required for DCA.

4

𝑑

𝑓1𝑖𝑗(𝑧)Cost function ℎ1𝑖(𝑧) ℎ2𝑖 𝑧 + 𝑔2𝑖
(𝑠)
(𝑧) 𝑓2𝑖𝑗(𝑧)

𝑢1,1

𝒃𝑑 = −𝑀

0 0

𝒲1𝒰1

𝑜𝒃𝑜 = 𝑀

𝒲2𝒰2 𝒲3𝒰3

𝑢1,2 𝑢2,2

𝑢3,1

𝑢3,2

𝑤1,1

𝑤1,2

𝑢2,1 𝑤2,1

𝑤2,2

𝑤3,1

𝑤3,2

ℎ3𝑖(𝑧)

Figure 1: An example of the MCFP instance defined in Proposition 3 when N = 3 and R = 2.

Proposition 2. Let ḡ(s)ti (z) := − log(n
(s)
ti !)+α

(s)
ti · (z−n

(s)
ti), where α(s)

ti is a real number which sat-
isfies − log(n

(s)
ti + 1) ≤ α

(s)
ti ≤ − log n

(s)
ti . Then, the function R̄(s)(n) :=

∑N−1
t=2

∑
i∈[R] ḡ

(s)
ti (nti)

satisfies R̄(s)(n(s)) = R(n(s)) and R̄(s)(n) ≥ R(n).

Please see the Appendix for the proof. Intuitively, ḡ(s)ti is a tangent of g at nti.

4.2 Minimum Cost Flow Algorithm for the Subroutine

The most important and difficult part to derive an efficient DCA-based algorithm is designing
efficient algorithms for the problem minn∈D P̄(s)(n) (condition (iii)). To achieve this, we show that
minn∈D P̄(s)(n) can be formulated as the Minimum Convex Cost Flow Problem (C-MCFP), which
is the efficiently solvable subclass of the Minimum Cost Flow Problem (MCFP). The (non-linear)
MCFP is a combinatorial optimization problem on a directed graph G = (V, E). Each node i ∈ V has
a supply value bi ∈ Z, and each edge (i, j) ∈ E has a cost function cij : Z≥0 → R ∪ {+∞}. MCFP
is the problem of finding a minimum cost flow on G that satisfies the supply constraints at all nodes.
MCFP can be described as follows:

min
z∈Z|E|

≥0

∑
(i,j)∈E

cij(zij) s.t.
∑

j:(i,j)∈E

zij −
∑

j:(j,i)∈E

zji = bi (i ∈ V).

Note that z takes only integer values (i.e., z ∈ Z|E|). A subclass of MCFP in which all cost
functions are discrete convex functions (see Definition 1) is called the C-MCFP; it is known to be
efficiently solvable [1]. The following proposition shows that the subproblem minn∈D P̄(s)(n) can
be formulated as a C-MCFP.

Proposition 3. Define the MCFP instance as follows:

• the node set V is defined by V := {o, d} ∪ (∪t∈[N](Ut ∪Wt)), where Ut := (ut,i)i∈[R],Wt :=
(wt,i)i∈[R],

• the edge set E consists of four types of edges,
– edges (o, u1,i, 0) and (wN,i, d, 0) for i ∈ [R],
– edges (ut,i, wt,i, hti(z)) for t = 1, N and i ∈ [R],
– edges (ut,i, wt,i, ḡ

(s)
ti (z) + hti(z)) for t = 2, . . . , N − 1 and i ∈ [R],

– edges (wt,i, ut+1,i, ftij(z)) for t ∈ [N − 1] and i, j ∈ [R],
where (u, v, c(z)) represents a directed edge from node u to node v with cost function c(z),

• the supply values (bi)i∈V are defined by bo = M , bd = −M , and bv = 0 for v ∈ V \ {o, d}.

Let z∗ is an optimal solution of this MCFP instance, and define n∗ by n∗
ti := z∗ut,iwt,i

and n∗
tij :=

z∗wt,iut+1,j
. Then, n∗ is an optimal solution of the problem minn∈D P̄(s)(n). Furthermore, the

MCFP instance belongs to C-MCFP.

The proof is given in the Appendix. Figure 1 illustrates an example of the MCFP instance defined in
Proposition 3. This MCFP can be interpreted as the problem of finding a way to push M flows from
node o to node d with minimum cost. The above proposition enables us to solve the subproblem
minn∈D P̄(s)(n) efficiently by applying existing algorithms for C-MCFP.

5

4.3 Overall View of the Proposed Method and Time Complexity Analysis

Algorithm 1 DCA for problem (5)

1: n(1) ← 0
2: for s = 1, 2, . . . do
3: n(s+1) ← (n∗ defined in Proposition 3)
4: if P(n(s)) = P(n(s+1)) then
5: return n(s)

From the above arguments, we can construct an
efficient optimization algorithm, described in Al-
gorithm 1, for the MAP inference problem (5).
The algorithm is guaranteed to terminate after a
finite number of iterations because P(n(s)) mono-
tonically decreases and D is a finite set.

We analyze the time complexity of one iteration of
the proposed method (Lines 3–5 in Algorithm 1).
The computational bottleneck is solving C-MCFP
in Line 3. There are several algorithms to solve
C-MCFP and time complexity varies depending on which one is adopted. In this paper, we consider
two typical methods, the Successive Shortest Path algorithm (SSP) and the Capacity Scaling algorithm
(CS) [1].

SSP is an algorithm that successively augments unit flow along the shortest path from a supply node
(i.e. bi > 0) to a demand node (i.e. bi < 0) in the residual graph, which is an auxiliary graph
calculated from the current flow. Given a C-MCFP instance with graph G = (V, E), the shortest path
in the residual graph can be computed in O(|E| log |V|) time by Dijkstra’s algorithm with a binary
heap, and the augmentation of the flow can be done in O(|E|) time. The augmentation is performed
B := (

∑
i∈V |bi|)/2 times totally, so the total time complexity is O(B|E| log |V|). CS resembles

SSP, but it differs in that it tries to push a large amount of flow, rather than a unit amount of flow, in a
single augmentation. In CS, the number of shortest path calculations and flow augmentations can
be bounded O(|E| logU) times, where U := maxi∈V |bi|, so the total computational complexity is
O(|E|2 log |V| logU).

Because |V| = O(NR), |E| = O(NR2), B = O(M) and U = O(M) in our problem, the time com-
plexity in one iteration is O(MNR2 log(NR)) when SSP is applied and O(N2R4 log(NR) logM)
when CS is applied. This result implies that each method has its own advantages and disadvantages:
SSP has small time complexity for N and R, while CS has small time complexity for M . This
difference is confirmed empirically in Section 5.1.

5 Experiments

We perform experiments to evaluate the effectiveness of the proposed method using synthetic and
real-world instances. All experiments are conducted on a 64-bit macOS machine with Intel Core i7
CPUs and 16 GB of RAM. All algorithms are implemented in C++ (gcc 9.1.0 with -O3 option).

5.1 Synthetic Instances

Settings. We solve randomly generated synthetic instances of the MAP inference problem (5) and
compare the attained objective values. We fix N to 5 and vary the values of R and M . The input
observation yti is independently drawn from uniform distribution on the set of integers {1, 2, . . . , 2 ·
⌊MR ⌋}. As the noise distribution, we use Gaussian distribution pti(yti|nti) ∝ exp

(
− 0.01 · (yti −

nti)
2
)
. We use two types of potential functions as follows. (1) uniform. ϕtij is independently drawn

from uniform distribution on the set of integers {1, 2, . . . , 10}. (2) distance. We set ϕtij =
1

|i−j+1| .
This potential models the movement of individuals in one-dimensional space: the state indices i and
j represent coordinates in the space, and the closer the two points are, the more likely are movements
between them to occur.

Proposed Method. To construct surrogate functions in the proposed method, we can choose
arbitrary α

(s)
ti which satisfies the condition − log(n

(s)
ti + 1) ≤ α

(s)
ti ≤ − log n

(s)
ti (see Proposition

2). To investigate the influence of the choice of α(s)
ti , we try three strategies to decide α

(s)
ti : (1)

α
(s)
ti = − log(n

(s)
ti), (2) α(s)

ti = − 1
2 (log(n

(s)
ti) + log(n

(s)
ti +1)), (3) α(s)

ti = − log(n
(s)
ti +1). We call

them Proposed (L), Proposed (M), Proposed (R), respectively.

6

Table 1: Attained objective functions in synthetic instances. For each setting, we generated 10
instances and average values are shown. The smallest value is highlighted for each setting. U and D
mean the “uniform” and “distance” potential settings, respectively.

M 101 102 103

R 10 20 30 10 20 30 10 20 30
Proposed (L) -9.97e+01 -8.90e+01 -8.74e+01 -1.11e+03 -1.19e+03 -1.22e+03 -1.07e+04 -1.31e+04 -1.40e+04

U Proposed (M) -9.81e+01 -8.90e+01 -8.74e+01 -1.11e+03 -1.19e+03 -1.22e+03 -1.07e+04 -1.31e+04 -1.40e+04
Proposed (R) -9.64e+01 -8.76e+01 -8.74e+01 -1.11e+03 -1.18e+03 -1.21e+03 -1.07e+04 -1.31e+04 -1.40e+04
NLBP -7.19e+01 -7.01e+01 -7.01e+01 -1.08e+03 -9.87e+02 -9.02e+02 -1.07e+04 -1.30e+04 -1.37e+04
Proposed (L) 3.35e-01 5.00e-01 5.00e-01 -5.48e+01 -3.03e+01 -1.18e+01 -5.83e+00 -9.06e+02 -1.01e+03

D Proposed (M) 3.35e-01 5.00e-01 5.00e-01 -5.43e+01 -2.91e+01 -1.14e+01 -5.82e+00 -9.06e+02 -1.01e+03
Proposed (R) 3.35e-01 5.00e-01 5.00e-01 -5.39e+01 -2.89e+01 -1.06e+01 -5.80e+00 -9.06e+02 -1.01e+03
NLBP 3.20e+01 4.56e+01 5.28e+01 -1.38e+01 1.77e+02 3.25e+02 1.20e+00 -8.02e+02 -5.31e+02

Compared Method. As the compared method, we use Non-Linear Belief Propagation (NLBP) [19],
which is a message-passing style algorithm to the solve approximate MAP inference problem derived
by applying Stirling’s approximation and continuous relaxation. Because the output of NLBP is not
integer-valued and log(z!) is defined only if z is an integer, we cannot calculate the objective function
of (5) directly. To address this, we calculate it by replacing the term log(z!) by linear interpolation of
log(⌊z⌋!) and log(⌈z⌉!), which is given by (⌈z⌉ − z) · log(⌊z⌋!) + (z − ⌊z⌋) · log(⌈z⌉!). Note that
although there are various algorithms to solve the approximate MAP inference problem (see Section
6.1), the objective function values attained by these algorithms are the same. This is because the
approximate problem is a convex optimization problem [16].

Comparison of attained objective values. The results are shown in Table 1. We generated 10
instances for each parameter setting and determined the average of attained objective function
values. Because the objective function P(n) is equal to − log Pr(n|y) + const., P(n) takes both
positive and negative values, and the difference of the objective function values is essential; when
P(n1)− P(n2) = δ, Pr(n1|y) = exp(−δ) · Pr(n2|y) holds.

All the proposed methods consistently have smaller objective function values than the compared
method. The difference tends to be large when R is large and M is small. This would be because
small values appear in the contingency table more frequently when R is large and M is small, and
the effect of the inaccuracy of Stirling’s approximation becomes larger. Among the three proposed
methods, there was not much difference in obtained objective function values although Proposed
(L) was found to consistently achieve slightly smaller objective function values than others. This
indicates that the proposed method is robust with respect to the choice of hyperparameters α(s)

ti .

Characteristics of the output solution. To compare the characteristics of solutions obtained by
proposed (L) and NLBP, we solve an instance with R = 20, M = 102, and uniform potential by
each method. Obtained edge contingency tables n1ij are shown in Figure 2 as heat maps. We also
show the edge contingency table obtained by rounding the NLBP solution to integers. We observe
that the proposed method outputs sparse solutions while the solutions by NLBP are blurred and
contain a lot of non-zero elements. This difference is quantified by “sparsity”, which is calculated
by 1.0− (# of non-zero (> 10−2) elements)/(# of elements): sparsity of the output of proposed
(L) is 77%, while the sparsity of the output of NLBP is 0%. This is caused by its application of
continuous relaxation and the inaccuracy of Stirling’s approximation around 0. In the solution of
NLBP (rounded), many near-zero values are rounded to 0, and constraints of the problem (5) are
totally violated; for example, the sum of the edge contingency table values does not match the sample
size. In additional experiments, we observed that the outputs of the three methods become closer as
M increases. For more details, please see the Appendix.

Comparison of computation time. We compare the computation time of each algorithm. As
explained in Section 4.3, we can choose an arbitrary C-MCFP algorithm as the subroutine in the
proposed method and the time complexity varies depending on the choice. We compare proposed (L)
with SSP, proposed (L) with CS, and NLBP.

Figure 3 shows the relationship between input size and computation time, and Figure 4 shows the
relationship between running time and objective function value. These results are consistent with the
complexity analysis results in Section 4.3; SSP is efficient when R is large but becomes inefficient

7

j

i

Proposed (L), Sparsity: 77% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 99%

Figure 2: Comparison of solutions yielded by proposed method (L), NLBP, and NLBP (rounded).
We solve an instance with R = 20, M = 102 and uniform potential. The obtained edge contingency
table n1ij is presented as a matrix heatmap with the maximum value of color map 3.

Table 2: Attained objective function values and NAEs for real-world instances. For each setting, we
generated 10 instances and averages are shown. The smallest value is highlighted.

M 100 500 1000
R 56 208 56 208 56 208

Obj. Val.
Proposed (L) -3.02e+02 2.97e+02 -6.61e+03 -2.62e+03 -1.70e+04 -9.76e+03
NLBP 1.30e+03 3.24e+03 -3.46+03 6.93e+03 -1.34e+04 4.70e+03
NLBP (rounded) - - - - - -

NAE
Proposed (L) 0.690 0.441 1.002 0.829 1.073 0.956
NLBP 1.38 1.544 1.241 1.438 1.209 1.381
NLBP (rounded) 0.877 0.870 1.079 0.907 1.128 0.991

when M is large, and the converse is true for CS. The results also suggest that it is important to
choose the algorithm depending on the size parameter of the input. The proposed method is not much
worse than the existing method in terms of computation time by choosing an appropriate C-MCFP
algorithm according to the size of the input. Appropriately chosen proposed methods attain the
minimum of the existing method more quickly; proposed methods take a lot of time to achieve a
smaller objective function value than the minimum of the existing method.

5.2 Real-world Instances

We conduct experiments using real-world population datasets. The datasets are generated from
8694 car trajectories collected by a car navigation application in the Greater Tokyo area, Japan 1.
We randomly sample M (M = 100, 500, 1000) trajectories from this data and create aggregated
population data of each area at fixed time intervals. The areas are decided by dividing the targeted
geospatial space into fixed-size grid cells. The grid size is set to 10km × 10km (R = 8× 7 = 56)
and 5km × 5km (R = 16 × 13 = 208), and time interval is 60 minutes (N = 24). As the noise
distribution, we use Gaussian distribution pti(yti|nti) ∝ exp

(
−(yti − nti)

2
)
. We construct the

potential ϕtij = exp (−dist(i, j)), where dist(i, j) is the Euclidean distance between the centers
of cell i and cell j in the grid space. We create 10 instances by random sampling and averaged
the attained objective function values for each setting. We also evaluate the estimation accuracy of
the edge contingency table (ntij)t∈[N−1],i,j∈[R]. We use normalized absolute error (NAE) as the

evaluation metric, which is defined as
∑

t∈[N−1]

∑
i∈[R]

∑
j∈[R]|ntrue

tij −nest
tij|∑

t∈[N−1]

∑
i∈[R]

∑
j∈[R] n

true
tij

, where ntrue
tij is the true

value and nest
tij is the estimated value of the edge contingency table. In addition to Proposed (L) and

NLBP, we also evaluate the estimation accuracy of NLBP (rounded), which is a method that rounds
the output of NLBP to integer values. Note that we do not evaluate the objective function values of
NLBP (rounded). This is because the output of NLBP (rounded) completely violates the constraints
on summation in the MAP inference problem (5) and the objective function value cannot evaluate
whether the optimization problem is successfully solved or not.

1We use the data collected by the smartphone car navigation application of NAVITIME JAPAN Co., Ltd.
(http://corporate.navitime.co.jp/en/). The data are collected with consent and appropriately anonymized.

8

101 102 103 104

M

10−2

10−1

100

tim
e

(s
ec

)

NLBP
CS
SSP

10 20 30 40 50 60 70 80 90100
R

10−1

100

101

102
NLBP
CS
SSP

Figure 3: The computation time of each algorithm. The values are averages of 10 synthetic instances
when R is fixed to 20 (left) an M is fixed to 103 (right). N is set 5 and the uniform potential is used.

0.0 0.5 1.0 1.5 2.0
time (sec)

−117900

−117850

−117800

ob
j.

Va
l.

NLBP
CS
SSP

0.0 0.5 1.0 1.5
time (sec)

−14000

−13800

−13600

−13400
NLBP
CS
SSP

Figure 4: The relationship between running time and objective function value. The left figure shows
the result of an instance of R = 20,M = 104 and uniform potential, and right figure shows that of
R = 30,M = 103 and uniform potential.

Table 2 shows the results. We observe that Proposed (L) consistently attain smaller objective values
and NAEs than the existing method. The superiority of the proposed method increase when R is
large and M is small, and this is the same trend as the results with synthetic data. The NAE of NLBP
is relatively large; this is due to the fact that small values are assigned to the elements of the output
that should be 0, which is the same phenomenon seen in Figure 2. The NAE values are improved to
some extent by rounding, but the proposed method is still superior.

6 Related Work

6.1 MAP inference for CGMs

Several methods have been proposed for the MAP inference of CGMs, but most of them take
the approach of solving the approximate problem [16], which is derived by applying Stirling’s
approximation and continuous relaxation. For example, the interior point method [16], projected
gradient descent [23], message passing [19] and Sinkhorn-Knopp algorithm [18] have been used
to solve the approximate problem. In particular, [12] proposes a method to use DCA to solve this
approximate problem. Although this approach is similar to our proposal in that it uses DCA, the
purpose of applying DCA is totally different: our focus is to solve the MAP inference problem
without using any approximation or continuous relaxation.

One of the few exceptions is the method proposed in [3], which solves the original MAP inference
problem directly without using approximation. Our method follows this line of research, but there are
two major differences. First, their method can only be applied to CGM on a graph with two vertices,
and thus applicability is very limited. Since our method is consistent with this method when applied

9

to CGM on a graph with two vertices, our method can be regarded as a generalization of their method.
Second, their work assumes accurate observations and does not handle observation noise.

[15] solves related collective MAP inference problems on path graphs. The problems addressed
in this paper are different from ours; their purpose is finding the most likely assignments of the
entire variables for each individual, while our purpose is finding the most likely node and edge
contingency tables. In their settings, non-linear terms in the log posterior probability vanish, and the
MAP inference problem can be solved easily by linear optimization approaches.

6.2 Difference of Convex Algorithm (DCA)

DCA, which is sometimes called Convex Concave Procedure [25], is a framework to minimize a
function expressed as the sum of a convex function and a concave function [6]. DCA was originally
proposed as a method for optimization in continuous domains. DCA has been used in various machine
learning fields, such as feature selection [7], reinforcement learning [14], support vector machines
[24] and Boltzmann machines [13].

Several studies have applied DCA to discrete optimization problems. This line of research is
sometimes called discrete DCA [8]. [5, 11] propose algorithms to minimize the sum of a submodular
function and a supermodular function. This algorithm is generalized to yield the minimization of
the sum of an M/L-convex function and an M/L-concave function [8], where M-convex function
and L-convex function are classes of discrete convex functions [10]. Although our work is closely
related to these studies, it is not part of them. This is because our problem can be regarded as the
minimization of the sum of two M-convex functions and a separable concave function, and this is not
included in the class of functions dealt with in [8] 2.

7 Conclusion

In this paper, we propose a non-approximate method to solve the MAP inference problem for CGMs
on path graphs. Our algorithm is based on an application of DCA. In the algorithm, surrogate
functions can be constructed in closed-form and minimized efficiently by C-MCFP algorithms.
Experimental results show that our algorithm outperforms approximation-based methods in terms of
quality of solutions.

References
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[2] Yasunori Akagi, Takuya Nishimura, Takeshi Kurashima, and Hiroyuki Toda. A fast and accurate
method for estimating people flow from spatiotemporal population data. In IJCAI, pages
3293–3300, 2018.

[3] Yasunori Akagi, Takuya Nishimura, Yusuke Tanaka, Takeshi Kurashima, and Hiroyuki Toda.
Exact and efficient inference for collective flow diffusion model via minimum convex cost flow
algorithm. In AAAI, pages 3163–3170, 2020.

[4] Jiali Du, Akshat Kumar, and Pradeep Varakantham. On understanding diffusion dynamics of
patrons at a theme park. In AAMAS, pages 1501–1502, 2014.

[5] Rishabh Iyer and Jeff Bilmes. Algorithms for approximate minimization of the difference
between submodular functions, with applications. In UAI, pages 407–417, 2012.

[6] Hoai An Le Thi and Tao Pham Dinh. DC programming and DCA: Thirty years of developments.
Mathematical Programming, 169(1):5–68, 2018.

[7] Hoai An Le Thi, Hoai Minh Le, and Tao Pham Dinh. Feature selection in machine learning: an
exact penalty approach using a difference of convex function algorithm. Machine Learning,
101(1):163–186, 2015.

2A separable convex function is both L-convex and M-convex, but a sum of two M-convex functions is
neither M-convex nor L-convex.

10

[8] Takanori Maehara and Kazuo Murota. A framework of discrete DC programming by discrete
convex analysis. Mathematical Programming, 152(1-2):435–466, 2015.

[9] Tetsuro Morimura, Takayuki Osogami, and Tsuyoshi Idé. Solving inverse problem of markov
chain with partial observations. In NIPS, pages 1655–1663, 2013.

[10] Kazuo Murota. Discrete convex analysis. Mathematical Programming, 83(1):313–371, 1998.

[11] Mukund Narasimhan and Jeff Bilmes. A submodular-supermodular procedure with applications
to discriminative structure learning. In UAI, page 404–412, 2005.

[12] Thien Nguyen, Akshat Kumar, Hoong Chuin Lau, and Daniel Sheldon. Approximate inference
using DC programming for collective graphical models. In AISTATS, pages 685–693, 2016.

[13] Atsushi Nitanda and Taiji Suzuki. Stochastic difference of convex algorithm and its application
to training deep Boltzmann machines. In AISTATS, pages 470–478. PMLR, 2017.

[14] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Difference of convex functions programming
for reinforcement learning. In NIPS, pages 2519–2527, 2014.

[15] Daniel Sheldon, MA Saleh Elmohamed, and Dexter Kozen. Collective inference on markov
models for modeling bird migration. In NIPS, pages 1321–1328, 2007.

[16] Daniel Sheldon, Tao Sun, Akshat Kumar, and Tom Dietterich. Approximate inference in
collective graphical models. In ICML, pages 1004–1012, 2013.

[17] Daniel R. Sheldon and Thomas G. Dietterich. Collective graphical models. In NIPS, pages
1161–1169, 2011.

[18] Rahul Singh, Isabel Haasler, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen. Inference
with aggregate data: An optimal transport approach. 2020. arXiv:2003.13933.

[19] Tao Sun, Daniel Sheldon, and Akshat Kumar. Message passing for collective graphical models.
In ICML, pages 853–861, 2015.

[20] Toshihiro Suzuki, Masashi Yamashita, and Masayuki Terada. Using mobile spatial statistics in
field of disaster prevention planning. NTT DOCOMO Tech. J, 14(3):37–45, 2013.

[21] Yusuke Tanaka, Toshiyuki Tanaka, Tomoharu Iwata, Takeshi Kurashima, Maya Okawa, Yasunori
Akagi, and Hiroyuki Toda. Spatially aggregated gaussian processes with multivariate areal
outputs. In NeurIPS, pages 3000–3031, 2019.

[22] Masayuki Terada, Tomohiro Nagata, and Motonari Kobayashi. Population estimation technology
for mobile spatial statistics. NTT DOCOMO Technical Journal, 14(3):10–15, 2013.

[23] Luke Vilnis, David Belanger, Daniel Sheldon, and Andrew McCallum. Bethe projections for
non-local inference. In UAI, pages 892–901, 2015.

[24] Hai-Ming Xu, Hui Xue, Xiao-Hong Chen, and Yun-Yun Wang. Solving indefinite kernel support
vector machine with difference of convex functions programming. In AAAI, pages 2782–2788,
2017.

[25] Alan L Yuille and Anand Rangarajan. The concave-convex procedure (CCCP). In NIPS, pages
1033–1040, 2001.

[26] Shanghang Zhang, Guanhang Wu, Joao P Costeira, and Jose MF Moura. Understanding traffic
density from large-scale web camera data. In CVPR, pages 5898–5907, 2017.

[27] Yivan Zhang, Nontawat Charoenphakdee, Zhenguo Wu, and Masashi Sugiyama. Learning from
aggregate observations. In NeurIPS, pages 470–478, 2020.

11

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] It is mentioned that the proposed

method may be inferior to the existing methods in terms of computation time depending
on the parameters settings of inputs in Section 5

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our study
is unlikely to have a negative impact on society.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

required for the theoretical results are clarified.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] Because they
are the properties of the company to which I belong, I cannot disclose the details.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See the footnote in

Section 5.
(b) Did you mention the license of the assets? [No] We have purchased the data and have a

license to use it.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

The data is the company’s property and cannot be disclosed.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See the footnote in Section 5.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See the footnote in Section 5.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We do not use crowdsourcing and conducted research with human
subjects. The answers to the following questions are the same.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

12

	Introduction
	Collective Graphical Models (CGMs)
	CGMs on Path Graphs
	Proposed Method
	Application of DCA
	Minimum Cost Flow Algorithm for the Subroutine
	Overall View of the Proposed Method and Time Complexity Analysis

	Experiments
	Synthetic Instances
	Real-world Instances

	Related Work
	MAP inference for CGMs
	Difference of Convex Algorithm (DCA)

	Conclusion

